JP2021012053A - Hydration expansion behavior evaluation method of steel making slag and steam aging device - Google Patents

Hydration expansion behavior evaluation method of steel making slag and steam aging device Download PDF

Info

Publication number
JP2021012053A
JP2021012053A JP2019125098A JP2019125098A JP2021012053A JP 2021012053 A JP2021012053 A JP 2021012053A JP 2019125098 A JP2019125098 A JP 2019125098A JP 2019125098 A JP2019125098 A JP 2019125098A JP 2021012053 A JP2021012053 A JP 2021012053A
Authority
JP
Japan
Prior art keywords
hydration
steam
test material
slag
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019125098A
Other languages
Japanese (ja)
Other versions
JP7323747B2 (en
Inventor
義弘 上川
Yoshihiro Kamikawa
義弘 上川
健介 下村
Kensuke Shimomura
健介 下村
山本 充
Mitsuru Yamamoto
充 山本
真沢 正人
Masato Mazawa
正人 真沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamada Heavy Industries Co Ltd
Nippon Steel Corp
Original Assignee
Hamada Heavy Industries Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamada Heavy Industries Co Ltd, Nippon Steel Corp filed Critical Hamada Heavy Industries Co Ltd
Priority to JP2019125098A priority Critical patent/JP7323747B2/en
Publication of JP2021012053A publication Critical patent/JP2021012053A/en
Application granted granted Critical
Publication of JP7323747B2 publication Critical patent/JP7323747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

To obtain information effective to evaluate and improve the hydration expansion property of slag having a possibility of containing free lime and/or free magnesia by quantitatively gasping aging time dependency in a hydration expansion behavior of steel making slag.SOLUTION: According to the present invention, a hydration expansion behavior evaluation method of steel making slag comprises: installing a plurality of sample materials created from steel making slag containing free lime and/or free magnesia and having a hydration expansion property in an observable container; observing appearance change and/or measuring mass change at a preset time interval in performing steam aging treatment under an atmospheric pressure; calculating a cumulative change frequency and/or a collapse mass ratio of the sample materials in each lapsed time of steam aging; and evaluating aging time dependency in the hydration expansion behavior of the steel making slag on the basis of the calculation result.SELECTED DRAWING: Figure 1

Description

本発明は、製鋼スラグの水和膨張挙動評価方法及び蒸気エージング装置に関する。 The present invention relates to a method for evaluating hydration and expansion behavior of steelmaking slag and a steam aging apparatus.

鉄鋼生産の製鋼工程では、生石灰やドロマイト等、酸化カルシウムや酸化マグネシウムを含有する精錬剤が使用され、その精錬副生物(残滓)である製鋼スラグには遊離石灰や遊離マグネシアが残存していることが多い。
遊離石灰、遊離マグネシアは、それぞれ酸化カルシウム、酸化マグネシウム単体、ないし酸化カルシウム、酸化マグネシウムに酸化珪素、酸化アルミニウム、酸化鉄などの酸化物が固溶した固溶体であり、多くの場合、水和膨張性を有している。
In the steelmaking process of steel production, refining agents containing calcium oxide and magnesium oxide such as quicklime and dolomite are used, and free lime and free magnesia remain in the steelmaking slag, which is a refining by-product (residue). There are many.
Free lime and free magnesia are solid solutions of calcium oxide, magnesium oxide alone, or oxides such as silicon oxide, aluminum oxide, and iron oxide dissolved in calcium oxide and magnesium oxide, respectively, and are often hydrated and expandable. have.

製鋼スラグに含まれる遊離石灰には、その生成原因により幾つかの種類があり、その水和膨張挙動にも差がある。 There are several types of free lime contained in steelmaking slag depending on the cause of its formation, and their hydration and expansion behavior also differ.

精錬剤として添加した生石灰の大半は、精錬の原料に含まれる珪素、燐、マンガンなどの酸化物や鉄自体の酸化物と融合(滓化)して溶融スラグになる。しかし、燐濃度の低い高級鋼種などでは精錬度を強化するため、生石灰を多く添加する場合がある。このような場合、添加した生石灰の全てが精錬中に滓化するわけではなく、一部が未溶解、未反応の石灰粒子としてスラグ中に残存することがある。これが遊離石灰の中で未滓化石灰と呼ばれる種類である。
この未滓化石灰は概して大きく、褐色を呈することが多く、スラグ塊の表面や膨張破壊の破面にしばしば認められる。生石灰の添加量や精錬条件などにより、未滓化石灰の多寡は変化する。
Most of the quicklime added as a refining agent fuses (slags) with oxides such as silicon, phosphorus, and manganese contained in the raw materials for refining and oxides of iron itself to form molten slag. However, in the case of high-grade steel with a low phosphorus concentration, a large amount of quicklime may be added in order to enhance the degree of refining. In such a case, not all of the added quicklime is slagged during refining, and some of the added quicklime may remain in the slag as undissolved and unreacted lime particles. This is a type of free lime called unslag lime.
This unslagged lime is generally large and often brownish, often found on the surface of slag masses and fractured surfaces of expansive fractures. The amount of unpolluted lime changes depending on the amount of quicklime added and the refining conditions.

添加した生石灰は、異常に多くない限り、上述したように、その殆どが精錬中に溶融スラグになる。製鋼スラグは、精錬炉内の1600℃程度の高温状態では均一に溶解しているが、スラグ組成によっては、冷却・凝固の途中で酸化カルシウム成分が熱力学的な溶解度限にかかり、晶出して遊離石灰相を生じる。これが遊離石灰の中で晶出石灰と呼ばれる種類である。
晶出石灰の発生は、酸化カルシウム比率の高い塩基性スラグを使用する限り避けられない。晶出石灰は概して微細な組織であり、晶出石灰に起因するスラグの水和膨張挙動は、未滓化石灰に起因するスラグの水和膨張挙動とは異なると考えられている。
Most of the added quicklime becomes molten slag during refining, as described above, unless it is unusually high. Steelmaking slag is uniformly melted at a high temperature of about 1600 ° C in the slag furnace, but depending on the slag composition, the calcium oxide component is subject to the thermodynamic solubility limit during cooling and solidification, and crystallizes. Produces a free lime phase. This is a type of free lime called crystallized lime.
The generation of crystallized lime is unavoidable as long as basic slag with a high calcium oxide ratio is used. Crystallized lime is generally a fine structure, and it is considered that the hydration and expansion behavior of slag caused by crystallized lime is different from the hydration and expansion behavior of slag caused by unslagged lime.

高塩基度の溶融スラグが冷却する過程において1700℃〜1400℃域で生成した長柱形のトリカルシウムシリケイト(3CaO−SiO)が1300℃以下で分解したときに、ダイカルシウムシリケイト(2CaO−SiO)と共に生成する遊離石灰が析出石灰であり、長柱形のトリカルシウムシリケイト(3CaO−SiO)鉱物相内に縞状に生成する。析出石灰に起因するスラグの水和膨張挙動は、未滓化石灰や晶出石灰に起因するスラグの水和膨張挙動とは異なると考えられている。 When the oblong column-shaped tricalcium silicate (3CaO-SiO 2 ) produced in the 1700 ° C. to 1400 ° C. range is decomposed at 1300 ° C. or lower in the process of cooling the highly basic molten slag, the dicalcium silicate (2CaO-SiO 2 ) is decomposed. The free lime produced together with 2 ) is precipitated lime, which is formed in stripes in the long columnar tricalcium silicate (3CaO-SiO 2 ) mineral phase. The hydration and expansion behavior of slag caused by precipitated lime is considered to be different from the hydration and expansion behavior of slag caused by unslagged lime and crystallized lime.

