JP2021009823A - Control valve type lead storage battery - Google Patents

Control valve type lead storage battery Download PDF

Info

Publication number
JP2021009823A
JP2021009823A JP2019123766A JP2019123766A JP2021009823A JP 2021009823 A JP2021009823 A JP 2021009823A JP 2019123766 A JP2019123766 A JP 2019123766A JP 2019123766 A JP2019123766 A JP 2019123766A JP 2021009823 A JP2021009823 A JP 2021009823A
Authority
JP
Japan
Prior art keywords
control valve
acid battery
type lead
valve type
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019123766A
Other languages
Japanese (ja)
Inventor
昌司 足立
Masashi Adachi
昌司 足立
仁 守光
Hitoshi Morimitsu
仁 守光
陽美 角
Harumi Sumi
陽美 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2019123766A priority Critical patent/JP2021009823A/en
Priority to PH22019001271U priority patent/PH22019001271Y1/en
Priority to PH22020050396U priority patent/PH22020050396U1/en
Priority to PH22020050398U priority patent/PH22020050398U1/en
Priority to PH22020050397U priority patent/PH22020050397U1/en
Publication of JP2021009823A publication Critical patent/JP2021009823A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To disclose a technology capable of dramatically improving self discharge performance of a control valve type lead storage battery.SOLUTION: A control valve type lead storage battery comprises: a frame in which a housing space is formed; an electrode plate group that is housed in the housing space and comprises a positive electrode plate, a negative electrode plate, and a separator; and a control valve. The control valve comprises: a cylindrical valve seat on which a communication hole communicating with the housing space is formed, the valve seat formed so as to protrude toward the outside of the housing space; and a valve body including a peripheral wall part surrounding the valve seat's outer periphery and a closing part that faces the valve seat's opening and closes one end of the peripheral wall part. Under a predetermined condition, a pressure change rate of the housing space is equal to or lower than 119%.SELECTED DRAWING: Figure 9

Description

本明細書に開示される技術は、制御弁式鉛蓄電池に関する。 The techniques disclosed herein relate to controlled valve lead-acid batteries.

鉛蓄電池は、一般に、収容空間が形成された筐体と、上記収容空間に収容され、正極板と負極板とセパレータとを備える極板群と、上記収容空間に収容された電解液(例えば、希硫酸)と、を備える。このような鉛蓄電池では、例えば充電末期に、筐体の収容空間において、電解液に含まれる水が電気分解されて、正極板から酸素ガスが発生し、負極板から水素ガスが発生することがある。 A lead-acid battery generally includes a housing in which a storage space is formed, a group of electrodes housed in the storage space and having a positive electrode plate, a negative electrode plate, and a separator, and an electrolytic solution (for example, an electrolytic solution) housed in the storage space. Dilute sulfuric acid) and. In such a lead-acid battery, for example, at the end of charging, water contained in the electrolytic solution may be electrolyzed in the accommodation space of the housing to generate oxygen gas from the positive electrode plate and hydrogen gas from the negative electrode plate. is there.

ここで、鉛蓄電池の1つとして、液式鉛蓄電池が知られている。液式鉛蓄電池では、常に開口した排気孔が筐体に形成されているため、筐体の収容空間に発生した酸素ガスや水素ガス(以下、まとめて「ガス」ともいう)を、常時、筐体の外部に排出できるようになっている。ただし、液式鉛蓄電池では、ガスの排出によって電解液中の水分が減少するため、電池の使用過程で筐体の収容空間に精製水を補充する必要がある。また、液式鉛蓄電池では、筐体の収容空間に電解液が流動できる程度に十分に収容されている。このため、電池を横倒しにしたり倒立させたりすると、筐体の収容空間に収容された電解液が排気孔を介して外部に漏れ出やすい。 Here, a liquid lead-acid battery is known as one of the lead-acid batteries. In a liquid lead-acid battery, since an exhaust hole that is always open is formed in the housing, oxygen gas and hydrogen gas (hereinafter collectively referred to as "gas") generated in the housing space of the housing are always stored in the housing. It can be discharged to the outside of the body. However, in a liquid lead-acid battery, since the water content in the electrolytic solution is reduced by discharging the gas, it is necessary to replenish the accommodation space of the housing with purified water during the process of using the battery. Further, in the liquid lead-acid battery, the electrolytic solution is sufficiently accommodated in the accommodation space of the housing so that the electrolytic solution can flow. Therefore, when the battery is laid on its side or turned upside down, the electrolytic solution stored in the housing space of the housing tends to leak to the outside through the exhaust hole.

一方、鉛蓄電池の他の1つとして、制御弁式鉛蓄電池(密閉式鉛蓄電池ともいう)が知られている。制御弁式鉛蓄電池では、上記液式鉛蓄電池とは異なり、筐体の収容空間に流動する電解液がほとんどなく、かつ、筐体の収容空間の圧力が所定値未満である正常時では、筐体の収容空間が密閉状態とされている。 On the other hand, as one of the other lead-acid batteries, a control valve type lead-acid battery (also referred to as a closed-type lead-acid battery) is known. Unlike the above-mentioned liquid-type lead-acid battery, the control valve type lead-acid battery has almost no electrolytic solution flowing in the housing space, and the pressure in the housing space is less than a predetermined value under normal conditions. The containment space of the body is sealed.

具体的には、制御弁式鉛蓄電池では、セパレータは、例えばガラス繊維により構成されており、そのセパレータに電解液が含浸されている。このため、筐体の収容空間に流動する電解液がほとんどない。また、制御弁式鉛蓄電池では、排気孔の代わりに、制御弁が筐体に設けられている。制御弁は、収容空間に連通する連通孔が形成された筒状の弁座であって、収容空間の外部に向けて突出するように形成された弁座と、弁座の外周を囲む周壁部と、弁座の開口に対向し、かつ、周壁部の一端を閉塞する閉塞部と、を有する弁体と、を備えており、正常時では、筐体の収容空間に発生したガスを筐体の外部に排出させないよう、閉状態となっており、筐体の収容空間が密閉状態とされる。このような構成を有する制御弁式鉛蓄電池では、正極板から発生した酸素ガスは、負極板に移動し、負極板で発生した水素と再結合して水が再生され、筐体の収容空間からガスが排出されることによる電解液中の水分の減少が抑制される。 Specifically, in the control valve type lead-acid battery, the separator is made of, for example, glass fiber, and the separator is impregnated with an electrolytic solution. Therefore, there is almost no electrolytic solution flowing in the accommodation space of the housing. Further, in the control valve type lead-acid battery, a control valve is provided in the housing instead of the exhaust hole. The control valve is a tubular valve seat having a communication hole that communicates with the accommodation space. The valve seat is formed so as to project toward the outside of the accommodation space, and the peripheral wall portion surrounding the outer periphery of the valve seat. A valve body that faces the opening of the valve seat and has a closing portion that closes one end of the peripheral wall portion, and normally, the gas generated in the accommodation space of the housing is discharged to the housing. It is in a closed state so that it is not discharged to the outside of the housing, and the accommodation space of the housing is in a closed state. In the control valve type lead-acid battery having such a configuration, the oxygen gas generated from the positive electrode plate moves to the negative electrode plate, recombines with the hydrogen generated in the negative electrode plate, and water is regenerated from the accommodation space of the housing. The decrease in water content in the electrolytic solution due to the discharge of gas is suppressed.

ただし、制御弁式鉛蓄電池においても、筐体の収容空間で発生したガスの排出を完全に無くすことは不可能である。例えば過充電時には、水素ガスが発生する。このため、ガスの発生に起因して筐体の収容空間の圧力が上昇することがある。制御弁は、筐体の収容空間の圧力が所定値以上となった場合には、開状態となる。その結果、筐体の収容空間に発生したガスが外部に排出されて、筐体の収容空間の圧力が正常時の圧力に近づく。これにより、筐体の収容空間の圧力上昇に起因する筐体の膨れの発生が抑制される。 However, even in a control valve type lead-acid battery, it is impossible to completely eliminate the emission of gas generated in the accommodation space of the housing. For example, hydrogen gas is generated during overcharging. Therefore, the pressure in the accommodation space of the housing may increase due to the generation of gas. The control valve is opened when the pressure in the accommodation space of the housing exceeds a predetermined value. As a result, the gas generated in the housing space is discharged to the outside, and the pressure in the housing space approaches the normal pressure. As a result, the occurrence of swelling of the housing due to the increase in pressure in the accommodation space of the housing is suppressed.

上述したように、制御弁式鉛蓄電池では、正常時において、筐体の気密性が要求される(例えば、特許文献1参照)。また、従来、制御弁式鉛蓄電池が、筐体の気密性が確保されていない気密不良になると、電池の容量が低下することが知られている(例えば、特許文献2,3参照)。 As described above, in the control valve type lead-acid battery, the airtightness of the housing is required under normal conditions (see, for example, Patent Document 1). Further, conventionally, it is known that when a control valve type lead-acid battery has a poor airtightness in which the airtightness of the housing is not ensured, the capacity of the battery decreases (see, for example, Patent Documents 2 and 3).

特開平5−74433号公報Japanese Unexamined Patent Publication No. 5-744333 特開平5−144478号公報Japanese Unexamined Patent Publication No. 5-144478 特開平9−312153号公報Japanese Unexamined Patent Publication No. 9-321153

上述したように制御弁式鉛蓄電池では、正常時において、筐体の気密性が要求される。しかし、上述したような弁座と弁体から構成された制御弁の開閉機能を確保しつつ、閉状態時の筐体の収容空間を完全な密閉状態にするのは困難である。従来、筐体の気密性をどの程度確保すべきかについて、十分に検討されていなかった。 As described above, in the control valve type lead-acid battery, the airtightness of the housing is required under normal conditions. However, it is difficult to completely seal the accommodation space of the housing in the closed state while ensuring the opening / closing function of the control valve composed of the valve seat and the valve body as described above. Conventionally, the degree of airtightness of the housing has not been sufficiently examined.

本明細書では、制御弁式鉛蓄電池の自己放電性能を飛躍的に向上させることが可能な技術を開示する。 This specification discloses a technique capable of dramatically improving the self-discharge performance of a control valve type lead-acid battery.

本明細書に開示される制御弁式鉛蓄電池は、収容空間が形成された筐体と、前記収容空間に収容され、正極板と負極板とセパレータとを備える極板群と、制御弁と、を備え、前記制御弁は、前記収容空間に連通する連通孔が形成された筒状の弁座であって、前記収容空間の外部に向けて突出するように形成された弁座と、前記弁座の外周を囲む周壁部と、前記弁座の開口に対向し、かつ、前記周壁部の一端を閉塞する閉塞部と、を有する弁体と、を備えている。所定条件における前記収容空間の圧力変化率が、119%以下である。 The control valve type lead-acid battery disclosed in the present specification includes a housing in which a storage space is formed, a group of electrode plates housed in the storage space and having a positive electrode plate, a negative electrode plate, and a separator, a control valve, and a control valve. The control valve is a tubular valve seat formed with a communication hole communicating with the accommodation space, and is a valve seat formed so as to project outward of the accommodation space and the valve. The valve body includes a peripheral wall portion that surrounds the outer periphery of the seat, and a closed portion that faces the opening of the valve seat and closes one end of the peripheral wall portion. The pressure change rate of the accommodation space under the predetermined conditions is 119% or less.

