JP2021017853A - Compressor, outdoor unit and air conditioning device - Google Patents

Compressor, outdoor unit and air conditioning device Download PDF

Info

Publication number
JP2021017853A
JP2021017853A JP2019134294A JP2019134294A JP2021017853A JP 2021017853 A JP2021017853 A JP 2021017853A JP 2019134294 A JP2019134294 A JP 2019134294A JP 2019134294 A JP2019134294 A JP 2019134294A JP 2021017853 A JP2021017853 A JP 2021017853A
Authority
JP
Japan
Prior art keywords
oil
discharge hole
compression chamber
oil discharge
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019134294A
Other languages
Japanese (ja)
Other versions
JP7321018B2 (en
Inventor
謙治 竹澤
Kenji Takezawa
謙治 竹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2019134294A priority Critical patent/JP7321018B2/en
Publication of JP2021017853A publication Critical patent/JP2021017853A/en
Application granted granted Critical
Publication of JP7321018B2 publication Critical patent/JP7321018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

To provide a compressor and the like capable of sufficiently reducing the amount of refrigerating machine oil discharged to the external, while securing supply of the refrigerating machine oil to a necessary place.SOLUTION: A compressor includes a motor 40, a rotating shaft 31 driven by the motor and having an eccentric portion, a container disposed below the motor and having a compression chamber 51, a rotor disposed at the circumference of the eccentric portion and rotating in the compression chamber, a partition member kept into contact with the rotor and partitioning the compression chamber into two, and an elastic body pressing one end of the partition member. The container includes a side body 52 on which the partition member and the elastic body are mounted, and two bearings closing both ends of the compression chambers and rotatably supporting the rotating shaft. An upper bearing 53 at a motor side, of the two bearings has a spiral groove 56 for supplying an oil stored at a lower part of the container to an upper part, and an oil discharge hole 57 continued to the spiral groove for discharging the oil supplied through the spiral groove, and the oil discharge hole is inclined and extends downward to a space 32 between the motor and the container at the circumference of the rotating shaft.SELECTED DRAWING: Figure 3

Description

本発明は、流体を圧縮する圧縮機、室外機および空気調和装置に関する。 The present invention relates to a compressor for compressing a fluid, an outdoor unit and an air conditioner.

ロータリ圧縮機は、密閉容器内に電動機と圧縮機構とを収納し、電動機により回転軸を介して圧縮機構を構成する回転体(ローラ)を回転することにより圧縮室内の流体を圧縮する。圧縮機構の上下には、回転軸を回転可能に支持する軸受が設けられる。 The rotary compressor houses an electric motor and a compression mechanism in a closed container, and compresses the fluid in the compression chamber by rotating a rotating body (roller) constituting the compression mechanism via a rotating shaft by the electric motor. Bearings that rotatably support the rotating shaft are provided above and below the compression mechanism.

密閉容器内の底部には、潤滑油として用いられる冷凍機油が貯留され、回転軸の内部を通して吸い上げられ、圧縮機構や上下の軸受に供給される。下の軸受に供給された冷凍機油は、密閉容器内の底部の油溜りへ直接戻るが、上の軸受に供給された冷凍機油は、電動機と圧縮機構との間の圧縮機構で圧縮した流体の吐出空間へ上向きに放出される。 Refrigerating machine oil used as lubricating oil is stored in the bottom of the closed container, sucked up through the inside of the rotating shaft, and supplied to the compression mechanism and the upper and lower bearings. The refrigerating machine oil supplied to the lower bearing returns directly to the oil sump at the bottom of the closed container, while the refrigerating machine oil supplied to the upper bearing is the fluid compressed by the compression mechanism between the motor and the compression mechanism. It is discharged upward into the discharge space.

吐出空間に放出された冷凍機油は、大部分が落下して油溜りへ戻るが、一部は圧縮機構から吐出された高圧の流体とともに密閉容器の外部へ排出される。この排出される量が増加すると、油溜りの油面高さが低下し、圧縮機の信頼性が低下する。 Most of the refrigerating machine oil discharged into the discharge space falls and returns to the oil sump, but a part of the refrigerating machine oil is discharged to the outside of the closed container together with the high-pressure fluid discharged from the compression mechanism. When the amount of this discharged increases, the oil level in the oil sump decreases, and the reliability of the compressor decreases.

このような問題に鑑み、上の軸受の上端部に環状溝を設け、環状溝から径方向に延びる油排出穴を設け、環状溝の径方向の幅より油排出穴の径を大きくし、環状溝から上部への排出通路より油排出穴への通路抵抗を小さくし、外部へ排出される量を低減する技術が提案されている(例えば、特許文献1参照)。 In view of such a problem, an annular groove is provided at the upper end of the upper bearing, an oil discharge hole extending radially from the annular groove is provided, the diameter of the oil discharge hole is made larger than the radial width of the annular groove, and the ring is formed. A technique has been proposed in which the passage resistance from the groove to the upper part to the oil discharge hole is reduced to reduce the amount of oil discharged to the outside (see, for example, Patent Document 1).

特許第4992496号公報Japanese Patent No. 4992496

上記従来の技術では、油排出穴を下方に傾斜させて設けることで、外部へ排出される量を低減させているが、冷凍機油が環状溝の上部開口から吐出空間へ上向きにも放出されるため、外部へ排出される量を充分に低減させることができないという問題があった。 In the above-mentioned conventional technique, the amount of oil discharged to the outside is reduced by providing the oil discharge hole so as to be inclined downward, but the refrigerating machine oil is also discharged upward from the upper opening of the annular groove to the discharge space. Therefore, there is a problem that the amount discharged to the outside cannot be sufficiently reduced.

本発明は、上記課題に鑑み、流体を圧縮する圧縮機であって、
電動機と、
電動機により駆動され、偏心部を有する回転軸と、
電動機の下方に配置され、流体を圧縮するための圧縮室を有する容器と、
偏心部の周囲に設けられ、圧縮室の内周面に接触しながら圧縮室内を回転する回転体と、
回転体に当接し、圧縮室を2つの空間に仕切る仕切部材と、
仕切部材の一端を押圧する弾性体と
を含み、
容器は、圧縮室の側方を構成し、仕切部材と弾性体とが装着される側方体と、圧縮室の両端の開口を閉鎖し、回転軸を回転可能に支持する2つの軸受とを含み、
2つの軸受のうちの電動機側の上軸受は、容器の下方に貯留される油を上方へ供給するための螺旋状溝と、螺旋状溝に連続し、螺旋状溝を通して供給された油を排出するための油排出穴とを有し、油排出穴が、回転軸の周囲の電動機と容器との間の空間へ向けて下方に傾斜して延びる、圧縮機が提供される。
The present invention is a compressor that compresses a fluid in view of the above problems.
With an electric motor
A rotating shaft driven by an electric motor and having an eccentric part,
A container located below the electric motor and having a compression chamber for compressing the fluid,
A rotating body provided around the eccentric part and rotating in the compression chamber while contacting the inner peripheral surface of the compression chamber.
A partition member that comes into contact with the rotating body and divides the compression chamber into two spaces,
Including an elastic body that presses one end of the partition member
The container constitutes the side of the compression chamber, and includes a side body to which the partition member and the elastic body are mounted, and two bearings that close the openings at both ends of the compression chamber and rotatably support the rotating shaft. Including
Of the two bearings, the upper bearing on the motor side has a spiral groove for supplying the oil stored under the container upward and a spiral groove continuous with the spiral groove to discharge the oil supplied through the spiral groove. Provided is a compressor having an oil drain hole for the purpose of the oil drain hole extending downwardly toward the space between the electric motor and the container around the rotating shaft.