製鋼工程において石灰が使用されていることは周知であるが、ドロマイトも製鋼工程とのつながりが深く、転炉内に投入される副原料として一般的に使用されている。製鋼工程で使用されるドロマイトは、軽焼ドロマイト(CaO−MgO)と呼ばれるもので、含有CaO分により溶鋼中の不純物を除去すると共に、含有MgO分が転炉や取鍋の炉壁耐火物を保護して転炉や取鍋の寿命を延長する。このMgOはCaOと同様、精錬中に大部分は溶融スラグとなるが、その冷却過程において遊離マグネシアや未滓化ドロマイトが見られることがある。遊離マグネシアには2種類あり、一つは粒子外縁部がウスタイトに富んだMrim、もう一つはマグネシオウスタイト(MW)である。MWは、FeOとMgOの固溶体で、CaO、MnOが固溶している。Mrim、MWともにかなりの量のFeO、MnOが固溶しているので、水和反応は著しく抑えられるといわれている。 It is well known that lime is used in the steelmaking process, but dolomite is also closely related to the steelmaking process and is generally used as an auxiliary raw material to be put into a converter. The dolomite used in the steelmaking process is called light-baked dolomite (CaO-MgO). The CaO content removes impurities in the molten steel, and the MgO content contains refractories in the furnace walls of converters and ladle. Protect and extend the life of converters and ladles. Like CaO, this MgO becomes mostly molten slag during refining, but free magnesia and unpolluted dolomite may be found during the cooling process. The free magnesia There are two types, one M rim the particle outer edge rich wustite, another is magnesiowustite mouse Tight (MW). MW is a solid solution of FeO and MgO, and CaO and MnO are in a solid solution. Since a considerable amount of FeO and MnO are dissolved in both Mrim and MW, it is said that the hydration reaction is remarkably suppressed.

製鋼スラグを路盤材等に使用すると、時間経過とともにスラグ中のこれら遊離石灰や遊離マグネシアの水和反応が起き、個々のスラグの亀裂、部分的剥離、粉化崩壊が発生する。その結果、スラグやスラグ使用製品の集合体(バルク)としてのマクロな体積膨張が起きる。 When steelmaking slag is used as a roadbed material or the like, the hydration reaction of these free lime and free magnesia in the slag occurs with the passage of time, and cracks, partial exfoliation, and pulverization collapse of individual slag occur. As a result, macroscopic volume expansion occurs as an aggregate (bulk) of slag and products using slag.

そのため、スラグの膨張低減対策として、長期間の山積みによる自然エージング(大気エージング)、山積みスラグへの水蒸気通蒸による蒸気エージング、あるいは、加圧槽内での高圧・高温による蒸気エージング等、何らかの安定化処理を施すことが多い。安定化処理とは、遊離石灰や遊離マグネシアを水分や二酸化炭素と反応させて、それぞれ水酸化物や炭酸化物に変換させる処理である。 Therefore, as measures to reduce the expansion of slag, some kind of stability such as natural aging by long-term piles (atmospheric aging), steam aging by steam steaming to piles of slag, or steam aging by high pressure and high temperature in a pressurized tank, etc. Often subjected to chemical processing. The stabilization treatment is a treatment in which free lime and free magnesia are reacted with water and carbon dioxide to be converted into hydroxides and carbon dioxide, respectively.

生成したスラグあるいは安定化処理後のスラグは、使用時における品質を保証するため、膨張性評価がなされることが多い。
路盤材などに適用される製鋼スラグについては、JIS A5015(非特許文献1)において膨張率の上限値が定められ、附属書Bに、その試験法が具体的に定められている。
この試験法は、路盤材用途に限らず、他用途向けも含めた製鋼スラグのマクロな水和膨張性評価法として広く用いられている。
The generated slag or the slag after the stabilization treatment is often evaluated for expandability in order to guarantee the quality at the time of use.
For steelmaking slag applied to roadbed materials and the like, the upper limit of the expansion coefficient is set in JIS A5015 (Non-Patent Document 1), and the test method is specifically defined in Annex B.
This test method is widely used as a macroscopic evaluation method for hydrated expansion of steelmaking slag not only for roadbed materials but also for other applications.

上記JIS法に準拠する水浸膨張試験以外にも、定常的な品質管理業務の他、精錬やスラグ処理工程の操業管理・改善検討、スラグ製品の品質改善等、あるいはスラグ製品のトラブル発生時における原因調査等のため、種々の膨張性評価方法が用いられている。 In addition to the water immersion expansion test conforming to the above JIS method, in addition to regular quality control work, operation management and improvement studies of refining and slag treatment processes, quality improvement of slag products, etc., or when trouble occurs with slag products Various expansiveness evaluation methods are used for investigating the cause and the like.

例えば、特許文献1には、カルシウム及び/又はマグネシウムを含有する製鋼スラグを粉砕・微粉化した試料の水和処理前後の赤外線吸収スペクトルをそれぞれ測定して、試料中の水酸化カルシウム及び/又は水酸化マグネシウム量を推定し、水和処理前後の試料中の水酸化カルシウム及び/又は水酸化マグネシウム量のそれぞれの差を製鋼スラグの水和度として評価する方法が開示されている。 For example, in Patent Document 1, the infrared absorption spectra of a sample obtained by crushing and pulverizing steelmaking slag containing calcium and / or magnesium are measured before and after the hydration treatment, and calcium hydroxide and / or water in the sample is measured. A method of estimating the amount of magnesium oxide and evaluating the difference between the amount of calcium hydroxide and / or the amount of magnesium hydroxide in the sample before and after the hydration treatment as the degree of hydration of steelmaking slag is disclosed.

また、特許文献2には、製鋼スラグを微粉砕して二つに分け、一方は水を添加して成形し、他方は水と接触させることなく成形し、両成形体をそれぞれ一軸膨張可能な状態にして、成形体の一部を水に接触させて吸水させながら養生を行った時の線膨張率の最大値を測定し、線膨張率と生石灰量の相関関係から推定される生石灰量の両成形体間の差から膨張に影響する生石灰量を求める方法が開示されている。 Further, in Patent Document 2, steelmaking slag is finely pulverized and divided into two, one is molded by adding water, and the other is molded without contact with water, and both molded bodies can be uniaxially expanded. The maximum value of the coefficient of linear expansion when curing is performed while bringing a part of the molded body into contact with water to absorb water is measured, and the amount of quicklime estimated from the correlation between the coefficient of linear expansion and the amount of quicklime. A method for determining the amount of quicklime that affects expansion from the difference between the two molded bodies is disclosed.

さらにまた、特許文献3には、晶出石灰と析出石灰がそれぞれ観察視野に占める面積比率と、晶出石灰及び/又は析出石灰を含む相が転炉スラグ粒子に占める面積比率とを掛け合わせて、転炉スラグ粒子に対して晶出石灰と析出石灰がそれぞれ占める面積比率(含有率)を算出する方法が開示されている。 Furthermore, in Patent Document 3, the area ratio of the crystallized lime and the precipitated lime in the observation field is multiplied by the area ratio of the phase containing the crystallized lime and / or the precipitated lime in the converter slag particles. , A method of calculating the area ratio (content rate) of crystallized lime and precipitated lime to converter slag particles is disclosed.

特開2005−61863号公報Japanese Unexamined Patent Publication No. 2005-61863 特開2014−157019号公報Japanese Unexamined Patent Publication No. 2014-157019 特開2015−105873号公報JP 2015-105873

JIS A5015:2013 道路用鉄鋼スラグJIS A5015: 2013 Road steel slag

前述したように、JIS法に準拠する水浸膨張試験は、路盤材用途に限らず他用途向けも含めた製鋼スラグのマクロな水和膨張性評価法として広く用いられているが、数キログラム単位の供試材を使って、10日後に3個の供試体の測定結果の平均値として1点のデータが得られる方法であるため、スラグの膨張低減対策に必要となる膨張原因の特定、即ち、遊離石灰と遊離マグネシアの判別や遊離石灰の種類・量などの情報は得られない。 As mentioned above, the water immersion expansion test based on the JIS method is widely used as a macroscopic hydration expansion evaluation method for steelmaking slag not only for roadbed materials but also for other applications, but in units of several kilograms. Since it is a method to obtain one point of data as the average value of the measurement results of three specimens after 10 days using the test material of the above, the cause of expansion necessary for measures to reduce the expansion of slag, that is, , Information such as the distinction between free lime and free magnesia and the type and amount of free lime cannot be obtained.

