JP2021008524A - Surface-treated phosphor and manufacturing method of the same, as well as light-emitting device - Google Patents

Surface-treated phosphor and manufacturing method of the same, as well as light-emitting device Download PDF

Info

Publication number
JP2021008524A
JP2021008524A JP2017191189A JP2017191189A JP2021008524A JP 2021008524 A JP2021008524 A JP 2021008524A JP 2017191189 A JP2017191189 A JP 2017191189A JP 2017191189 A JP2017191189 A JP 2017191189A JP 2021008524 A JP2021008524 A JP 2021008524A
Authority
JP
Japan
Prior art keywords
phosphor
treated
fluorescent substance
emitting device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017191189A
Other languages
Japanese (ja)
Inventor
小林 学
Manabu Kobayashi
学 小林
真義 市川
Masayoshi Ichikawa
真義 市川
國友 修
Osamu Kunitomo
修 國友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2017191189A priority Critical patent/JP2021008524A/en
Priority to PCT/JP2018/036054 priority patent/WO2019065887A1/en
Priority to TW107134254A priority patent/TW201920609A/en
Publication of JP2021008524A publication Critical patent/JP2021008524A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

To provide a manufacturing method of a surface-treated phosphor proving a light-emitting device having excellent brightness and reliability.SOLUTION: A manufacturing method of a surface-treated phosphor containing a process of surface treating a phosphor whose composition is expressed by the following formula (1) with alkoxysilane expressed by the following formula (2). K2MF6:Mn4+ (1) (In the formula, an element M is an element of one or more kinds selected from the group consisting of Si, Ge, Ti, Sn, Zr and Hf.) R1Si(OR2)3 (2) (In the formula, R1 is a substituted or non-substituted monovalent hydrocarbon group having 6 to 12 carbon atoms, R2 is a non-substituted monovalent hydrocarbon group.)SELECTED DRAWING: None

Description

本発明は、表面処理蛍光体及びその製造方法、並びに発光装置に関する。 The present invention relates to a surface-treated fluorescent substance, a method for producing the same, and a light emitting device.

近年、白色光源として、発光ダイオード(Light emitting diode:LED)と蛍光体とを組み合わせた白色発光ダイオード(白色LED)がディスプレイのバックライト光源及び照明装置などに適用されている。その中でも、InGaN系青色LEDを励起源とした白色LEDが幅広く普及している。 In recent years, as a white light source, a white light emitting diode (white LED) which is a combination of a light emitting diode (LED) and a phosphor has been applied to a backlight light source of a display, a lighting device, and the like. Among them, white LEDs using InGaN-based blue LEDs as an excitation source are widely used.

この白色LEDに用いられる蛍光体には、青色LEDの発光で効率良く励起され、可視光の蛍光を発光することが要求される。
白色LED用の蛍光体としては、青色光で効率良く励起され、ブロードな黄色発光を示すCe付活イットリウムアルミニウムガーネット(YAG)蛍光体が代表例として挙げられる。YAG蛍光体を単独で青色LEDと組み合わせることにより、疑似白色が得られると共に、幅広い可視光領域の発光を得ることができる。このような理由から、YAG蛍光体を含む白色LEDは、照明及びバックライト光源に使用されている。
しかしながら、YAG蛍光体を含む白色LEDは、赤色成分が少ないために、照明用途では演色性が低く、バックライト用途では色再現範囲が狭いという問題がある。
The phosphor used for this white LED is required to be efficiently excited by the light emission of the blue LED and emit the fluorescence of visible light.
A typical example of the phosphor for a white LED is a Ce-activated yttrium aluminum garnet (YAG) phosphor that is efficiently excited by blue light and exhibits broad yellow emission. By combining the YAG phosphor alone with the blue LED, pseudo-white color can be obtained and light emission in a wide visible light region can be obtained. For this reason, white LEDs containing YAG phosphors are used for illumination and backlight sources.
However, since the white LED containing the YAG phosphor has a small amount of red component, there is a problem that the color rendering property is low in the lighting application and the color reproduction range is narrow in the backlight application.

そこで、演色性及び色再現性を改善することを目的として、青色LEDで励起可能な赤色蛍光体と、Eu付活βサイアロンやオルソシリケートなどの緑色蛍光体とを組み合わせた白色LEDも開発されている。
このような白色LED用の赤色蛍光体としては、蛍光変換効率が高く、高温での輝度低下が少なく、化学的安定性に優れることから、Eu2+を発光中心とした窒化物又は酸窒化物蛍光体が多く用いられている。その代表的なものとしては、化学式Sr2Si58:Eu2+、CaAlSiN3:Eu2+、(Ca,Sr)AlSiN3:Eu2+で示される蛍光体が挙げられる。
しかしながら、Eu2+を用いた蛍光体の発光スペクトルはブロードであり、視感度が低い発光成分も多く含まれるために、蛍光変換効率が高い割には白色LEDの輝度がYAG蛍光体を単独で使用した場合に比べて大きく低下してしまう。また、特にディスプレイ用途に用いる蛍光体は、カラーフィルターとの組み合わせの相性も要求されるため、ブロードな(シャープでない)発光スペクトルを有する蛍光体の使用は望ましくない。
Therefore, for the purpose of improving color rendering and color reproducibility, a white LED that combines a red phosphor that can be excited by a blue LED and a green phosphor such as Eu-activated β-sialon or orthosilicate has also been developed. There is.
Such a red phosphor for a white LED has high fluorescence conversion efficiency, little decrease in brightness at high temperature, and excellent chemical stability. Therefore, a nitride or oxynitride centered on Eu 2+ . Fluorescent materials are often used. Typical examples thereof include phosphors represented by the chemical formulas Sr 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ , and (Ca, Sr) AlSiN 3 : Eu 2+ .
However, the emission spectrum of the phosphor using Eu 2+ is broad and contains many emission components with low luminosity. Therefore, the brightness of the white LED of the YAG phosphor alone is high for the high fluorescence conversion efficiency. It will be greatly reduced compared to when it is used. In addition, since the phosphor used especially for display applications is required to be compatible with the color filter, it is not desirable to use a phosphor having a broad (unsharp) emission spectrum.

シャープな発光スペクトルを有する赤色蛍光体の発光中心としては、Eu3+及びMn4+が知られている。その中でも、K2SiF6のようなフッ化物結晶にMn4+を固溶させて付活することで得られるフッ化物蛍光体(赤色蛍光体)は、青色光で効率良く励起され、半値幅の狭いシャープな発光スペクトルを有するため、白色LEDの輝度を低下させることなく、優れた演色性及び色再現性が実現できる。それ故、近年、K2SiF6:Mn4+蛍光体を白色LEDに適用する検討が盛んに行われている(例えば、非特許文献1)。 Eu 3+ and Mn 4+ are known as emission centers of red phosphors having a sharp emission spectrum. Among them, the fluoride phosphor (red phosphor) obtained by solidifying Mn 4+ in a fluoride crystal such as K 2 SiF 6 and activating it is efficiently excited by blue light and has a half-value width. Since it has a narrow and sharp emission spectrum, excellent color rendering and color reproducibility can be realized without lowering the brightness of the white LED. Therefore, in recent years, studies on applying a K 2 SiF 6 : Mn 4+ phosphor to a white LED have been actively conducted (for example, Non-Patent Document 1).

