JP2021014993A - Local thermal stress calculation method of pipeline - Google Patents

Local thermal stress calculation method of pipeline Download PDF

Info

Publication number
JP2021014993A
JP2021014993A JP2019128067A JP2019128067A JP2021014993A JP 2021014993 A JP2021014993 A JP 2021014993A JP 2019128067 A JP2019128067 A JP 2019128067A JP 2019128067 A JP2019128067 A JP 2019128067A JP 2021014993 A JP2021014993 A JP 2021014993A
Authority
JP
Japan
Prior art keywords
thermal stress
local thermal
calculation method
lug
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019128067A
Other languages
Japanese (ja)
Inventor
飛翔 松宮
Tsubasa Matsumiya
飛翔 松宮
ダニエル ガルシアロドリゲス
Garcia Rodriguez Daniel
ダニエル ガルシアロドリゲス
則之 高村
Noriyuki Takamura
則之 高村
景 根布
Akira Nefu
景 根布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2019128067A priority Critical patent/JP2021014993A/en
Publication of JP2021014993A publication Critical patent/JP2021014993A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To provide a local thermal stress calculation method for calculating a local thermal stress on a pipeline with welded lugs in consideration of the pipeline shape, lug shapes, and lug intervals.SOLUTION: A local thermal stress calculation method, which is for calculating a local thermal stress σ on a pipeline 1 with welded lugs 2 at a thermal transient time, calculates the local thermal stress σ using the following formula including a correction coefficient C. σ=C×E×α×ΔT (E: Young's modulus of the pipeline 1; α: the coefficient of thermal expansion of the pipeline 1; ΔT: temperature difference between the pipeline 1 and the lug 2).SELECTED DRAWING: Figure 2

Description

本発明は、配管に溶接したラグの影響により、熱過渡時に配管に発生する局部熱応力を算出する局部熱応力算出方法に関する。 The present invention relates to a local thermal stress calculation method for calculating a local thermal stress generated in a pipe during a thermal transient due to the influence of a lug welded to the pipe.

発電所内等に敷設される配管には、特許文献1の図3〜図6等に例示されるように、配管支持構造物との接触箇所に複数のラグが溶接されている。このため、配管内の流体温度が変化する熱過渡時には、配管とラグの熱膨張の違いにより、配管の熱変形がラグにより拘束され、配管に局部熱応力が発生する。 As illustrated in FIGS. 3 to 6 of Patent Document 1, a plurality of lugs are welded to the pipes laid in the power plant or the like at the contact points with the pipe support structure. Therefore, at the time of thermal transient when the fluid temperature in the pipe changes, the thermal deformation of the pipe is restrained by the lug due to the difference in thermal expansion between the pipe and the lug, and local thermal stress is generated in the pipe.

この局部熱応力を精度良く算出するには有限要素法解析を用いることが望ましいが、有限要素法解析による演算を常に実行すると演算量が膨大となるので、計算コストの低減や設計期間の短縮等のため、一部箇所においては式1を用いて局部熱応力σを簡易的に算出している。 It is desirable to use the finite element method analysis to calculate this local thermal stress with high accuracy, but if the calculation by the finite element method analysis is always executed, the amount of calculation becomes enormous, so the calculation cost is reduced and the design period is shortened. Therefore, in some places, the local thermal stress σ 0 is simply calculated using Equation 1.

σ0 = E×α×ΔT ・・・(式1)
なお、式1において、Eは配管のヤング率、αは配管の熱膨張率、ΔTは配管とラグの温度差である。
σ 0 = E × α × ΔT ・ ・ ・ (Equation 1)
In Equation 1, E is the Young's modulus of the pipe, α is the coefficient of thermal expansion of the pipe, and ΔT is the temperature difference between the pipe and the lag.

特開2011−64288号公報Japanese Unexamined Patent Publication No. 2011-64288

上記の式1を利用して配管の局部熱応力を適切に算出できるのは、配管に溶接するラグの形状が長方形や円筒形であり、かつ、配管に溶接するラグ数が単数であるという特定条件下に限定されている。 It is specified that the shape of the lug to be welded to the pipe is rectangular or cylindrical and the number of lugs to be welded to the pipe is single, so that the local thermal stress of the pipe can be appropriately calculated by using the above formula 1. Limited to conditions.