また、特許文献1記載の水和処理前後の赤外線吸収スペクトルを測定することによる水酸化カルシウム及び/又は水酸化マグネシウムの評価方法も、発生時点からの操業改善を図るために必要となる未滓化石灰や晶出石灰などの遊離石灰の種類はわからない。
特許文献2記載の一軸膨張での線膨張率と生石灰量の相関関係から真に膨張に寄与する生石灰量を推定する方法も、特許文献1記載の方法と同様、遊離石灰の情報は得られない。さらに、測定データからの直接的な評価でなく、予め求めた生石灰の量と線膨張率との相関関係の利用という誤差要因を含んでおり、何れの供試体についてもこの相関関係が変わらないという保証はない。
一方、特許文献3記載の方法によれば、未滓化石灰、晶出石灰、及び析出石灰の各含有率を把握できるが、スラグの水和膨張挙動そのものに関する情報は得られない。
In addition, the method for evaluating calcium hydroxide and / or magnesium hydroxide by measuring the infrared absorption spectrum before and after the hydration treatment described in Patent Document 1 is also required to improve the operation from the time of occurrence. The type of free lime such as lime and crystallized lime is unknown.
Similar to the method described in Patent Document 1, the method of estimating the amount of quicklime that truly contributes to expansion from the correlation between the linear expansion coefficient in uniaxial expansion described in Patent Document 2 and the amount of quicklime cannot obtain information on free lime. .. Furthermore, it is not a direct evaluation from the measurement data, but includes an error factor of using the correlation between the amount of quicklime obtained in advance and the coefficient of linear expansion, and this correlation does not change for any of the specimens. There is no guarantee.
On the other hand, according to the method described in Patent Document 3, the contents of unslagged lime, crystallized lime, and precipitated lime can be grasped, but information on the hydration and expansion behavior of slag itself cannot be obtained.

つまるところ、特許文献1〜3記載の方法では、スラグ安定化処理後など特定時間における結果情報しか得られず、蒸気エージングの時間評価に必要となる、スラグの水和膨張挙動におけるエージング時間依存性の情報は得られない。 After all, in the methods described in Patent Documents 1 to 3, only the result information at a specific time such as after the slag stabilization treatment can be obtained, and the aging time dependence in the hydration expansion behavior of slag, which is necessary for the time evaluation of steam aging, No information is available.

本発明はかかる事情に鑑みてなされたもので、製鋼スラグの水和膨張挙動におけるエージング時間依存性を定量的に把握し、遊離石灰及び/又は遊離マグネシアが含まれている可能性のあるスラグの水和膨張性の評価及び改善に有効な情報を得ることを目的とする。 The present invention has been made in view of the above circumstances, and quantitatively grasps the aging time dependence of the hydration and expansion behavior of steelmaking slag, and the slag which may contain free lime and / or free magnesia. The purpose is to obtain useful information for evaluation and improvement of hydration swelling.

上記目的を達成するため、第1の発明に係る製鋼スラグの水和膨張挙動評価方法は、遊離石灰及び/又は遊離マグネシアを含有し水和膨張性を有する製鋼スラグから作製した複数の供試材を観察可能な容器内に設置し、大気圧下で蒸気エージング処理を行う際に、予め設定した時間間隔で外観変化を観察及び/又は質量変化を測定し、前記供試材の累計変化回数及び/又は崩壊質量比を蒸気エージングの経過時間ごとに算出し、前記製鋼スラグの水和膨張挙動におけるエージング時間依存性を前記算出結果に基づいて評価することを特徴としている。 In order to achieve the above object, the method for evaluating the hydration and expansion behavior of steelmaking slag according to the first invention is a plurality of test materials prepared from steelmaking slag containing free lime and / or free magnesia and having hydration and expansion. When the steam aging treatment is performed under atmospheric pressure, the appearance change is observed and / or the mass change is measured at preset time intervals, and the cumulative number of changes of the test material and the cumulative number of changes and the mass change are measured. / Or the decay mass ratio is calculated for each elapsed time of steam aging, and the aging time dependence of the hydration and expansion behavior of the steelmaking slag is evaluated based on the calculation result.

「製鋼スラグ」は、転炉スラグ、電気炉スラグ、溶銑精錬スラグ、二次精錬スラグの総称である。
「供試材の累計変化回数」は、膨張、亀裂、剥離、脱落、割損、崩壊、粉化を供試材に認めた時点で、それらを変化回数としてカウントして累積した数値である。膨張、亀裂、剥離、脱落、割損、崩壊、粉化は各変化を1回としてカウントする。
また、「供試材の崩壊質量比」は、蒸気エージングを実施する前の供試材の質量に対する、該供試材から剥離した部分の質量の比である。
"Steelmaking slag" is a general term for converter slag, electric furnace slag, hot metal refining slag, and secondary refining slag.
The "cumulative number of changes in the test material" is a numerical value accumulated by counting the number of changes when expansion, cracking, peeling, falling off, circumcision, collapse, and pulverization are recognized in the test material. Expansion, cracking, peeling, falling off, circumcision, collapse, and pulverization are counted as one change.
The "disintegration mass ratio of the test material" is the ratio of the mass of the portion peeled from the test material to the mass of the test material before the steam aging is performed.

第1の発明では、供試材の累計変化回数や崩壊質量比が蒸気エージングの経過時間に応じて、どのように変化しているのか把握することにより、製鋼スラグの水和膨張が、蒸気エージング処理によって完了したのか、それとも未だ完了していないのか判断することができる。 In the first invention, the hydration expansion of the steelmaking slag is steam-aged by grasping how the cumulative number of changes of the test material and the decay mass ratio change according to the elapsed time of steam aging. It can be determined whether the process has completed or has not yet completed.

また、第1の発明に係る製鋼スラグの水和膨張挙動評価方法では、前記蒸気エージング処理中の前記供試材から剥離した部分の組織の特定を、予め設定した時間間隔で行うようにしてもよい。 Further, in the method for evaluating the hydration / expansion behavior of steelmaking slag according to the first invention, the structure of the portion peeled from the test material during the steam aging treatment may be specified at preset time intervals. Good.

ここで、「供試材から剥離した部分の組織の特定」とは、供試材から剥離した部分に、遊離石灰及び/又は遊離マグネシアが含まれているか、また剥離した部分に遊離石灰及び/又は遊離マグネシアが含まれている場合、それが未滓化石灰、晶出石灰、析出石灰、Mrim、MW、未滓化ドロマイトのいずれであるか特定することである。 Here, "identification of the structure of the portion peeled from the test material" means that the portion peeled from the test material contains free lime and / or free magnesia, and the peeled portion contains free lime and /. Or, if free magnesia is contained, it is to identify whether it is desquamated lime, crystallized lime, precipitated lime, rim , MW, or desquamated dolomite.

後述する実施例で示すように、未滓化石灰、晶出石灰、析出石灰、Mrim、MW、未滓化ドロマイト各々に起因するスラグの水和膨張挙動は異なるので、遊離石灰が未滓化石灰、晶出石灰、析出石灰のいずれであるか、遊離マグネシアがMrim、MW、未滓化ドロマイトのいずれであるか特定することが重要となる。 As will be shown in Examples described later, the hydration and expansion behavior of slag caused by each of unstained lime, crystallized lime, precipitated lime, Mill , MW, and unstained dolomite is different, so that free lime is unstained. It is important to identify whether it is lime, crystallized lime or precipitated lime and whether the free magnesia is rim , MW or unstained dolomite.

また、第2の発明は、第1の発明に係る製鋼スラグの水和膨張挙動評価方法に使用される蒸気エージング装置であって、
蒸気を生成する蒸気発生装置と、供試材が収納され、収納された供試材の蒸気エージングを行うエージング処理容器と、前記蒸気発生装置で生成した蒸気を前記エージング処理容器に供給する配管とを備えることを特徴としている。
The second invention is a steam aging apparatus used in the method for evaluating the hydration and expansion behavior of steelmaking slag according to the first invention.
A steam generator that generates steam, an aging treatment container that stores the test material and performs steam aging of the stored test material, and a pipe that supplies the steam generated by the steam generator to the aging treatment container. It is characterized by having.

本発明に係る製鋼スラグの水和膨張挙動評価方法によれば、製鋼スラグの水和膨張挙動におけるエージング時間依存性を定量的に把握することができるので、遊離石灰及び/又は遊離マグネシアが含まれている可能性のあるスラグの水和膨張性の評価及び改善に有効な情報を得ることができる。 According to the method for evaluating the hydration and expansion behavior of steelmaking slag according to the present invention, the aging time dependence of the hydration and expansion behavior of steelmaking slag can be quantitatively grasped, and thus free lime and / or free magnesia is included. It is possible to obtain useful information for evaluating and improving the hydration-expandability of slag that may be present.