他方、特許文献1には、K2SiF6:Mn4+蛍光体を表面処理剤で処理することによって当該蛍光体の耐湿性が向上することが開示されている。 On the other hand, Patent Document 1 discloses that the moisture resistance of the K 2 SiF 6 : Mn 4+ phosphor is improved by treating it with a surface treatment agent.

特許第6090590号公報Japanese Patent No. 6090590

A.G.Paulusz、Journal of The Electrochemical Society、1973年、第120巻、第7号、p.942−947A. G. Paulusz, Journal of The Electrochemical Society, 1973, Vol. 120, No. 7, p. 942-947

液晶ディスプレイのバックライト、照明などの発光装置では、発光特性の改善が常に求められており、そのために各部材の特性(特に、輝度)の向上が要求されている。
また、より輝度の高い発光装置を作製するために、昨今、LEDチップに高電流が印加されるようになっており、蛍光体に対して今まで以上に高い信頼性も要求されている。
しかしながら、特許文献1に開示された表面処理方法は、蛍光体の耐湿性を改善することができるものの、発光装置の信頼性については改善効果が十分とは言えない。
In light emitting devices such as backlights and lighting of liquid crystal displays, improvement of light emitting characteristics is always required, and for that purpose, improvement of characteristics (particularly, brightness) of each member is required.
Further, in order to manufacture a light emitting device having higher brightness, a high current is recently applied to an LED chip, and a higher reliability than ever is required for a phosphor.
However, although the surface treatment method disclosed in Patent Document 1 can improve the moisture resistance of the phosphor, it cannot be said that the effect of improving the reliability of the light emitting device is sufficient.

本発明は、前記のような問題を解決するためになされたものであり、輝度及び信頼性に優れた発光装置を与える表面処理蛍光体及びその製造方法を提供することを目的とする。
また、本発明は、輝度及び信頼性に優れた発光装置を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a surface-treated phosphor and a method for producing the same, which provides a light emitting device having excellent brightness and reliability.
Another object of the present invention is to provide a light emitting device having excellent brightness and reliability.

本発明者らは、上記の問題を解決すべく鋭意研究を行った結果、特定の蛍光体を特定のアルコキシシランで表面処理することにより、輝度及び信頼性に優れた発光装置を与える表面処理蛍光体が得られることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have surface-treated a specific phosphor with a specific alkoxysilane to provide a light-emitting device having excellent brightness and reliability. He found that he could obtain a body and completed the present invention.

すなわち、本発明は、組成が下記式(1)で表される蛍光体を、下記式(2)で表されるアルコキシシランにて表面処理する工程を含む表面処理蛍光体の製造方法である。
2MF6:Mn4+ ・・・ (1)
(式中、元素MはSi、Ge、Ti、Sn、Zr及びHfからなる群から選ばれる1種以上の元素である。)
1Si(OR23 ・・・ (2)
(式中、R1は炭素数が6〜12の置換又は非置換の一価炭化水素基、R2は非置換の一価炭化水素基である。)
That is, the present invention is a method for producing a surface-treated fluorescent substance, which comprises a step of surface-treating a fluorescent substance having a composition represented by the following formula (1) with an alkoxysilane represented by the following formula (2).
K 2 MF 6 : Mn 4+ ... (1)
(In the formula, the element M is one or more elements selected from the group consisting of Si, Ge, Ti, Sn, Zr and Hf.)
R 1 Si (OR 2 ) 3 ... (2)
(In the formula, R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 6 to 12 carbon atoms, and R 2 is an unsubstituted monovalent hydrocarbon group.)

また、本発明は、組成が下記式(1)で表される蛍光体の表面に、下記式(2)で表されるアルコキシシランの表面処理部を有する表面処理蛍光体である。
2MF6:Mn4+ ・・・ (1)
(式中、元素MはSi、Ge、Ti、Sn、Zr及びHfからなる群から選ばれる1種以上の元素である。)
1Si(OR23 ・・・ (2)
(式中、R1は炭素数が6〜12の置換又は非置換の一価炭化水素基、R2は非置換の一価炭化水素基である。)
Further, the present invention is a surface-treated fluorescent substance having a surface-treated portion of alkoxysilane represented by the following formula (2) on the surface of the phosphor having a composition represented by the following formula (1).
K 2 MF 6 : Mn 4+ ... (1)
(In the formula, the element M is one or more elements selected from the group consisting of Si, Ge, Ti, Sn, Zr and Hf.)
R 1 Si (OR 2 ) 3 ... (2)
(In the formula, R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 6 to 12 carbon atoms, and R 2 is an unsubstituted monovalent hydrocarbon group.)

さらに、本発明は、上記の表面処理蛍光体と、ピーク波長が420nm〜480nmの発光光源とを含む発光装置である。 Further, the present invention is a light emitting device including the above-mentioned surface-treated phosphor and a light emitting light source having a peak wavelength of 420 nm to 480 nm.

本発明によれば、輝度及び信頼性に優れた発光装置を与える表面処理蛍光体及びその製造方法を提供することができる。
また、本発明によれば、輝度及び信頼性に優れた発光装置を提供することができる。
According to the present invention, it is possible to provide a surface-treated phosphor and a method for producing the same, which provide a light emitting device having excellent brightness and reliability.
Further, according to the present invention, it is possible to provide a light emitting device having excellent brightness and reliability.

比較例1で得られた蛍光体の励起・蛍光スペクトルである。It is an excitation / fluorescence spectrum of the phosphor obtained in Comparative Example 1. 比較例1で得られた蛍光体のX線回折パターンである。It is an X-ray diffraction pattern of the phosphor obtained in Comparative Example 1.

本明細書において別段の断りがない限りは、数値範囲を示す場合は、その上限値及び下限値が含まれる。 Unless otherwise specified in the present specification, when a numerical range is indicated, its upper limit value and lower limit value are included.

本発明の表面処理蛍光体の製造方法は、蛍光体をアルコキシシランにて表面処理する工程を含む。
ここで、本明細書において「表面処理蛍光体」とは、表面処理が行われた蛍光体、具体的には、表面処理部を表面に有する蛍光体のことを意味する。なお、表面処理部は、蛍光体の表面全体を被覆していてもよいし、蛍光体の表面の一部を被覆していてもよい。
The method for producing a surface-treated fluorescent substance of the present invention includes a step of surface-treating the fluorescent substance with alkoxysilane.
Here, the term "surface-treated fluorescent substance" as used herein means a fluorescent substance that has undergone surface treatment, specifically, a fluorescent substance that has a surface-treated portion on its surface. The surface treatment portion may cover the entire surface of the phosphor, or may cover a part of the surface of the phosphor.

