JP2021010284A - Outer rotation type surface magnet rotating electric machine - Google Patents

Outer rotation type surface magnet rotating electric machine Download PDF

Info

Publication number
JP2021010284A
JP2021010284A JP2019124326A JP2019124326A JP2021010284A JP 2021010284 A JP2021010284 A JP 2021010284A JP 2019124326 A JP2019124326 A JP 2019124326A JP 2019124326 A JP2019124326 A JP 2019124326A JP 2021010284 A JP2021010284 A JP 2021010284A
Authority
JP
Japan
Prior art keywords
electric machine
rotating electric
type surface
magnet rotating
surface magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019124326A
Other languages
Japanese (ja)
Other versions
JP7217205B2 (en
Inventor
雅寛 堀
Masahiro Hori
雅寛 堀
三好 努
Tsutomu Miyoshi
努 三好
健司 矢島
Kenji Yajima
健司 矢島
亮平 税所
Ryohei Zeisho
亮平 税所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2019124326A priority Critical patent/JP7217205B2/en
Priority to CN202010482781.8A priority patent/CN112186922B/en
Publication of JP2021010284A publication Critical patent/JP2021010284A/en
Application granted granted Critical
Publication of JP7217205B2 publication Critical patent/JP7217205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

To provide an outer rotation type surface magnet rotating electric machine that reduces torque ripple while reducing the disadvantages of magnet breakage and increase in magnetoresistance.SOLUTION: An outer rotation type surface magnet rotating electric machine includes a rotor having a rotor core and a permanent magnet arranged on the inner diameter side of the rotor core, and a stator having a stator core arranged on the inner diameter side of the rotor via a gap, and a coil attached to the stator core, and the rotor core has a plurality of voids per pole on the outer diameter side of the surface to which the permanent magnet is attached.SELECTED DRAWING: Figure 2

Description

本発明は、外転型表面磁石回転電機に関する。 The present invention relates to an abduction type surface magnet rotating electric machine.

電気・機械エネルギー変換装置である回転電機は、さまざまな機器に内蔵されており、機器の小型化に伴い、回転電機の小型化も求められている。回転電機の小型化の手段の一つとして、外転型永久磁石回転電機が用いられている。外転型永久磁石回転電機は、コイルを取り付けた固定子の外周側に、永久磁石を取り付けた回転子を配置した構成である。外転型永久磁石回転電機は、内転型永久磁石回転電機に比べ、回転子−固定子間間隙(ギャップ)の半径が大きくなり、回転子が外側にあるため1極分の周長が長くなることから、径方向から見て面積の大きな磁石を配置できるという特徴がある。これにより、高出力化でき、回転電機の小型化が可能となる。 The rotary electric machine, which is an electric / mechanical energy conversion device, is built in various devices, and as the devices are miniaturized, the rotary electric machine is also required to be miniaturized. An abduction type permanent magnet rotary electric machine is used as one of the means for miniaturizing the rotary electric machine. The abduction type permanent magnet rotating electric machine has a configuration in which a rotor with a permanent magnet is arranged on the outer peripheral side of a stator to which a coil is attached. Compared to the adduction type permanent magnet rotary electric machine, the abduction type permanent magnet rotary electric machine has a larger radius of the gap between the rotor and the stator, and the circumference of one pole is longer because the rotor is on the outside. Therefore, there is a feature that a magnet having a large area when viewed from the radial direction can be arranged. As a result, the output can be increased and the rotary electric machine can be miniaturized.

外転型永久磁石回転電機は、磁石の外周側に回転子鉄芯があるため、遠心力に対する磁石の保持の問題が少ないため、表面磁石型が用いられることが多い。表面磁石型により、回転子コア内の磁束の短絡が少なくなるため、有効磁束を増加でき、高出力化できる。 Since the abduction type permanent magnet rotating electric machine has a rotor iron core on the outer peripheral side of the magnet, there is little problem of holding the magnet against centrifugal force, so that the surface magnet type is often used. Since the surface magnet type reduces short circuits of magnetic flux in the rotor core, the effective magnetic flux can be increased and the output can be increased.

回転電機の課題の一つとして、トルクリプル低減がある。トルクリプルはトルクの脈動のことである。トルクリプルは駆動装置の振動や騒音の原因となる。 One of the issues of rotary electric machines is reduction of torque ripple. Torque ripple is the pulsation of torque. Torque ripple causes vibration and noise of the drive unit.

