JP2021004583A - Fuel tank and support member - Google Patents

Fuel tank and support member Download PDF

Info

Publication number
JP2021004583A
JP2021004583A JP2019119310A JP2019119310A JP2021004583A JP 2021004583 A JP2021004583 A JP 2021004583A JP 2019119310 A JP2019119310 A JP 2019119310A JP 2019119310 A JP2019119310 A JP 2019119310A JP 2021004583 A JP2021004583 A JP 2021004583A
Authority
JP
Japan
Prior art keywords
plate
wall portion
groove
tank body
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019119310A
Other languages
Japanese (ja)
Other versions
JP7349825B2 (en
Inventor
悠 小原
Yu Obara
悠 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FTS Co Ltd
Original Assignee
FTS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FTS Co Ltd filed Critical FTS Co Ltd
Priority to JP2019119310A priority Critical patent/JP7349825B2/en
Publication of JP2021004583A publication Critical patent/JP2021004583A/en
Application granted granted Critical
Publication of JP7349825B2 publication Critical patent/JP7349825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

To stabilize quality of a fuel tank.SOLUTION: A fuel tank 10 comprises a tank body 11 made of synthetic resin, and a strut member 20 made of synthetic resin housed in the tank body 11. The strut member 20 is formed with an annular flange part 22 welded to a lower wall part 13 and an upper wall part 14 of the tank body 11. A groove part 26 in a circumferential direction is formed on a surface 25 of the flange part 22 facing the upper wall part 14 and the lower wall part 13. The strut member 20 comprises a ventilation part 29 that communicates the inside of the groove part 26 with the outside of the strut member 20.SELECTED DRAWING: Figure 2

Description

本発明は、燃料タンク及び支柱部材に関するものである。 The present invention relates to a fuel tank and a strut member.

特許文献1には、内圧の変動に起因する変形を防止することが可能な合成樹脂製の燃料タンクが開示されている。この燃料タンクは、タンクを構成する上下両壁部の間に、合成樹脂材料からなるコラム状の支持エレメントを介在させたものである。支持エレメントの上下両端面は、タンクの上下両壁部に溶接により固着されている。 Patent Document 1 discloses a fuel tank made of synthetic resin capable of preventing deformation due to fluctuations in internal pressure. In this fuel tank, a column-shaped support element made of a synthetic resin material is interposed between the upper and lower wall portions constituting the tank. The upper and lower ends of the support element are fixed to the upper and lower walls of the tank by welding.

特表2016−506331号公報Special Table 2016-506331

支持エレメントの上下両端面はフランジ状の板部となっている。溶接の際には、フランジ状の板部を、加熱して軟化させた状態でタンクの上下両壁部に押し付け、板部と壁部を面接触状態で密着させる。板部を加熱してからタンクの壁部に押し付けるまでの間に、板部の温度が低下するのに伴って、板部が湾曲するように変形する。そのため、板部と壁部との間に、空気が閉じ込められ、空気溜まりが発生する。板部と壁部との間に空気溜まりが生じると、その分、板部と壁部の密着面積が減少するのである。ところが、軟化して湾曲したときの板部の形状は、雰囲気温度等の諸条件によってバラツキがあるため、板部と壁部の密着面積が一定にならない。このように、上記従来の燃料タンクは、板部と壁部の密着面積を管理することができないので、品質が安定しないという問題がある。 The upper and lower ends of the support element are flange-shaped plates. At the time of welding, the flange-shaped plate portion is pressed against the upper and lower wall portions of the tank in a state of being softened by heating, and the plate portion and the wall portion are brought into close contact with each other in a surface contact state. During the period from heating the plate to pressing it against the wall of the tank, the plate is deformed so as to be curved as the temperature of the plate decreases. Therefore, air is trapped between the plate portion and the wall portion, and an air pool is generated. When an air pool is generated between the plate portion and the wall portion, the contact area between the plate portion and the wall portion is reduced by that amount. However, the shape of the plate portion when it is softened and curved varies depending on various conditions such as atmospheric temperature, so that the contact area between the plate portion and the wall portion is not constant. As described above, the conventional fuel tank has a problem that the quality is not stable because the contact area between the plate portion and the wall portion cannot be controlled.