しかしながら、実際の配管系に使用されるラグの形状は多岐にわたり、また、1箇所に複数のラグが溶接されることも多々あるため、このような条件下においても利用可能な簡易的な局部熱応力算出方法が求められている。 However, since the shapes of lugs used in actual piping systems are diverse and multiple lugs are often welded to one location, simple local heat that can be used even under such conditions. A stress calculation method is required.

そこで、本発明は、式1の対象外となるラグ形状やラグ数により配管に発生する局部熱応力を簡易的に算出することができる配管の局部熱応力算出方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for calculating the local thermal stress of a pipe, which can easily calculate the local thermal stress generated in the pipe based on the lug shape and the number of lugs, which are not covered by the equation 1. ..

上記課題を解決するため、本発明の局部熱応力算出方法は、ラグを溶接した配管にて熱過渡時に発生する局部熱応力σを算出する局部熱応力算出方法であって、補正係数Cを含む次式により前記局部熱応力σを算出するものとした。σ=C×E×α×ΔT(E:配管のヤング率、α:配管の熱膨張率、ΔT:配管とラグの温度差) In order to solve the above problems, the local thermal stress calculation method of the present invention is a local thermal stress calculation method for calculating the local thermal stress σ generated at the time of thermal transient in a pipe welded with a lug, and includes a correction coefficient C. The local thermal stress σ was calculated by the following formula. σ = C × E × α × ΔT (E: Young's modulus of piping, α: Thermal expansion coefficient of piping, ΔT: Temperature difference between piping and lug)

本発明の局部熱応力算出方法によれば、式1の対象外となるラグ形状やラグ数を採用した場合であっても、配管の局部熱応力の簡易的な算出が可能となる。 According to the local thermal stress calculation method of the present invention, even when the lug shape and the number of lugs that are not covered by the equation 1 are adopted, the local thermal stress of the pipe can be simply calculated.

一実施例の局部熱応力算出方法のフローチャートFlowchart of local thermal stress calculation method of one embodiment 一実施例の局部熱応力算出方法が適用される配管とラグの断面図Sectional view of piping and lug to which the local thermal stress calculation method of one embodiment is applied. 図1のラグの斜視図Perspective view of the lug of FIG. 図1の配管の模式図Schematic diagram of the piping of FIG. 間隔Lが応力に及ぼす影響を表した模式図Schematic diagram showing the effect of the interval L on stress ラグ高さHが応力に及ぼす影響を表した模式図Schematic diagram showing the effect of lug height H on stress 各々の局部熱応力算出方法の比較結果を表す模式図Schematic diagram showing the comparison results of each local thermal stress calculation method 補正係数Cの影響を表す模式図Schematic diagram showing the effect of the correction coefficient C

以下、図1から図8を用いて、本発明の一実施例の局部熱応力算出方法を説明する。なお、本実施例の局部熱応力算出方法は、CPU等の演算装置、半導体メモリ等の主記憶装置、ハードディスク等の補助記憶装置、および、通信装置などのハードウェアを備えたパソコン等の計算機において、補助記憶装置に記録されたデータベースを参照しながら、主記憶装置にロードされたプログラムを演算装置が実行することで実現されるものであるが、以下では、このような計算機分野での周知技術を適宜省略しながら説明する。 Hereinafter, a method for calculating the local thermal stress according to an embodiment of the present invention will be described with reference to FIGS. 1 to 8. The local thermal stress calculation method of this embodiment is used in a computer such as a personal computer equipped with an arithmetic unit such as a CPU, a main storage device such as a semiconductor memory, an auxiliary storage device such as a hard disk, and hardware such as a communication device. , It is realized by the arithmetic unit executing the program loaded in the main memory while referring to the database recorded in the auxiliary storage device. In the following, such well-known techniques in the computer field. Will be described while omitting as appropriate.