トルクリプルの低減に関しては、特許文献1に記載された技術がある。回転電機のロータは、周方向に所定の間隔で形成された複数の磁石挿入孔を有する略円環状のロータコアと、磁石挿入孔に挿入される永久磁石とを備える。ロータコアは電磁鋼板を多数積層して形成され、ロータコアの磁石挿入孔よりも外周側には、永久磁石によって構成される各磁極部の略d軸上に孔部を備えることを特徴としている。 Regarding the reduction of torque ripple, there is a technique described in Patent Document 1. The rotor of a rotary electric machine includes a substantially annular rotor core having a plurality of magnet insertion holes formed at predetermined intervals in the circumferential direction, and a permanent magnet inserted into the magnet insertion holes. The rotor core is formed by laminating a large number of electromagnetic steel sheets, and is characterized in that a hole portion is provided on the substantially d-axis of each magnetic pole portion formed of a permanent magnet on the outer peripheral side of the magnet insertion hole of the rotor core.

また、トルクリプルの低減に関しては、特許文献2に記載された技術がある。円筒形状を有する多極着磁した磁石及び該磁石の径方向一方側の面に当接して設けられるバックヨークを有する磁石保持部と、前記磁石の他方側の面に相対向位置する磁界発生部とを具備し、前記磁石保持部及び前記磁界発生部の何れか一方が回転自在に設けられたスピンドルモータにおいて、前記バックヨークは前記磁石と当接する側の面に、前記磁石の隣り合う磁極の境界線に沿って凹部を設けることを特徴としている。 Further, regarding the reduction of torque ripple, there is a technique described in Patent Document 2. A magnet holding portion having a cylindrically shaped multi-pole magnetized magnet and a back yoke provided in contact with one surface of the magnet in the radial direction, and a magnetic field generating portion located opposite to the other surface of the magnet. In a spindle motor in which one of the magnet holding portion and the magnetic field generating portion is rotatably provided, the back yoke has a surface on the side where the magnet comes into contact with the magnetic poles adjacent to the magnet. It is characterized in that a recess is provided along the boundary line.

特開2018−137924JP 2018-137924 特開2001−57752JP 2001-57752

特許文献1では、磁石に対しギャップ側に空隙を設けることでトルクリプルを低減している。しかし、表面磁石型では、磁石がギャップに面しているため、適応が困難である。 In Patent Document 1, torque ripple is reduced by providing a gap on the gap side with respect to the magnet. However, in the surface magnet type, it is difficult to adapt because the magnet faces the gap.

特許文献2では、磁石端部の外形側に溝(非磁性部)を設けることでトルクリプルを低減している。しかし、非磁性部により磁気抵抗が増加するため、磁石端部の磁束を有効に利用できなくなる。また、磁石に何らかの理由で衝撃が加わった場合、磁石を保持する部材が少ないため、磁石が破損する可能性が高くなる。 In Patent Document 2, torque ripple is reduced by providing a groove (non-magnetic portion) on the outer shape side of the magnet end portion. However, since the magnetic resistance increases due to the non-magnetic portion, the magnetic flux at the end of the magnet cannot be effectively used. Further, when an impact is applied to the magnet for some reason, there is a high possibility that the magnet will be damaged because there are few members for holding the magnet.

本発明の目的は、磁石破損や磁気抵抗の増加のデメリットを低減するとともに、トルクリプルを低減する外転型表面磁石回転電機を提供することにある。 An object of the present invention is to provide an abduction type surface magnet rotating electric machine that reduces the demerits of magnet breakage and increase in magnetic resistance and reduces torque ripple.

本発明の好ましい一例は、回転子コアと、前記回転子コアの内径側に配置された永久磁石とを有する回転子と、前記回転子の内径側に間隙を介して配置される固定子コアと、前記固定子コアに取り付けられたコイルとを有する固定子とを有し、前記回転子コアは、前記永久磁石を取付けた面の外径側に、1極あたり複数の空隙を有する外転型表面磁石回転電機である。 A preferred example of the present invention is a rotor having a rotor core, a permanent magnet arranged on the inner diameter side of the rotor core, and a stator core arranged on the inner diameter side of the rotor via a gap. The rotor core has a stator having a coil attached to the stator core, and the rotor core is an abduction type having a plurality of voids per pole on the outer diameter side of the surface to which the permanent magnet is attached. It is a surface magnet rotating electric machine.

本発明によれば、磁石破損や磁気抵抗の増加のデメリットを低減するとともに、トルクリプルの低減が可能となる。 According to the present invention, it is possible to reduce the demerits of magnet breakage and increase in magnetic resistance, and also to reduce torque ripple.