本発明は上記のような事情に基づいて完成されたものであって、燃料タンクの品質の安定を図ることを目的とする。 The present invention has been completed based on the above circumstances, and an object of the present invention is to stabilize the quality of the fuel tank.

第1の発明の燃料タンクは、
合成樹脂製のタンク本体と、
前記タンク本体内に収容された合成樹脂製の支柱部材と、
前記支柱部材に形成され、前記タンク本体の壁部に溶着された環状のフランジ部と、
前記フランジ部における前記壁部との対向面に形成された周方向の溝部と、
前記溝部内と前記支柱部材の外部とを連通させる通気部とを備えている。
The fuel tank of the first invention
The tank body made of synthetic resin and
A strut member made of synthetic resin housed in the tank body and
An annular flange portion formed on the support column member and welded to the wall portion of the tank body,
A groove portion in the circumferential direction formed on the surface of the flange portion facing the wall portion and
It is provided with a ventilation portion that communicates the inside of the groove portion with the outside of the support column member.

第2の発明の支柱部材は、
合成樹脂製のタンク本体内に収容され、燃料タンクを構成する合成樹脂製の支柱部材であって、
前記タンク本体の壁部に溶着される環状のフランジ部と、
前記フランジ部における前記壁部との対向面に形成された周方向の溝部と、
前記溝部内を外部に連通させる通気部とを備えている。
The strut member of the second invention is
It is a support member made of synthetic resin that is housed in the tank body made of synthetic resin and constitutes a fuel tank.
An annular flange portion welded to the wall portion of the tank body and
A groove portion in the circumferential direction formed on the surface of the flange portion facing the wall portion and
It is provided with a ventilation portion that communicates the inside of the groove portion with the outside.

支柱部材をタンク本体の壁部に溶着する際には、フランジ部を、加熱して軟化させた状態で壁部に押し付ける。溶着の過程では、フランジ部と壁部との間に空気溜まりが生じても、溶着が進むのに伴って、空気溜まりの空気が溝部と通気部を通って支柱部材の外部へ排出される。これにより、溶着完了時には、フランジ部と壁部との間において溝部だけに空気を残留させる形態にすることが可能である。溝部の大きさは、支柱部材の成形時に管理され、フランジ部が湾曲しても大きく変動することはない。これにより、フランジ部と壁部の溶着面積を管理することができるので、溶着品質を安定させることができる。 When the support column member is welded to the wall portion of the tank body, the flange portion is pressed against the wall portion in a state of being heated and softened. In the process of welding, even if an air pool is formed between the flange portion and the wall portion, the air in the air pool is discharged to the outside of the support column member through the groove portion and the ventilation portion as the welding progresses. As a result, when the welding is completed, it is possible to form a form in which air remains only in the groove portion between the flange portion and the wall portion. The size of the groove portion is controlled at the time of molding the strut member, and does not fluctuate significantly even if the flange portion is curved. As a result, the welding area of the flange portion and the wall portion can be controlled, so that the welding quality can be stabilized.

実施例1の燃料タンクの断面図である。It is sectional drawing of the fuel tank of Example 1. FIG. 支柱部材とタンク本体の下壁部との溶着部分をあらわした部分拡大断面図である。It is a partial enlarged sectional view showing the welded part between the support column member and the lower wall part of a tank body. 図2のX−X線断面図である。FIG. 2 is a cross-sectional view taken along line XX of FIG. フランジ部を熱板により加熱している状態をあらわす部分拡大断面図である。It is a partial enlarged sectional view which shows the state which the flange part is heated by a hot plate. フランジ部が加熱により軟化して湾曲変形した状態をあらわす部分拡大断面図である。It is a partially enlarged cross-sectional view which shows the state which the flange part softened by heating and was curved and deformed. 実施例2の支柱部材の底面図である。It is a bottom view of the support column member of Example 2. 実施例3の支柱部材の底面図である。It is a bottom view of the support column member of Example 3. 実施例4の支柱部材の底面図である。It is a bottom view of the support column member of Example 4.

