JP2021010296A - Precharge method of charging cable and bidirectional dc-dc converter - Google Patents

Precharge method of charging cable and bidirectional dc-dc converter Download PDF

Info

Publication number
JP2021010296A
JP2021010296A JP2020114346A JP2020114346A JP2021010296A JP 2021010296 A JP2021010296 A JP 2021010296A JP 2020114346 A JP2020114346 A JP 2020114346A JP 2020114346 A JP2020114346 A JP 2020114346A JP 2021010296 A JP2021010296 A JP 2021010296A
Authority
JP
Japan
Prior art keywords
charging
battery
voltage
converter
current path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020114346A
Other languages
Japanese (ja)
Other versions
JP7206237B2 (en
Inventor
クリストフ トーマス
Kristof Thomas
クリストフ トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing HCF Porsche AG
Original Assignee
Dr Ing HCF Porsche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing HCF Porsche AG filed Critical Dr Ing HCF Porsche AG
Publication of JP2021010296A publication Critical patent/JP2021010296A/en
Application granted granted Critical
Publication of JP7206237B2 publication Critical patent/JP7206237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide a precharge method of a charging cable and a bidirectional DC-DC converter.SOLUTION: A charging stand 210 equipped with a charging cable supplies a current to a battery 240 at a charging voltage. The battery has a voltage higher than the charging voltage and has a DC-DC converter 230 between the charging cable 220 and the battery. The DC-DC converter includes at least one unidirectional current path 231, 232 that adapts the voltage of the charging stand to the voltage of the battery by a charge pump and includes at least two unidirectional switches, diodes, and, capacitors in the charge pump, and at least one bidirectional current path 236. The bidirectional current path is obtained from the unidirectional current path that includes at least four unidirectional switches, capacitors, and unidirectional switches. The precharge power of the charging cable is supplied from the battery by the bidirectional current path.SELECTED DRAWING: Figure 2

Description

本発明は、双方向チャージポンプを有するDC−DCコンバータを用いて充電ケーブルをプリチャージする方法に関する。さらに、この双方向チャージポンプを有するDC−DCコンバータが権利請求される。 The present invention relates to a method of precharging a charging cable using a DC-DC converter having a bidirectional charge pump. In addition, a DC-DC converter with this bidirectional charge pump is claimed.

直流電圧充電のすべての世界的な充電標準では、充電処理を開始する前に、充電ケーブルの電圧を、高電圧バッテリーの電圧、又は電気自動車の高電圧バッテリーの電圧に合わせる必要がある。Chademo(日本)及びGBT(中国)の充電規格又は充電標準では、電気自動車が充電ケーブルの充電を担う。充電ケーブルの容量は小さいため、規格によれば、充電ケーブルを直接電気自動車の高電圧バッテリーに接続するために、電気自動車の各充電リレーを単純に閉じることができる。それによって、充電ケーブルは高電圧バッテリーの電圧を有し、充電を開始できる。 All global charging standards for DC voltage charging require that the voltage of the charging cable be matched to the voltage of the high voltage battery or the voltage of the high voltage battery of the electric vehicle before starting the charging process. Under the CHAdeMO (Japan) and GBT (China) charging standards or charging standards, electric vehicles are responsible for charging the charging cable. Due to the small capacity of the charging cable, according to the standard, each charging relay of the electric vehicle can be simply closed in order to connect the charging cable directly to the high voltage battery of the electric vehicle. Thereby, the charging cable has the voltage of the high voltage battery and can start charging.

電気自動車が800Vの高電圧バッテリーを有する場合には、400Vの充電スタンドから直接充電することはできない。この場合、電気自動車には単方向DC−DCコンバータが使用され、単方向DC−DCコンバータは、この方法において高電圧バッテリーを充電するために、充電スタンドの電圧を2倍にする(チャージポンプによって実行される処理)。そのようなDC−DCコンバータは、当業者によってレールとも呼ばれるいくつかの並列経路を内部に有し、それらの並列経路は、個々の部品内の電流及び結果として生じる電流リップルを小さく保つために、互いに位相シフトされて動作される。 If the electric vehicle has an 800V high voltage battery, it cannot be charged directly from the 400V charging stand. In this case, a unidirectional DC-DC converter is used in the electric vehicle, which doubles the voltage of the charging station in order to charge the high voltage battery in this method (by a charge pump). Processing to be executed). Such DC-DC converters have several parallel paths internally, also referred to by those skilled in the art as rails, to keep the current in the individual components and the resulting current ripple small. It operates with phase shifts from each other.