実施例1における外転型表面磁石回転電機の径方向断面を示す図。The figure which shows the radial cross section of the abduction type surface magnet rotary electric machine in Example 1. FIG. 実施例1における空隙を拡大した径方向断面を示す図。The figure which shows the radial cross section which enlarged the void in Example 1. FIG. 実施例2における空隙を拡大した径方向断面を示す図。The figure which shows the radial cross section which enlarged the void in Example 2. FIG. 実施例2における空隙数に対するトルクリプルを示した図。The figure which showed the torque ripple with respect to the number of voids in Example 2. FIG. 実施例3における空隙を拡大した径方向断面を示す図。The figure which shows the radial cross section which enlarged the void in Example 3. FIG. 実施例3における空隙位置に対するトルクリプルを示した図。The figure which showed the torque ripple with respect to the void position in Example 3. FIG. 実施例4における軸方向の断面を示す図。The figure which shows the cross section in the axial direction in Example 4. FIG. 実施例5におけるエレベータ用巻上機の軸方向の断面を示す図。The figure which shows the cross section in the axial direction of the elevator hoisting machine in Example 5.

以下、図面に基づいて実施例を説明する。 Hereinafter, examples will be described with reference to the drawings.

図1に、本発明の外転型表面磁石回転電機の実施例1を示す。図1は、外転型表面磁石回転電機の径方向の断面図である。径方向は、図1の中心から外周方向をいう。本実施例の外転型表面磁石回転電機1は、回転子コア2と永久磁石3により構成された回転子4と、回転子4の内径側に所定の間隙を設けて配置され、固定子コア5とコイル6により構成された固定子7を備える。 FIG. 1 shows Example 1 of the abduction type surface magnet rotary electric machine of the present invention. FIG. 1 is a radial sectional view of an abduction type surface magnet rotating electric machine. The radial direction refers to the outer peripheral direction from the center of FIG. The abduction type surface magnet rotating electric machine 1 of the present embodiment is arranged with a predetermined gap on the inner diameter side of the rotor 4 composed of the rotor core 2 and the permanent magnet 3 and the stator core. A stator 7 composed of 5 and a coil 6 is provided.

ここで、永久磁石3は、回転子コア2の表面に配置される表面磁石型とすることが望ましい。これにより、永久磁石3を回転子コア2の表面に配置することにより回転子内で磁石磁束が短絡する漏れ磁束を低減でき、有効磁束が増加するため、高出力化できる。 Here, it is desirable that the permanent magnet 3 is a surface magnet type arranged on the surface of the rotor core 2. As a result, by arranging the permanent magnet 3 on the surface of the rotor core 2, the leakage magnetic flux in which the magnet magnetic flux is short-circuited in the rotor can be reduced, and the effective magnetic flux is increased, so that the output can be increased.

また、コイル6は、集中巻により固定子コア5に取り付けられることが望ましい。これにより、コイル6の軸方向端部の長さが短くなり、外転型表面磁石回転電機1の軸方向長さが短くなり、小型化できる。さらに、固定子コア5のコイル6が配置される部分(スロット8)はオープンスロットとすることが望ましい。これにより、コイル6の挿入が容易となり、組み立て性が向上する。 Further, it is desirable that the coil 6 is attached to the stator core 5 by centralized winding. As a result, the length of the axial end portion of the coil 6 is shortened, the axial length of the abduction type surface magnet rotating electric machine 1 is shortened, and the size can be reduced. Further, it is desirable that the portion (slot 8) in which the coil 6 of the stator core 5 is arranged is an open slot. This facilitates the insertion of the coil 6 and improves the assembleability.

さらに、固定子コア5の間隙側付近(ティース先端)の曲率半径は、固定子7の半径より小さな半径を持たせることが望ましい。これにより、周方向の磁気抵抗の変化率が低減でき、トルクリプルが低減できる。 Further, it is desirable that the radius of curvature near the gap side (tip of the tooth) of the stator core 5 has a radius smaller than the radius of the stator 7. As a result, the rate of change of the magnetic resistance in the circumferential direction can be reduced, and the torque ripple can be reduced.

ここで、回転子コア2の永久磁石3を取付けた取付け面の外径側に、空隙9を設けている。図2は、空隙9付近の拡大図を示す。空隙を設けることで、固定子側から見た磁気抵抗の変化が平準化され、磁束に重畳する高調波成分が低減し、トルクリプルを低減できる。図2では、空隙9は磁石当たり2つ配置している。 Here, a gap 9 is provided on the outer diameter side of the mounting surface on which the permanent magnet 3 of the rotor core 2 is mounted. FIG. 2 shows an enlarged view of the vicinity of the gap 9. By providing the gap, the change in the magnetic resistance seen from the stator side is leveled, the harmonic component superimposed on the magnetic flux is reduced, and the torque ripple can be reduced. In FIG. 2, two voids 9 are arranged per magnet.