本発明に用いられる蛍光体は、下記式(1)で表される。
2MF6:Mn4+ ・・・ (1)
式(1)中、元素MはSi(ケイ素)、Ge(ゲルマニウム)、Ti(チタン)、Sn(スズ)、Zr(ジルコニウム)及びHf(ハフニウム)からなる群から選ばれる1種以上の4価の元素である。その中でも、元素Mは、化学的安定性の観点から、好ましくはSiである。
The phosphor used in the present invention is represented by the following formula (1).
K 2 MF 6 : Mn 4+ ... (1)
In formula (1), the element M is one or more tetravalents selected from the group consisting of Si (silicon), Ge (germanium), Ti (titanium), Sn (tin), Zr (zirconium) and Hf (hafnium). It is an element of. Among them, the element M is preferably Si from the viewpoint of chemical stability.

本発明に用いられる蛍光体は、単一種であっても、異なる組成を有する2種以上の蛍光体の混合物であってもよいが、化学的安定性の観点から、元素MがSiである蛍光体(単一種)であることが好ましい。また、2種以上の蛍光体の混合物を用いる場合、元素MがSiである蛍光体を少なくとも含むことが好ましい。具体的には、元素MがSiである蛍光体と、元素MがGe、Ti、Sn、Zr及びHfからなる群から選ばれる蛍光体との混合物であり得る。また、2種以上の蛍光体の混合物である場合、化学的安定性の観点から、混合物に占める元素MがSiである蛍光体の割合が高いことが好ましい。 The fluorophore used in the present invention may be a single species or a mixture of two or more kinds of phosphors having different compositions, but from the viewpoint of chemical stability, fluorescence in which the element M is Si. It is preferably a body (single species). When a mixture of two or more kinds of phosphors is used, it is preferable to contain at least a phosphor in which the element M is Si. Specifically, it may be a mixture of a phosphor in which the element M is Si and a phosphor selected in the group in which the element M is Ge, Ti, Sn, Zr and Hf. Further, in the case of a mixture of two or more kinds of phosphors, it is preferable that the proportion of the phosphor in which the element M is Si in the mixture is high from the viewpoint of chemical stability.

本発明に用いられる蛍光体の製造方法としては、特に限定されず、従来から知られている方法を用いることができる。例えば、蛍光体の構成元素の全てを溶解した反応液に水溶性の有機溶媒を貧溶媒として導入することにより、蛍光体を析出させる方法などを用いることができる。 The method for producing the phosphor used in the present invention is not particularly limited, and a conventionally known method can be used. For example, a method of precipitating a phosphor can be used by introducing a water-soluble organic solvent as a poor solvent into a reaction solution in which all the constituent elements of the phosphor are dissolved.

本発明に用いられるアルコキシシランは、下記式(2)で表される。
1Si(OR23 ・・・ (2)
式(2)中、R1は炭素数が6〜12、好ましくは8〜10の置換又は非置換の一価炭化水素基、R2は非置換の一価炭化水素基である。
The alkoxysilane used in the present invention is represented by the following formula (2).
R 1 Si (OR 2 ) 3 ... (2)
In the formula (2), R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 6 to 12 carbon atoms, preferably 8 to 10, and R 2 is an unsubstituted monovalent hydrocarbon group.

1の置換又は非置換の一価炭化水素基としては、炭素数が上記範囲内であれば特に限定されず、例えば、アルキル基などの飽和脂肪族基、不飽和脂肪族基などであり得る。また、これらの脂肪族基は、水素原子の一部又は全部がフッ素原子、アミノ基、その他の基で置換されていてもよい。R1の炭素数が6未満であると、蛍光体に疎水性を十分に付与することができない。一方、R1の炭素数が12を超えると、疎水性の効果は十分であるものの、樹脂(特に、白色LEDで汎用されるシリコーン樹脂)との親和性が低下する。その結果、蛍光体と樹脂との間の密着性が低下するため発光装置の輝度が低下すると共に、蛍光体と樹脂との間が剥離し易くなるため発光装置の信頼性が低下する。 The substituted or unsubstituted monovalent hydrocarbon group of R 1 is not particularly limited as long as the number of carbon atoms is within the above range, and may be, for example, a saturated aliphatic group such as an alkyl group or an unsaturated aliphatic group. .. Further, in these aliphatic groups, a part or all of hydrogen atoms may be substituted with fluorine atoms, amino groups, or other groups. If the number of carbon atoms in R 1 is less than 6, it is not possible to sufficiently impart hydrophobicity to the phosphor. On the other hand, when the number of carbon atoms of R 1 exceeds 12, the hydrophobic effect is sufficient, but the affinity with the resin (particularly, the silicone resin generally used for white LEDs) is lowered. As a result, the adhesion between the phosphor and the resin is lowered, so that the brightness of the light emitting device is lowered, and the distance between the phosphor and the resin is easily peeled off, so that the reliability of the light emitting device is lowered.

2の非置換の一価炭化水素基としては、特に限定されず、アルキル基などの飽和脂肪族基などであり得る。また、R2の非置換の一価炭化水素基は、炭素数が多くなると、アルコキシ基の加水分解・縮合反応が遅くなることがあるため、好ましくはメチル基又はエチル基、より好ましくはメチル基である。 The unsubstituted monovalent hydrocarbon group of R 2 is not particularly limited, and may be a saturated aliphatic group such as an alkyl group. Further, the unsubstituted monovalent hydrocarbon group of R 2 is preferably a methyl group or an ethyl group, more preferably a methyl group, because the hydrolysis / condensation reaction of the alkoxy group may be delayed when the number of carbon atoms is large. Is.

上記式(2)で表されるアルコキシシランの例としては、デシルトリメトキシシラン、ドデシルトリメトキシシラン、ヘキシルトリメトキシシラン、トリエトキシ−1H,1H,2H,2H−トリデカフルオロ−n−オクチルシラン、トリメトキシ(7−オクテン−1−イル)シランなどが挙げられる。アルコキシシランは、単一種を用いてよいが、2種以上を組み合わせて用いることもできる。 Examples of the alkoxysilane represented by the above formula (2) include decyltrimethoxysilane, dodecyltrimethoxysilane, hexyltrimethoxysilane, triethoxy-1H, 1H, 2H, 2H-tridecafluoro-n-octylsilane, and the like. Examples thereof include trimethoxy (7-octen-1-yl) silane. A single type of alkoxysilane may be used, but two or more types may be used in combination.