熱過渡時に発生する配管の局部熱応力を算出する場合、配管に溶接するラグの形状が長方形や円筒形であり、かつ、溶接するラグ数が単数であれば、上記した式1を利用して配管の局部熱応力を適切に算出することができる。しかしながら、配管に溶接するラグの形状が長方形や円筒形でない場合や、溶接するラグ数が複数である場合は、式1を利用しても配管の局部熱応力を適切に算出することができない。そこで、本実施例では、式1に代え、下記の式2を利用することで、配管に溶接するラグの形状や数が多様である場合でも、配管の局部熱応力σを適切に算出できるようにした。 When calculating the local thermal stress of a pipe generated during a thermal transient, if the shape of the lug to be welded to the pipe is rectangular or cylindrical and the number of lugs to be welded is singular, the above equation 1 is used. The local thermal stress of the pipe can be calculated appropriately. However, when the shape of the lug to be welded to the pipe is not rectangular or cylindrical, or when the number of lugs to be welded is multiple, the local thermal stress of the pipe cannot be appropriately calculated even by using Equation 1. Therefore, in this embodiment, by using the following formula 2 instead of the formula 1, the local thermal stress σ of the pipe can be appropriately calculated even when the shape and the number of lugs to be welded to the pipe are various. I made it.

σ = C×σ0 ・・・(式2)
なお、式2において、Cは後述する式3から式6に基づいて決定される補正係数であり、σは式1を用いて算出した局部熱応力である。
σ = C × σ 0 ... (Equation 2)
In Equation 2, C is a correction coefficient determined based on Equations 3 to 6 described later, and σ 0 is a local thermal stress calculated using Equation 1.

最初に図1のフローチャートを用いて、熱過渡時の配管に生じる局部熱応力σの、本実施例による算出方法を概説する。 First, using the flowchart of FIG. 1, the calculation method of the local thermal stress σ generated in the pipe during the thermal transient according to the present embodiment will be outlined.

まず、ステップS1では、配管1のヤング率E、配管1の熱膨張率α、および、配管1とラグ2の温度差ΔTを取得する。これらは従来の式1でも利用するものであり、その取得方法も周知であるため、以下ではヤング率E、熱膨張率α、温度差ΔTの取得方法の詳細説明は省略する。次に、ステップS2では、補正係数Cを決定する。最後に、ステップS3では、ステップS1で取得したヤング率E、熱膨張率α、温度差ΔTと、ステップS2で決定した補正係数Cと、上記の式2を用いて、配管1の局部熱応力σを算出する。以下、ステップS2での補正係数Cの決定方法と、ステップS3での局部熱応力σの算出方法を、順次詳細に説明する。
<ステップS2での補正係数Cの決定方法>
図2は、配管1の敷設状態の一例を示す断面図である。ここに例示する配管1は、右側にラグ2aを、下側にラグ2bを、左側にラグ2cを、上側にラグ2d溶接したものである。そして、これら四つのラグ2を介して配管支持構造物3と接触することで、配管1の軸直角2方向の移動を防止している。なお、図2の配管1では、四つのラグ2が取り付けられているが、配管1の移動を防止できるようにしたのであれば、例えば、二つのラグ2を取り付けても良い。
First, in step S1, the Young's modulus E of the pipe 1, the coefficient of thermal expansion α of the pipe 1, and the temperature difference ΔT between the pipe 1 and the lug 2 are acquired. Since these are also used in the conventional formula 1 and the acquisition method thereof is well known, detailed description of the acquisition method of Young's modulus E, thermal expansion coefficient α, and temperature difference ΔT will be omitted below. Next, in step S2, the correction coefficient C is determined. Finally, in step S3, the Young's modulus E, the coefficient of thermal expansion α, the temperature difference ΔT acquired in step S1, the correction coefficient C determined in step S2, and the above equation 2 are used to obtain the local thermal stress of the pipe 1. Calculate σ. Hereinafter, the method of determining the correction coefficient C in step S2 and the method of calculating the local thermal stress σ in step S3 will be described in detail in order.
<Method of determining the correction coefficient C in step S2>
FIG. 2 is a cross-sectional view showing an example of the laid state of the pipe 1. The pipe 1 illustrated here is welded with a lug 2a on the right side, a lug 2b on the lower side, a lug 2c on the left side, and a lug 2d on the upper side. Then, by contacting the pipe support structure 3 via these four lugs 2, movement of the pipe 1 in two directions perpendicular to the axis is prevented. In the pipe 1 of FIG. 2, four lugs 2 are attached, but if the movement of the pipe 1 can be prevented, for example, two lugs 2 may be attached.