本実施形態における鉛蓄電池100の外観構成を示す正面図である。It is a front view which shows the appearance structure of the lead storage battery 100 in this embodiment. 鉛蓄電池100の外観構成を示す背面図である。It is a rear view which shows the appearance structure of the lead storage battery 100. 鉛蓄電池100の外観構成を示す上面図である。It is a top view which shows the appearance structure of the lead storage battery 100. 鉛蓄電池100の内部構成を示す上面図である。It is a top view which shows the internal structure of the lead storage battery 100. 図3のV−Vの位置における鉛蓄電池100のYZ断面構成を示す説明図である。It is explanatory drawing which shows the YZ cross-sectional structure of the lead storage battery 100 at the position of VV of FIG. 図3のVI−VIの位置における鉛蓄電池100のYZ断面構成を示す説明図である。It is explanatory drawing which shows the YZ cross-sectional structure of the lead-acid battery 100 at the position of VI-VI of FIG. 押さえ板18が外された状態の鉛蓄電池100の外観構成を示す上面図である。It is a top view which shows the appearance structure of the lead-acid battery 100 in the state which the holding plate 18 is removed. 図7の一部を拡大して示す斜視図である。It is a perspective view which shows a part of FIG. 7 enlarged. 図7のIX−IXの位置における制御弁60付近のXZ断面構成を示す説明図である。It is explanatory drawing which shows the XZ cross-sectional structure around the control valve 60 at the position of IX-IX of FIG. 性能評価結果を示す説明図である。It is explanatory drawing which shows the performance evaluation result.

本明細書に開示される技術は、以下の形態として実現することが可能である。 The technique disclosed in the present specification can be realized in the following forms.

(1)本明細書に開示される制御弁式鉛蓄電池は、収容空間が形成された筐体と、前記収容空間に収容され、正極板と負極板とセパレータとを備える極板群と、制御弁と、を備え、前記制御弁は、前記収容空間に連通する連通孔が形成された筒状の弁座であって、前記収容空間の外部に向けて突出するように形成された弁座と、前記弁座の外周を囲む周壁部と、前記弁座の開口に対向し、所定条件における前記収容空間の圧力変化率が、119%以下である。 (1) The control valve type lead-acid battery disclosed in the present specification is controlled by a housing in which a storage space is formed, a group of electrode plates housed in the storage space and having a positive electrode plate, a negative electrode plate, and a separator. A valve seat including a valve, wherein the control valve is a tubular valve seat formed with a communication hole communicating with the accommodation space, and is formed so as to project outward of the accommodation space. The pressure change rate of the accommodation space facing the peripheral wall portion surrounding the outer periphery of the valve seat and the opening of the valve seat under predetermined conditions is 119% or less.

本願発明者は、鋭意検討を重ねることにより、所定条件における筐体の収容空間の圧力変化率が所定値(119%)以下であれば、制御弁式鉛蓄電池の自己放電性能が飛躍的に向上することを新たに見出した。本制御弁式鉛蓄電池によれば、所定条件における筐体の収容空間の圧力変化率が119%以下であるため、圧力変化率が119%より高い構成に比べて、制御弁式鉛蓄電池の自己放電性能を飛躍的に向上させることができる。 The inventor of the present application has made extensive studies to dramatically improve the self-discharge performance of the control valve type lead-acid battery if the pressure change rate of the housing space under predetermined conditions is equal to or less than a predetermined value (119%). I found a new thing to do. According to this control valve type lead acid battery, since the pressure change rate of the housing space under predetermined conditions is 119% or less, the self-discharge of the control valve type lead acid battery is compared with the configuration in which the pressure change rate is higher than 119%. The discharge performance can be dramatically improved.

(2)上記制御弁式鉛蓄電池において、前記筐体は、開口部を有する電槽と、前記電槽の前記開口部を塞ぐ蓋と、を備え、前記蓋の側壁の外周面に、所定方向に延びるリブが形成されている構成としてもよい。本制御弁式鉛蓄電池によれば、蓋の側壁の外周面に、所定方向に延びるリブが形成されているため、温度変化に伴う蓋の変形に起因して蓋と電槽との間の気密性が低下することを抑制することができる。 (2) In the control valve type lead-acid battery, the housing includes an electric tank having an opening and a lid for closing the opening of the electric tank, and is provided on an outer peripheral surface of a side wall of the lid in a predetermined direction. A rib extending to the surface may be formed. According to this control valve type lead-acid battery, ribs extending in a predetermined direction are formed on the outer peripheral surface of the side wall of the lid, so that the lid and the electric tank are airtight due to the deformation of the lid due to the temperature change. It is possible to suppress the deterioration of sex.

(3)上記制御弁式鉛蓄電池において、前記筐体には、前記収容空間を複数の部屋に区画する壁が形成されており、前記複数の部屋のそれぞれに前記極板群が収容されており、さらに、前記複数の部屋のそれぞれに収容され、前記複数の正極板と前記複数の負極板とのいずれかに電気的に接続される集電部を備え、前記集電部の最小厚さは、5.5mm以上である構成としてもよい。本制御弁式鉛蓄電池によれば、集電部の最小厚さが5.5mm未満である構成に比べて、集電部の強度が高い。このため、例えば集電部の熱変形に起因して筐体の気密性が低下することを抑制することができる。 (3) In the control valve type lead-acid battery, a wall for dividing the accommodation space into a plurality of rooms is formed in the housing, and the electrode plate group is accommodated in each of the plurality of rooms. Further, each of the plurality of rooms is provided with a current collector which is electrically connected to any one of the plurality of positive electrode plates and the plurality of negative electrode plates, and the minimum thickness of the current collector is set. It may be configured to be 5.5 mm or more. According to this control valve type lead-acid battery, the strength of the current collector is higher than that of the configuration in which the minimum thickness of the current collector is less than 5.5 mm. Therefore, for example, it is possible to suppress a decrease in the airtightness of the housing due to thermal deformation of the current collector.

(4)上記制御弁式鉛蓄電池において、さらに、前記所定条件における前記収容空間の前記圧力変化率が、117%以下である構成としてもよい。本願発明者は、鋭意検討を重ねることにより、さらに、所定条件における筐体の収容空間の圧力変化率が所定値(117%)以下であれば、筐体の収容空間に収容された電解液中の水分の減少を抑制する減液特性が飛躍的に向上することを新たに見出した。本制御弁式鉛蓄電池によれば、所定条件における筐体の収容空間の圧力変化率が117%以下であるため、圧力変化率が117%より高い構成に比べて、制御弁式鉛蓄電池の減液特性を飛躍的に向上させることができる。 (4) The control valve type lead-acid battery may be further configured such that the pressure change rate of the accommodation space under the predetermined conditions is 117% or less. The inventor of the present application has conducted diligent studies, and further, if the pressure change rate of the housing space under predetermined conditions is equal to or less than a predetermined value (117%), the electrolytic solution contained in the housing space is contained. It was newly found that the liquid-reducing property that suppresses the decrease in water content of the water is dramatically improved. According to this control valve type lead acid battery, since the pressure change rate of the housing space under predetermined conditions is 117% or less, the control valve type lead acid battery is reduced as compared with the configuration in which the pressure change rate is higher than 117%. The liquid characteristics can be dramatically improved.

(5)上記制御弁式鉛蓄電池において、さらに、前記所定条件における前記収容空間の前記圧力変化率が、109%以下である構成としてもよい。本願発明者は、鋭意検討を重ねることにより、さらに、所定条件における筐体の収容空間の圧力変化率が所定値(109%)以下であれば、電池の寿命性能が飛躍的に向上することを新たに見出した。ここでいう電池の寿命性能は、一定の条件のもとで充放電を繰り返し、その電池の容量が規定容量に低下するまでの充放電回数(サイクル数)で評価されるものである。本制御弁式鉛蓄電池によれば、所定条件における筐体の収容空間の圧力変化率が109%以下であるため、圧力変化率が109%より高い構成に比べて、制御弁式鉛蓄電池の寿命性能を飛躍的に向上させることができる。 (5) The control valve type lead-acid battery may be further configured such that the pressure change rate of the accommodation space under the predetermined conditions is 109% or less. The inventor of the present application has found that the battery life performance can be dramatically improved if the pressure change rate of the housing space under predetermined conditions is equal to or less than a predetermined value (109%) through repeated diligent studies. I found a new one. The life performance of a battery referred to here is evaluated by the number of charge / discharge cycles (number of cycles) until the capacity of the battery drops to a specified capacity after repeated charging / discharging under certain conditions. According to this control valve type lead acid battery, since the pressure change rate of the housing space under predetermined conditions is 109% or less, the life of the control valve type lead acid battery is higher than that of the configuration in which the pressure change rate is higher than 109%. Performance can be dramatically improved.

(6)上記制御弁式鉛蓄電池において、さらに、前記所定条件における前記収容空間の前記圧力変化率が、101%以下である構成としてもよい。本制御弁式鉛蓄電池によれば、所定条件における筐体の収容空間の圧力変化率が101%以下であるため、自己放電性能と減液特性と寿命性能との全てを飛躍的に向上させることができる。 (6) The control valve type lead-acid battery may be further configured such that the pressure change rate of the accommodation space under the predetermined conditions is 101% or less. According to this control valve type lead-acid battery, the pressure change rate of the housing space under predetermined conditions is 101% or less, so that all of self-discharge performance, liquid reduction characteristics and life performance can be dramatically improved. Can be done.

(7)上記制御弁式鉛蓄電池において、前記制御弁における前記弁体の内周面と前記弁座の外周面との間には、オイルが存在している構成としてもよい。本制御弁式鉛蓄電池によれば、制御弁における弁体の内周面と弁座の外周面との間にオイルが存在している。このため、弁体と弁座との隙間がオイルによって塞がれるため、筐体の収容空間の気密性を向上させることができる。 (7) In the control valve type lead-acid battery, oil may be present between the inner peripheral surface of the valve body of the control valve and the outer peripheral surface of the valve seat. According to this control valve type lead-acid battery, oil is present between the inner peripheral surface of the valve body and the outer peripheral surface of the valve seat in the control valve. Therefore, since the gap between the valve body and the valve seat is closed by the oil, the airtightness of the accommodation space of the housing can be improved.

(8)上記制御弁式鉛蓄電池において、前記制御弁の前記閉塞部の内面には、突部が形成されており、前記弁座の前記連通孔の軸方向から見て、前記突部は、前記弁座の前記開口の輪郭線の内側に位置している構成としてもよい。本制御弁式鉛蓄電池によれば、制御弁の内面に形成された突部が、弁座の開口の内側に位置する。これにより、突部の存在に起因して弁体の閉塞部の内面と弁座の開口端との間に隙間ができることを抑制しつつ、弁体の閉塞部の内面に付着した水分を突部に集めて落下させて収容空間に効率良く回収させることができる。 (8) In the control valve type lead-acid battery, a protrusion is formed on the inner surface of the closing portion of the control valve, and the protrusion is viewed from the axial direction of the communication hole of the valve seat. It may be configured to be located inside the contour line of the opening of the valve seat. According to this control valve type lead acid battery, the protrusion formed on the inner surface of the control valve is located inside the opening of the valve seat. As a result, while suppressing the formation of a gap between the inner surface of the closed portion of the valve body and the open end of the valve seat due to the presence of the protruding portion, the moisture adhering to the inner surface of the closed portion of the valve body is removed from the protruding portion. It can be collected and dropped in the storage space for efficient collection.