DC−DCコンバータを介する充電処理の場合、充電ケーブルと高電圧バッテリーとの直接の接続はない。したがって、充電ケーブルを充電するために、高電圧バッテリーを充電ケーブルに直接、接続することはできない。そのため、従来技術では、DC‐DCコンバータは、充電開始時に充電ケーブルを高電圧バッテリー電圧の半分にプリチャージできる追加のプリチャージ回路を有する。しかしながら、この処置においては、設置スペース、コスト、重量の制限によって、この別個のプリチャージ回路をできるだけ小さくする必要があり、そのため、充電ケーブルのプリチャージのために制限された電力しか供給できないという不都合がある。充電ケーブルをプリチャージするためにどれだけの電力を少なくとも供給しなければならないかの規制は、従来技術において、これまでのところ不明であるか、少なくとも完全ではない。そのため、規準となる要件の欠如によってさらなる問題がある。現場での実際の経験から、供給されるプリチャージ電力が、すべての充電スタンドに対しては十分でない場合があり得る。 In the case of charging processing via a DC-DC converter, there is no direct connection between the charging cable and the high voltage battery. Therefore, it is not possible to connect a high voltage battery directly to the charging cable to charge the charging cable. Therefore, in the prior art, the DC-DC converter has an additional precharge circuit that can precharge the charging cable to half the high voltage battery voltage at the start of charging. However, this procedure has the disadvantage that due to installation space, cost, and weight limitations, this separate precharge circuit must be as small as possible, thus providing only limited power to precharge the charging cable. There is. Regulations on how much power must be supplied at least to precharge the charging cable are currently unknown, or at least not complete, in the prior art. Therefore, there are further problems due to the lack of standard requirements. From hands-on experience in the field, the precharged power supplied may not be sufficient for all charging stations.

(特許文献1)には、少なくとも2個の中間回路を備えるチャージポンプが記載されている。それによって、バッテリーへの入力電圧と充電ステーションの出力電圧との複数の電圧比の間での切り替えが可能となる。 (Patent Document 1) describes a charge pump including at least two intermediate circuits. This allows switching between multiple voltage ratios between the input voltage to the battery and the output voltage of the charging station.

(特許文献2)は、双方向DC−DCコンバータを開示しており、その双方向DC−DCコンバータを介して、エネルギー貯蔵庫が第1の構成において充電される。第2の構成においては、電気エネルギーが双方向DC−DCコンバータを介してエネルギー貯蔵庫から負荷に移送される。 (Patent Document 2) discloses a bidirectional DC-DC converter, and the energy storage is charged in the first configuration via the bidirectional DC-DC converter. In the second configuration, electrical energy is transferred from the energy storage to the load via a bidirectional DC-DC converter.

(特許文献3)には、入力に電源が接続されている回路が記載されている。入力電圧よりも低い出力電圧と入力電圧よりも高い出力電圧とが、選択的に回路出力に供給される。 (Patent Document 3) describes a circuit in which a power supply is connected to an input. An output voltage lower than the input voltage and an output voltage higher than the input voltage are selectively supplied to the circuit output.

米国特許出願公開第2018/0134167A1号明細書U.S. Patent Application Publication No. 2018/0134167A1 米国特許出願公開第2010/0097031A1号明細書U.S. Patent Application Publication No. 2010/097031A1 米国特許出願公開第2017/0054363A1号明細書U.S. Patent Application Publication No. 2017/0054363A1

この背景技術に対して、本発明の課題は、充電ケーブルをプリチャージする方法を提供することであり、本方法では、バッテリーを充電するために既に利用可能なDC−DCコンバータを使用することができる。それによって、別個のプリチャージ回路が不要となる。さらに、このDC−DCコンバータも開示される。 To this background technique, an object of the present invention is to provide a method of precharging a charging cable, in which the already available DC-DC converter can be used to charge the battery. it can. This eliminates the need for a separate precharge circuit. Further, this DC-DC converter is also disclosed.