本発明の一実施の形態に係る製鋼スラグの水和膨張挙動評価方法の手順を示したフロー図である。It is a flow chart which showed the procedure of the hydration expansion behavior evaluation method of the steelmaking slag which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る蒸気エージング装置の構成を示した模式図である。It is a schematic diagram which showed the structure of the steam aging apparatus which concerns on one Embodiment of this invention. 供試材の累計変化回数を蒸気エージングの経過時間ごとに示したグラフである。It is a graph which showed the cumulative number of changes of the test material for each elapsed time of steam aging. 供試材から剥離した部分に含まれる未滓化石灰及び晶出石灰それぞれの崩壊質量比を蒸気エージングの経過時間ごとに示したグラフである。It is a graph which showed the decay mass ratio of each of unslagged lime and crystallized lime contained in the part exfoliated from the test material for each elapsed time of steam aging.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。 Subsequently, an embodiment embodying the present invention will be described with reference to the attached drawings, and the present invention will be understood.

本発明は、遊離石灰及び/又は遊離マグネシアを含有し水和膨張性を有する製鋼スラグから作製した供試材を大気圧下で蒸気エージング処理した際に該供試材が示す水和膨張挙動を、蒸気エージングの経過時間と関連付けて評価する方法である。 The present invention exhibits the hydration-expansion behavior of a test material produced from steelmaking slag containing free lime and / or free magnesia and having hydration-expandability when steam-aged under atmospheric pressure. , A method of evaluation in relation to the elapsed time of steam aging.

以下、本発明の一実施の形態に係る製鋼スラグの水和膨張挙動評価方法について、図1のフロー図を用いて説明する。
[STEP1]
遊離石灰及び/又は遊離マグネシアを含有し水和膨張性を有する製鋼スラグを破砕、磁選、篩分けして複数の供試材を作製する(ST1参照)。
1回の試験に供する供試材の量、即ち、塊・粒の個数は、試験の目的や制約条件等により適宜選べる。少なくとも塊・粒として10個以上ないと、供試材の集団としての挙動の統計的な評価が困難である。また、供試材の量が多ければ多いほど、統計的な評価精度は向上するが、試験の実施負荷が増加する。従って、試験の目的や供試材の種類、評価装置の能力等から総合的に判断されるべきである。個数や質量絶対値は一意的に規定しがたいが、試験目的を満たす限り少量での試験が望ましい。例えば、塊・粒で20個〜100個程度が、発明者らの経験から、実質的に「試験効率と結果の精度のバランス」が良い規模として推奨される。
Hereinafter, a method for evaluating the hydration and expansion behavior of steelmaking slag according to an embodiment of the present invention will be described with reference to the flow chart of FIG.
[STEP1]
Steelmaking slag containing free lime and / or free magnesia and having hydration expansion property is crushed, magnetically separated, and sieved to prepare a plurality of test materials (see ST1).
The amount of test material to be used in one test, that is, the number of lumps / grains, can be appropriately selected depending on the purpose of the test, constraints, and the like. It is difficult to statistically evaluate the behavior of the test material as a group unless there are at least 10 lumps / grains. In addition, the larger the amount of the test material, the higher the statistical evaluation accuracy, but the higher the test execution load. Therefore, it should be judged comprehensively from the purpose of the test, the type of test material, the ability of the evaluation device, and so on. Although it is difficult to uniquely specify the number and absolute mass value, it is desirable to test with a small amount as long as the test purpose is satisfied. For example, from the experience of the inventors, about 20 to 100 lumps / grains are recommended as a scale with a substantially good balance between test efficiency and accuracy of results.

供試材の試験前の粒度、寸法は、本測定を適用する材料や目的に応じて適宜選べる。例えば、JIS A 5015に規定される各種の路盤材の種類ごとの粒度規定を考慮して選ぶ方法もある。粒度があまり細かいと、亀裂、膨張や崩壊の観察・測定が困難となるため、観察が容易にできる大きさを選ぶべきである。本発明者らの知見によれば、例えば2mm程度が実質的な下限サイズと考えられる。
また、「数多くの塊・粒挙動からスラグ集団としての膨張挙動の評価」という本発明の主旨、並びに熱容量や熱伝達速度(温度変化への反応速度)の観点から、供試材の上限サイズもある程度限られる。具体的には30mm以下が好ましい。JIS A 5015の路盤材の粒度規定である「26.5mm 篩上の比率が0〜5%」等から考えても、これを超える大きなサイズのスラグの挙動調査の需要は少ない。
The particle size and dimensions of the test material before the test can be appropriately selected according to the material to which this measurement is applied and the purpose. For example, there is also a method of selecting in consideration of the particle size regulation for each type of various roadbed materials specified in JIS A 5015. If the particle size is too fine, it will be difficult to observe and measure cracks, expansion and collapse, so a size that can be easily observed should be selected. According to the findings of the present inventors, for example, about 2 mm is considered to be a substantial lower limit size.
In addition, the upper limit size of the test material is also set from the viewpoint of the gist of the present invention, "evaluation of expansion behavior as a slag group from a large number of lump / grain behaviors", and from the viewpoint of heat capacity and heat transfer rate (reaction rate to temperature change). Limited to some extent. Specifically, it is preferably 30 mm or less. Considering the particle size regulation of JIS A 5015, such as "the ratio on the 26.5 mm sieve is 0 to 5%", there is little demand for behavioral surveys of slags of larger sizes.

[STEP2]
所定のエージング時間に達するまで(ST2参照)、蒸気エージング装置を用いて、複数の供試材を大気圧下で蒸気エージング処理する(ST3参照)。
使用する蒸気エージング装置10を図2に示す。蒸気エージング装置10は、水蒸気を生成する蒸気発生装置11と、供試材Sが収納され、収納された供試材Sの蒸気エージングを行うエージング処理容器12と、蒸気発生装置11で生成した水蒸気をエージング処理容器12に供給する配管13とを主な構成要素とする。
[STEP2]
A plurality of test materials are steam-aged under atmospheric pressure using a steam aging apparatus until a predetermined aging time is reached (see ST2) (see ST3).
The steam aging device 10 used is shown in FIG. The steam aging device 10 includes a steam generator 11 that generates steam, an aging processing container 12 that houses the test material S and performs steam aging of the stored test material S, and steam generated by the steam generator 11. Is the main component of the pipe 13 that supplies the steam to the aging treatment container 12.

エージング処理容器12は、容器内の圧力が上昇しないように、容器内の水蒸気を逃がす排気口21と、容器内の水滴を排出する水滴排出弁22と、容器内の温度を監視するための温度計20とを備えている。供試材Sが載置されるサンプル棚19が容器内に複数段配置されると共に、外部から供試材Sを観察できる透明な窓が容器自体に設けられている。 The aging treatment container 12 has an exhaust port 21 for releasing water vapor in the container, a water droplet discharge valve 22 for discharging water droplets in the container, and a temperature for monitoring the temperature in the container so that the pressure in the container does not rise. It has a total of 20. The sample shelves 19 on which the test material S is placed are arranged in a plurality of stages in the container, and the container itself is provided with a transparent window in which the test material S can be observed from the outside.

配管13の途中には、内部圧力が異常に上昇した際に自動的に水蒸気を放出させる安全弁14と、水蒸気から水滴を除去するミストセパレータ15と、水蒸気の圧力を監視するための圧力計16と、供試材の観察及び測定の際に、エージング処理容器12への水蒸気の供給を遮断する遮断弁17と、水蒸気の供給量を調節する流量調整弁18とが設置されている。 In the middle of the pipe 13, there are a safety valve 14 that automatically releases water vapor when the internal pressure rises abnormally, a mist separator 15 that removes water droplets from the water vapor, and a pressure gauge 16 for monitoring the pressure of water vapor. A shutoff valve 17 that shuts off the supply of water vapor to the aging treatment container 12 and a flow control valve 18 that adjusts the amount of water vapor supplied are installed when observing and measuring the test material.

本発明は、遊離石灰及び/又は遊離マグネシアを含有し水和膨張性を有する製鋼スラグから作製した複数の供試材を大気圧下で蒸気エージング処理した際に該供試材が示す水和膨張挙動を、蒸気エージングの経過時間と関連付けて評価する方法である。蒸気エージングは、スラグを蒸気配管上に載荷し、保温シートをかけ1週間から10日程度養生するものが一般的である。この方法では、シート内の温度は100℃にはならない。
本発明は、一般的な蒸気エージングでの時間経過ごとの膨張挙動を評価することが目的であり、実操業の条件とあまり乖離しないことが望ましい。
In the present invention, when a plurality of test materials prepared from steelmaking slag containing free lime and / or free magnesia and having hydration expansion property are subjected to steam aging treatment under atmospheric pressure, the hydration expansion exhibited by the test materials. This is a method of evaluating the behavior in relation to the elapsed time of steam aging. In steam aging, slag is generally loaded on a steam pipe, covered with a heat insulating sheet, and cured for about 1 week to 10 days. In this method, the temperature inside the sheet does not reach 100 ° C.
An object of the present invention is to evaluate the expansion behavior over time in general steam aging, and it is desirable that the conditions do not deviate significantly from the conditions of actual operation.