図3は、各々のラグ2の形状を説明する斜視図である。ここに示すように、ラグ2は、板厚tの金属板を折り曲げて形成した、高さHのU字型ラグである。なお、ラグ2a〜2dは、全て同じ形状にしても良いし、夫々の板厚tや高さHを異ならせても良い。 FIG. 3 is a perspective view illustrating the shape of each lug 2. As shown here, the lug 2 is a U-shaped lug having a height H formed by bending a metal plate having a plate thickness of t L. The lugs 2a to 2d may all have the same shape, or the plate thickness t L and height H may be different from each other.

図4は、ラグ2a近傍の各種寸法を説明するための模式図であり、図2におけるラグ2aから隣接するラグ2b右側までの範囲を模擬的に平面で表現したものである。同図において、LはU字型のラグ2aの両端間の間隔、Labはラグ2aとラグ2bの最内周側の間隔である。以下では、これらのうち最小の間隔(図4の例では間隔Lab)を、ラグ2aに関する間隔Lと定義する。 FIG. 4 is a schematic view for explaining various dimensions in the vicinity of the lug 2a, and is a simulated plane representation of the range from the lug 2a in FIG. 2 to the right side of the adjacent lug 2b. In the figure, L a is the spacing between the ends of the U-shaped lug 2a, the L ab is the spacing innermost lugs 2a and lugs 2b. In the following, the minimum interval (interval Lab in the example of FIG. 4) is defined as the interval L with respect to the lag 2a.

また、tは配管1の板厚、tはラグ2aの板厚である。以下では、下記の式3で算出される値を、ラグ2aに関する板厚比τと定義する。 Further, t P is the plate thickness of the pipe 1, and t L is the plate thickness of the lug 2a. In the following, the value calculated by the following equation 3 is defined as the plate thickness ratio τ with respect to the lug 2a.

τ = t/t ・・・(式3)
ラグ2aの高さH、間隔L、板厚比τが求まると、これらを用いてラグ2a近傍での局部熱応力σを算出する際に用いる補正係数Cを決定する。
τ = t P / t L ... (Equation 3)
When the height H, the interval L, and the plate thickness ratio τ of the lug 2a are obtained, the correction coefficient C used when calculating the local thermal stress σ in the vicinity of the lug 2a is determined by using these.

この補正係数Cは、下記の式4に示すように、高さHに応じた補正係数Cと、間隔Lに応じた補正係数Cを乗算したものと考えることができる。 As shown in Equation 4 below, the correction coefficient C can be considered to be obtained by multiplying the correction coefficient C H according to the height H and the correction coefficient C L according to the interval L.

C= C ×C ・・・(式4)
補正係数C、Cを求めるために、高さH、間隔L、板厚比τの各パラメータが局部熱応力σに及ぼす影響を調査した。図5Aは、高さHを一定とした場合に、間隔Lの変化が局部熱応力σに及ぼす影響を模式的に示した図であり、図5Bは、間隔Lを一定とした場合に、高さHの変化が局部熱応力σに及ぼす影響を模式的に表した図である。
C = C H × C L ... (Equation 4)
In order to obtain the correction coefficients C H and C L , the effects of the height H, the interval L, and the plate thickness ratio τ on the local thermal stress σ were investigated. FIG. 5A is a diagram schematically showing the effect of a change in the interval L on the local thermal stress σ when the height H is constant, and FIG. 5B is a diagram showing the height when the interval L is constant. It is a figure which represented typically the influence which the change of H H has on the local thermal stress σ.