上記の課題を解決するために、充電ケーブルをプリチャージする方法が提案されており、その際、充電ケーブルを備えた充電スタンドが、電気自動車のバッテリーの直流電圧充電のために提供されており、充電スタンドは充電電圧で充電電流を供給する。充電されるバッテリーは、充電電圧よりも高い端子電圧を有している。充電ケーブルとバッテリーとの間にDC−DCコンバータが位置し、DC−DCコンバータは、充電スタンドの充電電圧をバッテリーの端子電圧に適合させるチャージポンプによって実現される。チャージポンプには、少なくとも2個の単方向スイッチ、少なくとも2個のダイオード、および少なくとも2個のコンデンサを含む、少なくとも1つの単方向電流経路が配置される。チャージポンプ内に、少なくとも1つの双方向電流経路が配置される。少なくとも1つの双方向電流経路は、少なくとも4個の単方向スイッチと少なくとも2個のコンデンサとを備えるとともに、少なくとも2個のダイオードの代わりに少なくとも2個の単方向スイッチ、したがって合計で少なくとも4個の単方向スイッチを有する単方向電流経路から得られる。充電ケーブルをプリチャージするためのプリチャージ電力は、少なくとも1つの双方向電流経路を介してバッテリーから供給される。 In order to solve the above problems, a method of precharging the charging cable has been proposed, in which case a charging station equipped with the charging cable is provided for DC voltage charging of the battery of the electric vehicle. The charging stand supplies the charging current with the charging voltage. The battery to be charged has a terminal voltage higher than the charging voltage. A DC-DC converter is located between the charging cable and the battery, and the DC-DC converter is realized by a charge pump that adapts the charging voltage of the charging stand to the terminal voltage of the battery. The charge pump is provided with at least one unidirectional current path, including at least two unidirectional switches, at least two diodes, and at least two capacitors. At least one bidirectional current path is arranged in the charge pump. The at least one bidirectional current path comprises at least four unidirectional switches and at least two capacitors, and at least two unidirectional switches instead of at least two diodes, and thus at least four in total. Obtained from a unidirectional current path with a unidirectional switch. The precharge power for precharging the charging cable is supplied by the battery via at least one bidirectional current path.

したがって、本発明による方法によって提供される、少なくとも1つの双方向電流経路または少なくとも1つの双方向レールによって、別個のプリチャージ回路は、有利にも、もはや不要となる。通常、ここで必要なプリチャージ電力は、このような双方向電流経路によって完全に伝送可能な電力の範囲内にある。これによって、最終的には、充電開始時の堅牢性(Robustheit)も向上する。 Therefore, with at least one bidirectional current path or at least one bidirectional rail provided by the method according to the invention, a separate precharge circuit is advantageously no longer needed. Generally, the precharge power required here is within the range of power that can be completely transmitted by such a bidirectional current path. As a result, the robustness at the start of charging is also finally improved.

少なくとも1つの単方向電流経路を有するチャージポンプの例示的な配置は、正の入力端子にアノードが接する第1のダイオードと、正の出力端子にカソードが接する第2のダイオードとが、正の入力端子と正の出力端子との間に直列に配置された回路によって実現される。負の入力端子と負の出力端子とが直接、接続されている。正の入力端子と負の入力端子との間には、例えば正の入力端子にコレクタが接するnpnトランジスタの場合の第1の単方向スイッチと、例えば負の入力端子にエミッタが接するnpnトランジスタの場合の第2の単方向スイッチとが配置されている。これらの2個のスイッチの間に、第1のコンデンサの第1端子が位置し、その第2端子は2個のダイオードの間に位置する。最後に、2つの出力端子の間には第2のコンデンサが接続されている。 An exemplary arrangement of a charge pump with at least one unidirectional current path is that a first diode with an anode in contact with a positive input terminal and a second diode with a cathode in contact with a positive output terminal have a positive input. It is realized by a circuit arranged in series between the terminal and the positive output terminal. The negative input terminal and the negative output terminal are directly connected. Between the positive input terminal and the negative input terminal, for example, in the case of the first unidirectional switch in the case of an npn transistor in which the collector is in contact with the positive input terminal, and in the case of an npn transistor in which the emitter is in contact with the negative input terminal, for example. The second unidirectional switch of the above is arranged. The first terminal of the first capacitor is located between these two switches, and the second terminal is located between the two diodes. Finally, a second capacitor is connected between the two output terminals.

本発明による方法の一実施形態では、単方向スイッチはMOSFETによって実現される。 In one embodiment of the method according to the invention, the unidirectional switch is implemented by a MOSFET.

本発明による方法のさらなる実施形態において、充電スタンドは400Vの充電電圧を有し、バッテリーは800Vの端子電圧を有する高電圧バッテリーによって実現される。 In a further embodiment of the method according to the invention, the charging stand is implemented by a high voltage battery having a charging voltage of 400V and the battery having a terminal voltage of 800V.

本発明による方法のさらに別の実施形態では、少なくとも1つの双方向電流経路は、プリチャージ電力に対応する電力を伝送するように設計されている。 In yet another embodiment of the method according to the invention, at least one bidirectional current path is designed to carry power corresponding to precharge power.

本発明による方法のさらなる実施形態では、バッテリーから、充電スタンドに接続された供給ネットワークへのエネルギー伝送が、少なくとも1つの双方向電流経路を介して追加的に実行される。 In a further embodiment of the method according to the invention, energy transfer from the battery to the supply network connected to the charging station is additionally performed via at least one bidirectional current path.