A.実施形態:
A−1.鉛蓄電池100の基本構成:
図1は、本実施形態における鉛蓄電池100の外観構成を示す正面図であり、図2は、鉛蓄電池100の外観構成を示す背面図であり、図3は、鉛蓄電池100の外観構成を示す上面図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を「上方向」といい、Z軸負方向を「下方向」というものとする。但し、鉛蓄電池100は実際には図1等に示す向きとは異なる向きで設置されてもよい。なお、後述する図4以降の図について同様である。
A. Embodiment:
A-1. Basic configuration of lead-acid battery 100:
FIG. 1 is a front view showing the external configuration of the lead-acid battery 100 in the present embodiment, FIG. 2 is a rear view showing the external configuration of the lead-acid battery 100, and FIG. 3 shows the external configuration of the lead-acid battery 100. It is a top view. Each figure shows XYZ axes that are orthogonal to each other to identify the direction. In the present specification, for convenience, the Z-axis positive direction is referred to as "upward" and the Z-axis negative direction is referred to as "downward". However, the lead-acid battery 100 may actually be installed in a direction different from the direction shown in FIG. 1 and the like. The same applies to the figures after FIG. 4 described later.

本実施形態の鉛蓄電池100は、制御弁式鉛蓄電池である。制御弁式鉛蓄電池は、内部に流動する電解液を有さないことから設置姿勢の自由度が高く、また、液量の点検や補水が不要であることからメンテナンスが容易である。制御弁式鉛蓄電池は、例えば、無停電電源装置、通信基地局、二輪自動車等の電源として利用される。 The lead-acid battery 100 of the present embodiment is a control valve type lead-acid battery. The control valve type lead-acid battery has a high degree of freedom in the installation posture because it does not have an electrolytic solution flowing inside, and maintenance is easy because it does not require checking the amount of liquid or refilling water. The control valve type lead-acid battery is used, for example, as a power source for an uninterruptible power supply, a communication base station, a two-wheeled vehicle, or the like.

鉛蓄電池100は、筐体10と、複数の極板群20(後述の図7等を参照)と、正極側端子部材30と、負極側端子部材40と、制御弁60(後述の図7等を参照)と、を備える。以下では、正極側端子部材30と負極側端子部材40とを、まとめて「端子部材30,40」ともいう。 The lead-acid battery 100 includes a housing 10, a plurality of electrode plate groups 20 (see FIG. 7 and the like described later), a positive electrode side terminal member 30, a negative electrode side terminal member 40, and a control valve 60 (see FIG. 7 and the like described later). ) And. Hereinafter, the positive electrode side terminal member 30 and the negative electrode side terminal member 40 are also collectively referred to as “terminal members 30, 40”.

(筐体10の構成)
図1から図3に示すように、筐体10は、電槽12と、蓋14とを有する。電槽12は、上面に開口部12a(後述の図4参照)を有する略直方体の容器であり、例えば合成樹脂により形成されている。蓋14は、電槽12の開口部12aを塞ぐように配置された部材であり、例えば合成樹脂により形成されている。蓋14の下面の周縁部分と電槽12の開口部12aの周縁部分とが例えば熱溶着によって接合されることにより、筐体10内に外部との気密が保たれた収容空間15が形成されている。なお、本実施形態では、図3に示すように、筐体10の上下方向(Z軸方向)から見た形状は、略長方形であり、X軸方向に平行な一対の辺の長さがY軸方向に平行な一対の辺の長さより長い。
(Structure of housing 10)
As shown in FIGS. 1 to 3, the housing 10 has an electric tank 12 and a lid 14. The battery case 12 is a substantially rectangular parallelepiped container having an opening 12a (see FIG. 4 described later) on the upper surface, and is formed of, for example, a synthetic resin. The lid 14 is a member arranged so as to close the opening 12a of the electric tank 12, and is formed of, for example, a synthetic resin. By joining the peripheral edge portion of the lower surface of the lid 14 and the peripheral edge portion of the opening 12a of the electric tank 12 by, for example, heat welding, a storage space 15 maintained in airtightness with the outside is formed in the housing 10. There is. In the present embodiment, as shown in FIG. 3, the shape of the housing 10 seen from the vertical direction (Z-axis direction) is substantially rectangular, and the length of the pair of sides parallel to the X-axis direction is Y. Longer than the length of a pair of sides parallel to the axis.

筐体10内の収容空間15は、複数の(本実施形態では5枚の)壁11によって、所定方向(本実施形態ではX軸方向)に並ぶ複数の(本実施形態では6つの)部屋16に区画されている。以下では、複数の部屋16が並ぶ方向(X軸方向)を、「部屋16の配列方向」という。本実施形態では、部屋16の配列方向は、筐体10の上下方向から見た形状における長辺(X軸方向に平行な一対の辺)に平行な方向に一致する。 The accommodation space 15 in the housing 10 is a plurality of (six in the present embodiment) rooms 16 arranged in a predetermined direction (X-axis direction in the present embodiment) by a plurality of (five in the present embodiment) walls 11. It is divided into. In the following, the direction in which a plurality of rooms 16 are arranged (X-axis direction) is referred to as "arrangement direction of rooms 16". In the present embodiment, the arrangement direction of the rooms 16 coincides with the direction parallel to the long sides (a pair of sides parallel to the X-axis direction) in the shape seen from the vertical direction of the housing 10.

また、本実施形態では、各壁11は、蓋14に形成された上壁17と電槽12に形成された下壁58とによって構成されている。具体的には、蓋14の下面には、部屋16の配列方向に並ぶ複数の(本実施形態では5枚の)上壁17が形成されている。電槽12には、部屋16の配列方向に並ぶ複数の(本実施形態では5枚の)下壁58が形成されている。各上壁17の下端と各下壁58の上端とが例えば熱溶着によって接合されることにより、互いに隣り合う部屋16同士の間の気密が保たれている。 Further, in the present embodiment, each wall 11 is composed of an upper wall 17 formed on the lid 14 and a lower wall 58 formed on the electric tank 12. Specifically, on the lower surface of the lid 14, a plurality of (five in this embodiment) upper walls 17 arranged in the arrangement direction of the room 16 are formed. A plurality of lower walls 58 (five in the present embodiment) arranged in the arrangement direction of the room 16 are formed in the electric tank 12. By joining the lower end of each upper wall 17 and the upper end of each lower wall 58 by, for example, heat welding, the airtightness between the adjacent rooms 16 is maintained.

図4は、鉛蓄電池100の内部構成を示す上面図である。図4には、蓋14が外された鉛蓄電池100(電槽12)を上側から見た状態が示されている。なお、図示の便宜上、図4では、後述する複数の極板群20(およびそれに接続されるストラップ52,54)の内の一部(3つ)のみが示されている。図5は、図3のV−Vの位置における鉛蓄電池100のYZ断面構成を示す説明図であり、図6は、図3のVI−VIの位置における鉛蓄電池100のYZ断面構成を示す説明図である。なお、図5および図6では、極板群20の構成が分かりやすく示されるように、極板群20の構成の一部の図示が省略されている。 FIG. 4 is a top view showing the internal configuration of the lead storage battery 100. FIG. 4 shows a state in which the lead storage battery 100 (electric tank 12) with the lid 14 removed is viewed from above. For convenience of illustration, FIG. 4 shows only a part (three) of a plurality of electrode plate groups 20 (and straps 52 and 54 connected to the plate group 20) described later. FIG. 5 is an explanatory view showing the YZ cross-sectional configuration of the lead-acid battery 100 at the position of VV in FIG. 3, and FIG. 6 is an explanatory view showing the YZ cross-sectional configuration of the lead-acid battery 100 at the position of VI-VI of FIG. It is a figure. In addition, in FIG. 5 and FIG. 6, a part of the configuration of the electrode plate group 20 is omitted so that the configuration of the electrode plate group 20 is shown in an easy-to-understand manner.

図4に示すように、筐体10内の各部屋16には、1つの極板群20が収容されている。本実施形態では、筐体10内の空間が6つの部屋16に区画されているため、鉛蓄電池100は6つの極板群20を備える。 As shown in FIG. 4, one electrode plate group 20 is housed in each room 16 in the housing 10. In the present embodiment, since the space inside the housing 10 is divided into six rooms 16, the lead-acid battery 100 includes six electrode plate groups 20.

(極板群20の構成)
図4から図6に示すように、極板群20は、複数の正極板210と、複数の負極板220と、セパレータ230とを備える。複数の正極板210および複数の負極板220は、部屋16の配列方向(X軸方向)に、正極板210と負極板220とが交互に並ぶように配置されている。また、セパレータ230は、互いに隣り合う正極板210と負極板220との間に配置され、正極板210と負極板220とに挟み込まれている。以下では、正極板210と負極板220とを、まとめて「極板210,220」ともいう。
(Structure of electrode plate group 20)
As shown in FIGS. 4 to 6, the electrode plate group 20 includes a plurality of positive electrode plates 210, a plurality of negative electrode plates 220, and a separator 230. The plurality of positive electrode plates 210 and the plurality of negative electrode plates 220 are arranged so that the positive electrode plates 210 and the negative electrode plates 220 are alternately arranged in the arrangement direction (X-axis direction) of the room 16. Further, the separator 230 is arranged between the positive electrode plate 210 and the negative electrode plate 220 adjacent to each other, and is sandwiched between the positive electrode plate 210 and the negative electrode plate 220. Hereinafter, the positive electrode plate 210 and the negative electrode plate 220 are also collectively referred to as “electrode plates 210, 220”.

正極板210は、正極集電体212と、正極集電体212に支持された正極活物質216とを有する。正極集電体212は、略格子状または網目状に配置された骨を有する導電性部材であり、例えば鉛または鉛合金により形成されている。また、正極集電体212は、その上端付近に、上方に突出する正極耳部214を有している。正極活物質216は、二酸化鉛を含んでいる。正極活物質216は、さらに、公知の他の添加剤を含んでいてもよい。 The positive electrode plate 210 has a positive electrode current collector 212 and a positive electrode active material 216 supported by the positive electrode current collector 212. The positive electrode current collector 212 is a conductive member having bones arranged in a substantially lattice pattern or a mesh pattern, and is formed of, for example, lead or a lead alloy. Further, the positive electrode current collector 212 has a positive electrode ear portion 214 protruding upward near the upper end thereof. The positive electrode active material 216 contains lead dioxide. The positive electrode active material 216 may further contain other known additives.