両図からは、板厚比τが大きくなるほど応力比が小さくなる傾向があり、また、間隔Lが長くなるほど、或いは、高さHが高くなるほど、応力比が小さくなる傾向があることが分かる。なお、ここでの応力比は、長さ或るいは高さの影響がある場合とその影響がない場合の応力の比であり、それぞれの変数が応力に及ぼす影響を表すものである。 From both figures, it can be seen that the stress ratio tends to decrease as the plate thickness ratio τ increases, and the stress ratio tends to decrease as the interval L increases or the height H increases. The stress ratio here is the ratio of stress when there is an influence of length or height and when there is no influence thereof, and represents the influence of each variable on stress.

例えば、図5Aに示す間隔Lと応力比の関係から、間隔Lに応じた補正係数Cは次の式5で表現できることが分かる。 For example, the relationship between the distance L and the stress ratio shown in FIG. 5A, the correction coefficient C L corresponding to the distance L is found can be represented by the following formula 5.

= A×τ ・・・(式5)
なお、式5における、A、Bは間隔Lに応じた変数であり、例えば、次の表1に基づいて決定する。
C L = A × τ B ... (Equation 5)
Note that A and B in Equation 5 are variables according to the interval L, and are determined based on, for example, Table 1 below.

Figure 2021014993
Figure 2021014993

また、式4と式5から、式2で用いる補正係数Cは次の式6で表現できることが分かる。 Further, from Equations 4 and 5, it can be seen that the correction coefficient C used in Equation 2 can be expressed by the following Equation 6.

C = C×A×τ ・・・(式6)
ここで、補正係数Cは高さHに応じた係数であり、例えば、次の表2に基づいて決定する。
C = CH × A × τ B ... (Equation 6)
Here, the correction coefficient C H is a coefficient corresponding to the height H, and is determined based on, for example, Table 2 below.

Figure 2021014993
Figure 2021014993

以上の説明をまとめると、補正係数Cは、高さHと間隔Lの組み合わせに応じて、例えば、次の表3に基づいて決定する。 Summarizing the above description, the correction coefficient C is determined, for example, based on the following Table 3 according to the combination of the height H and the interval L.

Figure 2021014993
Figure 2021014993

なお、表1から表3はあくまで一例であり、他の方法により高さHと間隔Lの組み合わせに応じた補正係数Cを決定しても良い。
<ステップS3での配管1の局部熱応力σの算出方法>
ステップS2で補正係数Cを算出した後、ステップS3では、上記した式1〜式6を集約した下記の式7に基づいて、本実施例の局部熱応力評価方法による局部熱応力σを算出する。
It should be noted that Tables 1 to 3 are merely examples, and the correction coefficient C according to the combination of the height H and the interval L may be determined by another method.
<Calculation method of local thermal stress σ of pipe 1 in step S3>
After calculating the correction coefficient C in step S2, in step S3, the local thermal stress σ according to the local thermal stress evaluation method of this embodiment is calculated based on the following equation 7 in which the above equations 1 to 6 are aggregated. ..

σ = C×E×α×ΔT
= C×A×(t/t×E×α×ΔT・・・(式7)
図6の例では、式1で求めた局部熱応力σが常にσFEMより小さくなり、式2(式7)で求めた局部熱応力σは常にσFEMより大きくなる。この場合、局部熱応力σは実際に発生する局部熱応力よりも小さい可能性が高いため、この局部熱応力σを前提に設計等を行うと、配管1、ラグ2、配管支持構造物3に強度不足等の問題が生じる可能性がある。これに対し、局部熱応力σは実際に発生する局部熱応力よりも大きいと考えられるため、この局部熱応力σを前提に設計等を行えば、配管1、ラグ2、配管支持構造物3等には十分な強度を確保することができる。
σ = C × E × α × ΔT
= CH x A x (t P / t L ) B x E x α x ΔT ... (Equation 7)
In the example of FIG. 6, the local thermal stress σ 0 obtained by Equation 1 is always smaller than σ FEM , and the local thermal stress σ obtained by Equation 2 (Equation 7) is always larger than σ FEM . In this case, the local thermal stress σ 0 is likely to be smaller than the actually generated local thermal stress. Therefore, if the design is performed on the premise of this local thermal stress σ 0 , the pipe 1, the lug 2, and the pipe support structure are designed. There is a possibility that problems such as insufficient strength may occur in 3. On the other hand, the local thermal stress σ is considered to be larger than the actually generated local thermal stress. Therefore, if the design is performed on the premise of this local thermal stress σ, the pipe 1, the lug 2, the pipe support structure 3, etc. Sufficient strength can be ensured.