充電ケーブルをプリチャージするためのDC−DCコンバータがさらに特許請求され、その際、充電ケーブルを有する充電スタンドが、電気自動車のバッテリーの直流電圧充電のために提供されており、充電スタンドは充電電圧で充電電流を供給する。充電されるバッテリーは、充電電圧よりも高い端子電圧を有する。充電ケーブルとバッテリーとの間にDC−DCコンバータが位置し、DC−DCコンバータは、充電スタンドの充電電圧をバッテリーの端子電圧に適合させるチャージポンプによって実現されている。チャージポンプは、少なくとも2個の単方向スイッチ、少なくとも2個のダイオード、および少なくとも2個のコンデンサを有する少なくとも1つの単方向電流経路を備える。さらに、チャージポンプは、少なくとも1つの双方向電流経路を備える。少なくとも1つの双方向電流経路は、少なくとも4個の単方向スイッチと少なくとも2個のコンデンサを備えるとともに、少なくとも2個のダイオードの代わりに少なくとも2個の単方向スイッチ、したがって合計で少なくとも4個の単方向スイッチを備えた単方向電流経路によって実現可能である。DC−DCコンバータは、充電ケーブルのプリチャージのためのプリチャージ電力が少なくとも1つの双方向電流経路を介してバッテリーによって供給されるように、構成されている。 A DC-DC converter for precharging the charging cable was further patented, in which case a charging stand with the charging cable was provided for DC voltage charging of the battery of the electric vehicle, and the charging stand was the charging voltage. Supply the charging current with. The battery to be charged has a terminal voltage higher than the charging voltage. A DC-DC converter is located between the charging cable and the battery, and the DC-DC converter is realized by a charge pump that matches the charging voltage of the charging stand to the terminal voltage of the battery. The charge pump comprises at least one unidirectional current path having at least two unidirectional switches, at least two diodes, and at least two capacitors. In addition, the charge pump comprises at least one bidirectional current path. At least one bidirectional current path comprises at least four unidirectional switches and at least two capacitors, and at least two unidirectional switches instead of at least two diodes, and thus at least four unidirectional switches in total. This can be achieved by a unidirectional current path with a directional switch. The DC-DC converter is configured such that the precharge power for precharging the charging cable is supplied by the battery via at least one bidirectional current path.

本発明によるDC−DCコンバータの一実施形態では、それぞれの単方向スイッチはMOSFETである。 In one embodiment of the DC-DC converter according to the invention, each unidirectional switch is a MOSFET.

本発明によるDC−DCコンバータのさらなる実施形態では、充電スタンドは400Vの充電電圧を有し、バッテリーは800Vの端子電圧を有する高電圧バッテリーである。 In a further embodiment of the DC-DC converter according to the invention, the charging stand is a high voltage battery having a charging voltage of 400V and the battery is a high voltage battery having a terminal voltage of 800V.

本発明によるDC−DCコンバータのさらに別の実施形態では、少なくとも1つの双方向電流経路は、プリチャージ電力に対応する電力を伝送するように構成されている。 In yet another embodiment of the DC-DC converter according to the invention, at least one bidirectional current path is configured to carry power corresponding to precharge power.

本発明によるDC−DCコンバータのさらなる実施形態において、少なくとも1つの双方向電流経路は、充電スタンドに接続された供給ネットワークへのバッテリーからのエネルギー伝送を追加的に実行するように構成されている。 In a further embodiment of the DC-DC converter according to the invention, at least one bidirectional current path is configured to additionally perform energy transfer from the battery to the supply network connected to the charging station.

本発明のさらなる利点および改良点は、本明細書および添付の図面から生じる。 Further advantages and improvements of the present invention arise from this specification and the accompanying drawings.

当然のことながら、上記の特徴および以下で説明される特徴は、それぞれの場合に指定された組み合わせだけでなく、本発明の範囲から逸脱することなく、他の組み合わせ、または単独で使用することができる。 As a matter of course, the above features and the features described below may be used not only in the combinations specified in each case, but also in other combinations or alone without departing from the scope of the invention. it can.

従来技術のDC−DCコンバータを使用した充電処理を概略的に示す。The charging process using the conventional DC-DC converter is shown schematically. 本発明に係るDC−DCコンバータの実施形態を概略的に示す。An embodiment of the DC-DC converter according to the present invention is schematically shown.