空隙9が1つの場合、最適なトルクリプル低減を得られる空隙位置にするために空隙が大きくなる可能性がある。空隙9は非磁性部であるため、磁石から見ると磁気抵抗となる。空隙が多くなると磁気抵抗も大きくなるため電気特性が低下する。一方、互いに接触しない空隙が2つ以上形成された場合は、空隙間は磁性体であり磁束が通ることができ、電気特性の低下を少なくできる。 When there is only one gap 9, the gap may be enlarged in order to obtain a gap position where optimum torque ripple reduction can be obtained. Since the void 9 is a non-magnetic portion, it becomes a magnetic resistance when viewed from a magnet. As the number of voids increases, the magnetic resistance also increases and the electrical characteristics deteriorate. On the other hand, when two or more voids that do not contact each other are formed, the gap is a magnetic material and magnetic flux can pass through, so that deterioration of electrical characteristics can be reduced.

また、凹みや溝ではなく空隙とすることで、磁石の配置部の形状は一定となるため、製造方法を変える必要がなく、また衝撃による磁石破損のリスクも従来通りであるため、簡単に本構造を適用することができる。 In addition, by using voids instead of dents and grooves, the shape of the magnet placement part becomes constant, so there is no need to change the manufacturing method, and the risk of magnet damage due to impact is the same as before, so this book is easy. The structure can be applied.

なお、図1は40極48スロットの外転型表面磁石回転電機を示したが、この形状に限定するものではなく、他のスロットコンビネーションでも同様の効果を得られる。また、外転型回転電機が両回転する場合には、2つの空隙位置は、図2のように永久磁石3の中心軸に対し対称であることが望ましい。 Although FIG. 1 shows an abduction type surface magnet rotary electric machine having 40 poles and 48 slots, the shape is not limited to this, and the same effect can be obtained with other slot combinations. Further, when the abduction type rotary electric machine rotates both times, it is desirable that the positions of the two gaps are symmetrical with respect to the central axis of the permanent magnet 3 as shown in FIG.

さらに、空隙には空気が充填されている必要はなく、樹脂等の非磁性体でもよい。空隙の形状に関して、図2では半円形状としたが、円形や三角形、台形等でも良く、形状を限定するものではない。加えて、空隙の大きさや形状は1つの磁極内で統一する必要はなく、また磁極ごとに空隙の大きさ形状、位置を変えてもよい。また、永久磁石3は、1極あたり1つ以上配置し、隣接する磁極の永久磁石と略一定の空間を持って周方向に配置されるようにしてよい。 Further, the voids do not need to be filled with air and may be a non-magnetic material such as resin. Regarding the shape of the void, although it is a semicircular shape in FIG. 2, it may be circular, triangular, trapezoidal, or the like, and the shape is not limited. In addition, the size and shape of the gap need not be unified within one magnetic pole, and the size and shape of the gap may be changed for each magnetic pole. Further, one or more permanent magnets 3 may be arranged per pole, and may be arranged in the circumferential direction with a substantially constant space from the permanent magnets of adjacent magnetic poles.

実施例1によれば、永久磁石3を取付けた回転子コア2の取付け面の外径側であって回転子コア2内に、空隙9を配置しており、磁石を保持する部材に影響を与えず、磁石が破損する可能性が低減できる。さらに、磁気抵抗の増加のデメリットを低減しつつ、トルクリプルの低減が可能となる。 According to the first embodiment, the gap 9 is arranged in the rotor core 2 on the outer diameter side of the mounting surface of the rotor core 2 to which the permanent magnet 3 is mounted, which affects the member holding the magnet. Without giving, the possibility of damaging the magnet can be reduced. Further, it is possible to reduce torque ripple while reducing the demerit of increasing magnetic resistance.

図3は、実施例2となる外転型表面磁石回転電機を示す図である。実施例1では1極当たりの空隙の数を2つとして検討していたが、空隙の数を2つ以上としてもよい。図4は、空隙数に対する6次トルクリプルを示す。6次トルクリプルは、基本波周波数の6の倍数の脈動である。 FIG. 3 is a diagram showing an abduction type surface magnet rotating electric machine according to a second embodiment. In Example 1, the number of voids per pole was considered to be two, but the number of voids may be two or more. FIG. 4 shows the sixth torque ripple with respect to the number of voids. The sixth torque ripple is a pulsation that is a multiple of 6 of the fundamental frequency.