本発明によれば、必要な箇所への冷凍機油の供給を確保しつつ、外部へ排出される冷凍機油の量を充分に低減させることができる。 According to the present invention, it is possible to sufficiently reduce the amount of refrigerating machine oil discharged to the outside while ensuring the supply of refrigerating machine oil to necessary places.

空気調和装置の構成例を示した図。The figure which showed the configuration example of the air conditioner. 室外機の構成例を示した図。The figure which showed the configuration example of the outdoor unit. 圧縮機の構成例を示した図。The figure which showed the configuration example of a compressor. 油排出穴が延びる方向の第1の例を示した図。The figure which showed the 1st example in the direction which the oil discharge hole extends. 油排出穴が延びる方向の第2の例を示した図。The figure which showed the 2nd example in the direction which the oil discharge hole extends. 螺旋状溝に連続して設けられる油排出穴の位置の一例を示した図。The figure which showed an example of the position of the oil discharge hole which is continuously provided in a spiral groove. 油排出穴が延びる方向の第4の例を示した図。The figure which showed the 4th example in the direction which the oil discharge hole extends. 油排出穴が延びる方向の第5の例を示した図。The figure which showed the 5th example in the direction which the oil discharge hole extends.

本実施形態に係る圧縮機は、流体を圧縮する装置として、単体で使用し、また、いかなる装置やシステムにも搭載することができるが、ここでは、空気調和装置の室外機に搭載するものとして説明する。 The compressor according to the present embodiment can be used alone as a device for compressing a fluid, and can be mounted on any device or system, but here, it is mounted on an outdoor unit of an air conditioner. explain.

図1は、空気調和装置の構成例を示した図である。空気調和装置は、同一空間内に設けられる1以上の室内機と、その空間の外部に設置される1以上の室外機とを含む。図1に例示した装置は、室内に設置された1台の室内機10と、室外に設置された1台の室外機11とから構成されている。 FIG. 1 is a diagram showing a configuration example of an air conditioner. The air conditioner includes one or more indoor units installed in the same space and one or more outdoor units installed outside the space. The device illustrated in FIG. 1 is composed of one indoor unit 10 installed indoors and one outdoor unit 11 installed outdoors.

室内機10と室外機11は、2本の配管12により接続され、配管12内を冷媒が循環するように構成されている。冷媒は、熱を移動させるために用いられる熱媒体で、例えばオゾン層破壊の影響がないハイドロフルオロカーボン(HFC)が使用される。 The indoor unit 10 and the outdoor unit 11 are connected by two pipes 12 and are configured so that the refrigerant circulates in the pipe 12. The refrigerant is a heat medium used for transferring heat, for example, hydrofluorocarbon (HFC) which is not affected by ozone layer depletion is used.

室内機10は、室内の空気を吸い込み、循環する冷媒により室内の空気を冷却または暖め、冷却または暖めた空気を吹き出す。これを繰り返すことにより、室内を冷やし、または暖める。室外機11は、冷媒を室内機へ供給するとともに、室内機から回収し、加熱または冷却して、再び室内機10へ供給する。 The indoor unit 10 sucks in the indoor air, cools or warms the indoor air with a circulating refrigerant, and blows out the cooled or warmed air. By repeating this, the room is cooled or warmed. The outdoor unit 11 supplies the refrigerant to the indoor unit, recovers the refrigerant from the indoor unit, heats or cools the refrigerant, and supplies the refrigerant to the indoor unit 10 again.

図2は、室外機11の構成例を示した図である。室外機11は、外気を吸い込み、吹き出すファン20と、吸い込んだ空気を温め、または冷却する熱交換器21と、室内機10と室外機11との間で冷媒を循環する圧縮機22と、室外機11を制御する制御基板23と、膨張弁24とを備えている。また、室外機11は、外気温を計測する温度センサ、圧縮機22に供給する電流を計測するセンサ、冷媒の流量を計測するセンサ、冷媒の圧力を計測するセンサ、四方弁、アキュムレータ等を備えている。 FIG. 2 is a diagram showing a configuration example of the outdoor unit 11. The outdoor unit 11 includes a fan 20 that sucks in and blows out outside air, a heat exchanger 21 that heats or cools the sucked air, a compressor 22 that circulates a refrigerant between the indoor unit 10 and the outdoor unit 11, and an outdoor unit. A control board 23 for controlling the machine 11 and an expansion valve 24 are provided. Further, the outdoor unit 11 includes a temperature sensor for measuring the outside temperature, a sensor for measuring the current supplied to the compressor 22, a sensor for measuring the flow rate of the refrigerant, a sensor for measuring the pressure of the refrigerant, a four-way valve, an accumulator and the like. ing.

制御基板23は、室内機10からの指示を受けて、室外機11を運転または停止し、通知された情報に基づき、ファン20や圧縮機22を制御して室内温度が設定温度になるように運転負荷を変え、室内機10へ供給する冷媒の温度や冷媒を循環する流量等を調整する。膨張弁24は、圧縮された冷媒を膨張させ、冷媒の温度を下げるために使用される。 The control board 23 operates or stops the outdoor unit 11 in response to an instruction from the indoor unit 10, and controls the fan 20 and the compressor 22 based on the notified information so that the indoor temperature reaches the set temperature. The operating load is changed to adjust the temperature of the refrigerant supplied to the indoor unit 10, the flow rate of circulating the refrigerant, and the like. The expansion valve 24 is used to expand the compressed refrigerant and lower the temperature of the refrigerant.

ここで、運転中の空気調和装置における室外機11の動作を簡単に説明しておく。室外機11の運転が開始されると、圧縮機22が起動され、室内機10と室外機11との間の冷媒の循環が開始される。 Here, the operation of the outdoor unit 11 in the air conditioner during operation will be briefly described. When the operation of the outdoor unit 11 is started, the compressor 22 is started, and the circulation of the refrigerant between the indoor unit 10 and the outdoor unit 11 is started.

空気調和装置を冷房に使用する場合、圧縮機22が冷媒を圧縮し、吐出すると、高温、高圧の冷媒は、熱交換器21内に供給される。冷媒は、ファン20により吸い込まれた外気と熱交換され、冷却される。冷却後、冷媒は、膨張弁24により膨張され、温度が下がり、配管12を通して室外機11から室内機10へ送られる。 When the air conditioner is used for cooling, when the compressor 22 compresses and discharges the refrigerant, the high temperature and high pressure refrigerant is supplied into the heat exchanger 21. The refrigerant exchanges heat with the outside air sucked by the fan 20 and is cooled. After cooling, the refrigerant is expanded by the expansion valve 24, the temperature drops, and the refrigerant is sent from the outdoor unit 11 to the indoor unit 10 through the pipe 12.