アルコキシシランを用いた蛍光体の表面処理方法としては、特に限定されず、公知の方法に準じて行うことができる。例えば、蛍光体にアルコキシシランを直接噴霧する方式、剪断力のある攪拌装置を用いて処理する攪拌混合方式、ボールミル、ミキサーなどを用いて処理する乾式法、水又は有機溶媒を用いて処理する湿式法などを用いることができる。なお、攪拌混合方式では、蛍光体の破壊が起こらない程度に剪断力を制御して行うことが肝要である。また、乾式法における系内温度又は処理後の乾燥温度は、表面処理剤の種類に応じ熱分解しない領域で適宜決定されるが、80〜150℃で行うことが好ましい。 The surface treatment method for the phosphor using alkoxysilane is not particularly limited, and can be performed according to a known method. For example, a method of directly spraying an alkoxysilane on a phosphor, a stirring / mixing method of processing using a stirring device having a shearing force, a dry method of processing using a ball mill, a mixer, etc., a wet method of treating with water or an organic solvent. A method or the like can be used. In the stirring and mixing method, it is important to control the shearing force to the extent that the phosphor is not destroyed. Further, the in-system temperature or the drying temperature after the treatment in the dry method is appropriately determined in a region where thermal decomposition does not occur depending on the type of the surface treatment agent, but it is preferably carried out at 80 to 150 ° C.

表面処理におけるアルコキシシランの使用量としては、特に限定されないが、蛍光体の比表面積から計算される必要量の10倍〜70倍であることが好ましい。
ここで、本明細書において「蛍光体の比表面積から計算される必要量」とは、蛍光体の表面全体をアルコキシシラン(表面処理部)で被覆するために最低限必要な量であり、蛍光体の比表面積(m2/g)から計算によって求めることができる。具体的には、アルコキシシランの必要量は、下記の式で表される。
アルコキシシランの必要量=蛍光体の質量(g)×蛍光体の比表面積(m2/g)/アルコキシシランの最小被覆面積(m2/g)
また、アルコキシシランの最小被覆面積は、下記の式で表される。
アルコキシシランの最小被覆面積=6.02×1023×13×10-20/アルコキシシランの分子量
The amount of alkoxysilane used in the surface treatment is not particularly limited, but is preferably 10 to 70 times the required amount calculated from the specific surface area of the phosphor.
Here, in the present specification, the "required amount calculated from the specific surface area of the phosphor" is the minimum amount required to cover the entire surface of the phosphor with alkoxysilane (surface treatment unit), and is fluorescent. It can be calculated from the specific surface area of the body (m 2 / g). Specifically, the required amount of alkoxysilane is expressed by the following formula.
Required amount of alkoxysilane = mass of phosphor (g) x specific surface area of phosphor (m 2 / g) / minimum coverage area of alkoxysilane (m 2 / g)
The minimum coverage area of alkoxysilane is represented by the following formula.
Minimum coverage area of alkoxysilane = 6.02 × 10 23 × 13 × 10 -20 / Molecular weight of alkoxysilane

蛍光体に対するアルコキシシランの表面修飾は、蛍光体の表面に存在する水酸基との脱水縮合反応が代表例であるが、本発明に用いられる蛍光体は表面に水酸基が少ない。そのため、本発明では、当該反応を十分に行うために、アルコキシシランの使用量を、蛍光体の比表面積から計算される必要量の10倍以上とすることが好ましい。一方、アルコキシシランの使用量が多すぎると、アルコキシシラン中のアルコキシ基同士が無秩序に重合してしまい、表面処理を行わない場合と比べて樹脂との親和性が低下してしまうことがある。その結果、蛍光体と樹脂との間の密着性が低下するため発光装置の輝度が低下すると共に、蛍光体と樹脂との間が剥離し易くなるため発光装置の信頼性が低下する。そのため、アルコキシシランの使用量を、蛍光体の比表面積から計算される必要量の70倍以下とすることが好ましい。 A typical example of surface modification of alkoxysilane to a phosphor is a dehydration condensation reaction with a hydroxyl group existing on the surface of the phosphor, but the phosphor used in the present invention has few hydroxyl groups on the surface. Therefore, in the present invention, in order to sufficiently carry out the reaction, it is preferable that the amount of alkoxysilane used is 10 times or more the required amount calculated from the specific surface area of the phosphor. On the other hand, if the amount of the alkoxysilane used is too large, the alkoxy groups in the alkoxysilane may be polymerized in a disorderly manner, and the affinity with the resin may be lowered as compared with the case where the surface treatment is not performed. As a result, the adhesion between the phosphor and the resin is lowered, so that the brightness of the light emitting device is lowered, and the distance between the phosphor and the resin is easily peeled off, so that the reliability of the light emitting device is lowered. Therefore, it is preferable that the amount of alkoxysilane used is 70 times or less the required amount calculated from the specific surface area of the phosphor.

表面処理による蛍光体の質量増加率は、0.03%〜1.00%であることが好ましい。表面処理蛍光体の質量増加率が0.03%未満の場合、表面処理による疎水性の向上効果が十分でないことがある。一方、表面処理蛍光体の質量増加率が1.00%を超えると、アルコキシシラン中のアルコキシ基同士が無秩序に重合してしまい、樹脂との親和性が低下してしまうことがある。
ここで、本明細書において「蛍光体に対する表面処理蛍光体の質量増加率」とは、アルコキシシランで表面処理していない蛍光体(未表面処理蛍光体)に対する表面処理蛍光体の質量増加率を意味する。
The mass increase rate of the phosphor due to the surface treatment is preferably 0.03% to 1.00%. When the mass increase rate of the surface-treated phosphor is less than 0.03%, the effect of improving the hydrophobicity by the surface treatment may not be sufficient. On the other hand, if the mass increase rate of the surface-treated phosphor exceeds 1.00%, the alkoxy groups in the alkoxysilane may polymerize in a disorderly manner, and the affinity with the resin may decrease.
Here, in the present specification, the "mass increase rate of the surface-treated fluorescent substance with respect to the fluorescent substance" refers to the mass increase rate of the surface-treated fluorescent substance with respect to the fluorescent substance (unsurface-treated fluorescent substance) which has not been surface-treated with alkoxysilane. means.

上記のようにして表面処理が行われた蛍光体(表面処理蛍光体)は、アルコキシシランの表面処理部を表面に有する。
この表面処理蛍光体は、特定の蛍光体を特定のアルコキシシランで表面処理することによって製造されているため、輝度及び信頼性に優れた発光装置を与えることができる。
The phosphor (surface-treated phosphor) whose surface has been surface-treated as described above has a surface-treated portion of alkoxysilane on its surface.
Since this surface-treated fluorescent substance is produced by surface-treating a specific phosphor with a specific alkoxysilane, it is possible to provide a light emitting device having excellent brightness and reliability.