大気圧の水蒸気をエージング処理容器12に吹き込み続けても、容器内の温度は厳密には100℃にはならず、気象学的な大気圧や入出熱バランス等の関係により多少異なる。概して95〜100℃程度、多くの場合は97〜99℃程度の温度になることが多い。この程度の温度でも評価目的からは十分である。
蒸気発生装置11による水蒸気発生量は、エージング処理容器12の大きさ、容器内への供試材の実装量、雰囲気温度等により異なるが、要は、排気口21から余剰水蒸気が定常的に排出され、容器内を95〜100℃の温度に維持できればよい。
Even if the atmospheric pressure steam is continuously blown into the aging treatment container 12, the temperature inside the container does not strictly reach 100 ° C., and it differs slightly depending on the meteorological relationship between the atmospheric pressure and the heat input / output balance. Generally, the temperature is about 95 to 100 ° C., and in many cases, the temperature is about 97 to 99 ° C. Even this temperature is sufficient for evaluation purposes.
The amount of water vapor generated by the steam generator 11 varies depending on the size of the aging treatment container 12, the amount of the test material mounted in the container, the atmospheric temperature, etc., but the point is that excess water vapor is constantly discharged from the exhaust port 21. It suffices if the temperature inside the container can be maintained at 95 to 100 ° C.

[STEP3]
供試材に含まれる遊離石灰や遊離マグネシアが水和反応を起こすと、供試材に変化が生じる。水和反応は以下の反応式で示され、水和反応が起きると、それぞれ供試材の体積が増加する。1式では反応前の1.99倍、2式では2.23倍の体積になる。
CaO+HO→Ca(OH) ・・・ (1式)
MgO+HO→Mg(OH) ・・・ (2式)
供試材の中の一部組織に体積膨張が生じると、供試材自体やその一部の膨張、表面亀裂の発生、表層の一部剥離や脱落、供試材自体の割損、細片に分かれる崩壊、供試材全体が粉状になる粉化、等の変化が生じる。どのような形態の変化を呈するかは、供試材の形状・大きさや、供試材に含まれる遊離石灰や遊離マグネシアの量、供試材の鉱物組織、水和進捗度、等の冶金学的な要因に依存する。
[STEP3]
When free lime and free magnesia contained in the test material undergo a hydration reaction, the test material changes. The hydration reaction is shown by the following reaction formula, and when the hydration reaction occurs, the volume of the test material increases. In the first formula, the volume is 1.99 times that before the reaction, and in the second formula, the volume is 2.23 times.
CaO + H 2 O → Ca (OH) 2 ... (1 set)
MgO + H 2 O → Mg (OH) 2 ... (2 formulas)
When volume expansion occurs in a part of the structure of the test material, the test material itself or a part of it expands, surface cracks occur, a part of the surface layer peels off or falls off, the test material itself is broken, and fragments Changes such as disintegration that divides into powder and pulverization that the entire test material becomes powdery occur. What kind of morphological change is exhibited is the metallurgy of the shape and size of the test material, the amount of free lime and free magnesia contained in the test material, the mineral structure of the test material, the progress of hydration, etc. Depends on the factors.

本実施の形態では、蒸気エージング処理中の供試材に対して、予め設定した時間間隔で外観変化の観察及び/又は質量変化の測定を行う(ST4参照)。
供試材の外観変化を観察する際は、目視で、各供試材の膨張、亀裂、剥離、崩壊等の変化を判断して、水和反応による供試材の変化の有無を把握する。
蒸気エージングを中断した直後の供試材は水滴で湿っていて、色彩や表面質感が把握しづらい場合も多い。そういう場合には、供試材をエージング処理容器12から取り出して乾燥させると、色彩や表面質感の変化をより明確に掌握できることがある。
なお、その場での目視観察のみならず、供試材の状況を写真撮影しておくことも好適な方法である。エージング処理前に撮影した写真と比較することにより、各供試材の外観変化を判断しやすくなる。
In the present embodiment, the appearance change is observed and / or the mass change is measured at preset time intervals for the test material undergoing the steam aging treatment (see ST4).
When observing changes in the appearance of the test material, visually judge changes in expansion, cracking, peeling, collapse, etc. of each test material, and grasp whether or not there is a change in the test material due to the hydration reaction.
Immediately after the steam aging is interrupted, the test material is moistened with water droplets, and it is often difficult to grasp the color and surface texture. In such a case, if the test material is taken out from the aging treatment container 12 and dried, it may be possible to more clearly grasp the change in color and surface texture.
In addition to visual observation on the spot, it is also a preferable method to take a picture of the condition of the test material. By comparing with the photograph taken before the aging process, it becomes easier to judge the change in the appearance of each test material.

供試材の質量変化を測定する場合は、エージング処理前に各供試材の質量を秤量しておき、エージング処理中における各供試材の質量を、予め設定した時間間隔で秤量し、質量変化を把握する。 When measuring the mass change of the test material, the mass of each test material is weighed before the aging treatment, and the mass of each test material during the aging treatment is weighed at a preset time interval. Understand the changes.

総エージング処理時間(延べ処理時間)や、供試材の変化状況の観察及び測定の時間間隔は、評価目的やスラグの種類などにより異なる。過去の知見を参考に事前に定めるか、あるいは評価試験の途中状況を判断して適宜選べばよい。
供試材の観察及び測定のために水蒸気の吹込みを一時中断している時間は、累計の処理時間から控除する。
水和膨張挙動は時間の対数に依存するような挙動が多いので、供試材の観察及び測定の時間間隔は、5分、10分、20分、50分、100分、200分など、時間間隔を対数表示で適宜分散するように選ぶのがよい。
The total aging treatment time (total treatment time) and the time interval for observing and measuring the change status of the test material differ depending on the evaluation purpose and the type of slag. It may be determined in advance with reference to past knowledge, or it may be selected as appropriate after judging the progress of the evaluation test.
The time during which steam injection is suspended for observation and measurement of the test material is deducted from the cumulative processing time.
Since the hydration and expansion behavior often depends on the logarithm of time, the time interval between observation and measurement of the test material is 5 minutes, 10 minutes, 20 minutes, 50 minutes, 100 minutes, 200 minutes, etc. It is better to choose the intervals to be appropriately distributed in logarithmic display.

時間間隔ごとの供試材の観察及び測定が完了する都度、供試材をエージング処理容器12内へ戻すが、各供試材に対して均等な条件でエージング処理を行うため、供試材の観察及び測定の都度、供試材の配置位置を適宜ランダムに入れ替えることが望ましい。 Each time the observation and measurement of the test material at each time interval is completed, the test material is returned to the aging treatment container 12, but since the aging treatment is performed on each test material under equal conditions, the test material is used. It is desirable to randomly change the placement position of the test material each time observation and measurement are performed.

[STEP5]
時間間隔ごとの供試材の観察及び/又は測定では、上記外観変化の観察や質量変化の測定に加えて、供試材から剥離した部分の組織の特定を行ってもよい(ST5参照)。
鉱物学的な調査により、供試材から剥離した部分が含有する鉱物相を特定することができる。鉱物相とは、例えば、未滓化石灰相、晶出石灰相、カルシウムフェライト系安定相、急冷相、等である。また、相内の析出物の有無や亀裂の有無などの情報も得られる。
範囲を設定して鉱物相の構成を定量的に調査すれば、遊離石灰面積率等の定量データも得られる。その測定には特許文献3等に記載の方法が利用できる。
[STEP5]
In the observation and / or measurement of the test material at each time interval, in addition to the observation of the appearance change and the measurement of the mass change, the structure of the portion peeled from the test material may be specified (see ST5).
Mineralogical investigations can identify the mineral phase contained in the part exfoliated from the test material. The mineral phase is, for example, an unpolluted lime phase, a crystallized lime phase, a calcium ferritic stable phase, a quenching phase, or the like. In addition, information such as the presence or absence of precipitates in the phase and the presence or absence of cracks can be obtained.
If the range is set and the composition of the mineral phase is quantitatively investigated, quantitative data such as the free lime area ratio can be obtained. The method described in Patent Document 3 and the like can be used for the measurement.