負極板220は、負極集電体222と、負極集電体222に支持された負極活物質226とを有する。負極集電体222は、略格子状または網目状に配置された骨を有する導電性部材であり、例えば鉛または鉛合金により形成されている。また、負極集電体222は、その上端付近に、上方に突出する負極耳部224を有している。負極活物質226は、鉛(海綿状鉛)を含んでいる。負極活物質226は、さらに、公知の他の添加剤を含んでいてもよい。 The negative electrode plate 220 has a negative electrode current collector 222 and a negative electrode active material 226 supported by the negative electrode current collector 222. The negative electrode current collector 222 is a conductive member having bones arranged in a substantially lattice pattern or a mesh pattern, and is formed of, for example, lead or a lead alloy. Further, the negative electrode current collector 222 has a negative electrode ear portion 224 protruding upward near the upper end thereof. The negative electrode active material 226 contains lead (sponge-like lead). The negative electrode active material 226 may further contain other known additives.

セパレータ230は、絶縁性材料であるガラス繊維により構成され、厚さ方向(X軸方向)に弾性変形可能なマット状の部材である。セパレータ230には、電解液(例えば、希硫酸)が含浸されている。このように、セパレータ230は、両極板210,220の間の短絡を防止すると共に、電解液を保持する機能を有する。 The separator 230 is a mat-like member made of glass fiber, which is an insulating material, and elastically deformable in the thickness direction (X-axis direction). The separator 230 is impregnated with an electrolytic solution (for example, dilute sulfuric acid). As described above, the separator 230 has a function of preventing a short circuit between the bipolar plates 210 and 220 and holding an electrolytic solution.

図3から図5に示すように、極板群20を構成する複数の正極板210の正極耳部214は、正極側ストラップ52に接続されている。すなわち、複数の正極板210は、正極側ストラップ52を介して電気的に並列に接続されている。同様に、極板群20を構成する複数の負極板220の負極耳部224は、負極側ストラップ54に接続されている。すなわち、複数の負極板220は、負極側ストラップ54を介して電気的に並列に接続されている。なお、正極側ストラップ52と負極側ストラップ54とは、例えば鉛または鉛合金により形成されている。以下では、正極側ストラップ52と負極側ストラップ54とを、まとめて「ストラップ52,54」ともいう。なお、ストラップ52,54は、特許請求の範囲における集電部に相当する。 As shown in FIGS. 3 to 5, the positive electrode ear portions 214 of the plurality of positive electrode plates 210 constituting the electrode plate group 20 are connected to the positive electrode side strap 52. That is, the plurality of positive electrode plates 210 are electrically connected in parallel via the positive electrode side strap 52. Similarly, the negative electrode ear portions 224 of the plurality of negative electrode plates 220 constituting the electrode plate group 20 are connected to the negative electrode side strap 54. That is, the plurality of negative electrode plates 220 are electrically connected in parallel via the negative electrode side strap 54. The positive electrode side strap 52 and the negative electrode side strap 54 are formed of, for example, lead or a lead alloy. Hereinafter, the positive electrode side strap 52 and the negative electrode side strap 54 are also collectively referred to as “straps 52, 54”. The straps 52 and 54 correspond to current collectors within the scope of the claims.

図4から図6に示すように、電槽12の各下壁58には、貫通孔59が形成されており、その貫通孔59内に接続部材56が配置されている。接続部材56は、例えば鉛または鉛合金により形成されている。鉛蓄電池100において、一の部屋16に収容された負極側ストラップ54は、接続部材56を介して、該一の部屋16の一方側(例えばX軸正方向側)に隣り合う他の部屋16に収容された正極側ストラップ52に接続されている。また、該一の部屋16に収容された正極側ストラップ52は、接続部材56を介して、該一の部屋16の他方側(例えばX軸負方向側)に隣り合う他の部屋16に収容された負極側ストラップ54に接続されている。すなわち、鉛蓄電池100が備える複数の極板群20は、ストラップ52,54および接続部材56を介して電気的に直列に接続されている。なお、図5に示すように、部屋16の配列方向の一方側(X軸正方向側)の端に位置する部屋16に収容された正極側ストラップ52は、接続部材56ではなく、後述する正極柱34に接続されている。また、図6に示すように、部屋16の配列方向の他方側(X軸負方向側)の端に位置する部屋16に収容された負極側ストラップ54は、接続部材56ではなく、後述する負極柱44に接続されている。 As shown in FIGS. 4 to 6, a through hole 59 is formed in each lower wall 58 of the electric tank 12, and a connecting member 56 is arranged in the through hole 59. The connecting member 56 is made of, for example, lead or a lead alloy. In the lead-acid battery 100, the negative electrode side strap 54 housed in one room 16 is connected to another room 16 adjacent to one side (for example, the X-axis positive direction side) of the one room 16 via a connecting member 56. It is connected to the housed positive electrode side strap 52. Further, the positive electrode side strap 52 housed in the one room 16 is housed in another room 16 adjacent to the other side (for example, the X-axis negative direction side) of the one room 16 via the connecting member 56. It is connected to the negative electrode side strap 54. That is, the plurality of electrode plate groups 20 included in the lead storage battery 100 are electrically connected in series via the straps 52 and 54 and the connecting member 56. As shown in FIG. 5, the positive electrode side strap 52 housed in the room 16 located at one end of the room 16 in the arrangement direction (the X-axis positive direction side) is not the connecting member 56 but the positive electrode described later. It is connected to the pillar 34. Further, as shown in FIG. 6, the negative electrode side strap 54 housed in the room 16 located at the other end (X-axis negative direction side) of the room 16 in the arrangement direction is not the connecting member 56 but the negative electrode described later. It is connected to the pillar 44.

(端子部材30,40の構成)
図1および図3に示すように、正極側端子部材30は、筐体10における部屋16の配列方向の一方側(X軸正方向側)の端部付近に配置されており、負極側端子部材40は、筐体10における部屋16の配列方向の他方側(X軸負方向側)の端部付近に配置されている。
(Structure of terminal members 30 and 40)
As shown in FIGS. 1 and 3, the positive electrode side terminal member 30 is arranged near the end of the housing 10 on one side (X-axis positive direction side) of the chamber 16 in the arrangement direction, and is arranged on the negative electrode side terminal member. The 40 is arranged near the end of the housing 10 on the other side (X-axis negative direction side) of the room 16 in the arrangement direction.

図5に示すように、正極側端子部材30は、正極柱34と、正極側端子部36とを含む。正極柱34は、略円柱形の導電性部材であり、例えば鉛合金により形成されている。正極柱34は、蓋14に形成された孔に挿入されており、例えば溶接により蓋14に接合されている。正極柱34の下端部は、蓋14の下面より下方に突出しており、上述したように、部屋16の配列方向の一方側(X軸正方向側)の端に位置する部屋16に収容された正極側ストラップ52に接続されている。正極側端子部36は、例えば略L形の導電性部材であり、例えば鉛合金により形成されている。正極側端子部36の上端部は、蓋14の上面より上方に突出しており、正極側端子部36の下端部は、正極柱34の上端部と電気的に接続されている。なお、正極側端子部36と正極柱34とが一体部材であるとしてもよい。 As shown in FIG. 5, the positive electrode side terminal member 30 includes a positive electrode column 34 and a positive electrode side terminal portion 36. The positive electrode column 34 is a substantially cylindrical conductive member, and is formed of, for example, a lead alloy. The positive electrode column 34 is inserted into a hole formed in the lid 14, and is joined to the lid 14 by welding, for example. The lower end of the positive electrode column 34 projects downward from the lower surface of the lid 14, and is housed in the room 16 located at one end (the X-axis positive direction side) of the room 16 in the arrangement direction as described above. It is connected to the positive electrode side strap 52. The positive electrode side terminal portion 36 is, for example, a substantially L-shaped conductive member, and is formed of, for example, a lead alloy. The upper end portion of the positive electrode side terminal portion 36 projects upward from the upper surface of the lid 14, and the lower end portion of the positive electrode side terminal portion 36 is electrically connected to the upper end portion of the positive electrode column 34. The positive electrode side terminal portion 36 and the positive electrode column 34 may be an integral member.

図6に示すように、負極側端子部材40は、負極柱44と、負極側端子部46とを含む。負極柱44は、略円柱形の導電性部材であり、例えば鉛合金により形成されている。負極柱44は、蓋14に形成された孔に挿入されており、例えば溶接により蓋14に接合されている。負極柱44の下端部は、蓋14の下面より下方に突出しており、上述したように、部屋16の配列方向の他方側(X軸負方向側)の端に位置する部屋16に収容された負極側ストラップ54に接続されている。負極側端子部46は、例えば略L形の導電性部材であり、例えば鉛合金により形成されている。負極側端子部46の上端部は、蓋14の上面より上方に突出しており、負極側端子部46の下端部は、負極柱44の上端部と電気的に接続されている。なお、負極側端子部46と負極柱44とが一体部材であるとしてもよい。 As shown in FIG. 6, the negative electrode side terminal member 40 includes a negative electrode column 44 and a negative electrode side terminal portion 46. The negative electrode column 44 is a substantially cylindrical conductive member, and is formed of, for example, a lead alloy. The negative electrode column 44 is inserted into a hole formed in the lid 14, and is joined to the lid 14 by welding, for example. The lower end of the negative electrode column 44 projects downward from the lower surface of the lid 14, and is housed in the room 16 located at the other end (X-axis negative direction side) of the room 16 in the arrangement direction as described above. It is connected to the negative electrode side strap 54. The negative electrode side terminal portion 46 is, for example, a substantially L-shaped conductive member, and is formed of, for example, a lead alloy. The upper end portion of the negative electrode side terminal portion 46 projects upward from the upper surface of the lid 14, and the lower end portion of the negative electrode side terminal portion 46 is electrically connected to the upper end portion of the negative electrode column 44. The negative electrode side terminal portion 46 and the negative electrode column 44 may be an integral member.

(制御弁60の構成)
図3に示すように、蓋14の上面には、押さえ板18が配置されている。押さえ板18は、部屋16の配列方向(X軸方向)に延びた平板状の部材であり、例えば合成樹脂により形成されている。図7は、押さえ板18が外された状態の鉛蓄電池100の外観構成を示す上面図であり、図8は、図7の一部を拡大して示す斜視図であり、図9は、図7のIX−IXの位置における制御弁60付近のXZ断面構成を示す説明図である。
(Structure of control valve 60)
As shown in FIG. 3, a holding plate 18 is arranged on the upper surface of the lid 14. The pressing plate 18 is a flat plate-shaped member extending in the arrangement direction (X-axis direction) of the chamber 16, and is formed of, for example, a synthetic resin. 7 is a top view showing the external configuration of the lead-acid battery 100 with the holding plate 18 removed, FIG. 8 is an enlarged perspective view of a part of FIG. 7, and FIG. 9 is a view. It is explanatory drawing which shows the XZ cross-sectional structure around the control valve 60 at the position of IX-IX of 7.