室内機10は、ファンと、熱交換器と、制御基板とを備えており、熱交換器内に冷媒が供給され、ファンにより吸い込まれた室内の空気と熱交換される。空気は、冷媒により冷却され、室内へ吹き出される。 The indoor unit 10 includes a fan, a heat exchanger, and a control board, and a refrigerant is supplied into the heat exchanger to exchange heat with the air in the room sucked by the fan. The air is cooled by the refrigerant and blown into the room.

冷媒は、配管12を通り、圧縮機22へ戻される。この動作を繰り返し、吹き出された冷たい空気で室内を設定温度になるように冷却していく。 The refrigerant passes through the pipe 12 and is returned to the compressor 22. This operation is repeated, and the room is cooled to the set temperature with the blown cold air.

空気調和装置を暖房に使用する場合、冷房の場合と逆の動作となり、圧縮機22が冷媒を断熱圧縮し、高温、高圧の状態にして吐出すると、熱交換器21ではなく、配管12を通して室内機10へ送られる。室内機10では、熱交換器内に冷媒が供給され、ファンにより吸い込まれた室内の空気と熱交換される。空気は、冷媒により温められ、室内へ吹き出される。 When the air conditioner is used for heating, the operation is the opposite of that for cooling. When the compressor 22 adiabatically compresses the refrigerant and discharges it in a high temperature and high pressure state, the room is passed through the pipe 12 instead of the heat exchanger 21. It is sent to the machine 10. In the indoor unit 10, a refrigerant is supplied into the heat exchanger and heat is exchanged with the indoor air sucked by the fan. The air is warmed by the refrigerant and blown into the room.

冷媒は、空気に熱を与えて冷却され、配管12を通して室外機11へ送られる。室外機11では、膨張弁24により凝縮した高圧の冷媒を膨張させる。これにより、冷媒は、低温、低圧の状態になる。その後、熱交換器21内に供給され、ファン20により吸い込まれた外気と熱交換された後、圧縮機22へ戻される。この動作を繰り返し、吹き出された温かい空気で室内を設定温度になるように暖めていく。 The refrigerant gives heat to the air to be cooled, and is sent to the outdoor unit 11 through the pipe 12. The outdoor unit 11 expands the high-pressure refrigerant condensed by the expansion valve 24. As a result, the refrigerant is in a low temperature and low pressure state. After that, it is supplied into the heat exchanger 21 and exchanged with the outside air sucked by the fan 20, and then returned to the compressor 22. This operation is repeated to warm the room to the set temperature with the warm air blown out.

図3は、圧縮機22の構成例を示した図である。圧縮機22は、部品数が少ないロータリ圧縮機であり、密閉容器30内に収容された電動機40と圧縮機構50とを含んで構成される。電動機40は、圧縮機構50を、回転軸31を介して回転駆動させるように構成され、固定子41と回転子42とを含む。 FIG. 3 is a diagram showing a configuration example of the compressor 22. The compressor 22 is a rotary compressor having a small number of parts, and includes an electric motor 40 housed in a closed container 30 and a compression mechanism 50. The electric motor 40 is configured to rotationally drive the compression mechanism 50 via a rotating shaft 31, and includes a stator 41 and a rotor 42.

固定子41は、鉄心やコイル等で構成され、回転子42は、永久磁石を含み、固定子41のコイルに電流を流すことで電磁石を形成し、電流の向きを変えて、回転子42を回転させる。なお、これは一例であり、固定子41が永久磁石を含み、回転子42が鉄心やコイル等で構成されていてもよい。 The stator 41 is composed of an iron core, a coil, or the like, and the rotor 42 includes a permanent magnet. An electromagnet is formed by passing an electric current through the coil of the stator 41, and the direction of the electric current is changed to form the rotor 42. Rotate. This is an example, and the stator 41 may include a permanent magnet, and the rotor 42 may be composed of an iron core, a coil, or the like.

固定子41には、電流をコイル以外へは流さないように絶縁するための絶縁体(インシュレータ)43が設けられている。インシュレータ43は、回転軸31が延びる方向と同じ鉛直方向に延び、鉛直方向への長さが固定子41より長くされ、その下端が電動機40の下端となっている。また、密閉容器30と固定子41との間、固定子41と回転子42との間には、隙間が存在している。なお、電動機40には、上記の隙間のほか、冷媒の流速を遅くするため、一次空間32と二次空間33とを連絡する貫通孔が設けられていてもよい。 The stator 41 is provided with an insulator (insulator) 43 for insulating the current so that it does not flow to other than the coil. The insulator 43 extends in the same vertical direction as the direction in which the rotating shaft 31 extends, and the length in the vertical direction is longer than that of the stator 41, and the lower end thereof is the lower end of the electric motor 40. Further, there is a gap between the closed container 30 and the stator 41 and between the stator 41 and the rotor 42. In addition to the above-mentioned gap, the electric motor 40 may be provided with a through hole connecting the primary space 32 and the secondary space 33 in order to slow down the flow velocity of the refrigerant.

圧縮機構50は、電動機40の下方に離間して配置される。電動機40と圧縮機構50との間の空間が一次空間32とされ、電動機40の上部の空間が二次空間33とされる。圧縮機構50の下部には、圧縮機構50の各摺動箇所の潤滑や後述する圧縮室のシール等に使用される油として冷凍機油が貯留されている。 The compression mechanism 50 is arranged below the electric motor 40 at a distance. The space between the electric motor 40 and the compression mechanism 50 is the primary space 32, and the space above the electric motor 40 is the secondary space 33. Refrigerating machine oil is stored in the lower part of the compression mechanism 50 as oil used for lubrication of each sliding portion of the compression mechanism 50 and sealing of a compression chamber described later.

圧縮機22は、密閉容器30の外部に、気液分離器34を備える。気液分離器34は、密閉容器30と接続され、液冷媒を分離し、ガス冷媒のみを密閉容器30内へ供給する。 The compressor 22 includes a gas-liquid separator 34 outside the closed container 30. The gas-liquid separator 34 is connected to the closed container 30, separates the liquid refrigerant, and supplies only the gas refrigerant into the closed container 30.

密閉容器30内に供給された冷媒は、圧縮機構50へ入り、圧縮され、高温、高圧の冷媒となり、一次空間32へ排出される。回転軸31は、電動機40により駆動され、偏心部を有する。偏心部は、回転軸31の軸の周囲を取り囲むように取付けられる円盤状のもので、偏心部の重心が軸の中心からずれた位置に存在している。 The refrigerant supplied into the closed container 30 enters the compression mechanism 50, is compressed, becomes a high-temperature, high-pressure refrigerant, and is discharged to the primary space 32. The rotating shaft 31 is driven by an electric motor 40 and has an eccentric portion. The eccentric portion has a disk shape attached so as to surround the circumference of the axis of the rotating shaft 31, and the center of gravity of the eccentric portion exists at a position deviated from the center of the axis.