なお、前述したように空隙位置によりトルクリプル低減効果は異なる。そのため、最適化手法により同じ基準で空隙位置、大きさを規定した。図4から、空隙数を2から4にすることで、トルクリプルが下がり、トルクリプルの低減効果が大きく増加することがわかる。 As described above, the torque ripple reduction effect differs depending on the position of the gap. Therefore, the void position and size were defined by the same standard by the optimization method. From FIG. 4, it can be seen that by changing the number of voids from 2 to 4, the torque ripple is reduced and the effect of reducing the torque ripple is greatly increased.

しかし、空隙数を4から6としてもトルクリプル低減効果は変化が小さい。空隙を増加すると加工数が増加し、コストが増加する可能性があるため、妄りに増加することは不適切である。よって、空隙数は4とすることが好ましい。 However, even if the number of voids is set to 4 to 6, the effect of reducing torque ripple is small. Increasing the voids increases the number of processes and may increase the cost, so it is inappropriate to increase the number of voids. Therefore, the number of voids is preferably 4.

実施例2によれば、1極当たりの空隙数を4とすることにより、トルクリプルを低減する効果を大きくすることができる。 According to the second embodiment, by setting the number of voids per pole to 4, the effect of reducing torque ripple can be increased.

図5は、実施例3の外転型表面磁石回転電機を示す図である。実施例2では6次のトルクリプルの低減効果を検討したが、回転電機の不整によるトルクリプル低減効果を検討する。 FIG. 5 is a diagram showing an abduction type surface magnet rotating electric machine of the third embodiment. In the second embodiment, the effect of reducing the sixth-order torque ripple was examined, but the effect of reducing the torque ripple due to the irregularity of the rotating electric machine is examined.

10極12スロットの外転型表面磁石回転電機の場合、回転電機の不整により2次、2.4次のトルクリプルが発生する。図5に示すように、永久磁石3の中央部と空隙までの最短距離をW1、永久磁石3の端部と空隙との最短距離をW2とする。 In the case of a 10-pole, 12-slot abduction type surface magnet rotating electric machine, secondary and 2.4th-order torque ripples are generated due to irregularities in the rotating electric machine. As shown in FIG. 5, the shortest distance between the central portion of the permanent magnet 3 and the gap is W1, and the shortest distance between the end of the permanent magnet 3 and the gap is W2.

図6にW1>W2とした場合のトルクリプルと、W1<W2とした場合のトルクリプルの比較を示す。なお、空隙が複数ある場合は最も大きな空隙を対象とし、同サイズの空隙が複数ある場合は最も磁石中心に近い空隙を対象とする。 FIG. 6 shows a comparison between torque ripple when W1> W2 and torque ripple when W1 <W2. When there are a plurality of voids, the largest void is targeted, and when there are a plurality of voids of the same size, the void closest to the center of the magnet is targeted.

図6に示されたように、W1<W2の場合のほうが回転電機の不整によるトルクリプルを低減する効果が大きいことがわかる。よって、回転電機の不整によるトルクリプルを低減するには、W1<W2とすることが好ましい。 As shown in FIG. 6, it can be seen that the effect of reducing torque ripple due to irregularity of the rotating electric machine is greater when W1 <W2. Therefore, in order to reduce torque ripple due to irregularity of the rotating electric machine, it is preferable that W1 <W2.

実施例3によれば、永久磁石と空隙との位置関係を調節することにより、トルクリプルを低減する効果を大きくすることができる。 According to the third embodiment, the effect of reducing the torque ripple can be increased by adjusting the positional relationship between the permanent magnet and the void.

図7は、実施例4の外転型表面磁石回転電機を示す図である。図7は、軸方向の断面図であり、径方向1/2分記載している。なお、図7におけるハッチング部は回転する構造物であることを示している。回転子4は回転子フレーム10に配置され、固定子7は固定子フレーム11に配置される。 FIG. 7 is a diagram showing an abduction type surface magnet rotating electric machine of the fourth embodiment. FIG. 7 is a cross-sectional view in the axial direction, which is shown for 1/2 minute in the radial direction. It should be noted that the hatched portion in FIG. 7 shows that it is a rotating structure. The rotor 4 is arranged in the rotor frame 10, and the stator 7 is arranged in the stator frame 11.

回転子フレーム10はシャフト12に接続され、軸受け13を介して固定子フレーム11と接続される。軸方向は、シャフト12の長手方向である。ここで、シャフトを保持するため、補助軸受け14を設けてもよい。 The rotor frame 10 is connected to the shaft 12 and is connected to the stator frame 11 via a bearing 13. The axial direction is the longitudinal direction of the shaft 12. Here, an auxiliary bearing 14 may be provided to hold the shaft.