図1は、従来技術のDC−DCコンバータ130による充電処理100を概略的に示す。供給ネットワークに接続された充電スタンド110は、充電ケーブル120を介して400Vの充電電圧102で充電するための電気エネルギー101を供給することができる。充電ケーブル120は、電気自動車のバッテリー140の充電のために、例えば400Vの充電電圧102においてDC−DCコンバータ130に接続される。エネルギー伝送用に最適化されたDC−DCコンバータ130は、レールとも呼ばれる合計3つの単方向電流経路131、132、133を有する。それら単方向電流経路内において、DC電圧が、チャージポンプによって、電流リップルを抑制するために位相シフトされて、バッテリー140の端子電圧に対応する充電電圧103に昇圧される。図示されている場合において、400Vの充電電圧102は、800V高電圧バッテリー140を充電するために、DC−DCコンバータ130によって、800Vの充電電圧103に倍増される。DC−DCコンバータ130を使用した充電処理100の前提によって、充電ケーブル120とバッテリー140との間に直接的な電気接続は存在しない。それによって、充電ケーブルを、プリチャージのために高電圧バッテリー140に直接、接続することはできない。そのため、DC−DCコンバータ130にはプリチャージ回路139が配置され、プリチャージ回路139は、バッテリー140によって供給されるプリチャージ電力104を、高電圧バッテリー電圧の半分の際におけるプリチャージ電力105として充電ケーブル120に伝送する。 FIG. 1 schematically shows a charging process 100 by a conventional DC-DC converter 130. The charging stand 110 connected to the supply network can supply the electric energy 101 for charging at a charging voltage 102 of 400 V via the charging cable 120. The charging cable 120 is connected to the DC-DC converter 130 for charging the battery 140 of the electric vehicle, for example, at a charging voltage 102 of 400 V. The DC-DC converter 130 optimized for energy transmission has a total of three unidirectional current paths 131, 132, 133, also called rails. In those unidirectional current paths, the DC voltage is phase-shifted by the charge pump to suppress current ripple and boosted to the charge voltage 103 corresponding to the terminal voltage of the battery 140. In the case shown, the 400V charging voltage 102 is doubled to the 800V charging voltage 103 by the DC-DC converter 130 to charge the 800V high voltage battery 140. Due to the premise of the charging process 100 using the DC-DC converter 130, there is no direct electrical connection between the charging cable 120 and the battery 140. As a result, the charging cable cannot be connected directly to the high voltage battery 140 for precharging. Therefore, a precharge circuit 139 is arranged in the DC-DC converter 130, and the precharge circuit 139 charges the precharge power 104 supplied by the battery 140 as the precharge power 105 when the high voltage battery voltage is half. It is transmitted to the cable 120.

図2は、双方向チャージポンプ236を備えた本発明によるDC−DCコンバータ230の実施形態200を概略的に示す。供給ネットワークに接続された充電スタンド210は、400Vの充電電圧202で充電するための電気エネルギー201を、充電ケーブル220を介して供給する。充電ケーブル220は、電気自動車のバッテリー240を充電するために、400Vの充電電圧202でDC−DCコンバータ230に接続される。本発明によるDC−DCコンバータ230は、2個の単方向電流経路231、232と、1つの双方向電流経路236とを有し、それらの電流経路において、DC電圧は、それぞれのチャージポンプ回路によって、電流リップルを抑制するために位相シフトされて、バッテリー240の端子電圧に対応する充電電圧203に昇圧される。図示されている場合において、400Vの充電電圧202は、800V高電圧バッテリー240を充電するために、本発明によるDC−DCコンバータ230によって800Vの充電電圧203に倍増される。さらに、チャージポンプの双方向の動作能力によって、バッテリー240から充電ケーブル220へのプリチャージ電力204の伝送が可能となり、充電開始時に必要なプリチャージ電力205がバッテリー240から充電ケーブル220に供給される。そのプリチャージ電力205は、充電ケーブル220を高電圧バッテリー電圧の半分にプリチャージする。 FIG. 2 schematically shows a 200th embodiment of a DC-DC converter 230 according to the present invention provided with a bidirectional charge pump 236. The charging stand 210 connected to the supply network supplies electrical energy 201 for charging at a charging voltage 202 of 400 V via the charging cable 220. The charging cable 220 is connected to the DC-DC converter 230 at a charging voltage 202 of 400 V to charge the battery 240 of the electric vehicle. The DC-DC converter 230 according to the present invention has two unidirectional current paths 231 and 232 and one bidirectional current path 236, in which the DC voltage is determined by the respective charge pump circuit. The phase is shifted in order to suppress the current ripple, and the voltage is boosted to the charging voltage 203 corresponding to the terminal voltage of the battery 240. In the case shown, the 400V charging voltage 202 is doubled to the 800V charging voltage 203 by the DC-DC converter 230 according to the invention to charge the 800V high voltage battery 240. Further, the bidirectional operating ability of the charge pump enables transmission of the precharge power 204 from the battery 240 to the charging cable 220, and the precharge power 205 required at the start of charging is supplied from the battery 240 to the charging cable 220. .. The precharge power 205 precharges the charging cable 220 to half the high voltage battery voltage.