圧縮機構50は、電動機40の下方に配置され、冷媒を圧縮するための圧縮室51を有する容器と、回転軸31の偏心部の周囲に設けられ、圧縮室51の内周面に接触しながら圧縮室51内を回転する回転体(ローラ)とを含む。また、圧縮機構50は、ローラに当接し、圧縮室51を2つの空間に仕切る仕切部材(ベーン)と、ベーンの一端を押圧する弾性体とを含む。弾性体は、例えばバネを用いることができるが、これに限られるものではなく、ゴムであってもよい。 The compression mechanism 50 is arranged below the electric motor 40 and is provided around a container having a compression chamber 51 for compressing the refrigerant and an eccentric portion of the rotating shaft 31, while contacting the inner peripheral surface of the compression chamber 51. A rotating body (roller) that rotates in the compression chamber 51 is included. Further, the compression mechanism 50 includes a partition member (vane) that comes into contact with the rollers and divides the compression chamber 51 into two spaces, and an elastic body that presses one end of the vanes. As the elastic body, for example, a spring can be used, but the elastic body is not limited to this, and may be rubber.

容器は、圧縮室51の側方を構成し、ベーンとバネとが装着される側方体(シリンダ)52と、圧縮室51の両端(上下)の開口を閉鎖し、回転軸31を回転可能に支持する2つの軸受(上軸受、下軸受)53、54とを含む。上軸受53には、高圧の冷媒を吐出する際に発生する音を消音するための消音器(サイレンサ)55が設けられる。サイレンサ55は、冷媒が通過するための穴を備えている。圧縮室51において圧縮された高圧の冷媒は、サイレンサ55内へ吐出され、サイレンサ55が備える穴を通して一次空間32に排出される。 The container constitutes the side of the compression chamber 51, closes the side body (cylinder) 52 on which the vane and the spring are mounted, and the openings at both ends (upper and lower) of the compression chamber 51, and the rotating shaft 31 can rotate. Includes two bearings (upper bearing, lower bearing) 53, 54 supported by. The upper bearing 53 is provided with a silencer (silencer) 55 for muting the sound generated when the high-pressure refrigerant is discharged. The silencer 55 is provided with a hole through which the refrigerant passes. The high-pressure refrigerant compressed in the compression chamber 51 is discharged into the silencer 55, and is discharged into the primary space 32 through the hole provided in the silencer 55.

一次空間32に排出された冷媒は、密閉容器30と固定子41との間の隙間や固定子41と回転子42との間の隙間を通して二次空間33へと流れる。密閉容器30の頂部には、二次空間33と外部とを連絡する吐出管35が設けられており、二次空間33へと流れた冷媒は、吐出管35を通して外部へと吐出される。 The refrigerant discharged into the primary space 32 flows into the secondary space 33 through the gap between the closed container 30 and the stator 41 and the gap between the stator 41 and the rotor 42. A discharge pipe 35 that connects the secondary space 33 and the outside is provided at the top of the closed container 30, and the refrigerant that has flowed into the secondary space 33 is discharged to the outside through the discharge pipe 35.

圧縮機構50の下部に貯留される冷凍機油は、回転軸31の下端から長手方向に形成された軸穴36内に、螺旋状の羽根(スパイラルシャフト)が設けられ、回転軸31およびスパイラルシャフトの少なくとも一部、下軸受54の全部、シリンダ52の少なくとも一部が冷凍機油に浸漬されている。冷凍機油は、回転軸31の回転に伴ってスパイラルシャフトが回転し、軸穴36内に吸い上げられていく。 The refrigerating machine oil stored in the lower part of the compression mechanism 50 is provided with spiral blades (spiral shafts) in the shaft holes 36 formed in the longitudinal direction from the lower end of the rotating shaft 31, and the rotating shaft 31 and the spiral shaft have spiral blades. At least a part, the whole lower bearing 54, and at least a part of the cylinder 52 are immersed in the refrigerating machine oil. The spiral shaft rotates with the rotation of the rotating shaft 31, and the refrigerating machine oil is sucked up into the shaft hole 36.

軸穴36内に吸い上げられた冷凍機油は、回転軸31と下軸受54との間、回転軸31とローラとの間、回転軸31と上軸受53との間等へ供給される。上軸受53は、内面に、軸穴36内に吸い上げられた冷凍機油をさらに上方へ供給するための螺旋状(スパイラル)溝56を有する。スパイラル溝56は、回転軸31と上軸受53との間へ冷凍機油を供給し、余剰の油が上軸受53の外部へ排出される。 The refrigerating machine oil sucked up in the shaft hole 36 is supplied between the rotating shaft 31 and the lower bearing 54, between the rotating shaft 31 and the roller, between the rotating shaft 31 and the upper bearing 53, and the like. The upper bearing 53 has a spiral groove 56 on the inner surface for supplying the refrigerating machine oil sucked up in the shaft hole 36 further upward. The spiral groove 56 supplies refrigerating machine oil between the rotating shaft 31 and the upper bearing 53, and excess oil is discharged to the outside of the upper bearing 53.

上軸受53は、余剰の油を排出するための油排出穴57を有する。油排出穴57は、スパイラル溝56に連続し、一次空間32へ向けて下方に傾斜して延びている。スパイラル溝56を通して供給された冷凍機油は、油排出穴57の上端部の回転軸31と上軸受53との間へも供給され、その余剰の油が油排出穴57から排出される。 The upper bearing 53 has an oil discharge hole 57 for discharging excess oil. The oil discharge hole 57 is continuous with the spiral groove 56 and extends downwardly inclined toward the primary space 32. The refrigerating machine oil supplied through the spiral groove 56 is also supplied between the rotating shaft 31 at the upper end of the oil discharge hole 57 and the upper bearing 53, and the excess oil is discharged from the oil discharge hole 57.

上軸受53の上端部は、回転軸31の振れ回りにより片当たりの発生しやすい箇所である。しかしながら、油の全量が油排出穴57から排出されるものではなく、上軸受53の上端部へも適切に油を供給することができる。このため、上軸受53の上端部の信頼性は失われない。 The upper end portion of the upper bearing 53 is a portion where one-sided contact is likely to occur due to the runout of the rotating shaft 31. However, not all of the oil is discharged from the oil discharge hole 57, and the oil can be appropriately supplied to the upper end portion of the upper bearing 53. Therefore, the reliability of the upper end portion of the upper bearing 53 is not lost.

また、油排出穴57は、電動機40と上軸受53との間の一次空間32へ下方に向けて延びているため、油排出穴57の下方にあるサイレンサ55や上軸受53の径方向に広がったシリンダ52の上部開口を閉鎖する閉鎖部上へ排出され、上部の電動機40へ向けては排出されない。したがって、電動機40の隙間(密閉容器30と固定子41との間の隙間や固定子41と回転子42との間の隙間等)を通して一次空間32から二次空間33へ移動する冷媒の流れの沿って放出される冷凍機油の量を減少させることができる。 Further, since the oil discharge hole 57 extends downward to the primary space 32 between the electric motor 40 and the upper bearing 53, it expands in the radial direction of the silencer 55 and the upper bearing 53 below the oil discharge hole 57. It is discharged onto the closing portion that closes the upper opening of the cylinder 52, and is not discharged toward the upper electric motor 40. Therefore, the flow of the refrigerant moving from the primary space 32 to the secondary space 33 through the gap of the electric motor 40 (the gap between the closed container 30 and the stator 41, the gap between the stator 41 and the rotor 42, etc.) The amount of refrigerating machine oil released along can be reduced.