第1及び第2の発明は、前記溝部が、前記フランジ部の全周にわたって連続した形態であることが好ましい。この構成によれば、フランジ部と壁部との溶着面積を、フランジ部の全周にわたって管理できるので、溶着品質を高いレベルで安定させることができる。 In the first and second inventions, it is preferable that the groove portion is continuous over the entire circumference of the flange portion. According to this configuration, the welding area between the flange portion and the wall portion can be controlled over the entire circumference of the flange portion, so that the welding quality can be stabilized at a high level.

第1及び第2の発明は、前記通気部が、前記フランジ部を厚さ方向に貫通した形態であることが好ましい。この構成によれば、通気部を形成しても、フランジ部における壁部との溶着面積が減少することがないので、溶着強度の低下を回避できる。 In the first and second inventions, it is preferable that the ventilation portion penetrates the flange portion in the thickness direction. According to this configuration, even if the ventilation portion is formed, the welding area of the flange portion with the wall portion does not decrease, so that a decrease in welding strength can be avoided.

<実施例1>
以下、本発明を具体化した実施例1を図1〜図5を参照して説明する。本実施例1の燃料タンク10は、図1に示すように、合成樹脂製のタンク本体11と、タンク本体11内に収容された合成樹脂製の支柱部材20とを備えている。即ち、本実施例1の支柱部材20は、タンク本体11内に収容されることで燃料タンク10を構成するものである。
<Example 1>
Hereinafter, Example 1 embodying the present invention will be described with reference to FIGS. 1 to 5. As shown in FIG. 1, the fuel tank 10 of the first embodiment includes a tank body 11 made of synthetic resin and a support member 20 made of synthetic resin housed in the tank body 11. That is, the support column member 20 of the first embodiment constitutes the fuel tank 10 by being housed in the tank body 11.

タンク本体11の内部空間は、燃料を貯留するための貯留室12となっている。タンク本体11は、下壁部13(請求項に記載の壁部)と、貯留室12を構成する上壁部14(請求項に記載の壁部)とを有している。上壁部14と下壁部13は、上下方向に対向するように配されている。貯留室12(タンク本体11)の内圧が大気圧よりも上昇すると、上壁部14と下壁部13は、タンク本体11内から互いに上下方向に離間する方向の押圧力を受ける。貯留室12の内圧が大気圧よりも低下すると、上壁部14と下壁部13は、タンク本体11外から互いに上下方向に接近する方向の押圧力を受ける。 The internal space of the tank body 11 is a storage chamber 12 for storing fuel. The tank main body 11 has a lower wall portion 13 (wall portion according to claim) and an upper wall portion 14 (wall portion according to claim) constituting the storage chamber 12. The upper wall portion 14 and the lower wall portion 13 are arranged so as to face each other in the vertical direction. When the internal pressure of the storage chamber 12 (tank body 11) rises above the atmospheric pressure, the upper wall portion 14 and the lower wall portion 13 receive a pressing force in a direction in which they are separated from each other in the vertical direction from the inside of the tank body 11. When the internal pressure of the storage chamber 12 becomes lower than the atmospheric pressure, the upper wall portion 14 and the lower wall portion 13 receive a pressing force in a direction approaching each other in the vertical direction from the outside of the tank body 11.

支柱部材20の材料は、タンク本体11と同じものである。支柱部材20は、貯留室12の圧力が変動したときに上壁部14と下壁部13の上下方向の相対変位を規制し、タンク本体11の不正な変形を防止するものである。支柱部材20は、軸線を上下方向(上壁部14と下壁部13が対向する方向)に向けた円筒状の柱状部21と、柱状部21の上下両端部に連なる上下対称な一対のフランジ部22とを有する単一部品である。 The material of the support column member 20 is the same as that of the tank body 11. The strut member 20 regulates the relative displacement of the upper wall portion 14 and the lower wall portion 13 in the vertical direction when the pressure of the storage chamber 12 fluctuates, and prevents the tank body 11 from being deformed illegally. The strut member 20 has a cylindrical columnar portion 21 whose axis is directed in the vertical direction (the direction in which the upper wall portion 14 and the lower wall portion 13 face each other) and a pair of vertically symmetrical flanges connected to both upper and lower ends of the columnar portion 21. It is a single component having a portion 22.