本発明の発光装置は、上記の表面処理蛍光体と、ピーク波長が420nm〜480nmの発光光源とを含む。この発光装置は、上記の特性を有する表面処理蛍光体を備えているため、輝度及び信頼性に優れている。また、発光光源のピーク波長を420nm〜480nmとすることにより、表面処理蛍光体の発光中心であるMn4+を効率良く励起することができると共に、発光装置の青色光として利用することができる。 The light emitting device of the present invention includes the above-mentioned surface-treated phosphor and a light emitting source having a peak wavelength of 420 nm to 480 nm. Since this light emitting device includes a surface-treated phosphor having the above characteristics, it is excellent in brightness and reliability. Further, by setting the peak wavelength of the light emitting light source to 420 nm to 480 nm, Mn 4+ , which is the light emitting center of the surface-treated phosphor, can be efficiently excited and can be used as blue light of the light emitting device.

本発明の発光装置は、波長455nmの励起光を受けた際にピーク波長が510nm〜550nmの緑色光を発光する蛍光体(以下、「緑色蛍光体」という)を更に含むことができる。この緑色蛍光体は、単一種であってよいが、2種以上としてもよい。このような構成を有する本発明の発光装置は、赤色光を発光する本発明の表面処理蛍光体、青色光を生じる発光装置及び緑色光を発光する緑色蛍光体の組み合わせによって白色光を得ることができると共に、これら3色の混合比を変えることによって様々な色域の発光を得ることができる。特に、緑色蛍光体として、Eu付活βサイアロン蛍光体を用いると、高色域の発光装置が得られるため好ましい。 The light emitting device of the present invention may further include a phosphor (hereinafter, referred to as “green phosphor”) that emits green light having a peak wavelength of 510 nm to 550 nm when receiving excitation light having a wavelength of 455 nm. The green phosphor may be of a single species, but may be of two or more. The light emitting device of the present invention having such a configuration can obtain white light by a combination of the surface-treated phosphor of the present invention that emits red light, a light emitting device that produces blue light, and a green phosphor that emits green light. At the same time, it is possible to obtain light emission in various color ranges by changing the mixing ratio of these three colors. In particular, it is preferable to use an EU-activated β-sialone phosphor as the green phosphor because a light emitting device having a high color gamut can be obtained.

以下、実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明はその要旨を逸脱しない限り、下記の実施例に限定されるものではない。
<比較例1>
常温下で、容量1500mLのフッ素樹脂製ビーカーに、濃度55質量%のフッ化水素酸600mLを入れ、フッ化水素カリウム粉末(和光純薬工業社製、特級試薬)76.50g及び六フッ化マンガン酸カリウム粉末3.30gを順次溶解させることによって水溶液を調製した。この水溶液に、シリカ粉末(デンカ社製、FB−50R、非晶質、平均粒径55μm)20.70gを入れた。シリカ粉末を水溶液に添加すると、溶解熱の発生により水溶液温度が上昇した。溶液温度はシリカ粉末を添加して約3分後に最高温度に到達し、その後はシリカ粉末の溶解が終了したために溶液温度は下降した。なお、シリカ粉末を添加すると直ぐに水溶液中で黄色粉末が生成し始めていることが目視で確認された。
シリカ粉末が完全に溶解した後、しばらく水溶液を撹拌し、黄色粉末の析出を完了させた。その後、水溶液を静置して固形分を沈殿させた。沈殿確認後、上澄み液を除去し、濃度20質量%のフッ化水素酸及びメタノールを用いて黄色粉末を洗浄し、更にこれを濾過して固形分を分離回収し、更に乾燥処理により、残存メタノールを蒸発除去した。乾燥処理後、目開き75μmのナイロン製篩を用い、この篩を通過した黄色粉末だけを分級して回収し、最終的に59.43gの黄色粉末(蛍光体)を得た。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples as long as it does not deviate from the gist thereof.
<Comparative example 1>
At room temperature, 600 mL of hydrofluoric acid with a concentration of 55% by mass was placed in a fluororesin beaker with a capacity of 1500 mL, and 76.50 g of potassium bifluoride powder (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) and manganese hexafluoride were added. An aqueous solution was prepared by sequentially dissolving 3.30 g of potassium acid powder. 20.70 g of silica powder (manufactured by Denka, FB-50R, amorphous, average particle size 55 μm) was added to this aqueous solution. When the silica powder was added to the aqueous solution, the temperature of the aqueous solution increased due to the generation of heat of solution. The solution temperature reached the maximum temperature about 3 minutes after the addition of the silica powder, and then the solution temperature decreased because the dissolution of the silica powder was completed. It was visually confirmed that yellow powder began to be formed in the aqueous solution immediately after the addition of the silica powder.
After the silica powder was completely dissolved, the aqueous solution was stirred for a while to complete the precipitation of the yellow powder. Then, the aqueous solution was allowed to stand to precipitate the solid content. After confirming the precipitation, the supernatant is removed, the yellow powder is washed with hydrofluoric acid and methanol having a concentration of 20% by mass, and the yellow powder is further filtered to separate and recover the solid content, and the residual methanol is further dried. Was removed by evaporation. After the drying treatment, a nylon sieve having a mesh size of 75 μm was used, and only the yellow powder that had passed through the sieve was classified and recovered to finally obtain 59.43 g of yellow powder (fluorescent substance).

<発光スペクトルの確認>
比較例1の蛍光体について、分光蛍光光度計(日立ハイテクノロジーズ社製、F−7000)を用いて励起・蛍光スペクトルを測定した。得られたスペクトルを図1に示す。その結果、比較例1の蛍光体は、455nmの青色光で励起することで、632nmの赤色発光を示すことを確認した。
<Confirmation of emission spectrum>
The excitation / fluorescence spectrum of the phosphor of Comparative Example 1 was measured using a spectrofluorescence meter (F-7000, manufactured by Hitachi High-Technologies Corporation). The obtained spectrum is shown in FIG. As a result, it was confirmed that the phosphor of Comparative Example 1 exhibited red emission at 632 nm by being excited with blue light at 455 nm.

<結晶相測定による黄色粉末の母結晶の確認>
比較例1の蛍光体について、X線回折装置(リガク社製、商品名Ultima4、CuKα管球使用)を用いてX線回折パターンを測定した。得られたX線回折パターンを図2に示す。その結果、比較例1の蛍光体のX線回折パターンは、K2SiF6結晶と同一パターンであったことから、K2SiF6:Mnを単相で合成できたことを確認した。
<Confirmation of mother crystal of yellow powder by crystal phase measurement>
The X-ray diffraction pattern of the phosphor of Comparative Example 1 was measured using an X-ray diffractometer (manufactured by Rigaku Co., Ltd., trade name Ultima4, using CuKα tube). The obtained X-ray diffraction pattern is shown in FIG. As a result, since the X-ray diffraction pattern of the phosphor of Comparative Example 1 was the same as that of the K 2 SiF 6 crystal, it was confirmed that K 2 SiF 6 : Mn could be synthesized in a single phase.