サイレンサ55上に排出された冷凍機油は、上部から見ると円形の上軸受54の閉鎖部上の縁部へ向けて流れ、その縁部に設けられる油戻り穴を通して落下し、密閉容器30の底部に貯留された冷凍機油の油溜りへ戻る。 The refrigerating machine oil discharged onto the silencer 55 flows toward the edge on the closed portion of the circular upper bearing 54 when viewed from above, falls through the oil return hole provided at the edge, and falls at the bottom of the closed container 30. Return to the oil reservoir of refrigerating machine oil stored in.

なお、油排出穴57から排出された冷凍機油の一部は、少ない量ではあるが、高圧の冷媒とともに二次空間33へ運ばれ、密閉容器30の外部へ吐出される。冷媒が循環する流路は、密閉空間であり、冷媒に含まれる冷凍機油は、再び圧縮機へ戻り、シリンダ52にローラが接触する際やベーンが摺動する際の摩擦低減のため等に使用される。 Although a small amount of the refrigerating machine oil discharged from the oil discharge hole 57 is carried to the secondary space 33 together with the high-pressure refrigerant, it is discharged to the outside of the closed container 30. The flow path through which the refrigerant circulates is a closed space, and the refrigerating machine oil contained in the refrigerant returns to the compressor and is used to reduce friction when the rollers come into contact with the cylinder 52 or when the vanes slide. Will be done.

図4は、油排出穴57が延びる方向の第1の例を示した図である。油排出穴57は、スパイラル溝56に連続し、一次空間32へ向けて下方に延びる穴であればいかなる穴であってもよいが、図4に示すように、油排出穴57が、固定子41に設けられるインシュレータ43の下端より下側へ向けて開口していることが望ましい。これは、油排出穴57から排出された冷凍機油が、インシュレータ43に付着しないようにして、高圧の冷媒とともに二次空間33へ運ばれるのを防ぐことができるからである。 FIG. 4 is a diagram showing a first example in the direction in which the oil discharge hole 57 extends. The oil discharge hole 57 may be any hole as long as it is continuous with the spiral groove 56 and extends downward toward the primary space 32, but as shown in FIG. 4, the oil discharge hole 57 is a stator. It is desirable that the insulator 43 provided in 41 is opened downward from the lower end. This is because the refrigerating machine oil discharged from the oil discharge hole 57 can be prevented from adhering to the insulator 43 and carried to the secondary space 33 together with the high-pressure refrigerant.

油排出穴57は、上軸受53の閉鎖部やサイレンサ55に向けて開口していることがさらに望ましい。上軸受53の閉鎖部とインシュレータ43の下端との間に向けて開口していると、密閉容器30の内面に向けて冷凍機油が排出されることになる。密閉容器30と固定子41との間には隙間があり、その隙間を通して高圧の冷媒が流れる。すると、密閉容器30の内面に付着した冷凍機油は、高圧の冷媒の流れに乗って二次空間33へ運ばれ、油溜りに戻る冷凍機油が少なくなるからである。 It is more desirable that the oil discharge hole 57 is opened toward the closed portion of the upper bearing 53 and the silencer 55. If the opening is made between the closed portion of the upper bearing 53 and the lower end of the insulator 43, the refrigerating machine oil is discharged toward the inner surface of the closed container 30. There is a gap between the closed container 30 and the stator 41, and a high-pressure refrigerant flows through the gap. Then, the refrigerating machine oil adhering to the inner surface of the closed container 30 is carried to the secondary space 33 by the flow of the high-pressure refrigerant, and the amount of refrigerating machine oil returning to the oil sump is reduced.

図5は、油排出穴57が延びる方向の第2の例を示した図である。上軸受53の閉鎖部58の上には、略十字形のサイレンサ55が設けられる。サイレンサ55は、圧縮室51から排出される際の高圧の冷媒の音を低減する。サイレンサ55が略十字形であるのは、4方向に突出した部分のそれぞれの間に形成された凹部59に上軸受53をシリンダ52等と連結するためのボルトを通すためのボルト穴を設けるためであり、且つ圧縮機構50から吐出されたガスの流路の圧縮・膨張の繰り返しによる消音効果向上を狙っているためである。サイレンサ55は、冷媒が通過する冷媒排出穴60を有し、冷媒は、冷媒排出穴60を通して一次空間32へ排出される。 FIG. 5 is a diagram showing a second example in the direction in which the oil discharge hole 57 extends. A substantially cross-shaped silencer 55 is provided on the closing portion 58 of the upper bearing 53. The silencer 55 reduces the noise of the high-pressure refrigerant when it is discharged from the compression chamber 51. The silencer 55 has a substantially cross shape in order to provide bolt holes for passing bolts for connecting the upper bearing 53 to the cylinder 52 and the like in the recesses 59 formed between the portions protruding in the four directions. This is because the aim is to improve the sound deadening effect by repeatedly compressing and expanding the flow path of the gas discharged from the compression mechanism 50. The silencer 55 has a refrigerant discharge hole 60 through which the refrigerant passes, and the refrigerant is discharged to the primary space 32 through the refrigerant discharge hole 60.

上軸受53の閉鎖部58の縁部には、1以上の油戻り穴61が設けられ、油排出穴57から排出された冷凍機油は、サイレンサ55や閉鎖部58の上を流れ、油戻り穴61から油溜りへ落下する。 One or more oil return holes 61 are provided at the edge of the closed portion 58 of the upper bearing 53, and the refrigerating machine oil discharged from the oil discharge hole 57 flows over the silencer 55 and the closed portion 58 and flows through the oil return hole. It falls from 61 to the oil sump.

サイレンサ55は、中央部から縁部に向けて下方に傾斜し、閉鎖部58も、中央部から縁部に向けて下方に傾斜している。このため、冷凍機油がどの位置に落下しても、閉鎖部58の縁部へ向けて導くことができる。したがって、油排出穴57は、鉛直方向に対しては一次空間32に向けて下方に傾斜して延びる必要があるが、水平方向に対してはどの向きに延びていてもよいことになる。 The silencer 55 is inclined downward from the central portion toward the edge portion, and the closed portion 58 is also inclined downward from the central portion toward the edge portion. Therefore, no matter where the refrigerating machine oil falls, it can be guided toward the edge of the closing portion 58. Therefore, the oil discharge hole 57 needs to be inclined downward toward the primary space 32 in the vertical direction, but may extend in any direction in the horizontal direction.

しかしながら、サイレンサ55上に冷凍機油が排出されると、サイレンサ55上を流れる油と、サイレンサ55の両側の凹部59へ流れ落ち、各凹部59を流れる油とに分かれ、冷凍機油が流れる範囲が広がり、油溜りに冷凍機油を回収するのに時間がかかる。その間、油溜りの油面が下がり、軸穴36に吸い上げられる油量が少なくなり、各箇所へ適切な量の冷凍機油を供給することができなくなる。 However, when the refrigerating machine oil is discharged onto the silencer 55, it is separated into oil flowing on the silencer 55 and oil flowing down to the recesses 59 on both sides of the silencer 55 and flowing through each recess 59, and the range in which the refrigerating machine oil flows is widened. It takes time to collect the refrigerating machine oil in the oil sump. During that time, the oil level in the oil sump drops, the amount of oil sucked up into the shaft hole 36 decreases, and an appropriate amount of refrigerating machine oil cannot be supplied to each location.