EPMA(電子マイクロアナライザー)、SEM(走査型電子顕微鏡)によるミクロな鉱物組織についての測定を行うと、微細な立体構造、顕微鏡的な局部範囲の成分分析、組織・相内での成分分布等の情報が得られる。
これらの情報を用いて、未滓化石灰や晶出石灰の含有量と水和膨張挙動との関係、水和膨張・崩壊部と未反応部の成分的な比較、各組織の水和進捗度の差異、等や関与因子の議論が可能となる。さらにスラグ発生段階まで遡っての操業改善対策の検討を行うことができる。
When the micromineral structure is measured by EPMA (Electron Microanalyzer) and SEM (Scanning Electron Microscope), the fine three-dimensional structure, microscopic local component analysis, component distribution within the structure / phase, etc. Information is available.
Using this information, the relationship between the content of unslagged lime and crystallized lime and the hydration / expansion behavior, the component comparison of the hydrated / expanded / collapsed part and the unreacted part, and the degree of hydration progress of each tissue. It is possible to discuss the differences, etc. and the factors involved. Furthermore, it is possible to study operational improvement measures that go back to the slag occurrence stage.

[STEP6]
所定のエージング時間に到達したら(ST2参照)、供試材の外観変化の観察結果及び/又は供試材の質量変化の測定結果から、供試材の累計変化回数及び/又は崩壊質量比を蒸気エージングの経過時間ごとに算出する。そして、それら算出結果に基づいて、製鋼スラグの水和膨張挙動におけるエージング時間依存性を評価する(ST6参照)。
[STEP6]
When the predetermined aging time is reached (see ST2), the cumulative number of changes and / or the decay mass ratio of the test material is vaporized from the observation result of the appearance change of the test material and / or the measurement result of the mass change of the test material. Calculated for each elapsed time of aging. Then, based on these calculation results, the aging time dependence of the hydration and expansion behavior of the steelmaking slag is evaluated (see ST6).

供試材の累計変化回数は、割れ、剥離、崩壊等を供試材に認めた時点で、それらを変化回数としてカウントして累積した数値である。割れ、剥離、崩壊等は各変化を1回としてカウントする。
供試材の崩壊質量比は、蒸気エージングを実施する前の供試材の質量に対する、該供試材から剥離した部分の質量の比である。
The cumulative number of changes in the test material is a numerical value that is accumulated by counting the number of changes when cracks, peeling, collapse, etc. are recognized in the test material. For cracking, peeling, collapse, etc., each change is counted as one time.
The decay mass ratio of the test material is the ratio of the mass of the portion peeled from the test material to the mass of the test material before steam aging is performed.

供試材の累計変化回数や崩壊質量比が蒸気エージングの経過時間に応じて、どのように変化しているのか把握することにより、製鋼スラグの水和膨張が、蒸気エージング処理によって完了したのか、それとも未だ完了していないのか判断する。 By grasping how the cumulative number of changes and the decay mass ratio of the test material change according to the elapsed time of steam aging, it is possible to determine whether the hydration expansion of the steelmaking slag was completed by the steam aging process. Or determine if it hasn't been completed yet.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。 Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of the matters described in the claims. It also includes other possible embodiments and variations.

本発明の効果について検証するために実施した検証試験について説明する。
[実施例1]
転炉での精錬負荷が大きい鋼種で生石灰使用量も多く、結果として生成した転炉スラグの水和膨張及び崩壊が激しいと予想された鋼種Aと鋼種Bの二種類の転炉スラグの水和反応挙動について、上述した方法で評価した。
それぞれの原鉱を、試験室規模で破砕、磁選、篩分けし、31.5mmの網目の篩下、且つ4.75mmの網目の篩上のスラグ塊を供試材とした。試験に供した供試材の個数は、鋼種Aが31個、鋼種Bが27個である。個々の供試材の管理ができるように、各供試材に番号を付与し、それらをエージング処理容器内のサンプル棚に載置して蒸気エージング処理を行った。エージング処理容器内の温度差や水蒸気の変流の影響を平均化するため、観察ごとに供試材の場所を適宜入れ替えた。試験中の容器内温度は97〜98℃であった。
The verification test carried out for verifying the effect of the present invention will be described.
[Example 1]
Hydration of two types of converter slag, steel type A and steel type B, which are expected to have severe hydration expansion and collapse of the resulting converter slag due to the large amount of quicklime used in the steel type with a large refining load in the converter. The reaction behavior was evaluated by the method described above.
Each ore was crushed, magnetically separated, and sieved on a laboratory scale, and slag lumps under a 31.5 mm mesh sieve and on a 4.75 mm mesh sieve were used as test materials. The number of test materials used for the test was 31 for steel type A and 27 for steel type B. Each test material was numbered so that individual test materials could be managed, and they were placed on a sample shelf in an aging treatment container for steam aging treatment. In order to average the effects of temperature differences and water vapor changes in the aging treatment vessel, the locations of the test materials were changed as appropriate for each observation. The temperature inside the container during the test was 97 to 98 ° C.

累計400時間まで、蒸気エージング処理を実施した。その間、予め設定した時間間隔で通蒸を中断し、各供試材の水和膨張状況を観察した。
各供試材の割れ、剥離、崩壊等の変化状況は、表面乾燥後に目視で観察し、その変化発生回数をカウントした。同じ供試材で部分的な割れ、剥離、崩壊等の変化を複数回繰り返した場合、それぞれ1回として累積的に数えた。
The steam aging treatment was carried out for a total of 400 hours. During that time, steaming was interrupted at preset time intervals, and the hydration and expansion status of each test material was observed.
Changes such as cracking, peeling, and disintegration of each test material were visually observed after the surface was dried, and the number of occurrences of the changes was counted. When changes such as partial cracking, peeling, and disintegration were repeated multiple times with the same test material, each was cumulatively counted as one time.

検証試験の結果を図3に示す。同図は、供試材の累計変化回数を蒸気エージングの経過時間ごとに示したものである。
鋼種により崩壊・粉化挙動が異なることが同図よりわかる。鋼種Aは、初期の崩壊・粉化速度が速く、5時間目程度以降は崩壊・粉化速度がそれ以前に比して遅くなっている。しかしながら、5時間目以降も緩やかな崩壊・粉化が進行しているように見える。そこで、エージング時間ごとの崩壊・粉化速度を近似直線の傾きとし、この傾きが初期(5時間まで)を除いて、最大を示した10〜15時間の値に対し、10分の1以下になった時点を崩壊・粉化の収束点とした。エージング時間が100時間を超えると、近似直線の傾きは10分の1以下になっており、崩壊・粉化すなわち水和反応は完了していると推察される。
一方、鋼種Bは、10時間前位から30時間ぐらいの間の崩壊・粉化速度がやや停滞しているが、400時間の末期に至るまで高い速度を維持し、結果的に鋼種Aを上回る割れ、剥離、崩壊等の発生回数となっている。
The result of the verification test is shown in FIG. The figure shows the cumulative number of changes in the test material for each elapsed time of steam aging.
It can be seen from the figure that the disintegration and pulverization behavior differs depending on the steel type. Steel type A has a high initial disintegration / pulverization rate, and after about 5 hours, the disintegration / pulverization rate is slower than before. However, it seems that gradual disintegration and pulverization are progressing even after the 5th hour. Therefore, the decay / pulverization rate for each aging time is defined as the slope of the approximate straight line, and this slope is less than 1/10 of the maximum value of 10 to 15 hours excluding the initial stage (up to 5 hours). The time when it became a point of convergence of collapse and pulverization was set. When the aging time exceeds 100 hours, the slope of the approximate straight line becomes 1/10 or less, and it is presumed that the disintegration / pulverization, that is, the hydration reaction is completed.
On the other hand, the decay / pulverization rate of steel type B is slightly stagnant from about 10 hours ago to about 30 hours, but maintains a high rate until the end of 400 hours, and as a result, exceeds steel type A. It is the number of occurrences of cracking, peeling, collapse, etc.