実施例1〜3にて示した空隙にヒートパイプ等の高熱伝導部材15を配置し、高熱伝導部材15の回転子4の外部に延伸している。永久磁石は使用温度が制限されており、高温になると不可逆減磁により性能が劣化する。また、永久磁石の温度は一定ではなく軸方向に分布を持つ。 A high thermal conductive member 15 such as a heat pipe is arranged in the gaps shown in Examples 1 to 3 and extends to the outside of the rotor 4 of the high thermal conductive member 15. The operating temperature of permanent magnets is limited, and the performance deteriorates due to irreversible demagnetization at high temperatures. Moreover, the temperature of the permanent magnet is not constant and has a distribution in the axial direction.

よって、永久磁石の温度の最も高い部分のみが不可逆減磁する可能性があるため、磁石温度は均一であることが望ましい。 Therefore, it is desirable that the magnet temperature is uniform because only the portion having the highest temperature of the permanent magnet may be irreversibly demagnetized.

そこで、実施例4によれば、空隙に高熱伝導部材15を設けることで、永久磁石の軸方向の熱抵抗が下がり、磁石温度を均一化させることができる。 Therefore, according to the fourth embodiment, by providing the high thermal conductive member 15 in the void, the thermal resistance in the axial direction of the permanent magnet is lowered, and the magnet temperature can be made uniform.

また、高熱伝導部材15の端部にフィン等をつけることで、放熱面積が増加し、さらに回転による周速により熱伝達率が向上し、効果的に磁石温度を低減することが可能となる。 Further, by attaching fins or the like to the ends of the high thermal conductive member 15, the heat dissipation area is increased, the heat transfer coefficient is improved by the peripheral speed due to rotation, and the magnet temperature can be effectively reduced.

なお、図7ではシャフトが回転する構造を示したが、回転子フレーム10とシャフト12の間に軸受けを接続したシャフトが回転しない構造でも同等の効果が得られる。 Although the structure in which the shaft rotates is shown in FIG. 7, the same effect can be obtained even in a structure in which the shaft in which the bearing is connected between the rotor frame 10 and the shaft 12 does not rotate.

図8は、実施例4の外転型表面磁石回転電機をエレベータ用巻上機に適応した実施例6を示す図である。なお、図8は、径方向断面の1/2分のみ記載しており、回転部にはハッチングしている。 FIG. 8 is a diagram showing a sixth embodiment in which the abduction type surface magnet rotary electric machine of the fourth embodiment is applied to a hoisting machine for an elevator. Note that FIG. 8 shows only 1/2 of the radial cross section, and the rotating portion is hatched.

図8に示すように、かごにつながるロープ16を巻き上げる動力として外転型表面磁石回転電機1を備え、エレベータ巻上機用ロープ16を巻きつけるシーブ17と、回転を機械的にとめるブレーキ18が取り付けられる。 As shown in FIG. 8, an abduction type surface magnet rotating electric machine 1 is provided as a power for winding the rope 16 connected to the car, and a sheave 17 for winding the rope 16 for an elevator hoist and a brake 18 for mechanically stopping the rotation are provided. It is attached.

実施例5によれば外転型表面磁石回転電機のトルク脈動を低減しているため、エレベータの乗り心地を改善できる。 According to the fifth embodiment, since the torque pulsation of the abduction type surface magnet rotating electric machine is reduced, the riding comfort of the elevator can be improved.

1…外転型表面磁石回転電機、2…回転子コア、3…永久磁石、4…回転子、5…固定子コア、6…コイル、7…固定子、8…スロット、9…空隙、10…回転子フレーム、11…固定子フレーム、12…シャフト、13…軸受け、14…補助軸受け、15…高熱伝導部材、16…ロープ、17…シーブ、18…ブレーキ 1 ... Abduction type surface magnet rotary electric machine, 2 ... Rotor core, 3 ... Permanent magnet, 4 ... Rotor, 5 ... Stator core, 6 ... Coil, 7 ... Stator, 8 ... Slot, 9 ... Void, 10 ... Rotor frame, 11 ... Stator frame, 12 ... Shaft, 13 ... Bearing, 14 ... Auxiliary bearing, 15 ... High heat conductive member, 16 ... Rope, 17 ... Sheave, 18 ... Brake

Claims (12)