そこで、油排出穴57は、水平方向に対して延びる方向が、4つの凹部59のうちのいずれか1つに向けて延びるように設けることができる。これにより、冷凍機油が流れる範囲を限定し、排出された冷凍機油を早く油溜りに回収することができる。 Therefore, the oil discharge hole 57 can be provided so that the direction extending in the horizontal direction extends toward any one of the four recesses 59. As a result, the range in which the refrigerating machine oil flows can be limited, and the discharged refrigerating machine oil can be quickly recovered in the oil sump.

図6は、スパイラル溝に連続して設けられる油排出穴の位置の一例を示した図である。油排出穴57は、上軸受53の出来るだけ上側で、スパイラル溝56に連続して設けられる。油排出穴57の径は、スパイラル溝56の幅より大きい方が望ましい。これは、油排出穴57とスパイラル溝56との連結部分より上側の、上軸受53と回転軸31との間に供給される冷凍機油の量を制限し、上軸受53の上端部から排出され、二次空間33へ運ばれる冷凍機油の量を減少させるためである。 FIG. 6 is a diagram showing an example of the positions of oil discharge holes continuously provided in the spiral groove. The oil discharge hole 57 is provided continuously in the spiral groove 56 on the upper side of the upper bearing 53 as much as possible. The diameter of the oil discharge hole 57 is preferably larger than the width of the spiral groove 56. This limits the amount of refrigerating machine oil supplied between the upper bearing 53 and the rotating shaft 31 above the connecting portion between the oil discharge hole 57 and the spiral groove 56, and is discharged from the upper end portion of the upper bearing 53. This is to reduce the amount of refrigerating machine oil carried to the secondary space 33.

スパイラル溝56に連続する部分の油排出穴57の位置は、回転軸31が所定の方向に回転することから、その回転方向に対してスパイラル溝56の幅の中心より後方となる位置が望ましい。スパイラル溝56は、上軸受53の内面を、下端部から上端部へ向けて回転軸31の回転方向とは反対方向に螺旋状に形成されている。したがって、スパイラル溝56の幅の中心より後方となる位置は、当該中心より、スパイラル溝56が上端部へ向けて形成された側に寄った位置となる。図6に示す例では、回転軸31が矢線Aに示す方向に回転し、矢線Aに示す方向とは反対方向に寄った位置に、スパイラル溝56に連続する油排出穴57が設けられている。 Since the rotation shaft 31 rotates in a predetermined direction, the position of the oil discharge hole 57 in the portion continuous with the spiral groove 56 is preferably a position behind the center of the width of the spiral groove 56 with respect to the rotation direction. The spiral groove 56 is formed with the inner surface of the upper bearing 53 spirally formed in a direction opposite to the rotation direction of the rotating shaft 31 from the lower end portion to the upper end portion. Therefore, the position behind the center of the width of the spiral groove 56 is a position closer to the side where the spiral groove 56 is formed toward the upper end portion than the center. In the example shown in FIG. 6, the rotation shaft 31 rotates in the direction indicated by the arrow A, and an oil discharge hole 57 continuous with the spiral groove 56 is provided at a position closer to the direction opposite to the direction indicated by the arrow A. ing.

スパイラル溝56を通って上昇する冷凍機油は、回転軸31の回転方向とは反対方向へ移動することから、スパイラル溝56の幅の中心より後方となる位置に油排出穴57を設けることで、油排出穴57へ入りやすくなる。このため、より多くの冷凍機油を油排出穴57から排出させ、上軸受53の上端部から排出される冷凍機油の量を減少させることができる。 Since the refrigerating machine oil that rises through the spiral groove 56 moves in the direction opposite to the rotation direction of the rotating shaft 31, the oil discharge hole 57 is provided at a position rearward from the center of the width of the spiral groove 56. It becomes easier to enter the oil discharge hole 57. Therefore, more refrigerating machine oil can be discharged from the oil discharge hole 57, and the amount of refrigerating machine oil discharged from the upper end portion of the upper bearing 53 can be reduced.

図7は、油排出穴57が延びる方向の第3の例を示した図である。図7も、図5に示した例と同様、水平方向における油排出穴57が延びる方向を例示している。油排出穴57は、略十字形のサイレンサ55の4方向に突出する部分の1つの上に、冷凍機油を排出するように延びている。ここでは、油排出穴57がサイレンサ55の突出する部分の上に冷凍機油を排出するように延びているが、これに限られるものではなく、凹部59に向けて延びていてもよい。 FIG. 7 is a diagram showing a third example in the direction in which the oil discharge hole 57 extends. Similar to the example shown in FIG. 5, FIG. 7 also illustrates the direction in which the oil discharge hole 57 extends in the horizontal direction. The oil discharge hole 57 extends above one of the portions of the substantially cross-shaped silencer 55 projecting in four directions so as to discharge the refrigerating machine oil. Here, the oil discharge hole 57 extends over the protruding portion of the silencer 55 so as to discharge the refrigerating machine oil, but the present invention is not limited to this, and the oil discharge hole 57 may extend toward the recess 59.

この例では、油排出穴57が延びる方向の上軸受53の閉鎖部58の縁部に、油戻り穴61が存在していない。このため、冷凍機油は、縁部の外周側である外周部に設けられた壁に衝突し、二手に分かれ、壁面に沿って周方向を移動し、近くの油戻り穴61から落下し、油溜りに戻ることになる。二手に分かれることで、一方に流れる冷凍機油の量が減少し、流速が遅くなり、油溜りに冷凍機油を回収するのに時間がかかることになる。 In this example, the oil return hole 61 does not exist at the edge of the closed portion 58 of the upper bearing 53 in the direction in which the oil discharge hole 57 extends. For this reason, the refrigerating machine oil collides with the wall provided on the outer peripheral portion on the outer peripheral side of the edge portion, splits into two hands, moves in the circumferential direction along the wall surface, falls from the nearby oil return hole 61, and oil. It will return to the pool. By dividing into two, the amount of refrigerating machine oil flowing to one side decreases, the flow velocity becomes slower, and it takes time to collect the refrigerating machine oil in the oil sump.

そこで、上記の壁を、回転軸31が存在する中央部へ向けて凸部を設け、一方に流れるように誘導する誘導壁62とする。誘導壁62は、油排出穴57が延びる方向に対して傾斜した面を有している。なお、面は、平面に限らず、曲面であってもよい。 Therefore, the above wall is provided with a convex portion toward the central portion where the rotation shaft 31 exists, and is used as a guide wall 62 for guiding the wall to flow in one direction. The guide wall 62 has a surface inclined with respect to the direction in which the oil discharge hole 57 extends. The surface is not limited to a flat surface and may be a curved surface.

図7に示した例では、油排出穴57から排出された冷凍機油は、誘導壁62に衝突し、矢線Bで示す方向へと流れ、油戻り穴61を通して油溜りへ戻る。このように一方にのみ冷凍機油を流すように誘導することで、冷凍機油を早く回収することができる。 In the example shown in FIG. 7, the refrigerating machine oil discharged from the oil discharge hole 57 collides with the guide wall 62, flows in the direction indicated by the arrow line B, and returns to the oil sump through the oil return hole 61. By inducing the refrigerating machine oil to flow to only one side in this way, the refrigerating machine oil can be recovered quickly.