図7および図8に示すように、蓋14の上面には、部屋16の配列方向(X軸方向)に延びる凹部19が形成されている。凹部19の底面には、複数の(本実施形態では5枚の)制御弁60が配置されている。図9に示すように、各制御弁60は、弁座62と弁体64とを備える。各弁座62は、各部屋16の上側に配置されており、凹部19の底面から上方に筒状に突出するように形成されている。各弁座62は、各部屋16に連通する連通孔66が形成されている。本実施形態では、弁座62は、蓋14に一体に形成されている。各弁体64は、ゴム製のキャップである。具体的には、弁体64は、弁座62の外周を囲む筒状の周壁部68と、周壁部68の一端を閉塞する閉塞部70とを有する。すなわち、弁体64は、弁座62の上側の開口を塞ぐように弁座62に装着されている。制御弁60は、正常時には、各弁体64が弁座62に装着された閉状態となっているため、各部屋16が密閉されている。一方、過充電等により部屋16にガスが発生して内圧が所定値以上に上昇すると、制御弁60は、弁体64と弁座62との間に隙間が生じた開状態となるため、ガスを外部に排出できるようになる。なお、押さえ板18は、複数の制御弁60を上側から覆うように配置されている。これにより、各弁体64が各弁座62から上方に抜け出ることが抑制されている。 As shown in FIGS. 7 and 8, a recess 19 extending in the arrangement direction (X-axis direction) of the room 16 is formed on the upper surface of the lid 14. A plurality of control valves 60 (five in this embodiment) are arranged on the bottom surface of the recess 19. As shown in FIG. 9, each control valve 60 includes a valve seat 62 and a valve body 64. Each valve seat 62 is arranged on the upper side of each room 16, and is formed so as to project upward from the bottom surface of the recess 19 in a tubular shape. Each valve seat 62 is formed with a communication hole 66 that communicates with each room 16. In this embodiment, the valve seat 62 is integrally formed with the lid 14. Each valve body 64 is a rubber cap. Specifically, the valve body 64 has a tubular peripheral wall portion 68 that surrounds the outer periphery of the valve seat 62, and a closing portion 70 that closes one end of the peripheral wall portion 68. That is, the valve body 64 is attached to the valve seat 62 so as to close the opening on the upper side of the valve seat 62. In the normal state, the control valve 60 is in a closed state in which each valve body 64 is attached to the valve seat 62, so that each room 16 is sealed. On the other hand, when gas is generated in the room 16 due to overcharging or the like and the internal pressure rises above a predetermined value, the control valve 60 is in an open state with a gap between the valve body 64 and the valve seat 62. Can be discharged to the outside. The holding plate 18 is arranged so as to cover the plurality of control valves 60 from above. As a result, each valve body 64 is suppressed from coming out upward from each valve seat 62.

A−2.鉛蓄電池100の動作:
鉛蓄電池100の放電の際には、正極側端子部材30の正極側端子部36および負極側端子部材40の負極側端子部46に負荷(図示せず)が接続され、各極板群20の正極板210での反応(二酸化鉛から硫酸鉛が生ずる反応)および負極板220での反応(鉛(海綿状鉛)から硫酸鉛が生ずる反応)により生じた電力が該負荷に供給される。また、鉛蓄電池100の充電の際には、正極側端子部材30の正極側端子部36および負極側端子部材40の負極側端子部46に電源(図示せず)が接続され、該電源から供給される電力によって各極板群20の正極板210での反応(硫酸鉛から二酸化鉛が生ずる反応)および負極板220での反応(硫酸鉛から鉛(海綿状鉛)が生ずる反応)が起こり、鉛蓄電池100が充電される。
A-2. Operation of lead-acid battery 100:
When the lead-acid battery 100 is discharged, a load (not shown) is connected to the positive electrode side terminal portion 36 of the positive electrode side terminal member 30 and the negative electrode side terminal portion 46 of the negative electrode side terminal member 40, and each electrode group 20 The electric power generated by the reaction on the positive electrode plate 210 (reaction in which lead sulfate is generated from lead dioxide) and the reaction on the negative electrode plate 220 (reaction in which lead sulfate is generated from lead (spine-like lead)) is supplied to the load. When charging the lead-acid battery 100, a power supply (not shown) is connected to the positive electrode side terminal portion 36 of the positive electrode side terminal member 30 and the negative electrode side terminal portion 46 of the negative electrode side terminal member 40, and is supplied from the power supply. The generated electric power causes a reaction on the positive electrode plate 210 of each electrode group 20 (a reaction in which lead dioxide is produced from lead sulfate) and a reaction on the negative electrode plate 220 (a reaction in which lead (lead (spear-like lead) is produced from lead sulfate)). The lead storage battery 100 is charged.

A−3.鉛蓄電池100の詳細構成:
(部屋16の気密性に関する構成)
本実施形態の鉛蓄電池100(筐体10)は、複数の部屋16のいずれも、気密性に関して、次の第1の要件を満たす。
<第1の要件>
筐体10の所定条件における部屋16の圧力変化率が、119%以下である。
A-3. Detailed configuration of lead-acid battery 100:
(Structure related to airtightness of room 16)
The lead-acid battery 100 (housing 10) of the present embodiment satisfies the following first requirement in terms of airtightness in any of the plurality of rooms 16.
<First requirement>
The pressure change rate of the room 16 under the predetermined conditions of the housing 10 is 119% or less.

ここで、「所定条件」とは、鉛蓄電池100を、部屋16の圧力が筐体10の外部の圧力より低い負圧である第1の状態と、第1の状態から所定の第1の時間だけ放置したときの第2の状態とにすることをいう。なお、鉛蓄電池100の周囲温度は、10℃以上、35℃以下であることが好ましく、室温(25℃)がさらに好ましい。「所定条件における部屋16の圧力変化率」とは、第1の状態における部屋16の圧力に対する、第2の状態における部屋16の圧力の割合(%)である。第1の時間は、例えば1時間である。なお、第1の状態は、部屋16の圧力を負圧にした直後から所定の第2の時間(第1の時間より短い)だけ経過した状態であることが好ましい。なぜなら、部屋16の圧力を負圧にした直後では、部屋16の圧力が不安定であり、第1の状態における部屋16の圧力を精度よく測定することができないおそれがあるからである。
例えば、第1の状態における部屋16の圧力が80kPaであり、第2の状態における部屋16の圧力が95kPaであれば、所定条件における部屋16の圧力変化率は、118.75%であるため、第1の要件を満たすことになる。
Here, the "predetermined conditions" are a first state in which the pressure in the room 16 of the lead-acid battery 100 is lower than the pressure outside the housing 10, and a predetermined first time from the first state. It means to make it the second state when it is left alone. The ambient temperature of the lead-acid battery 100 is preferably 10 ° C. or higher and 35 ° C. or lower, and more preferably room temperature (25 ° C.). The “rate of change in pressure of the room 16 under predetermined conditions” is the ratio (%) of the pressure of the room 16 in the second state to the pressure of the room 16 in the first state. The first time is, for example, one hour. In addition, it is preferable that the first state is a state in which a predetermined second time (shorter than the first time) has elapsed immediately after the pressure in the room 16 is made negative. This is because the pressure in the room 16 is unstable immediately after the pressure in the room 16 is made negative, and the pressure in the room 16 in the first state may not be accurately measured.
For example, if the pressure of the room 16 in the first state is 80 kPa and the pressure of the room 16 in the second state is 95 kPa, the pressure change rate of the room 16 under the predetermined conditions is 118.75%. It will meet the first requirement.

また、鉛蓄電池100は、複数の部屋16のいずれも、気密性に関して、さらに、次の第2の要件を満たすことが好ましい。
<第2の要件>
筐体10の所定条件における部屋16の圧力変化率が、117%以下である。
Further, it is preferable that the lead storage battery 100 further satisfies the following second requirement in terms of airtightness in any of the plurality of rooms 16.
<Second requirement>
The pressure change rate of the room 16 under the predetermined conditions of the housing 10 is 117% or less.

また、鉛蓄電池100は、複数の部屋16のいずれも、気密性に関して、さらに、次の第3の要件を満たすことが好ましい。
<第3の要件>
筐体10の所定条件における部屋16の圧力変化率が、109%以下である。
Further, it is preferable that the lead storage battery 100 further satisfies the following third requirement in terms of airtightness in any of the plurality of rooms 16.
<Third requirement>
The pressure change rate of the room 16 under the predetermined conditions of the housing 10 is 109% or less.

また、鉛蓄電池100は、複数の部屋16のいずれも、気密性に関して、さらに、次の第4の要件を満たすことが好ましい。
<第4の要件>
筐体10の所定条件における部屋16の圧力変化率が、101%以下である。
Further, it is preferable that the lead storage battery 100 further satisfies the following fourth requirement in terms of airtightness in any of the plurality of rooms 16.
<Fourth requirement>
The pressure change rate of the room 16 under the predetermined conditions of the housing 10 is 101% or less.

(蓋14に関する構成)
図1から図3および図7に示すように、蓋14の側壁の外周面には、所定方向に延びるリブ80が形成されている。リブ80は、蓋14の側壁の外周面から突出するように形成されており、蓋14の側壁のうち、リブ80に隣接する周辺部分より肉厚になっている部分である。具体的には、図2に示すように、蓋14の外周面のうち、部屋16の配列方向に平行な背面の両端のそれぞれに複数のリブ80が形成されている。各リブ80は、上下方向(Z軸方向)に延びている。なお、リブ80は、例えば水平方向(X軸方向)に延びている形状であってもよい。また、本実施形態では、図3および図7に示すように、蓋14の外周面のうち、部屋16の配列方向に直交する側面のそれぞれにも複数のリブ80が形成されている。
(Structure related to lid 14)
As shown in FIGS. 1 to 3 and 7, ribs 80 extending in a predetermined direction are formed on the outer peripheral surface of the side wall of the lid 14. The rib 80 is formed so as to protrude from the outer peripheral surface of the side wall of the lid 14, and is a portion of the side wall of the lid 14 that is thicker than the peripheral portion adjacent to the rib 80. Specifically, as shown in FIG. 2, a plurality of ribs 80 are formed on both ends of the back surface of the outer peripheral surface of the lid 14 parallel to the arrangement direction of the room 16. Each rib 80 extends in the vertical direction (Z-axis direction). The rib 80 may have a shape extending in the horizontal direction (X-axis direction), for example. Further, in the present embodiment, as shown in FIGS. 3 and 7, a plurality of ribs 80 are formed on each of the outer peripheral surfaces of the lid 14 that are orthogonal to the arrangement direction of the room 16.

蓋14は、例えば温度変化に起因して変形することがある。蓋14が変形すると、例えば蓋14と電槽12との間に隙間が生じて部屋16の気密性が低下するおそれがある。これに対して、本実施形態では、蓋14にリブ80が形成されているため、温度変化に伴う蓋14の変形に起因して蓋14と電槽12との間の気密性が低下することを抑制することができる。また、リブ80を備える蓋14であれば、その蓋14の成形時において蓋14にねじれ等が発生することを抑制することができる。 The lid 14 may be deformed due to, for example, a temperature change. When the lid 14 is deformed, for example, a gap may be formed between the lid 14 and the electric tank 12, and the airtightness of the room 16 may be lowered. On the other hand, in the present embodiment, since the rib 80 is formed on the lid 14, the airtightness between the lid 14 and the electric tank 12 is lowered due to the deformation of the lid 14 due to the temperature change. Can be suppressed. Further, if the lid 14 is provided with the rib 80, it is possible to prevent the lid 14 from being twisted or the like during molding of the lid 14.