<比表面積測定>
比較例1の蛍光体について、比表面積測定装置(マイクロメリティックス社製、3Flex)を用いて、Krガス吸着の多点法にて比表面積を測定した。測定試料は、予め200℃で15時間、減圧脱気処理した後に、比表面積の測定を行った。その結果、蛍光体の比表面積は0.21m2/gであった。
<Specific surface area measurement>
The specific surface area of the phosphor of Comparative Example 1 was measured by the multipoint method of Kr gas adsorption using a specific surface area measuring device (3Flex manufactured by Micromeritics Co., Ltd.). The specific surface area of the measurement sample was measured after degassing under reduced pressure at 200 ° C. for 15 hours in advance. As a result, the specific surface area of the phosphor was 0.21 m 2 / g.

<実施例1>
比較例1の蛍光体40.0gを袋に入れ、デシルトリメトキシシラン(式(2)において、R1が(CH29CH3、R2がCH3である;信越化学工業社製)を蛍光体の比表面積から計算される必要量の28倍となるように0.8g更に添加し、袋内で混合した。その後、100℃で8時間乾燥させることにより、39.8gの表面処理蛍光体を得た。
<Example 1>
40.0 g of the phosphor of Comparative Example 1 was placed in a bag, and decyltrimethoxysilane (in formula (2), R 1 is (CH 2 ) 9 CH 3 and R 2 is CH 3 ; manufactured by Shin-Etsu Chemical Co., Ltd.). Was further added in an amount of 0.8 g so as to be 28 times the required amount calculated from the specific surface area of the phosphor, and mixed in the bag. Then, it was dried at 100 degreeC for 8 hours to obtain 39.8 g of a surface-treated fluorescent substance.

<実施例2〜3>
アルコキシシランの種類を変更したこと以外は、実施例1と同様にして表面処理蛍光体を得た。
アルコキシシランについては、下記のものを使用した。
実施例2:ドデシルトリメトキシシラン(式(2)において、R1が(CH211CH3、R2がCH3である;東京化成工業社製)。
実施例3:ヘキシルトリメトキシシラン(式(2)において、R1が(CH25CH3、R2がCH3である;信越化学工業社製)
なお、使用するアルコキシシランの種類が変わると、アルコキシシランの最小被覆面積(m2/g)も変化するため、その値を考慮してアルコキシシランの使用量も調整した。
<Examples 2 to 3>
A surface-treated fluorophore was obtained in the same manner as in Example 1 except that the type of alkoxysilane was changed.
As the alkoxysilane, the following was used.
Example 2: Dodecyltrimethoxysilane (in formula (2), R 1 is (CH 2 ) 11 CH 3 and R 2 is CH 3 ; manufactured by Tokyo Chemical Industry Co., Ltd.).
Example 3: Hexyltrimethoxysilane (in formula (2), R 1 is (CH 2 ) 5 CH 3 and R 2 is CH 3 ; manufactured by Shin-Etsu Chemical Co., Ltd.)
Since the minimum coating area (m 2 / g) of the alkoxysilane changes when the type of the alkoxysilane used changes, the amount of the alkoxysilane used is also adjusted in consideration of the value.

<実施例4〜7>
アルコキシシランの使用量を表1に示す通りに変更したこと以外は、実施例1と同様にして表面処理蛍光体を得た。
<比較例2〜4>
アルコキシシランの種類を変更したこと以外は、実施例1と同様にして表面処理蛍光体を得た。
アルコキシシランについては、下記のものを使用した。
比較例2:メチルトリメトキシシラン(式(2)において、R1がCH3、R2がCH3である;信越化学工業社製)。
比較例3:n−プロピルトリメトキシシラン(式(2)において、R1が(CH22CH3、R2がCH3である;信越化学工業社製)
比較例4:ヘキサデシルトリメトキシシラン(式(2)において、R1が(CH215CH3、R2がCH3である;東京化成工業社製)
<Examples 4 to 7>
A surface-treated fluorophore was obtained in the same manner as in Example 1 except that the amount of alkoxysilane used was changed as shown in Table 1.
<Comparative Examples 2 to 4>
A surface-treated fluorophore was obtained in the same manner as in Example 1 except that the type of alkoxysilane was changed.
As the alkoxysilane, the following was used.
Comparative Example 2: Methyltrimethoxysilane (in formula (2), R 1 is CH 3 and R 2 is CH 3 ; manufactured by Shin-Etsu Chemical Co., Ltd.).
Comparative Example 3: n-propyltrimethoxysilane (in formula (2), R 1 is (CH 2 ) 2 CH 3 and R 2 is CH 3 ; manufactured by Shin-Etsu Chemical Co., Ltd.)
Comparative Example 4: Hexadecyltrimethoxysilane (in formula (2), R 1 is (CH 2 ) 15 CH 3 and R 2 is CH 3 ; manufactured by Tokyo Chemical Industry Co., Ltd.)

<表面処理蛍光体の質量増加率の評価>
比較例1の蛍光体40.0gを100℃で8時間乾燥させることによって得た未表面処理蛍光体に対する各表面処理蛍光体の質量増加率を算出した。具体的には、下記の式に基づいて質量増加率を算出した。
表面処理蛍光体の質量増加率=(表面処理蛍光体の質量−未表面処理蛍光体の質量)/未表面処理蛍光体の質量×100
上記の評価結果を表1に示す。
<Evaluation of mass increase rate of surface-treated phosphor>
The mass increase rate of each surface-treated fluorescent substance with respect to the unsurface-treated fluorescent substance obtained by drying 40.0 g of the fluorescent substance of Comparative Example 1 at 100 ° C. for 8 hours was calculated. Specifically, the mass increase rate was calculated based on the following formula.
Mass increase rate of surface-treated fluorophore = (mass of surface-treated fluorophore-mass of unsurface-treated fluorophore) / mass of unsurface-treated fluorophore x 100
The above evaluation results are shown in Table 1.

次に、実施例1〜7及び比較例2〜4で得られた表面処理蛍光体、並びに比較例1の未表面処理蛍光体を用いて下記の評価を行った。 Next, the following evaluations were carried out using the surface-treated fluorescent materials obtained in Examples 1 to 7 and Comparative Examples 2 to 4 and the unsurface-treated fluorescent materials of Comparative Example 1.