図8は、油排出穴57が延びる方向の第4の例を示した図である。上軸受53の下側には、シリンダ52が存在し、シリンダ52は、偏心回転するローラに当接し、圧縮室51を2つに分割するベーン63を備えている。シリンダ52は、常にローラにベーン63の一端である先端を当接させるため、他端の背面を押圧する弾性体を備えている。弾性体は、ゴムであってもよいが、例えばコイルバネとされる。 FIG. 8 is a diagram showing a fourth example in the direction in which the oil discharge hole 57 extends. A cylinder 52 exists below the upper bearing 53, and the cylinder 52 includes a vane 63 that abuts on an eccentric rotating roller and divides the compression chamber 51 into two. The cylinder 52 is provided with an elastic body that presses the back surface of the other end so that the tip end of the vane 63 is always brought into contact with the roller. The elastic body may be rubber, but is, for example, a coil spring.

ベーン63は、摺動することによりローラへの当接を維持するため、ベーン63とシリンダ52とが接する部分は擦れ、次第に摩擦抵抗が大きくなっていく。このため、摩擦抵抗が大きくなるのを抑制するため、摺動部分には、冷凍機油の供給が必要となる。摺動部分は、コイルバネが収容されるスプリング穴に連続している。 Since the vane 63 maintains contact with the roller by sliding, the portion where the vane 63 and the cylinder 52 are in contact with each other is rubbed, and the frictional resistance gradually increases. Therefore, in order to suppress an increase in frictional resistance, it is necessary to supply refrigerating machine oil to the sliding portion. The sliding portion is continuous with the spring hole in which the coil spring is housed.

そこで、油戻り穴61の下側に、スプリング穴に繋がる開口64を設け、その油戻り穴61へ向けて冷凍機油が排出されるように油排出穴57を設ける。図8に示す例では、油排出穴57が、上軸受53の径方向であって、サイレンサ55の突出部の1つへ向けて延び、その突出部の上部を通して流れた先に油戻り穴61が存在し、その油戻り穴61の真下に上記の開口64が設けられている。 Therefore, an opening 64 connected to the spring hole is provided below the oil return hole 61, and an oil discharge hole 57 is provided so that the refrigerating machine oil is discharged toward the oil return hole 61. In the example shown in FIG. 8, the oil discharge hole 57 extends in the radial direction of the upper bearing 53 toward one of the protrusions of the silencer 55, and the oil return hole 61 flows through the upper portion of the protrusion. Is present, and the above-mentioned opening 64 is provided directly below the oil return hole 61.

このため、油戻り穴61を通して落下した冷凍機油は、開口64を通してスプリング穴へ入り、ベーン63とシリンダ52とが接する摺動部分へと供給される。これにより、摺動部分の摩擦抵抗を小さくすることができる。 Therefore, the refrigerating machine oil that has fallen through the oil return hole 61 enters the spring hole through the opening 64 and is supplied to the sliding portion where the vane 63 and the cylinder 52 are in contact with each other. As a result, the frictional resistance of the sliding portion can be reduced.

このようにして、冷媒とともに圧縮機の外部の冷凍サイクルへ放出される冷凍機油の量を減少させることで、冷凍サイクルの効率を向上させ、圧縮機の信頼性を向上させることができる。 In this way, by reducing the amount of refrigerating machine oil released to the refrigerating cycle outside the compressor together with the refrigerant, the efficiency of the refrigerating cycle can be improved and the reliability of the compressor can be improved.

これまで本発明の圧縮機、室外機および空気調和装置について上述した実施形態をもって詳細に説明してきたが、本発明は、上述した実施形態に限定されるものではなく、他の実施形態や、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。 Although the compressor, outdoor unit and air conditioner of the present invention have been described in detail with the above-described embodiments, the present invention is not limited to the above-described embodiments, and other embodiments and additions have been made. , Changes, deletions, etc., can be made within the range that can be conceived by those skilled in the art, and are included in the scope of the present invention as long as the actions and effects of the present invention are exhibited in any of the embodiments.

10…室内機
11…室外機
12…配管
20…ファン
21…熱交換器
22…圧縮機
23…制御基板
24…膨張弁
30…密閉容器
31…回転軸
32…一次空間
33…二次空間
34…気液分離器
35…吐出管
36…軸穴
40…電動機
41…固定子
42…回転子
43…インシュレータ
50…圧縮機構
51…圧縮室
52…シリンダ
53…上軸受
54…下軸受
55…サイレンサ
56…スパイラル溝
57…油排出穴
58…閉鎖部
59…凹部
60…冷媒排出穴
61…油戻り穴
62…誘導壁
63…ベーン
64…開口
10 ... Indoor unit 11 ... Outdoor unit 12 ... Piping 20 ... Fan 21 ... Heat exchanger 22 ... Compressor 23 ... Control board 24 ... Expansion valve 30 ... Sealed container 31 ... Rotating shaft 32 ... Primary space 33 ... Secondary space 34 ... Gas-liquid separator 35 ... Discharge pipe 36 ... Shaft hole 40 ... Electric motor 41 ... Stator 42 ... Rotor 43 ... Insulator 50 ... Compression mechanism 51 ... Compression chamber 52 ... Cylinder 53 ... Upper bearing 54 ... Lower bearing 55 ... Silencer 56 ... Spiral groove 57 ... Oil discharge hole 58 ... Closed part 59 ... Recess 60 ... Refrigerant discharge hole 61 ... Oil return hole 62 ... Guide wall 63 ... Vane 64 ... Opening

Claims (8)