(ストラップ52,54に関する構成)
本実施形態では、各ストラップ52,54の最小厚さは、5.5mm以上である。本実施形態では、各ストラップ52,54の上下方向(Z軸方向)の厚さD(図5参照)が、5.5mm以上である。本実施形態によれば、ストラップ52,54の最小厚さが5.5mm未満である構成に比べて、ストラップ52,54の強度が高い。このため、例えばストラップ52,54の熱変形に起因して筐体10の気密性が低下することを抑制することができる。
(Structure related to straps 52 and 54)
In the present embodiment, the minimum thickness of each strap 52, 54 is 5.5 mm or more. In the present embodiment, the thickness D (see FIG. 5) of each of the straps 52 and 54 in the vertical direction (Z-axis direction) is 5.5 mm or more. According to the present embodiment, the strength of the straps 52 and 54 is higher than that of the configuration in which the minimum thickness of the straps 52 and 54 is less than 5.5 mm. Therefore, it is possible to suppress a decrease in the airtightness of the housing 10 due to, for example, thermal deformation of the straps 52 and 54.

(制御弁60に関する構成)
図9に示すように、本実施形態では、制御弁60の弁体64の内周面と弁座62の外周面との間には、オイル90が存在している。本実施形態では、制御弁60の全周にわたって、弁体64の内周面と弁座62の外周面との間にオイル90が存在している。なお、弁座62の上端と、弁体64の閉塞部70の内面との間にもオイル90が存在していることが好ましい。本実施形態によれば、弁体64と弁座62との隙間がオイル90によって塞がれるため、筐体10の部屋16の気密性を向上させることができる。
(Configuration related to control valve 60)
As shown in FIG. 9, in the present embodiment, the oil 90 exists between the inner peripheral surface of the valve body 64 of the control valve 60 and the outer peripheral surface of the valve seat 62. In the present embodiment, the oil 90 is present between the inner peripheral surface of the valve body 64 and the outer peripheral surface of the valve seat 62 over the entire circumference of the control valve 60. It is preferable that the oil 90 is also present between the upper end of the valve seat 62 and the inner surface of the closing portion 70 of the valve body 64. According to the present embodiment, since the gap between the valve body 64 and the valve seat 62 is closed by the oil 90, the airtightness of the room 16 of the housing 10 can be improved.

また、図9に示すように、本実施形態では、弁体64の閉塞部70の内面には、突部72が形成されている。突部72は、例えば弁体64の型番等の絵文字を示すため、閉塞部70の内面から起伏した部分である。上下方向から見て、全ての突部72は、弁座62の上端の開口Lの輪郭線の内側に位置している。本実施形態によれば、突部72の存在に起因して弁体64の閉塞部70の内面と弁座62の開口端との間に隙間ができることを抑制しつつ、弁体64の閉塞部70の内面に付着した水分を突部72に集めて落下させて部屋16に効率良く回収させることができる。 Further, as shown in FIG. 9, in the present embodiment, a protrusion 72 is formed on the inner surface of the closing portion 70 of the valve body 64. The protrusion 72 is a portion that undulates from the inner surface of the closing portion 70 in order to indicate a pictogram such as a model number of the valve body 64. When viewed from the vertical direction, all the protrusions 72 are located inside the contour line of the opening L at the upper end of the valve seat 62. According to the present embodiment, the closed portion of the valve body 64 is suppressed while suppressing the formation of a gap between the inner surface of the closed portion 70 of the valve body 64 and the open end of the valve seat 62 due to the presence of the protruding portion 72. Moisture adhering to the inner surface of the 70 can be collected in the protrusion 72 and dropped to be efficiently collected in the room 16.

A−4.性能評価:
鉛蓄電池の複数のサンプル(S1〜S12)を作製し、これらのサンプルを対象とした性能評価を行った。図10は、性能評価結果を示す説明図である。
A-4. Performance evaluation:
A plurality of samples (S1 to S12) of lead-acid batteries were prepared, and performance evaluation was performed on these samples. FIG. 10 is an explanatory diagram showing the performance evaluation result.

(各サンプルについて)
図10に示すように、各サンプルは、上述した所定条件における部屋16の圧力変化率(% 以下、単に「圧力変化率」ともいう)が互いに異なる。なお、筐体10の収容空間15(部屋16)の気密性は、主に、制御弁60における弁座62と弁体64との気密性によって決まる。このため、例えば弁座62と弁体64との隙間の大きさを変えたり、弁体64を形成するゴム材料の弾性力を変更したりすることにより、圧力変化率が互いに異なる複数の鉛蓄電池100を作製することができる。
(For each sample)
As shown in FIG. 10, each sample has a different rate of change in pressure (% or less, also simply referred to as “rate of change in pressure”) of the room 16 under the above-mentioned predetermined conditions. The airtightness of the accommodation space 15 (room 16) of the housing 10 is mainly determined by the airtightness of the valve seat 62 and the valve body 64 in the control valve 60. Therefore, for example, by changing the size of the gap between the valve seat 62 and the valve body 64 or changing the elastic force of the rubber material forming the valve body 64, a plurality of lead-acid batteries having different pressure change rates. 100 can be made.

また、各サンプルの圧力変化率は、次の通りに特定した。すなわち、各サンプルの筐体10に孔を開けて真空ポンプを用いて吸引して筐体10の収容空間15(部屋16)を負圧状態にし、圧力計を挿入した状態で孔を塞ぐ。その後、圧力計の測定値が安定したときの圧力を上記第1の状態における部屋16の圧力とする。次に、第1の状態から上記第1の時間だけ放置したときの圧力を上記第2の状態における部屋16の圧力とする。そして、第1の状態における部屋16の圧力と第2の状態における部屋16の圧力とから、圧力変化率を特定した。 The pressure change rate of each sample was specified as follows. That is, a hole is made in the housing 10 of each sample and suction is performed using a vacuum pump to bring the accommodation space 15 (room 16) of the housing 10 into a negative pressure state, and the hole is closed with the pressure gauge inserted. After that, the pressure when the measured value of the pressure gauge becomes stable is defined as the pressure of the room 16 in the first state. Next, the pressure when left for the first time from the first state is defined as the pressure of the room 16 in the second state. Then, the pressure change rate was specified from the pressure of the room 16 in the first state and the pressure of the room 16 in the second state.

(評価項目および評価方法)
鉛蓄電池の各サンプルを用いて、自己放電性能と、減液特性と、寿命特性(軽負荷寿命特性)との3つの項目についての評価を行った。
(Evaluation items and evaluation methods)
Using each sample of the lead-acid battery, three items of self-discharge performance, liquid reduction characteristic, and life characteristic (light load life characteristic) were evaluated.

自己放電性能の評価は、以下のように行った。すなわち、鉛蓄電池の各サンプルについて、完全充電後、40℃の雰囲気中にて、4週間放置し、以下のa)〜d)に示す方法で、放置前後における10時間率容量の差を測定したサンプルS10における10時間率容量の差を100として、各サンプルにおける10時間率容量の差を相対値で表した。この相対値が、自己放電性能の評価値である。図10に示すように、自己放電性能の評価値が120を超えた場合に、最良「◎」と評価し、自己放電性能の評価値が100以上、120以下である場合に、良好「○」と評価し、自己放電性能の評価値が100未満である場合に、不良「×」と評価した。
a)サンプルを満充電する。
b)満充電完了後、サンプルを25±2℃の条件下に静置し、下記c)の放電を開始する。
c)サンプルについて、一定の基準電流I10(A)で、放電終止電圧(1.75×セル数(V))になるまで放電を行う。なお、基準電流I10(A)は、以下の式で求められる値とする。
10=C10/10
(ただし、C10は10時間率定格容量(Ah))
d)上記c)における放電持続時間を測定して、10時間率容量を算出する。
The self-discharge performance was evaluated as follows. That is, each sample of the lead-acid battery was left for 4 weeks in an atmosphere of 40 ° C. after being fully charged, and the difference in 10-hour rate capacity before and after leaving was measured by the methods shown in a) to d) below. The difference in 10-hour rate capacity in sample S10 was taken as 100, and the difference in 10-hour rate capacity in each sample was expressed as a relative value. This relative value is the evaluation value of the self-discharge performance. As shown in FIG. 10, when the evaluation value of the self-discharge performance exceeds 120, it is evaluated as the best “⊚”, and when the evaluation value of the self-discharge performance is 100 or more and 120 or less, it is good “◯”. When the evaluation value of the self-discharge performance was less than 100, it was evaluated as defective “x”.
a) Fully charge the sample.
b) After the full charge is completed, the sample is allowed to stand under the condition of 25 ± 2 ° C., and the discharge of c) below is started.
c) The sample is discharged at a constant reference current I 10 (A) until the discharge end voltage (1.75 × number of cells (V)) is reached. The reference current I 10 (A) is a value obtained by the following formula.
I 10 = C 10/10
(However, C 10 has a 10-hour rated capacity (Ah))
d) The discharge duration in c) above is measured to calculate the 10-hour rate capacity.

また、減液特性の評価は、以下のように行った。すなわち、鉛蓄電池の各サンプルについて、完全充電後、25℃の雰囲気中にて、2週間、0.5Aで連続充電し、上述した方法で、連続充電前後における10時間率容量の差を測定した。サンプルS8における10時間率容量の差を100として、各サンプルにおける10時間率容量の差を相対値で表した。この相対値が、減液特性の評価値である。図10に示すように、減液特性の評価値が110以上である場合に、最良「◎」と評価し、減液特性の評価値が100以上、110未満である場合に、良好「○」と評価し、減液特性の評価値が100未満である場合に、不良「×」と評価した。 The liquid reduction characteristics were evaluated as follows. That is, each sample of the lead-acid battery was continuously charged at 0.5 A for 2 weeks in an atmosphere of 25 ° C. after being fully charged, and the difference in 10-hour rate capacity before and after continuous charging was measured by the method described above. .. The difference in 10-hour rate capacity in sample S8 was taken as 100, and the difference in 10-hour rate capacity in each sample was expressed as a relative value. This relative value is the evaluation value of the liquid reduction characteristic. As shown in FIG. 10, when the evaluation value of the liquid-reducing characteristic is 110 or more, it is evaluated as the best "◎", and when the evaluation value of the liquid-reducing characteristic is 100 or more and less than 110, it is good "○". When the evaluation value of the liquid reducing characteristic was less than 100, it was evaluated as defective "x".