202 充電電圧
203 端子電圧
204、205 プリチャージ電力
210 充電スダンド
220 充電ケーブル
230 DC−DCコンンバータ
231、232 単方向電流路
236 双方向電流路
240 バッテリー
202 Charging voltage 203 Terminal voltage 204, 205 Precharge power 210 Charging standard 220 Charging cable 230 DC-DC converter 231 232 Unidirectional current path 236 Bidirectional current path 240 Battery

Claims (10)

充電ケーブル(220)をプリチャージする方法であって、
前記充電ケーブル(220)を備えた充電スタンド(210)が、電気自動車のバッテリー(240)の直流電圧充電のために提供されており、
前記充電スタンド(210)は、充電電圧(202)で充電電流を供給し、
充電される前記バッテリー(240)は、前記充電電圧(202)よりも高い端子電圧(203)を有しており、
前記充電ケーブル(220)と前記バッテリー(240)との間に、DC−DCコンバータ(230)が位置している、方法において、
前記DC−DCコンバータ(230)が、前記充電スタンド(210)の前記充電電圧(202)を前記バッテリー(240)の前記端子電圧(203)に適合させるチャージポンプ(231、232、236)によって実現され、
前記チャージポンプ(231、232、236)内に、少なくとも2個の単方向スイッチ、少なくとも2個のダイオード、および少なくとも2個のコンデンサを含む、少なくとも1つの単方向電流経路(231、232)が配置され、
前記チャージポンプ(231、232、236)内に、少なくとも1つの双方向電流経路(236)が配置され、前記少なくとも1つの双方向電流経路(236)は、少なくとも4個の単方向スイッチと少なくとも2個のコンデンサとを備えるとともに、少なくとも2個のダイオードに代えて少なくとも2個の単方向スイッチ、したがって合計で少なくとも4個の単方向スイッチを備える単方向電流経路から得られ、
前記充電ケーブル(220)のプリチャージのためのプリチャージ電力(204、205)が、前記少なくとも1つの双方向電流経路(236)を介して前記バッテリー(240)から供給される、方法。
It is a method of precharging the charging cable (220).
A charging station (210) with the charging cable (220) is provided for DC voltage charging of an electric vehicle battery (240).
The charging stand (210) supplies a charging current at the charging voltage (202).
The battery (240) to be charged has a terminal voltage (203) higher than the charging voltage (202).
In a method in which a DC-DC converter (230) is located between the charging cable (220) and the battery (240).
The DC-DC converter (230) is realized by a charge pump (231, 232, 236) that adapts the charging voltage (202) of the charging stand (210) to the terminal voltage (203) of the battery (240). Being done
Within the charge pump (231, 232, 236) is at least one unidirectional current path (231, 232) including at least two unidirectional switches, at least two diodes, and at least two capacitors. Being done
At least one bidirectional current path (236) is arranged in the charge pump (231, 232, 236), and the at least one bidirectional current path (236) has at least four unidirectional switches and at least two. Obtained from a unidirectional current path with a capacitor and at least two unidirectional switches instead of at least two diodes, and thus at least four unidirectional switches in total.
A method in which precharge power (204, 205) for precharging the charging cable (220) is supplied from the battery (240) via the at least one bidirectional current path (236).
前記単方向スイッチが、MOSFETによって実現される、請求項1に記載の方法。 The method of claim 1, wherein the unidirectional switch is realized by a MOSFET. 前記充電スタンド(210)が400Vの充電電圧(201)を有し、
前記バッテリー(240)は、800Vの端子電圧(203)を有する高電圧バッテリー(240)によって実現される、請求項1又は請求項2に記載の方法。
The charging stand (210) has a charging voltage (201) of 400 V.
The method according to claim 1 or 2, wherein the battery (240) is realized by a high voltage battery (240) having a terminal voltage (203) of 800 V.
前記少なくとも1つの双方向電流経路(236)が、前記プリチャージ電力(204、205)に対応する電力を伝送するように設計されている、請求項1〜請求項3のいずれか一項に記載の方法。 The invention according to any one of claims 1 to 3, wherein the at least one bidirectional current path (236) is designed to transmit power corresponding to the precharge power (204, 205). the method of. 前記バッテリー(240)から、前記充電スタンド(210)に接続された供給ネットワークへのエネルギー伝送(204)が、前記少なくとも1つの双方向電流経路(236)を介して追加的に実行される、請求項1〜請求項4のいずれか一項に記載の方法。 Claims that energy transmission (204) from the battery (240) to the supply network connected to the charging station (210) is additionally performed via the at least one bidirectional current path (236). The method according to any one of items 1 to 4. 充電ケーブル(220)をプリチャージするDC−DCコンバータ(230)であって、
前記充電ケーブル(220)を有する充電スタンド(210)が、電気自動車のバッテリー(240)の直流電圧充電のために提供されており、