<全光束測定>
表面処理蛍光体又は蛍光体を、βサイアロン緑色蛍光体(デンカ社製、商品名GR−MW540K;ピーク波長545nm)と共にシリコーン樹脂に添加して脱泡及び混練した。この混練物を、ピーク波長450nmの青色LED素子を接合した表面実装タイプのパッケージにポッティングし、更にそれを熱硬化させることによって白色LEDを作製した。ここで、表面処理蛍光体又は蛍光体とβサイアロン緑色蛍光体との添加量比は、通電発光時に白色LEDの色度座標(x、y)が(0.280、0.270)になるように調整した。
次に、作製した白色LEDを通電発光させた際の全光束を大塚電子社製の全光束測定装置(直径300mm積分半球と分光光度計/MCPD−9800とを組合せた装置)によって測定した。この測定は、色度xが0.275〜0.284、色度yが0.265〜0.274の範囲である5個の白色LEDに対して行い、それらの平均値を測定値とした。また、この評価結果は、比較例1の蛍光体を用いて作製した白色LEDの全光束の平均値を100%とした場合の相対評価とした。
<Total luminous flux measurement>
A surface-treated fluorescent substance or a fluorescent substance was added to a silicone resin together with a β-sialon green fluorescent substance (manufactured by Denka Co., Ltd., trade name GR-MW540K; peak wavelength 545 nm), and defoamed and kneaded. This kneaded product was potted in a surface mount type package to which a blue LED element having a peak wavelength of 450 nm was bonded, and further thermoset to produce a white LED. Here, the addition amount ratio of the surface-treated phosphor or the phosphor to the β-sialon green phosphor is such that the chromaticity coordinates (x, y) of the white LED become (0.280, 0.270) when the white LED emits light. Adjusted to.
Next, the total luminous flux when the produced white LED was energized was measured by a total luminous flux measuring device manufactured by Otsuka Electronics Co., Ltd. (a device combining a 300 mm diameter integrating hemisphere and a spectrophotometer / MCPD-9800). This measurement was performed on five white LEDs having a chromaticity x in the range of 0.275 to 0.284 and a chromaticity y in the range of 0.265 to 0.274, and the average value thereof was used as the measured value. .. Further, this evaluation result was a relative evaluation when the average value of the total luminous flux of the white LED produced by using the phosphor of Comparative Example 1 was set to 100%.

<信頼性試験>
全光束測定で作製した5個の白色LEDを、温度85℃、相対湿度85%の恒温恒湿槽(エスペック製、SH−642)内において、400mAで1000時間通電点灯させる試験を行い、点灯初期からの1000時間後の色度xのずれ(Δx)及び全光束の低下率を求めた。この評価についても5個の白色LEDに対して行い、それらの平均値を測定結果とした。
上記の各測定結果を表2に示す。
<Reliability test>
A test was conducted in which five white LEDs produced by total luminous flux measurement were energized and lit at 400 mA for 1000 hours in a constant temperature and humidity chamber (SH-642 manufactured by ESPEC) at a temperature of 85 ° C and a relative humidity of 85%. The deviation (Δx) of the chromaticity x and the reduction rate of the total luminous flux after 1000 hours from the above were determined. This evaluation was also performed on 5 white LEDs, and the average value thereof was used as the measurement result.
The results of each of the above measurements are shown in Table 2.

表2に示されるように、実施例1〜7の表面処理蛍光体を用いて製造した白色LEDは、比較例1の未表面処理蛍光体及び比較例2〜4の表面処理蛍光体を用いて製造した白色LEDに比べて、全光束が高いと共に、色度xのずれ(Δx)及び全光束の低下率が小さかった。 As shown in Table 2, the white LED produced by using the surface-treated phosphors of Examples 1 to 7 uses the unsurface-treated phosphor of Comparative Example 1 and the surface-treated phosphor of Comparative Examples 2 to 4. Compared with the manufactured white LED, the total luminous flux was high, and the deviation (Δx) of the chromaticity x and the reduction rate of the total luminous flux were small.

以上の結果からわかるように、本発明によれば、輝度及び信頼性に優れた発光装置を与える表面処理蛍光体及びその製造方法を提供することができる。また、本発明によれば、輝度及び信頼性に優れた発光装置を提供することができる。 As can be seen from the above results, according to the present invention, it is possible to provide a surface-treated phosphor and a method for producing the same, which provides a light emitting device having excellent brightness and reliability. Further, according to the present invention, it is possible to provide a light emitting device having excellent brightness and reliability.

本発明の表面処理蛍光体は、青色光を光源とする白色LED用の赤色蛍光体として好適に使用できるため、照明器具、画像表示装置などの発光装置に用いるのに適している。 Since the surface-treated phosphor of the present invention can be suitably used as a red phosphor for white LEDs using blue light as a light source, it is suitable for use in a light emitting device such as a lighting fixture or an image display device.

Claims (11)

組成が下記式(1)で表される蛍光体を、下記式(2)で表されるアルコキシシランにて表面処理する工程を含む表面処理蛍光体の製造方法。
2MF6:Mn4+ ・・・ (1)
(式中、元素MはSi、Ge、Ti、Sn、Zr及びHfからなる群から選ばれる1種以上の元素である。)
1Si(OR23 ・・・ (2)
(式中、R1は炭素数が6〜12の置換又は非置換の一価炭化水素基、R2は非置換の一価炭化水素基である。)
A method for producing a surface-treated fluorescent substance, which comprises a step of surface-treating a fluorescent substance having a composition represented by the following formula (1) with an alkoxysilane represented by the following formula (2).
K 2 MF 6 : Mn 4+ ... (1)
(In the formula, the element M is one or more elements selected from the group consisting of Si, Ge, Ti, Sn, Zr and Hf.)
R 1 Si (OR 2 ) 3 ... (2)
(In the formula, R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 6 to 12 carbon atoms, and R 2 is an unsubstituted monovalent hydrocarbon group.)
元素MがSiである、請求項1に記載の表面処理蛍光体の製造方法。 The method for producing a surface-treated phosphor according to claim 1, wherein the element M is Si. 2がメチル基である、請求項1又は2に記載の表面処理蛍光体の製造方法。 The method for producing a surface-treated fluorescent substance according to claim 1 or 2, wherein R 2 is a methyl group. 前記表面処理が、前記蛍光体の比表面積から計算される必要量の10倍〜70倍の量のアルコキシシランを用いて行われる、請求項1〜3のいずれか一項に記載の表面処理蛍光体の製造方法。 The surface treatment fluorescence according to any one of claims 1 to 3, wherein the surface treatment is performed using an amount of alkoxysilane 10 to 70 times the required amount calculated from the specific surface area of the phosphor. How to make a body. 前記蛍光体に対する前記表面処理蛍光体の質量増加率が0.03%〜1.00%である、請求項1〜4のいずれか一項に記載の表面処理蛍光体の製造方法。 The method for producing a surface-treated fluorescent substance according to any one of claims 1 to 4, wherein the mass increase rate of the surface-treated fluorescent substance with respect to the fluorescent substance is 0.03% to 1.00%. 組成が下記式(1)で表される蛍光体の表面に、下記式(2)で表されるアルコキシシランの表面処理部を有する表面処理蛍光体。
2MF6:Mn4+ ・・・ (1)
(式中、元素MはSi、Ge、Ti、Sn、Zr及びHfからなる群から選ばれる1種以上の元素である。)
1Si(OR23 ・・・ (2)
(式中、R1は炭素数が6〜12の置換又は非置換の一価炭化水素基、R2は非置換の一価炭化水素基である。)
A surface-treated fluorescent substance having a surface-treated portion of alkoxysilane represented by the following formula (2) on the surface of the phosphor having a composition represented by the following formula (1).
K 2 MF 6 : Mn 4+ ... (1)
(In the formula, the element M is one or more elements selected from the group consisting of Si, Ge, Ti, Sn, Zr and Hf.)
R 1 Si (OR 2 ) 3 ... (2)
(In the formula, R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 6 to 12 carbon atoms, and R 2 is an unsubstituted monovalent hydrocarbon group.)
元素MがSiである、請求項6記載の表面処理蛍光体。 The surface-treated fluorescent substance according to claim 6, wherein the element M is Si. 2がメチル基である、請求項6又は7記載の表面処理蛍光体。 The surface-treated fluorophore according to claim 6 or 7, wherein R 2 is a methyl group. 請求項6〜8のいずれか一項に記載の表面処理蛍光体と、ピーク波長が420nm〜480nmの発光光源とを含む発光装置。 A light emitting device including the surface-treated phosphor according to any one of claims 6 to 8 and a light emitting light source having a peak wavelength of 420 nm to 480 nm. 前記発光装置が、波長455nmの励起光を受けた際にピーク波長が510nm〜550nmの緑色光を発光する蛍光体を更に含む、請求項9に記載の発光装置。 The light emitting device according to claim 9, further comprising a phosphor that emits green light having a peak wavelength of 510 nm to 550 nm when the light emitting device receives excitation light having a wavelength of 455 nm. 前記緑色光を発光する蛍光体がEu付活βサイアロン蛍光体である請求項10に記載の発光装置。 The light emitting device according to claim 10, wherein the phosphor that emits green light is an EU-activated β-sialon phosphor.
JP2017191189A 2017-09-29 2017-09-29 Surface-treated phosphor and manufacturing method of the same, as well as light-emitting device Pending JP2021008524A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017191189A JP2021008524A (en) 2017-09-29 2017-09-29 Surface-treated phosphor and manufacturing method of the same, as well as light-emitting device
PCT/JP2018/036054 WO2019065887A1 (en) 2017-09-29 2018-09-27 Surface-treated fluorescent substance, production method therefor, and light-emitting device
TW107134254A TW201920609A (en) 2017-09-29 2018-09-28 Surface-treated fluorescent substance, production method therefor, and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017191189A JP2021008524A (en) 2017-09-29 2017-09-29 Surface-treated phosphor and manufacturing method of the same, as well as light-emitting device