また、寿命持性の評価は、以下のように行った。すなわち、鉛蓄電池の各サンプルについて、以下のa)〜f)に示す方法で軽負荷寿命試験を行い、寿命回数を求めた。サンプルS5における寿命回数を100として、各サンプルにおける寿命回数を相対値で表した。この相対値が、寿命特性の評価値である。図10に示すように、寿命特性の評価値が110以上である場合に、最良「◎」と評価し、寿命特性の評価値が100以上、110未満である場合に、良好「○」と評価し、寿命特性の評価値が100未満である場合に、不良「×」と評価した。
a)放電は、上述した基準電流I10(A)を放電電流とし、4分間行い、引き続き充電は、充電電圧14.8V±0.1Vで10分間行う。この放電と充電とのサイクルを寿命1回とする。
b)試験中の温度は、鉛蓄電池の周囲温度を40〜45℃とする。
c)試験中、428回ごとに60時間放置する。
d)c)の放置後、基準電流I10(A)で30秒間連続放電を行い、30秒目電圧を測定する。その後、a)の充電を行う。
e)試験の終了は、d)の試験で測定した30秒目電圧が7.2V以下となり、再び上昇しないことを確認したときとする。
f)寿命回数は、基準電流I10(A)で放電したときの30秒目電圧が、7.2Vになる回数とする。この寿命回数は、次に示す、回数と30秒目電圧との関係線から求める。
N=428×n+(428−(3082/Vn))
N:寿命回数(回)
n:寿命判定の基準電流I10(A)での放電回数−1
Vn:n回目の30秒目電圧
The lifespan was evaluated as follows. That is, each sample of the lead-acid battery was subjected to a light load life test by the methods shown in a) to f) below, and the number of times of life was determined. The number of lifespans in each sample was expressed as a relative value, where the number of lifespans in sample S5 was 100. This relative value is the evaluation value of the life characteristic. As shown in FIG. 10, when the evaluation value of the life characteristic is 110 or more, it is evaluated as the best "◎", and when the evaluation value of the life characteristic is 100 or more and less than 110, it is evaluated as good "○". However, when the evaluation value of the life characteristic was less than 100, it was evaluated as defective "x".
a) Discharge is performed for 4 minutes using the above-mentioned reference current I 10 (A) as the discharge current, and charging is subsequently performed for 10 minutes at a charging voltage of 14.8 V ± 0.1 V. The cycle of this discharge and charge is defined as one life.
b) As for the temperature during the test, the ambient temperature of the lead storage battery is 40 to 45 ° C.
c) During the test, leave it for 60 hours every 428 times.
d) After leaving c), continuous discharge is performed for 30 seconds at the reference current I 10 (A), and the voltage at the 30th second is measured. After that, a) is charged.
e) The end of the test shall be when it is confirmed that the voltage at the 30th second measured in the test of d) becomes 7.2 V or less and does not rise again.
f) The number of service life shall be the number of times that the voltage at the 30th second when discharged at the reference current I 10 (A) becomes 7.2 V. The number of times of life is obtained from the following relationship line between the number of times and the voltage at the 30th second.
N = 428 × n + (428- (3082 / Vn))
N: Lifespan (times)
n: Number of discharges at the reference current I 10 (A) for determining the life
Vn: Nth 30th second voltage

(評価結果)
図10に示すように、サンプルS10では、圧力変化率が118.8%であり、圧力変化率が119%以下であるという上記第1の要件を満たす。一方、サンプルS11では、圧力変化率が120.0%であり、第1の要件を満たさない。サンプルS11では、サンプルS10との圧力変化率の差は微少であるが、自己放電性能の評価値が「80」であり、自己放電性能の評価値が「100」であるサンプルS10に対して大きく下回る。また、サンプルS12では、圧力変化率が125.0%であり、第1の要件を満たさない。サンプルS12では、自己放電性能の評価値が「40」であり、サンプルS10に対してさらに大きく下回る。これらの評価結果から、所定条件における筐体10の収容空間15(部屋16)の圧力変化率が119%以下であれば、鉛蓄電池100の自己放電性能が飛躍的に向上することが分かる(図10の自己放電性能のグラフ参照)。
(Evaluation results)
As shown in FIG. 10, the sample S10 satisfies the first requirement that the pressure change rate is 118.8% and the pressure change rate is 119% or less. On the other hand, in sample S11, the pressure change rate is 120.0%, which does not satisfy the first requirement. In the sample S11, the difference in the pressure change rate from the sample S10 is small, but the evaluation value of the self-discharge performance is "80", which is larger than that of the sample S10 in which the evaluation value of the self-discharge performance is "100". Below. Further, in sample S12, the pressure change rate is 125.0%, which does not satisfy the first requirement. In sample S12, the evaluation value of self-discharge performance is "40", which is much lower than that of sample S10. From these evaluation results, it can be seen that if the pressure change rate of the accommodation space 15 (room 16) of the housing 10 under predetermined conditions is 119% or less, the self-discharge performance of the lead-acid battery 100 is dramatically improved (FIG. See the graph of self-discharge performance in 10).

また、サンプルS1〜S10では、全て、圧力変化率が119%以下であり、第1の要件を満たす。また、サンプルS10からサンプルS1の順に圧力変化率が低くなっており、その圧力変化率が低くなるほど、自己放電性能の評価値が高いことが分かる。また、サンプルS7,S8の評価結果から、圧力変化率が113%以下であると、自己放電性能の評価値が「110」以上となり、自己放電性能がさらに向上することが分かる。さらに、サンプルS3,S4の評価結果から、圧力変化率が102%以下であると、自己放電性能の評価値が「122」以上となり、自己放電性能がさらに向上することが分かる。 Further, in the samples S1 to S10, the pressure change rate is 119% or less, which satisfies the first requirement. Further, it can be seen that the pressure change rate decreases in the order of sample S10 to sample S1, and the lower the pressure change rate, the higher the evaluation value of the self-discharge performance. Further, from the evaluation results of the samples S7 and S8, it can be seen that when the pressure change rate is 113% or less, the evaluation value of the self-discharge performance becomes "110" or more, and the self-discharge performance is further improved. Further, from the evaluation results of the samples S3 and S4, it can be seen that when the pressure change rate is 102% or less, the evaluation value of the self-discharge performance becomes "122" or more, and the self-discharge performance is further improved.

また、サンプルS8では、圧力変化率が116.3%であり、圧力変化率が117%以下であるという上記第2の要件を満たす。一方、サンプルS9では、圧力変化率が117.5%であり、第2の要件を満たさない。サンプルS9では、サンプルS8との圧力変化率の差は微少であるが、減液特性の評価値が「85」であり、減液特性の評価値が「100」であるサンプルS8に対して大きく下回る。また、サンプルS10〜S12では、圧力変化率が118.8%〜125.0%であり、第2の要件を満たさない。サンプルS10〜S12では、自己放電性能の評価値が「75」〜「60」であり、サンプルS8に対してさらに大きく下回る。これらの評価結果から、所定条件における筐体10の収容空間15(部屋16)の圧力変化率が117%以下であれば、鉛蓄電池100の減液特性が飛躍的に向上することが分かる(図10の減液特性のグラフ参照)。 Further, in the sample S8, the second requirement that the pressure change rate is 116.3% and the pressure change rate is 117% or less is satisfied. On the other hand, in sample S9, the pressure change rate is 117.5%, which does not satisfy the second requirement. In the sample S9, the difference in the pressure change rate from the sample S8 is small, but the evaluation value of the liquid reduction characteristic is "85", which is larger than that of the sample S8 in which the evaluation value of the liquid reduction characteristic is "100". Below. Further, in the samples S10 to S12, the pressure change rate is 118.8% to 125.0%, which does not satisfy the second requirement. In the samples S10 to S12, the evaluation values of the self-discharge performance are "75" to "60", which are much lower than those of the samples S8. From these evaluation results, it can be seen that if the pressure change rate of the accommodation space 15 (room 16) of the housing 10 under predetermined conditions is 117% or less, the liquid-reducing characteristics of the lead-acid battery 100 are dramatically improved (FIG. See the graph of liquid reduction characteristics of 10).

また、サンプルS1〜S8では、全て、圧力変化率が117%以下であり、第2の要件を満たす。また、サンプルS8からサンプルS1の順に圧力変化率が低くなっており、その圧力変化率が低くなるほど、減液特性の評価値が高いことが分かる。また、サンプルS4,S5の評価結果から、圧力変化率が106%以下であると、減液特性の評価値が「110」以上となり、減液特性がさらに向上することが分かる。 Further, in all of the samples S1 to S8, the pressure change rate is 117% or less, which satisfies the second requirement. Further, it can be seen that the pressure change rate decreases in the order of sample S8 to sample S1, and the lower the pressure change rate, the higher the evaluation value of the liquid reducing characteristic. Further, from the evaluation results of the samples S4 and S5, it can be seen that when the pressure change rate is 106% or less, the evaluation value of the liquid reducing characteristic becomes "110" or more, and the liquid reducing characteristic is further improved.

また、サンプルS5では、圧力変化率が108.8%であり、圧力変化率が109%以下であるという上記第3の要件を満たす。一方、サンプルS6では、圧力変化率が110.0%であり、第3の要件を満たさない。サンプルS6では、サンプルS5との圧力変化率の差は微少であるが、寿命特性の評価値が「80」であり、寿命特性の評価値が「100」であるサンプルS5に対して大きく下回る。また、サンプルS7〜S12では、圧力変化率が112.5%〜125.0%であり、第3の要件を満たさない。サンプルS7〜S12では、寿命特性の評価値が「75」〜「67」であり、サンプルS5に対してさらに大きく下回る。これらの評価結果から、所定条件における筐体10の収容空間15(部屋16)の圧力変化率が109%以下であれば、鉛蓄電池100の寿命特性が飛躍的に向上することが分かる(図10の寿命特性のグラフ参照)。 Further, the sample S5 satisfies the above-mentioned third requirement that the pressure change rate is 108.8% and the pressure change rate is 109% or less. On the other hand, in sample S6, the pressure change rate is 110.0%, which does not satisfy the third requirement. In the sample S6, the difference in the pressure change rate from the sample S5 is small, but the evaluation value of the life characteristic is "80", which is much lower than that of the sample S5 in which the evaluation value of the life characteristic is "100". Further, in the samples S7 to S12, the pressure change rate is 112.5% to 125.0%, which does not satisfy the third requirement. In the samples S7 to S12, the evaluation values of the life characteristics are "75" to "67", which are much lower than those of the samples S5. From these evaluation results, it can be seen that if the pressure change rate of the accommodation space 15 (room 16) of the housing 10 under predetermined conditions is 109% or less, the life characteristics of the lead-acid battery 100 are dramatically improved (FIG. 10). See the graph of life characteristics).

また、サンプルS1〜S5では、全て、圧力変化率が109以下であり、第3の要件を満たす。また、サンプルS5からサンプルS1の順に圧力変化率が低くなっており、その圧力変化率が低くなるほど、寿命特性の評価値が高いことが分かる。また、サンプルS3,S4の評価結果から、圧力変化率が102%以下であると、寿命特性の評価値が「110」以上となり、寿命特性がさらに向上することが分かる。 Further, in the samples S1 to S5, the pressure change rate is 109 or less, which satisfies the third requirement. Further, it can be seen that the pressure change rate decreases in the order of sample S5 to sample S1, and the lower the pressure change rate, the higher the evaluation value of the life characteristic. Further, from the evaluation results of the samples S3 and S4, it can be seen that when the pressure change rate is 102% or less, the evaluation value of the life characteristic becomes "110" or more, and the life characteristic is further improved.

また、圧力変化率が101%以下であれば、自己放電性能と減液特性と寿命性能との全てを飛躍的に向上することが分かる(図10の3つのグラフ参照)。 Further, it can be seen that when the pressure change rate is 101% or less, all of the self-discharge performance, the liquid reduction characteristic, and the life performance are dramatically improved (see the three graphs in FIG. 10).