前記充電スタンド(210)が、充電電圧(201)で充電電流を供給しており、
充電される前記バッテリー(240)は、前記充電電圧(201、202)よりも高い端子電圧(203)を有しており、
前記充電ケーブル(220)と前記バッテリー(240)との間にDC−DCコンバータ(230)が位置している、DC−DCコンバータにおいて、
前記DC−DCコンバータ(230)は、前記充電スタンド(210)の前記充電電圧を前記バッテリー(240)の前記端子電圧(203)に適合させるチャージポンプ(231、232、236)によって実現されており、
前記チャージポンプ(231、232、236)は、少なくとも2個の単方向スイッチ、少なくとも2個のダイオード、および少なくとも2個のコンデンサを有する、少なくとも1つの単方向電流経路(231、232)を含み、
前記チャージポンプ(231、232、236)は、少なくとも1つの双方向電流経路(236)を備え、前記少なくとも1つの双方向電流経路(236)は、少なくとも4個の単方向スイッチと少なくとも2個のコンデンサとを備えるとともに、少なくとも2個のダイオードに代えて少なくとも2個の単方向スイッチ、したがって合計で少なくとも4個の単方向スイッチを含む単方向電流経路によって実現可能であり、
前記DC−DCコンバータ(230)は、前記充電ケーブル(220)のプリチャージのためのプリチャージ電力(204、205)が前記少なくとも1つの双方向電流経路(236)を介して前記バッテリー(240)によって供給されるように、構成されている、DC−DCコンバータ(230)。
A DC-DC converter (230) that precharges the charging cable (220).
A charging station (210) having the charging cable (220) is provided for DC voltage charging of an electric vehicle battery (240).
The charging stand (210) supplies the charging current at the charging voltage (201).
The battery (240) to be charged has a terminal voltage (203) higher than the charging voltage (201, 202).
In a DC-DC converter in which a DC-DC converter (230) is located between the charging cable (220) and the battery (240).
The DC-DC converter (230) is realized by a charge pump (231, 232, 236) that adapts the charging voltage of the charging stand (210) to the terminal voltage (203) of the battery (240). ,
The charge pump (231, 232, 236) includes at least one unidirectional current path (231, 232) having at least two unidirectional switches, at least two diodes, and at least two capacitors.
The charge pump (231, 232, 236) comprises at least one bidirectional current path (236), the at least one bidirectional current path (236) having at least four unidirectional switches and at least two. It is feasible with a unidirectional current path that includes a capacitor and at least two unidirectional switches instead of at least two diodes, and thus at least four unidirectional switches in total.
In the DC-DC converter (230), the precharge power (204, 205) for precharging the charging cable (220) is passed through the at least one bidirectional current path (236) to the battery (240). A DC-DC converter (230) configured to be supplied by.
各単方向スイッチは、MOSFETである、請求項6に記載のDC−DCコンバータ(230)。 The DC-DC converter (230) according to claim 6, wherein each unidirectional switch is a MOSFET. 前記充電スタンド(210)が400Vの充電電圧(202)を有し、
前記バッテリー(240)が、800Vの端子電圧(203)を有する高電圧バッテリー(240)である、請求項6又は請求項7に記載のDC−DCコンバータ(230)。
The charging stand (210) has a charging voltage (202) of 400 V and
The DC-DC converter (230) according to claim 6 or 7, wherein the battery (240) is a high voltage battery (240) having a terminal voltage (203) of 800 V.
前記少なくとも1つの双方向電流経路(236)は、前記プリチャージ電力(204、205)に対応する電力(204、205)を伝送するように構成されている、請求項6〜請求項8のいずれか一項に記載のDC−DCコンバータ(230)。 Any of claims 6 to 8, wherein the at least one bidirectional current path (236) is configured to transmit power (204, 205) corresponding to the precharge power (204, 205). The DC-DC converter (230) according to claim 1. 前記少なくとも1つの双方向電流経路(236)は、前記バッテリー(240)から、前記充電スタンド(210)に接続された供給ネットワークへのエネルギー伝送を追加的に実行するように構成されている、請求項6〜請求項9のいずれか一項に記載のDC−DCコンバータ(230)。 The at least one bidirectional current path (236) is configured to additionally perform energy transmission from the battery (240) to a supply network connected to the charging station (210). The DC-DC converter (230) according to any one of items 6 to 9.
JP2020114346A 2019-07-02 2020-07-01 Method for precharging charging cable and bi-directional DC-DC converter Active JP7206237B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019117790.1 2019-07-02
DE102019117790.1A DE102019117790A1 (en) 2019-07-02 2019-07-02 Process and bidirectional DC voltage converter for precharging a charging cable