回転子コアと、前記回転子コアの内径側に配置された永久磁石とを有する回転子と、
前記回転子の内径側に間隙を介して配置される固定子コアと、前記固定子コアに取り付けられたコイルとを有する固定子とを有し、
前記回転子コアは、前記永久磁石を取付けた面の外径側に、1極あたり複数の空隙を有することを特徴とする外転型表面磁石回転電機。
A rotor having a rotor core and a permanent magnet arranged on the inner diameter side of the rotor core,
It has a stator core arranged on the inner diameter side of the rotor via a gap, and a stator having a coil attached to the stator core.
The rotor core is an abduction type surface magnet rotating electric machine characterized by having a plurality of voids per pole on the outer diameter side of the surface to which the permanent magnet is attached.
請求項1に記載の外転型表面磁石回転電機において、
前記永久磁石は、1極あたり1つ以上配置され、隣接する磁極の前記永久磁石と略一定の空間を持って周方向に配置されることを特徴とする外転型表面磁石回転電機。
In the abduction type surface magnet rotating electric machine according to claim 1.
An abduction type surface magnet rotating electric machine, characterized in that one or more permanent magnets are arranged per pole and arranged in the circumferential direction with a substantially constant space with the permanent magnets of adjacent magnetic poles.
請求項1に記載の外転型表面磁石回転電機において、
前記空隙がそれぞれ接していないことを特徴とする外転型表面磁石回転電機。
In the abduction type surface magnet rotating electric machine according to claim 1.
An abduction type surface magnet rotating electric machine characterized in that the voids are not in contact with each other.
請求項1に記載の外転型表面磁石回転電機において、
1極当たりの前記空隙が前記永久磁石の中心に対して対称に配置されていることを特徴とする外転型表面磁石回転電機。
In the abduction type surface magnet rotating electric machine according to claim 1.
An abduction type surface magnet rotating electric machine characterized in that the voids per pole are arranged symmetrically with respect to the center of the permanent magnet.
請求項1に記載の外転型表面磁石回転電機において、
前記空隙に、非磁性体が充填されていることを特徴とする外転型表面磁石回転電機。
In the abduction type surface magnet rotating electric machine according to claim 1.
An abduction type surface magnet rotating electric machine characterized in that the voids are filled with a non-magnetic material.
請求項1に記載の外転型表面磁石回転電機において、
1極当たりの前記空隙の数が4つであることを特徴とする外転型表面磁石回転電機。
In the abduction type surface magnet rotating electric machine according to claim 1.
An abduction type surface magnet rotating electric machine characterized in that the number of the voids per pole is four.
請求項1に記載の外転型表面磁石回転電機において、
前記永久磁石の中央と前記空隙との距離をW1、前記永久磁石の端部と前記空隙との距離をW2とした場合に、W1<W2となることを特徴とする外転型表面磁石回転電機。
In the abduction type surface magnet rotating electric machine according to claim 1.
An abduction type surface magnet rotating electric machine characterized in that W1 <W2 when the distance between the center of the permanent magnet and the void is W1 and the distance between the end of the permanent magnet and the void is W2. ..
請求項1に記載の外転型表面磁石回転電機において、
前記空隙にヒートパイプ等の高熱伝導部材を配置したことを特徴とする外転型表面磁石回転電機。
In the abduction type surface magnet rotating electric machine according to claim 1.
An abduction type surface magnet rotating electric machine characterized in that a high heat conductive member such as a heat pipe is arranged in the gap.
かごにつながるロープを巻き上げる動力として請求項1に記載の外転型表面磁石回転電機を備えることを特徴とするエレベータ用巻上機。 An elevator hoisting machine including the abduction type surface magnet rotating electric machine according to claim 1 as a power for winding a rope connected to a car. 請求項1に記載の外転型表面磁石回転電機において、
前記空隙は、半円、円形、もしくは台形の形状を有することを特徴とする外転型表面磁石回転電機。
In the abduction type surface magnet rotating electric machine according to claim 1.
An abduction type surface magnet rotating electric machine characterized in that the void has a semicircular, circular, or trapezoidal shape.
請求項1に記載の外転型表面磁石回転電機において、
前記固定子コアの前記間隙側の曲率半径は、前記固定子の半径より小さいことを特徴とする外転型表面磁石回転電機。
In the abduction type surface magnet rotating electric machine according to claim 1.
An abduction type surface magnet rotating electric machine, characterized in that the radius of curvature of the stator core on the gap side is smaller than the radius of the stator.
請求項1に記載の外転型表面磁石回転電機において、
前記固定子コアのスロットに前記コイルが配置されたことを特徴とする外転型表面磁石回転電機。
In the abduction type surface magnet rotating electric machine according to claim 1.
An abduction type surface magnet rotating electric machine characterized in that the coil is arranged in a slot of the stator core.
JP2019124326A 2019-07-03 2019-07-03 Outer-rotating surface magnet rotating electric machine Active JP7217205B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019124326A JP7217205B2 (en) 2019-07-03 2019-07-03 Outer-rotating surface magnet rotating electric machine
CN202010482781.8A CN112186922B (en) 2019-07-03 2020-06-01 External rotating surface magnet rotary motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019124326A JP7217205B2 (en) 2019-07-03 2019-07-03 Outer-rotating surface magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2021010284A true JP2021010284A (en) 2021-01-28
JP7217205B2 JP7217205B2 (en) 2023-02-02