以上より、鋼種Aは、上述したように100〜150時間、即ち4〜6日程度の蒸気エージング処理で、ほぼ水和反応が完了し、エージング負荷としても工業的に実用的な範囲であると判断した。一方、鋼種Bは数日程度の蒸気エージング処理では不十分で、なお膨張を続けている。従って、今回の測定完了時の400時間以降に膨張する懸念が残る。因って、蒸気エージング処理だけで膨張性を安定させるためには、十数日ないしそれ以上の期間が必要であると考えられた。生産性や処理コストを考慮すると、膨張抑制を水蒸気処理のみに頼ることは危険であり、他の対策(スラグ塩基度低下などの精錬面の取り組み)との併用が必要と判断し、鋼種Bについて精錬面からの改善を検討した。 From the above, it is considered that the steel type A has almost completed the hydration reaction in 100 to 150 hours, that is, about 4 to 6 days of steam aging treatment as described above, and is in an industrially practical range as an aging load. It was judged. On the other hand, the steel type B is not sufficient for steam aging treatment for several days, and is still expanding. Therefore, there remains a concern that it will expand after 400 hours when the measurement is completed. Therefore, it was considered that a period of a dozen days or more was required to stabilize the expandability only by the steam aging treatment. Considering productivity and processing cost, it is dangerous to rely only on steam treatment for expansion suppression, and it is judged that it is necessary to use it in combination with other measures (refining measures such as reduction of slag basicity). We examined improvements in terms of refining.

本実施方法について多少補足する。
本実施例のように、常に高い頻度で観察を行う必要はない。試験終了タイミング(総試験時間)も含め、試験目的や供試材の挙動に応じて適宜選べばよい。
また、本実施例は鋼種Aと鋼種Bの比較を目的としたが、同一鋼種での精錬バッチごとの水和反応挙動のバラツキ調査にも本法を使用することができる。その場合、同一鋼種(スラグ種)の複数回の精錬におけるスラグを比較すればよい。例えば、鋼種Aの精錬番号001回から010回までの10ヒート分のスラグの各30個、計300個を対象に本法にて評価を行えば、鋼種Aの10ヒート分の精錬のスラグ挙動のバラツキが評価できる。
This implementation method will be supplemented to some extent.
It is not necessary to carry out observations at a high frequency as in this embodiment. It may be appropriately selected according to the test purpose and the behavior of the test material, including the test end timing (total test time).
Further, although the purpose of this example is to compare steel type A and steel type B, this method can also be used for investigating variations in hydration reaction behavior for each refining batch of the same steel type. In that case, the slags of the same steel type (slag type) in multiple refinements may be compared. For example, if evaluation is performed by this method for a total of 300 slags for 10 heats from 001 to 010 refining numbers of steel type A, the slag behavior for 10 heats of steel type A is evaluated. The variation can be evaluated.

[実施例2]
鋼種Cの転炉スラグに対して、膨張原因である鉱物組織が水和膨張挙動へ及ぼす影響について調べた。スラグの鉱物組成として水和膨張性を有する遊離マグネシアが存在する場合があるが、鋼種Cのスラグでは実質的に遊離マグネシアが存在しないことを事前の検鏡調査により確認した。
スラグバラス製造プラントで破砕、磁選、篩分けを行った粗粒スラグ(30mm〜5mmサイズバラス)からサンプリングした供試材50個について、実施例1と同様の方法で実験室的な蒸気エージング処理を行った。
本実施例では、試験開始前に全供試材の質量を個別に秤量した。延400時間の蒸気エージングを行ったが、途中の観察時に粉化・剥離が起きた場合は、その部分の質量も秤量した。これら崩壊部の質量により供試材の水和膨張挙動を整理した。
[Example 2]
The effect of the mineral structure, which is the cause of expansion, on the hydration and expansion behavior of the converter slag of steel type C was investigated. Although free magnesia having hydration expansion may be present as the mineral composition of slag, it was confirmed by a preliminary microscopic examination that free magnesia was substantially absent in the slag of steel type C.
Laboratory-like steam aging treatment was performed on 50 test materials sampled from coarse-grained slag (30 mm to 5 mm size slag) that had been crushed, magnetically separated, and sieved at a slag ballas manufacturing plant in the same manner as in Example 1. It was.
In this example, the masses of all the test materials were individually weighed before the start of the test. Steam aging was carried out for a total of 400 hours, but if pulverization or peeling occurred during observation during the process, the mass of that part was also weighed. The hydration and expansion behavior of the test material was arranged according to the mass of these collapsed parts.

粉化・剥離部分について、破面の目視観察や粉化・剥離部分の樹脂埋込み、研磨による光学顕微鏡観察によって、遊離石灰の種類の確認を行った。遊離石灰の種類の判定は、文献や発明者の経験からの冶金的な知見に基づいた以下の判断基準に従った。
欠損部、剥離部の破断面に目視で褐色粒子が観察される場合、光学顕微鏡での検鏡結果において、崩壊したスラグ片・粉に未滓化石灰が認められた場合、もしくは、崩壊したスラグ片・粉が急冷組織であった場合は、未滓化石灰による崩壊と判断した。
一方、崩壊したスラグ片・粉に晶出石灰が認められた場合、もしくは、スラグ塊が広範囲に粉化崩壊した場合は、晶出石灰による崩壊と判断した。
Regarding the pulverized / peeled portion, the type of free lime was confirmed by visually observing the fracture surface, embedding the pulverized / peeled portion with resin, and observing with an optical microscope by polishing. The determination of the type of free lime was based on the following criteria based on the metallurgical findings from the literature and the experience of the inventor.
If brown particles are visually observed on the fracture surface of the defective part or peeled part, unstained lime is found in the collapsed slag pieces / powder in the microscopic examination result with an optical microscope, or the collapsed slag If the piece / powder had a rapidly cooled structure, it was judged that it had collapsed due to unslagged lime.
On the other hand, if crystallized lime was found in the collapsed slag pieces / powder, or if the slag mass pulverized and collapsed over a wide area, it was judged to be collapsed by crystallized lime.

検証試験の結果を図4に示す。同図は、供試材から剥離した部分に含まれる未滓化石灰及び晶出石灰それぞれの崩壊質量比を蒸気エージングの経過時間ごとに示したものである。
なお、測定都度ごとのデータを用いた作図では、測定ごとのハンチングが大きく、却ってマクロな傾向を判断しづらいため、測定3回ごとの測定データの移動平均で作図した。
The results of the verification test are shown in FIG. The figure shows the decay mass ratio of each of the undepleted lime and the crystallized lime contained in the portion peeled from the test material for each elapsed time of steam aging.
In the drawing using the data for each measurement, the hunting for each measurement is large and it is rather difficult to judge the macro tendency. Therefore, the drawing is performed by the moving average of the measurement data for every three measurements.

未滓化石灰による水和膨張挙動と、晶出石灰による水和膨張挙動とには差異があることが同図よりわかる。未滓化石灰による割れ・崩壊は、主に短時間側で起こり、一旦減少した後、再度活発になる。400時間の試験終了時点でもなお割れ・崩壊の発生が継続している。一方、晶出石灰による割れ・崩壊は、主に蒸気エージング開始から数十時間ぐらいの時期に激しく起きており、数日〜10日の蒸気エージング処理を行うとほぼ落ち着くことが判明した。 It can be seen from the figure that there is a difference between the hydration and expansion behavior due to unslagged lime and the hydration and expansion behavior due to crystallized lime. Cracking and collapse due to unslagged lime mainly occurs on the short-time side, decreases once, and then becomes active again. Even at the end of the 400-hour test, cracks and collapses continue to occur. On the other hand, cracking and disintegration due to crystallized lime occurred violently mainly in the period of several tens of hours from the start of steam aging, and it was found that the steam aging treatment for several days to 10 days almost settled down.

以上より、鋼種Cスラグについて十数日〜二十日以上の蒸気エージング処理を回避するためには精錬面からの対策が必要なことが判明した。晶出石灰に比べて未滓化石灰低減のほうが、脱燐等の精練結果を維持しつつ、その発生低減を行いやすいため、転炉炉内での生石灰の溶解をより促進するように吹錬条件を変更する検討を行った。 From the above, it was found that measures from the refining aspect are necessary to avoid the steam aging treatment for steel grade C slag for more than 10 days to 20 days. Compared to crystallized lime, the reduction of unslagged lime is easier to reduce the generation of lime while maintaining the refining results such as dephosphorization, so it is blown to promote the dissolution of quicklime in the converter. We examined changing the conditions.