流体を圧縮する圧縮機であって、
電動機と、
前記電動機により駆動され、偏心部を有する回転軸と、
前記電動機の下方に配置され、前記流体を圧縮するための圧縮室を有する容器と、
前記偏心部の周囲に設けられ、前記圧縮室の内周面に接触しながら該圧縮室内を回転する回転体と、
前記回転体に当接し、前記圧縮室を2つの空間に仕切る仕切部材と、
前記仕切部材の一端を押圧する弾性体と
を含み、
前記容器は、前記圧縮室の側方を構成し、前記仕切部材と前記弾性体とが装着される側方体と、前記圧縮室の両端の開口を閉鎖し、前記回転軸を回転可能に支持する2つの軸受とを含み、
前記2つの軸受のうちの電動機側の上軸受は、前記容器の下方に貯留される油を上方へ供給するための螺旋状溝と、前記螺旋状溝に連続し、該螺旋状溝を通して供給された油を排出するための油排出穴とを有し、前記油排出穴が、前記回転軸の周囲の前記電動機と前記容器との間の空間へ向けて下方に傾斜して延びる、圧縮機。
A compressor that compresses fluid
With an electric motor
A rotating shaft driven by the electric motor and having an eccentric portion,
A container located below the electric motor and having a compression chamber for compressing the fluid.
A rotating body provided around the eccentric portion and rotating in the compression chamber while contacting the inner peripheral surface of the compression chamber.
A partition member that comes into contact with the rotating body and divides the compression chamber into two spaces.
Including an elastic body that presses one end of the partition member
The container constitutes a side of the compression chamber, closes the side body on which the partition member and the elastic body are mounted, and the openings at both ends of the compression chamber, and rotatably supports the rotation shaft. Including two bearings
Of the two bearings, the upper bearing on the motor side is continuously supplied to the spiral groove and the spiral groove for supplying the oil stored under the container upward, and is supplied through the spiral groove. A compressor having an oil discharge hole for discharging oil, and the oil discharge hole extending downward so as to a space between the electric motor and the container around the rotation shaft.
前記電動機と前記容器との間の空間側に向いた前記油排出穴の開口が、前記電動機の下端より下方に位置する、請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the opening of the oil discharge hole facing the space between the electric motor and the container is located below the lower end of the electric motor. 前記上軸受に取り付けられ、前記流体の吐出により発生する音を消音するための消音器を含み、
前記消音器は、前記上軸受の径方向に延びる2以上の突出部と、前記突出部間に形成される1以上の凹部とを有し、
前記油排出穴が、前記1以上の凹部のうちの1つに向けて延びる、請求項1または2に記載の圧縮機。
Includes a silencer attached to the upper bearing to mute the sound generated by the discharge of the fluid.
The silencer has two or more protrusions extending in the radial direction of the upper bearing and one or more recesses formed between the protrusions.
The compressor according to claim 1 or 2, wherein the oil discharge hole extends toward one of the one or more recesses.
前記油排出穴は、前記螺旋状溝の幅の中央より前記回転軸の回転方向とは反対方向の側の位置に設けられる、請求項1〜3のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 3, wherein the oil discharge hole is provided at a position on the side opposite to the rotation direction of the rotation shaft from the center of the width of the spiral groove. 前記上軸受は、外周部に、前記油排出穴から排出された前記油が所定の方向へ流れるように誘導する誘導壁を有する、請求項1〜4のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein the upper bearing has a guide wall on the outer peripheral portion that guides the oil discharged from the oil discharge hole to flow in a predetermined direction. 前記側方体は、前記仕切部材が摺動可能に収容される収容溝を有し、
前記上軸受は、前記収容溝上に形成された油戻り穴を有し、
前記油排出穴は、前記油戻り穴が存在する方向に向けて延びる、請求項1〜4のいずれか1項に記載の圧縮機。
The side body has an accommodating groove in which the partition member is slidably accommodated.
The upper bearing has an oil return hole formed on the accommodating groove and has an oil return hole.
The compressor according to any one of claims 1 to 4, wherein the oil discharge hole extends in the direction in which the oil return hole exists.
請求項1〜6のいずれか1項に記載の圧縮機を含む、室外機。 An outdoor unit including the compressor according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載の圧縮機を含む、空気調和装置。 An air conditioner comprising the compressor according to any one of claims 1 to 6.
JP2019134294A 2019-07-22 2019-07-22 Compressors, outdoor units and air conditioners Active JP7321018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019134294A JP7321018B2 (en) 2019-07-22 2019-07-22 Compressors, outdoor units and air conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019134294A JP7321018B2 (en) 2019-07-22 2019-07-22 Compressors, outdoor units and air conditioners

Publications (2)

Publication Number Publication Date
JP2021017853A true JP2021017853A (en) 2021-02-15
JP7321018B2 JP7321018B2 (en) 2023-08-04

Family

ID=74563391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019134294A Active JP7321018B2 (en) 2019-07-22 2019-07-22 Compressors, outdoor units and air conditioners

Country Status (1)

Country Link
JP (1) JP7321018B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108218U (en) * 1975-02-28 1976-08-30
JPS5891392A (en) * 1981-11-27 1983-05-31 Toshiba Corp Rotary compressor
JPS58169190U (en) * 1982-05-07 1983-11-11 松下冷機株式会社 rotary compressor
WO2008023694A1 (en) * 2006-08-22 2008-02-28 Panasonic Corporation Expander-integrated compressor and refrigeration cycle device with the same
JP2008231959A (en) * 2007-03-16 2008-10-02 Mitsubishi Electric Corp Rotary compressor
JP2015197044A (en) * 2014-03-31 2015-11-09 ダイキン工業株式会社 rotary compressor
WO2017072867A1 (en) * 2015-10-27 2017-05-04 三菱電機株式会社 Rotary compressor
JP2019035391A (en) * 2017-08-21 2019-03-07 ダイキン工業株式会社 Compressor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108218U (en) * 1975-02-28 1976-08-30
JPS5891392A (en) * 1981-11-27 1983-05-31 Toshiba Corp Rotary compressor
JPS58169190U (en) * 1982-05-07 1983-11-11 松下冷機株式会社 rotary compressor
WO2008023694A1 (en) * 2006-08-22 2008-02-28 Panasonic Corporation Expander-integrated compressor and refrigeration cycle device with the same
JP2008231959A (en) * 2007-03-16 2008-10-02 Mitsubishi Electric Corp Rotary compressor
JP2015197044A (en) * 2014-03-31 2015-11-09 ダイキン工業株式会社 rotary compressor
WO2017072867A1 (en) * 2015-10-27 2017-05-04 三菱電機株式会社 Rotary compressor
JP2019035391A (en) * 2017-08-21 2019-03-07 ダイキン工業株式会社 Compressor

Also Published As

Publication number Publication date
JP7321018B2 (en) 2023-08-04

Similar Documents

Publication Publication Date Title
CN106321499B (en) Turbine and refrigeration cycle device
JP2017194042A (en) Turbocompressor, and turbo refrigerating device comprising the same
JP4967435B2 (en) Refrigeration equipment
EP4036406B1 (en) Sealed system for refrigeration appliance
US6807821B2 (en) Compressor with internal accumulator for use in split compressor
WO2017122719A1 (en) Turbo compressor and turbo refrigeration device equipped with same
US6637216B1 (en) Compressor with internal accumulator for use in split compressor
WO2021084607A1 (en) Scroll compressor and refrigeration cycle device
JP2021017853A (en) Compressor, outdoor unit and air conditioning device
WO2013136814A1 (en) Hermetically sealed compressor, and freezing device provided therewith
JPH10148408A (en) Refrigerating system
US11168687B2 (en) Scroll compressor
JP6896569B2 (en) Scroll compressor and its control method and air conditioner
JP7378275B2 (en) Compressor, outdoor unit and air conditioner
JP7194877B2 (en) refrigeration cycle equipment
JP2013238191A (en) Compressor
JP7357178B1 (en) Compressors and air conditioners
JP5109842B2 (en) Refrigeration equipment
JP2021017852A (en) Compressor, outdoor unit and air conditioning device
JP2016075260A (en) Sealed compressor, refrigeration device including sealed compressor and refrigerator including sealed compressor
JP6766913B2 (en) Scroll compressor
JP5791760B2 (en) Refrigerant compressor
CN114483657B (en) Compressor and cooling device comprising same
JP6773932B1 (en) Compressor and air conditioner
JP7213382B1 (en) Scroll compressor and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230725

R150 Certificate of patent or registration of utility model

Ref document number: 7321018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150