Family

ID=73919510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019124326A Active JP7217205B2 (en) 2019-07-03 2019-07-03 Outer-rotating surface magnet rotating electric machine

Country Status (2)

Country Link
JP (1) JP7217205B2 (en)
CN (1) CN112186922B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260960A (en) * 2003-02-27 2004-09-16 Toyoda Mach Works Ltd Electric motor
JP2010004663A (en) * 2008-06-20 2010-01-07 Hitachi Ltd Permanent magnet synchronous motor
JP2013135567A (en) * 2011-12-27 2013-07-08 Joy Ride Technology Co Ltd Motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057752A (en) * 1999-08-17 2001-02-27 Seiko Instruments Inc Spindle motor
JP2003219619A (en) * 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd Motor
JP2010178442A (en) * 2009-01-28 2010-08-12 Hitachi Ltd Outer rotation type permanent magnet rotary electric machine and elevator apparatus using same
DE102013202137A1 (en) * 2013-02-08 2014-08-14 Robert Bosch Gmbh Rotor arrangement for an electric machine
JP5971669B2 (en) * 2013-06-12 2016-08-17 三菱電機株式会社 Permanent magnet embedded motor and compressor
CN204145241U (en) * 2014-09-10 2015-02-04 安徽美芝精密制造有限公司 Rotary compressor and external rotor electric machine thereof
JP2018007313A (en) * 2016-06-27 2018-01-11 株式会社日立産機システム Permanent magnet motor and elevator driving/hoisting machine
JP2018143043A (en) * 2017-02-28 2018-09-13 日本電産株式会社 motor
KR102578760B1 (en) * 2017-06-09 2023-09-15 한온시스템 주식회사 motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260960A (en) * 2003-02-27 2004-09-16 Toyoda Mach Works Ltd Electric motor
JP2010004663A (en) * 2008-06-20 2010-01-07 Hitachi Ltd Permanent magnet synchronous motor
JP2013135567A (en) * 2011-12-27 2013-07-08 Joy Ride Technology Co Ltd Motor

Also Published As

Publication number Publication date
JP7217205B2 (en) 2023-02-02
CN112186922B (en) 2023-06-13
CN112186922A (en) 2021-01-05

Similar Documents

Publication Publication Date Title
JP5851365B2 (en) Rotating electric machine
JP4715291B2 (en) Electric motor
JP5248751B2 (en) Slotless permanent magnet type rotating electrical machine
JP2007104888A (en) Rotary electric machine
WO2016058446A1 (en) Motor
JP6253520B2 (en) Rotating electric machine
JP6630690B2 (en) Rotating electric machine rotor
JP2011109774A (en) Rotating electric machine
KR20150094508A (en) Stator core and permanent magnet motor
JP6220328B2 (en) Embedded magnet rotating electric machine
WO2017064938A1 (en) Dynamo-electric machine
JP2015047009A (en) Rotary electric machine
KR20080012811A (en) Dynamoelectric machine rotor and method for reducing torque ripple
JP7217205B2 (en) Outer-rotating surface magnet rotating electric machine
JP4704883B2 (en) Permanent magnet rotating electrical machine and cylindrical linear motor
JP6169496B2 (en) Permanent magnet rotating electric machine
CN113541348A (en) Rotating electrical machine
WO2019202790A1 (en) Dynamo-electric machine, and elevator hoist system
JP2010011621A (en) End plate for rotating electrical machine
JP7027187B2 (en) Abduction type permanent magnet rotary electric machine
WO2018198217A1 (en) Permanent magnet-type motor
CN220628980U (en) Permanent magnet sinusoidal segmented high-performance high-speed surface-mounted permanent magnet synchronous motor
JP2014180096A (en) Permanent magnet dynamo-electric machine and elevator drive hoist
WO2023276680A1 (en) Rotating electrical machine
WO2019167160A1 (en) Permanent magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R150 Certificate of patent or registration of utility model

Ref document number: 7217205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150