一対のフランジ部22は上下対称であるので、以下、下側のフランジ部22の形態について説明し、上側のフランジ部22については説明を省略する。フランジ部22は、柱状部21の下端部の外周から径方向(水平方向)へ張り出している。図3に示すように、支柱部材20を柱状部21の軸線と平行に上から視た平面視において、フランジ部22は、外径寸法が柱状部21よりも大きく、柱状部21と同心の円環形をなしている。フランジ部22は、柱状部21と同心円環状のテーパ部23と、同じく柱状部21と同心円環状の板状溶着部24とから構成されている。テーパ部23は、柱状部21の下端部から、柱状部21の軸線に対して斜め方向(斜め下外方)へ延出した形態である。 Since the pair of flange portions 22 are vertically symmetrical, the form of the lower flange portion 22 will be described below, and the description of the upper flange portion 22 will be omitted. The flange portion 22 projects in the radial direction (horizontal direction) from the outer circumference of the lower end portion of the columnar portion 21. As shown in FIG. 3, when the support column member 20 is viewed from above in parallel with the axis of the columnar portion 21, the flange portion 22 has an outer diameter larger than that of the columnar portion 21 and is a circle concentric with the columnar portion 21. It has a ring shape. The flange portion 22 is composed of a columnar portion 21, a concentric annular tapered portion 23, and a columnar portion 21 and a concentric annular plate-shaped welded portion 24. The tapered portion 23 extends from the lower end of the columnar portion 21 in an oblique direction (obliquely downward and outward) with respect to the axis of the columnar portion 21.

板状溶着部24は、テーパ部23よりも大径であり、テーパ部23の外周縁(下端縁部)から径方向外方へ水平に張り出した形態である。板状溶着部24は、板厚方向を柱状部21の軸線と平行に向けている。板状溶着部24の下面は、下壁部13の内面と対向する対向面25となっている。支柱部材20は、対向面25において下壁部13と溶着する。 The plate-shaped welded portion 24 has a larger diameter than the tapered portion 23, and is in a form of horizontally projecting outward in the radial direction from the outer peripheral edge (lower end edge portion) of the tapered portion 23. The plate-shaped welded portion 24 has the plate thickness direction oriented parallel to the axis of the columnar portion 21. The lower surface of the plate-shaped welded portion 24 is an opposing surface 25 facing the inner surface of the lower wall portion 13. The strut member 20 is welded to the lower wall portion 13 on the facing surface 25.

板状溶着部24には、対向面25を凹ませた形態の溝部26が形成されている。支柱部材20を軸線と平行に切断した断面において、溝部26の断面形状は方形である。溝部26は、フランジ部22(板状溶着部24)と同心の円環形をなす。溝部26は、板状溶着部24の外周縁よりも径方向内側で、且つ板状溶着部24の内周縁より径方向外側に配されている。対向面25のうち溝部26よりも外周側の円環状領域は、外周側溶着面27となっている。対向面25のうち溝部26よりも内周側の円環状領域は、内周側溶着面28となっている。 The plate-shaped welded portion 24 is formed with a groove portion 26 in which the facing surface 25 is recessed. In the cross section of the support column member 20 cut in parallel with the axis, the cross-sectional shape of the groove portion 26 is square. The groove portion 26 has an annular shape concentric with the flange portion 22 (plate-shaped welded portion 24). The groove portion 26 is arranged radially inside the outer peripheral edge of the plate-shaped welded portion 24 and radially outward from the inner peripheral edge of the plate-shaped welded portion 24. Of the facing surfaces 25, the annular region on the outer peripheral side of the groove portion 26 is the outer peripheral side welding surface 27. Of the facing surfaces 25, the annular region on the inner peripheral side of the groove portion 26 is the inner peripheral side welding surface 28.