Publications (2)

Publication Number Publication Date
JP2021010296A true JP2021010296A (en) 2021-01-28
JP7206237B2 JP7206237B2 (en) 2023-01-17

Family

ID=74092696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020114346A Active JP7206237B2 (en) 2019-07-02 2020-07-01 Method for precharging charging cable and bi-directional DC-DC converter

Country Status (2)

Country Link
JP (1) JP7206237B2 (en)
DE (1) DE102019117790A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021119471A1 (en) 2021-07-27 2023-02-02 Preh Gmbh Method and energy transfer circuit for transferring electrical energy between a vehicle-side high-voltage battery and a vehicle-external high-voltage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018046370A1 (en) * 2016-09-07 2018-03-15 Brusa Elektronik Ag High power charge pump with inductive elements
JP2018082616A (en) * 2016-11-16 2018-05-24 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Vehicle, particularly electric vehicle or hybrid vehicle, and method for charging energy storage cell for vehicle
JP2018102117A (en) * 2016-12-09 2018-06-28 デルタ エレクトロニクス (タイ) パブリック コンパニー リミテッドDelta Electronics (Thailand) Public Company Limited Charging system and method for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080973B2 (en) * 2008-10-22 2011-12-20 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US20170054363A1 (en) * 2015-08-21 2017-02-23 Allegro Microsystems, Llc Systems and methods for dc power conversion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018046370A1 (en) * 2016-09-07 2018-03-15 Brusa Elektronik Ag High power charge pump with inductive elements
JP2018082616A (en) * 2016-11-16 2018-05-24 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Vehicle, particularly electric vehicle or hybrid vehicle, and method for charging energy storage cell for vehicle
JP2018102117A (en) * 2016-12-09 2018-06-28 デルタ エレクトロニクス (タイ) パブリック コンパニー リミテッドDelta Electronics (Thailand) Public Company Limited Charging system and method for the same

Also Published As

Publication number Publication date
JP7206237B2 (en) 2023-01-17
DE102019117790A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
US10283990B2 (en) Universal current charger
US9166501B2 (en) Power supply unit for converting power between DC and AC and operating method of the same
US9840159B2 (en) Energy storage device having a DC voltage supply circuit and method for providing a DC voltage from an energy storage device
US8878389B2 (en) Method and apparatus for providing uninterruptible power
US20090273321A1 (en) Device and method for charging an energy store
KR101841559B1 (en) Method for operation of an onboard power supply
US10211485B2 (en) Battery system
CN113195297A (en) Circuit arrangement for a motor vehicle, in particular a hybrid or electric vehicle
JP5903628B2 (en) Power converter
US11750092B2 (en) Configurable DC-to-DC converter circuit and vehicle electrical system
US9837900B2 (en) Apparatus for voltage conversion and onboard electrical system having said apparatus
CN111315615B (en) Vehicle charger including DC/DC converter
EP1511149A2 (en) A power system to transfer power between a plurality of power sources
JP2021010296A (en) Precharge method of charging cable and bidirectional dc-dc converter
CN110994975B (en) Capacitor clamp type direct current conversion circuit
CN107852086B (en) Multi-phase inverter
CN112224057B (en) Vehicle and energy conversion device and power system thereof
CN111315614B (en) Vehicle charger including DC/DC converter
KR102028254B1 (en) Vehicle, in particular an electric vehicle or a hybrid vehicle, and method for charging an energy storage cell of a vehicle
JP5389505B2 (en) Power conversion system
CN117411155A (en) Charging device, charging pile and charging system
JP2020533935A (en) Voltage converters and related chargers onboard automatic vehicles
US11569677B2 (en) Charging system
JP2016213947A (en) Power source device
US10347948B2 (en) Device for providing an electrical voltage as well as drive arrangement and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220323

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220329

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220520

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220524

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220802

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221011

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221108

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221206

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230104

R150 Certificate of patent or registration of utility model

Ref document number: 7206237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150