図7は、式1と式2から算出される局部熱応力の差について模式的に表した図である。なお、図示を省略しているが、有限要素法解析の結果は、式1と式2の中間に位置することになる。 FIG. 7 is a diagram schematically showing the difference in local thermal stress calculated from Equation 1 and Equation 2. Although not shown, the result of the finite element method analysis is located between Equation 1 and Equation 2.

以上で説明した本実施例によれば、式1の対象外となる形状や数のラグを溶接した配管に対しても、局部熱応力を適切に算出することが可能となる。これにより、有限要素法解析を用いての局部熱応力評価が不要となり、簡易的に局部熱応力を算出することが可能となるために、設計工程等の削減を図ることが可能となる。 According to the present embodiment described above, it is possible to appropriately calculate the local thermal stress even for a pipe welded with a shape and a number of lugs that are not covered by the equation 1. This eliminates the need for local thermal stress evaluation using the finite element method analysis, and makes it possible to easily calculate the local thermal stress, so that it is possible to reduce the design process and the like.

1 配管
2、2a〜2c ラグ
3 配管支持構造物
H ラグの高さ
L ラグの間隔
配管の板厚
ラグの板厚
1 Piping 2, 2a to 2c lugs 3 Piping support structure H Lag height L Lag spacing t P Piping plate thickness t L Lag plate thickness

Claims (6)

ラグを溶接した配管にて熱過渡時に発生する局部熱応力σを算出する局部熱応力算出方法であって、
補正係数Cを含む下記式により前記局部熱応力σを算出することを特徴とする局部熱応力算出方法。
σ=C×E×α×ΔT
E:配管のヤング率、α:配管の熱膨張率、ΔT:配管とラグの温度差
This is a local thermal stress calculation method that calculates the local thermal stress σ generated during thermal transients in a pipe with welded lugs.
A method for calculating a local thermal stress, which comprises calculating the local thermal stress σ by the following formula including a correction coefficient C.
σ = C × E × α × ΔT
E: Young's modulus of piping, α: Thermal expansion coefficient of piping, ΔT: Temperature difference between piping and lug
請求項1記載の局部熱応力算出方法において、
前記補正係数Cは、前記配管の板厚tと前記ラグの板厚tの比に応じて決定されることを特徴とする局部熱応力算出方法。
In the local thermal stress calculation method according to claim 1,
The local thermal stress calculation method, wherein the correction coefficient C is determined according to the ratio of the plate thickness t P of the pipe and the plate thickness t L of the lug.
請求項1記載の局部熱応力算出方法において、
前記補正係数Cは、前記ラグの高さに応じて決定されることを特徴とする局部熱応力算出方法。
In the local thermal stress calculation method according to claim 1,
The local thermal stress calculation method, wherein the correction coefficient C is determined according to the height of the lag.
請求項1記載の局部熱応力算出方法において、
前記補正係数Cは、前記ラグと隣接するラグの距離に応じて決定されることを特徴とする局部熱応力算出方法。
In the local thermal stress calculation method according to claim 1,
The local thermal stress calculation method, wherein the correction coefficient C is determined according to the distance between the lag and the adjacent lag.
請求項1記載の局部熱応力算出方法において、
前記補正係数Cは、前記ラグの一端と他端の距離に応じて決定されることを特徴とする局部熱応力算出方法。
In the local thermal stress calculation method according to claim 1,
A method for calculating a local thermal stress, wherein the correction coefficient C is determined according to the distance between one end and the other end of the lag.
請求項1記載の局部熱応力算出方法において、
前記補正係数Cは、下記式により決定されることを特徴とする局部熱応力算出方法。
C = C×A×(t/t
:ラグの高さに応じた補正係数、A、B:ラグの間隔に応じた変数、
:配管の板厚、t:ラグの板厚
In the local thermal stress calculation method according to claim 1,
The local thermal stress calculation method, characterized in that the correction coefficient C is determined by the following formula.
C = CH × A × (t P / t L ) B
CH : Correction coefficient according to lag height, A, B: Variable according to lag interval,
t P : Piping plate thickness, t L : Lag plate thickness
JP2019128067A 2019-07-10 2019-07-10 Local thermal stress calculation method of pipeline Pending JP2021014993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019128067A JP2021014993A (en) 2019-07-10 2019-07-10 Local thermal stress calculation method of pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019128067A JP2021014993A (en) 2019-07-10 2019-07-10 Local thermal stress calculation method of pipeline