板状溶着部24には、4つ(複数)の通気部29(通気孔)が形成されている。4つの通気部29は、円形の貫通孔からなり、平面視において周方向に等角度ピッチで配されている。径方向において、4つの通気部29は、溝部26の形成領域の範囲内に配されている。各通気部29は、溝部26の内部空間を、板状溶着部24の上面、即ち板状溶着部24における対向面25とは反対側の外面へ開放させた形態である。換言すると、通気部29は、板状溶着部24を支柱部材20(柱状部21)の軸線方向と平行に貫通した形態であり、板状溶着部24(フランジ部22)の板厚方向に貫通した形態である。 Four (plurality) ventilation portions 29 (vent holes) are formed in the plate-shaped welding portion 24. The four vents 29 are formed of circular through holes and are arranged at equal pitches in the circumferential direction in a plan view. In the radial direction, the four vents 29 are arranged within the formation region of the groove 26. Each ventilation portion 29 has a form in which the internal space of the groove portion 26 is opened to the upper surface of the plate-shaped welding portion 24, that is, the outer surface of the plate-shaped welding portion 24 opposite to the facing surface 25. In other words, the ventilation portion 29 has a form in which the plate-shaped welded portion 24 penetrates in parallel with the axial direction of the support column member 20 (columnar portion 21), and penetrates in the plate thickness direction of the plate-shaped welded portion 24 (flange portion 22). It is a form that has been used.

次に、支柱部材20を下壁部13に溶着する工程を説明する。まず、図4に示すように、水平に設置した熱板Hの上面に、下側のフランジ部22における下壁部13との対向面25(外周側溶着面27と内周側溶着面28)を面接触状態で密着させながら押し付ける。すると、フランジ部22のうち外周側溶着面27と内周側溶着面28を含む板状溶着部24の下面部分が、加熱されて軟化する。このとき、板状溶着部24のうち対向面25(外周側溶着面27と内周側溶着面28)から離間した上面側部分は、温度上昇が小さいので軟化しない。したがって、溝部26のうち上端側部分も軟化しない。タンク本体11の下壁部13のうちフランジ部22を溶着する部位も、フランジ部22と同様に、加熱して軟化させておく。 Next, a step of welding the support column member 20 to the lower wall portion 13 will be described. First, as shown in FIG. 4, on the upper surface of the horizontally installed hot plate H, the facing surface 25 of the lower flange portion 22 with the lower wall portion 13 (outer peripheral side welding surface 27 and inner peripheral side welding surface 28). Press while keeping close contact with each other. Then, the lower surface portion of the plate-shaped welded portion 24 including the outer peripheral side welded surface 27 and the inner peripheral side welded surface 28 of the flange portion 22 is heated and softened. At this time, the upper surface side portion of the plate-shaped welded portion 24 separated from the facing surface 25 (the outer peripheral side welding surface 27 and the inner peripheral side welding surface 28) does not soften because the temperature rise is small. Therefore, the upper end side portion of the groove portion 26 is not softened either. The portion of the lower wall portion 13 of the tank body 11 to which the flange portion 22 is welded is also heated and softened in the same manner as the flange portion 22.

板状溶着部24の下面側部分と下壁部13が軟化したら、支柱部材20を、熱板Hから持ち上げて、下壁部13の上方へ移動させる。移動させる間に、板状溶着部24は雰囲気温度によって自然冷却されるため、板状溶着部24(フランジ部22)の対向面25は湾曲変形する。図5に示すように、湾曲変形した対向面25は、溝部26の形成されている径方向中央部分が、外周側部分及び内周側部分に比べて凹んだ形態となる。このような凹み形状になるのは、以下の理由によるものと推察される。 When the lower surface side portion and the lower wall portion 13 of the plate-shaped welded portion 24 are softened, the support column member 20 is lifted from the hot plate H and moved above the lower wall portion 13. Since the plate-shaped welded portion 24 is naturally cooled by the atmospheric temperature during the movement, the facing surface 25 of the plate-shaped welded portion 24 (flange portion 22) is curved and deformed. As shown in FIG. 5, the curved and deformed facing surface 25 has a shape in which the central portion in the radial direction in which the groove portion 26 is formed is recessed as compared with the outer peripheral side portion and the inner peripheral side portion. It is presumed that such a concave shape is due to the following reasons.