B.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
B. Modification example:
The technique disclosed in the present specification is not limited to the above-described embodiment, and can be transformed into various forms without departing from the gist thereof. For example, the following modifications are also possible.

上記実施形態における鉛蓄電池100の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、筐体10に形成された複数の部屋16の全てについて、第1の要件から第4の要件を満たすとしたが、筐体10に形成された複数の部屋16の少なくとも1つについて、少なくとも第1の要件を満たせばよい。 The configuration of the lead-acid battery 100 in the above embodiment is merely an example and can be variously modified. For example, in the above embodiment, all of the plurality of rooms 16 formed in the housing 10 satisfy the first to fourth requirements, but at least the plurality of rooms 16 formed in the housing 10 are satisfied. For one, at least the first requirement may be met.

上記実施形態における鉛蓄電池100では、制御弁60の弁体64の内周面と弁座62の外周面との間には、オイル90が存在していたが、オイル90は存在していなくてもよい。弁体64と弁座62との寸法を調整して、筐体10に形成された部屋16が第1の要件を満たせばよい。 In the lead-acid battery 100 according to the above embodiment, the oil 90 was present between the inner peripheral surface of the valve body 64 of the control valve 60 and the outer peripheral surface of the valve seat 62, but the oil 90 was not present. May be good. The dimensions of the valve body 64 and the valve seat 62 may be adjusted so that the room 16 formed in the housing 10 satisfies the first requirement.

10:筐体 11:壁 12:電槽 12a:開口部 14:蓋 15:収容空間 16:部屋 17:上壁 18:押さえ板 19:凹部 20:極板群 30,40:端子部材 34:正極柱 36:正極側端子部 44:負極柱 46:負極側端子部 52,54:ストラップ 56:接続部材 58:下壁 59:貫通孔 60:制御弁 62:弁座 64:弁体 66:連通孔 68:周壁部 70:閉塞部 72:突部 80:リブ 90:オイル 100:鉛蓄電池 210:正極板 212:正極集電体 214:正極耳部 216:正極活物質 220:負極板 222:負極集電体 224:負極耳部 226:負極活物質 230:セパレータ L:開口 10: Housing 11: Wall 12: Electric tank 12a: Opening 14: Lid 15: Accommodation space 16: Room 17: Upper wall 18: Holding plate 19: Recess 20: Electrode plate group 30, 40: Terminal member 34: Positive electrode Pillar 36: Positive electrode side terminal 44: Negative electrode pillar 46: Negative electrode side terminal 52, 54: Strap 56: Connecting member 58: Lower wall 59: Through hole 60: Control valve 62: Valve seat 64: Valve body 66: Communication hole 68: Peripheral wall 70: Closure 72: Protrusion 80: Rib 90: Oil 100: Lead storage battery 210: Positive electrode plate 212: Positive electrode current collector 214: Positive electrode ear 216: Positive electrode active material 220: Negative electrode plate 222: Negative electrode collection Electric body 224: Negative electrode ear 226: Negative electrode active material 230: Separator L: Opening

Claims (8)

制御弁式鉛蓄電池であって、
収容空間が形成された筐体と、
前記収容空間に収容され、正極板と負極板とセパレータとを備える極板群と、
制御弁と、
を備え、
前記制御弁は、
前記収容空間に連通する連通孔が形成された筒状の弁座であって、前記収容空間の外部に向けて突出するように形成された弁座と、
前記弁座の外周を囲む周壁部と、前記弁座の開口に対向し、かつ、前記周壁部の一端を閉塞する閉塞部と、を有する弁体と、を備えており、
所定条件における前記収容空間の圧力変化率が、119%以下である、
制御弁式鉛蓄電池。
Control valve type lead acid battery
A housing with a storage space and
A group of electrode plates accommodated in the accommodation space and provided with a positive electrode plate, a negative electrode plate, and a separator.
Control valve and
With
The control valve
A tubular valve seat having a communication hole communicating with the accommodation space, and a valve seat formed so as to project outward from the accommodation space.
A valve body having a peripheral wall portion surrounding the outer periphery of the valve seat and a closed portion facing the opening of the valve seat and closing one end of the peripheral wall portion is provided.
The pressure change rate of the accommodation space under predetermined conditions is 119% or less.
Control valve type lead acid battery.
請求項1に記載の制御弁式鉛蓄電池であって、
前記筐体は、開口部を有する電槽と、前記電槽の前記開口部を塞ぐ蓋と、を備え、
前記蓋の側壁の外周面に、所定方向に延びるリブが形成されている、
制御弁式鉛蓄電池。
The control valve type lead-acid battery according to claim 1.
The housing includes an electric tank having an opening and a lid for closing the opening of the electric tank.
Ribs extending in a predetermined direction are formed on the outer peripheral surface of the side wall of the lid.
Control valve type lead acid battery.
請求項1または請求項2に記載の制御弁式鉛蓄電池であって、
前記筐体には、前記収容空間を複数の部屋に区画する壁が形成されており、前記複数の部屋のそれぞれに前記極板群が収容されており、
さらに、前記複数の部屋のそれぞれに収容され、前記複数の正極板と前記複数の負極板とのいずれかに電気的に接続される集電部を備え、
前記集電部の最小厚さは、5.5mm以上である、
制御弁式鉛蓄電池。
The control valve type lead-acid battery according to claim 1 or 2.
A wall for dividing the accommodation space into a plurality of rooms is formed in the housing, and the electrode plate group is accommodated in each of the plurality of rooms.
Further, a current collector which is housed in each of the plurality of rooms and is electrically connected to any of the plurality of positive electrode plates and the plurality of negative electrode plates is provided.
The minimum thickness of the current collector is 5.5 mm or more.
Control valve type lead acid battery.
請求項1から請求項3までのいずれか一項に記載の制御弁式鉛蓄電池であって、
さらに、前記所定条件における前記収容空間の前記圧力変化率が、117%以下である、
制御弁式鉛蓄電池。
The control valve type lead-acid battery according to any one of claims 1 to 3.
Further, the pressure change rate of the accommodation space under the predetermined conditions is 117% or less.
Control valve type lead acid battery.
請求項4に記載の制御弁式鉛蓄電池であって、
さらに、前記所定条件における前記収容空間の前記圧力変化率が、109%以下である、
制御弁式鉛蓄電池。
The control valve type lead-acid battery according to claim 4.
Further, the pressure change rate of the accommodation space under the predetermined conditions is 109% or less.
Control valve type lead acid battery.
請求項5に記載の制御弁式鉛蓄電池であって、
さらに、前記所定条件における前記収容空間の前記圧力変化率が、101%以下である、
制御弁式鉛蓄電池。
The control valve type lead-acid battery according to claim 5.
Further, the pressure change rate of the accommodation space under the predetermined conditions is 101% or less.
Control valve type lead acid battery.
請求項1から請求項6までのいずれか一項に記載の制御弁式鉛蓄電池であって、
前記制御弁における前記弁体の内周面と前記弁座の外周面との間には、オイルが存在している、
制御弁式鉛蓄電池。
The control valve type lead-acid battery according to any one of claims 1 to 6.
Oil is present between the inner peripheral surface of the valve body and the outer peripheral surface of the valve seat in the control valve.
Control valve type lead acid battery.
請求項1から請求項7までのいずれか一項に記載の制御弁式鉛蓄電池であって、
前記制御弁の前記閉塞部の内面には、突部が形成されており、
前記弁座の前記連通孔の軸方向から見て、前記突部は、前記弁座の前記開口の輪郭線の内側に位置している、
制御弁式鉛蓄電池。
The control valve type lead-acid battery according to any one of claims 1 to 7.
A protrusion is formed on the inner surface of the closed portion of the control valve.
Seen from the axial direction of the communication hole of the valve seat, the protrusion is located inside the contour line of the opening of the valve seat.
Control valve type lead acid battery.
JP2019123766A 2019-07-02 2019-07-02 Control valve type lead storage battery Pending JP2021009823A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019123766A JP2021009823A (en) 2019-07-02 2019-07-02 Control valve type lead storage battery
PH22019001271U PH22019001271Y1 (en) 2019-07-02 2019-09-13 Valve regulated lead-acid battery
PH22020050396U PH22020050396U1 (en) 2019-07-02 2020-08-14 Valve Regulated Lead-Acid Battery
PH22020050398U PH22020050398U1 (en) 2019-07-02 2020-08-14 Valve Regulated Lead-Acid Battery
PH22020050397U PH22020050397U1 (en) 2019-07-02 2020-08-14 Valve Regulated Lead-Acid Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019123766A JP2021009823A (en) 2019-07-02 2019-07-02 Control valve type lead storage battery

Publications (1)

Publication Number Publication Date
JP2021009823A true JP2021009823A (en) 2021-01-28

Family

ID=72707450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019123766A Pending JP2021009823A (en) 2019-07-02 2019-07-02 Control valve type lead storage battery

Country Status (2)

Country Link
JP (1) JP2021009823A (en)
PH (4) PH22019001271Y1 (en)

Also Published As

Publication number Publication date
PH22020050398U1 (en) 2020-12-11
PH22019001271U1 (en) 2020-08-24
PH22020050396U1 (en) 2020-12-11
PH22019001271Y1 (en) 2020-08-24
PH22020050397U1 (en) 2020-12-11

Similar Documents

Publication Publication Date Title
KR102198047B1 (en) Rechargeable battery
EP2782181A1 (en) Layer cell, assembled battery including layer cell, and method for assembling layer cell
JP6063396B2 (en) Air metal secondary battery unit and air metal secondary battery module including the same
WO2014167971A1 (en) Method for restoring battery capacity, method for restoring battery assembly capacity, device for restoring battery capacity, and device for restoring battery assembly capacity
KR101508400B1 (en) Secondary Battery with Means for Supplying Electrolyte
JP3293287B2 (en) Square sealed alkaline storage battery and its unit battery
JP2014157703A (en) Lead accumulator
US9425448B2 (en) Sealed battery and safety valve
US20220407186A1 (en) Battery, battery module, battery pack, and automobile
US9413041B2 (en) Method for adjusting nickel-metal hydride storage battery
JP2015011849A (en) Battery provided with auxiliary battery
JP2010040324A (en) Estimation method of state of charge of battery module, and charging method using this
US7842413B2 (en) Rechargeable battery to reduce internal resistance and method of manufacturing the same
JP7193420B2 (en) Nickel-metal hydride secondary battery manufacturing method
JP2014207789A (en) Method and device for recovering negative electrode discharge capacity
JP5047659B2 (en) Adjustment method of nickel metal hydride storage battery
CN112018456A (en) Method for manufacturing secondary battery and nickel-hydrogen secondary battery
JPWO2012127789A1 (en) Lead acid battery
JP2021009823A (en) Control valve type lead storage battery
JP6203552B2 (en) Battery
JP2021009824A (en) Control valve type lead-acid battery
KR20180054278A (en) Rechargeable battery
JP5926571B2 (en) Battery module
JP2006019171A (en) Nickel-hydrogen storage battery
JPH10106513A (en) Sealed lead-acid battery