Publications (1)

Publication Number Publication Date
JP2021008524A true JP2021008524A (en) 2021-01-28

Family

ID=65902496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017191189A Pending JP2021008524A (en) 2017-09-29 2017-09-29 Surface-treated phosphor and manufacturing method of the same, as well as light-emitting device

Country Status (3)

Country Link
JP (1) JP2021008524A (en)
TW (1) TW201920609A (en)
WO (1) WO2019065887A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021525820A (en) * 2018-05-31 2021-09-27 クリー インコーポレイテッドCree Inc. Stabilized Fluoride Fluorescent Materials for Light Emitting Diode (LED) Applications
WO2022255219A1 (en) * 2021-05-31 2022-12-08 日亜化学工業株式会社 Fluoride fluorescent body, method for producing same, and light emission apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255881A1 (en) * 2019-06-21 2020-12-24 デンカ株式会社 Phosphor and method of producing phosphor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682104B2 (en) * 2008-09-05 2015-03-11 三菱化学株式会社 Phosphor and method for producing the same, phosphor-containing composition and light emitting device using the phosphor, and image display device and lighting device using the light emitting device
CN104024374B (en) * 2012-12-28 2017-07-14 信越化学工业株式会社 The surface treatment method of fluorophor
JP6245742B2 (en) * 2013-12-04 2017-12-13 昭和電工株式会社 Semiconductor nanoparticle-containing curable composition, cured product, optical material and electronic material
CN107017325B (en) * 2015-11-30 2020-06-23 隆达电子股份有限公司 Quantum dot composite material and manufacturing method and application thereof
JP2017152566A (en) * 2016-02-25 2017-08-31 シャープ株式会社 Light-emitting device, backlight, and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021525820A (en) * 2018-05-31 2021-09-27 クリー インコーポレイテッドCree Inc. Stabilized Fluoride Fluorescent Materials for Light Emitting Diode (LED) Applications
WO2022255219A1 (en) * 2021-05-31 2022-12-08 日亜化学工業株式会社 Fluoride fluorescent body, method for producing same, and light emission apparatus

Also Published As

Publication number Publication date
TW201920609A (en) 2019-06-01
WO2019065887A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP5446511B2 (en) Phosphor and method for producing the same, phosphor-containing composition and light emitting device using the phosphor, and image display device and lighting device using the light emitting device
JP6123872B2 (en) Phosphor and method for producing the same, phosphor-containing composition and light emitting device using the phosphor, and image display device and lighting device using the light emitting device
JP5443662B2 (en) Method for producing moisture-resistant phosphor particle powder and LED element or dispersion-type EL element using moisture-resistant phosphor particle powder obtained by the production method
TWI758493B (en) Fluoride phosphor and light-emitting device using the same
JP5446432B2 (en) Phosphor, phosphor-containing composition and light emitting device using the phosphor, and image display device and illumination device using the light emitting device
WO2014077240A1 (en) Phosphor, light-emitting element and lighting device
WO2017057671A1 (en) Fluorescent fluoride, light-emitting device, and process for producing florescent fluoride
JP6515979B2 (en) Phosphor, manufacturing method thereof and light emitting device
US20140321099A1 (en) Phosphor, light-emitting apparatus including the same, and phosphor production method
CN104797684A (en) Phosphor, light-emitting element and lighting device
JPWO2017122800A1 (en) Phosphor and light emitting device
KR20150083099A (en) Eu-activated luminophores
JP2021008524A (en) Surface-treated phosphor and manufacturing method of the same, as well as light-emitting device
JP2010270196A (en) Phosphor, method for manufacturing phosphor, phosphor-containing composition, light-emitting device, lighting apparatus, image display, and fluorescent paint
JP6869057B2 (en) Red phosphor and light emitting device
JP6997611B2 (en) Method for producing β-type sialon phosphor
TWI751140B (en) Phosphor, light-emitting element and light-emitting device
JP2018150433A (en) Orange phosphor and light-emitting device
JP2019044018A (en) Fluoride phosphors and light emitting devices
JP2010260957A (en) Phosphor, production method thereof, phosphor-containing composition, light-emitting device, lighting apparatus, and image display
JP2013227527A (en) Phosphor and light emitting device using the same
TW201843296A (en) Phosphors with narrow green emission
JP2018012813A (en) Method for producing fluoride phosphor
JP2014101493A (en) Phosphor composition and light emission diode device using the same
KR101528104B1 (en) Oxynitride phosphor of improved reliability, method for manufacturing thereof, and white emitting device comprising the same