Publications (1)

Publication Number Publication Date
JP2021014993A true JP2021014993A (en) 2021-02-12

Family

ID=74531538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019128067A Pending JP2021014993A (en) 2019-07-10 2019-07-10 Local thermal stress calculation method of pipeline

Country Status (1)

Country Link
JP (1) JP2021014993A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158964A (en) * 1974-06-14 1975-12-23
JPH0612885U (en) * 1992-07-20 1994-02-18 バブコック日立株式会社 Sliding pipe support device
JP2007205692A (en) * 2006-02-06 2007-08-16 Babcock Hitachi Kk Thermal fatigue crack damage diagnosis method of boiler heat transfer tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158964A (en) * 1974-06-14 1975-12-23
JPH0612885U (en) * 1992-07-20 1994-02-18 バブコック日立株式会社 Sliding pipe support device
JP2007205692A (en) * 2006-02-06 2007-08-16 Babcock Hitachi Kk Thermal fatigue crack damage diagnosis method of boiler heat transfer tube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐藤 拓哉: "圧力設備の破損モードと応力 (第1回) -応力とひずみ・考慮すべき破損モード-延性破断-", 圧力技術, vol. 43巻,1号, JPN6022034554, 5 March 2005 (2005-03-05), JP, pages 40 - 50, ISSN: 0004853713 *

Similar Documents

Publication Publication Date Title
Darveaux Effect of simulation methodology on solder joint crack growth correlation and fatigue life prediction
Bao et al. Analysis and prediction of edge effects in laser bending
JP3680040B2 (en) heat pipe
Bhattacharjee et al. A measure of data collapse for scaling
Kalnins et al. Using the nonlinear kinematic hardening material model of Chaboche for elastic–plastic ratcheting analysis
Yu et al. FEM simulation of laser forming of metal plates
Olson et al. A new mechanical method for biaxial residual stress mapping
WO2022147978A1 (en) Straight pipeline inner wall surface temperature measurement and transient identification method and computer terminal
Jafari et al. A new mixed finite element–differential quadrature formulation for forced vibration of beams carrying moving loads
Woolley et al. Thermocouple data in the inverse heat conduction problem
Lin et al. Inverse method for estimating thermal conductivity in one-dimensional heat conduction problems
JP5304734B2 (en) Heat treatment simulation method
CN115292986A (en) Performance evaluation method of liquefied natural gas air-temperature gasifier
JP2011158362A (en) Thermal fatigue evaluation method
JP2021014993A (en) Local thermal stress calculation method of pipeline
Tszeng et al. A study of fin effects in the measurement of temperature using surface-mounted thermocouples
JP6511016B2 (en) Push force evaluation method
Taler et al. Thermal stress monitoring in thick-walled pressure components based on the solutions of the inverse heat conduction problems
McMasters et al. Verification of ANSYS and MATLAB Heat Conduction Results Using an “Intrinsically” Verified Exact Analytical Solution
Park et al. Wear depth prediction for steam generator tubes using an estimated in situ wear coefficient
US20230104465A1 (en) Estimation device, estimation method, and non-transitory computer-readable recording medium for thickness of precipitate
Li et al. An exact fourier series method for the vibration analysis of multispan beam systems
KR102230397B1 (en) Displacement Estimating Method of a Structure based on Acceleration and Strain
JP2019144765A (en) Maximum tensile stress estimation method and maximum tensile stress estimation device for columnar honeycomb structure
Tszeng et al. A dual-scale computational method for correcting surface temperature measurement errors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606