10:蒸気エージング装置、11:蒸気発生装置、12:エージング処理容器、13:配管、14:安全弁、15:ミストセパレータ、16:圧力計、17:遮断弁、18:流量調整弁、19:サンプル棚、20:温度計、21:排気口、22:水滴排出弁、S:供試材 10: Steam aging device, 11: Steam generator, 12: Aging processing container, 13: Piping, 14: Safety valve, 15: Mist separator, 16: Thermometer, 17: Shutoff valve, 18: Flow control valve, 19: Sample Shelf, 20: thermometer, 21: exhaust port, 22: water droplet discharge valve, S: test material

Claims (3)

遊離石灰及び/又は遊離マグネシアを含有し水和膨張性を有する製鋼スラグから作製した複数の供試材を観察可能な容器内に設置し、大気圧下で蒸気エージング処理を行う際に、予め設定した時間間隔で外観変化を観察及び/又は質量変化を測定し、前記供試材の累計変化回数及び/又は崩壊質量比を蒸気エージングの経過時間ごとに算出し、前記製鋼スラグの水和膨張挙動におけるエージング時間依存性を前記算出結果に基づいて評価することを特徴とする製鋼スラグの水和膨張挙動評価方法。 Set in advance when multiple test materials made from steelmaking slag containing free lime and / or free magnesia and having hydration expansion properties are placed in an observable container and subjected to steam aging treatment under atmospheric pressure. The appearance change was observed and / or the mass change was measured at the time intervals, and the cumulative number of changes and / or the decay mass ratio of the test material was calculated for each elapsed time of steam aging, and the hydration and expansion behavior of the steelmaking slag. A method for evaluating the hydration / expansion behavior of steelmaking slag, which comprises evaluating the aging time dependence in the above based on the calculation result. 請求項1記載の製鋼スラグの水和膨張挙動評価方法において、前記蒸気エージング処理中の前記供試材から剥離した部分の組織の特定を、予め設定した時間間隔で行うことを特徴とする製鋼スラグの水和膨張挙動評価方法。 The method for evaluating the hydration and expansion behavior of steelmaking slag according to claim 1, wherein the structure of the portion peeled off from the test material during the steam aging treatment is specified at a preset time interval. Method for evaluating hydration and expansion behavior. 請求項1又は2記載の製鋼スラグの水和膨張挙動評価方法において使用される蒸気エージング装置であって、
蒸気を生成する蒸気発生装置と、供試材が収納され、収納された供試材の蒸気エージングを行うエージング処理容器と、前記蒸気発生装置で生成した蒸気を前記エージング処理容器に供給する配管とを備えることを特徴とする蒸気エージング装置。
A steam aging apparatus used in the method for evaluating hydration and expansion behavior of steelmaking slag according to claim 1 or 2.
A steam generator that generates steam, an aging treatment container that stores the test material and performs steam aging of the stored test material, and a pipe that supplies the steam generated by the steam generator to the aging treatment container. A steam aging device characterized by comprising.
JP2019125098A 2019-07-04 2019-07-04 Method for evaluating hydration expansion behavior of steelmaking slag and steam aging apparatus Active JP7323747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019125098A JP7323747B2 (en) 2019-07-04 2019-07-04 Method for evaluating hydration expansion behavior of steelmaking slag and steam aging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019125098A JP7323747B2 (en) 2019-07-04 2019-07-04 Method for evaluating hydration expansion behavior of steelmaking slag and steam aging apparatus

Publications (2)

Publication Number Publication Date
JP2021012053A true JP2021012053A (en) 2021-02-04
JP7323747B2 JP7323747B2 (en) 2023-08-09

Family

ID=74226404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019125098A Active JP7323747B2 (en) 2019-07-04 2019-07-04 Method for evaluating hydration expansion behavior of steelmaking slag and steam aging apparatus

Country Status (1)

Country Link
JP (1) JP7323747B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171612A (en) * 1981-04-14 1982-10-22 Nippon Steel Corp Quick decision method for expansion collapsing property of converter slag
JPH07232940A (en) * 1994-02-17 1995-09-05 Sumitomo Metal Ind Ltd Method for deciding rapid expansion of converter slag
JP2004144690A (en) * 2002-10-28 2004-05-20 Daido Steel Co Ltd Method and apparatus for testing expansibility of steel slag
JP2004301686A (en) * 2003-03-31 2004-10-28 Nippon Steel Corp Slag stability evaluation method
JP2008122280A (en) * 2006-11-14 2008-05-29 Nippon Steel & Sumikin Stainless Steel Corp Method and device for evaluating hydration degree of sample
JP2014157019A (en) * 2013-02-14 2014-08-28 Nippon Steel & Sumitomo Metal Method for estimating quantity of easily expandable quicklime in steel slag
JP2015105873A (en) * 2013-11-29 2015-06-08 濱田重工株式会社 Determination method of free lime in converter slag
JP2017007880A (en) * 2015-06-18 2017-01-12 株式会社神戸製鋼所 Ageing method of steelmaking slag

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171612A (en) * 1981-04-14 1982-10-22 Nippon Steel Corp Quick decision method for expansion collapsing property of converter slag
JPH07232940A (en) * 1994-02-17 1995-09-05 Sumitomo Metal Ind Ltd Method for deciding rapid expansion of converter slag
JP2004144690A (en) * 2002-10-28 2004-05-20 Daido Steel Co Ltd Method and apparatus for testing expansibility of steel slag
JP2004301686A (en) * 2003-03-31 2004-10-28 Nippon Steel Corp Slag stability evaluation method
JP2008122280A (en) * 2006-11-14 2008-05-29 Nippon Steel & Sumikin Stainless Steel Corp Method and device for evaluating hydration degree of sample
JP2014157019A (en) * 2013-02-14 2014-08-28 Nippon Steel & Sumitomo Metal Method for estimating quantity of easily expandable quicklime in steel slag
JP2015105873A (en) * 2013-11-29 2015-06-08 濱田重工株式会社 Determination method of free lime in converter slag
JP2017007880A (en) * 2015-06-18 2017-01-12 株式会社神戸製鋼所 Ageing method of steelmaking slag

Also Published As

Publication number Publication date
JP7323747B2 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
Webster et al. Silico-ferrite of calcium and aluminum (SFCA) iron ore sinter bonding phases: new insights into their formation during heating and cooling
CN105492633A (en) Raw material for direct reduction applications, method for producing raw material for direct reduction applications, and method for producing reduced iron
JP2017007880A (en) Ageing method of steelmaking slag
Wu et al. Recycling phosphogypsum as the sole calcium oxide source in calcium sulfoaluminate cement production and solidification of phosphorus
Zhang et al. The effects of hydration activity of calcined dolomite (HCD) on the silicothermic reduction process
JP2021012053A (en) Hydration expansion behavior evaluation method of steel making slag and steam aging device
Zendah et al. Thermochemical and kinetic studies of the acid attack of “B” type carbonate fluorapatites at different temperatures (25–55)° C
WO2021186964A1 (en) Slag product manufacturing method and slag product
JP2010013315A (en) Manufacturing method of civil engineering material using steel slag
Schraut et al. Synthesis and characterisation of alites from reduced basic oxygen furnace slags
JP2008122280A (en) Method and device for evaluating hydration degree of sample
Pal et al. Development of fluxed iron oxide pellets strengthened by CO2 treatment for use in basic oxygen steel making
KR20170122919A (en) Hydraulic binder composition using dry type slowly cooled calcium aluminate-calcium silicate based ladle furnace slag
JP4769114B2 (en) Method for analyzing magnetite content
CN102411047B (en) Method for identifying limestone for suspension kiln
JP6143008B2 (en) Pressurized steam aging method for steelmaking slag
KR101129977B1 (en) Method for estimating burning rate based grain size of limestone
Moliné et al. Effect of Humidity on Steelmaking White Slag Weathering
KR20170040821A (en) A fine powder for concrete from Fe-Ni slag and method for making the same
CN102597275B (en) Method for operating blast furnace
Oinonen et al. Radiocarbon dating of iron: a northern contribution
JPH07232940A (en) Method for deciding rapid expansion of converter slag
Feng et al. Decomposition of Al4O4C in the presence of C at high temperatures in vacuum
KR20090095468A (en) Management system for cokes and management method thereof
Eba et al. Change of State of Lime Phase and Inhibition of Hydration Reaction by Coexisting Oxides in Steelmaking Slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230706

R150 Certificate of patent or registration of utility model

Ref document number: 7323747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150