板状溶着部24のうち外周側溶着面27が形成されている領域は、板状溶着部24の外周面が露出しているので冷却速度が比較的速く、冷却に伴う収縮量が比較的小さい。板状溶着部24のうち内周側溶着面28が形成されている領域も、板状溶着部24の内周面が露出しているので冷却速度が比較的速く、冷却に伴う収縮量が比較的小さい。これに対し、板状溶着部24のうち溝部26が形成されている領域は、そもそも加熱の度合いが小さく、しかも、周面が露出していないので冷却速度が比較的遅く、冷却に伴う収縮量が比較的大きい。この冷却に伴う各部位における変形形態の相違により、対向面25のうち溝部26が形成されている径方向中央部が、外周側及び内周側に比べて凹むような形態で湾曲すると考えられる。 In the region of the plate-shaped welded portion 24 on which the outer peripheral side welding surface 27 is formed, the outer peripheral surface of the plate-shaped welded portion 24 is exposed, so that the cooling rate is relatively high and the amount of shrinkage due to cooling is relatively small. .. In the region of the plate-shaped welded portion 24 where the inner peripheral side welding surface 28 is formed, the cooling rate is relatively fast because the inner peripheral surface of the plate-shaped welded portion 24 is exposed, and the amount of shrinkage due to cooling is compared. Small. On the other hand, in the region of the plate-shaped welded portion 24 where the groove portion 26 is formed, the degree of heating is small in the first place, and since the peripheral surface is not exposed, the cooling rate is relatively slow, and the amount of shrinkage due to cooling is relatively slow. Is relatively large. It is considered that the radial central portion of the facing surface 25 in which the groove portion 26 is formed is curved in a concave shape as compared with the outer peripheral side and the inner peripheral side due to the difference in the deformation form in each portion due to the cooling.

上記のように湾曲変形した対向面25を下壁部13に押し付ける過程では、まず、板状溶着部24ののうち外周縁部と内周縁部が下壁部13に接触するので、下壁部13と板状溶着部24との間には空気が閉じこめられ、周方向に沿った環状の空気溜まり(図示省略)が発生する。この空気溜まりは溝部26に連通している。この状態から板状溶着部24を下壁部13に更に押し付けると、対向面25が全体的に下壁部13に接近していき、これに伴って、空気溜まり内の空気が、溝部26と通気部29を介して板状溶着部24(支柱部材20)の外部へ押し出される。 In the process of pressing the curved and deformed facing surface 25 against the lower wall portion 13 as described above, first, the outer peripheral edge portion and the inner peripheral edge portion of the plate-shaped welded portion 24 come into contact with the lower wall portion 13, so that the lower wall portion Air is confined between the 13 and the plate-shaped welded portion 24, and an annular air pool (not shown) is generated along the circumferential direction. This air pool communicates with the groove 26. When the plate-shaped welded portion 24 is further pressed against the lower wall portion 13 from this state, the facing surface 25 approaches the lower wall portion 13 as a whole, and the air in the air pool becomes the groove portion 26. It is pushed out of the plate-shaped welded portion 24 (support member 20) via the vented portion 29.

この間、板状溶着部24の対向面25のうち外周縁部と内周縁部は下壁部13に密着した状態を保つ。そして、対向面25における下壁部13との接触領域が、外周縁側から溝部26に向かって径方向中央部側(径方向内側)へ拡大するとともに、内周縁側から溝部26に向かって径方向中央部側(径方向外側)へ拡大していく。つまり、板状溶着部24と下壁部13との密着面積は、フランジ部22を下壁部13に押し付けていくのに伴って確実に増大していく。 During this time, the outer peripheral edge portion and the inner peripheral edge portion of the facing surface 25 of the plate-shaped welded portion 24 are kept in close contact with the lower wall portion 13. Then, the contact region of the facing surface 25 with the lower wall portion 13 expands from the outer peripheral edge side toward the groove portion 26 toward the radial center portion side (diameter inside), and from the inner peripheral edge side toward the groove portion 26 in the radial direction. It expands toward the center (outward in the radial direction). That is, the contact area between the plate-shaped welded portion 24 and the lower wall portion 13 surely increases as the flange portion 22 is pressed against the lower wall portion 13.

そして、外周側溶着面27の全領域と内周側溶着面28の全領域が下壁部13に密着した状態になると、下側のフランジ部22(板状溶着部24)と下壁部13との溶着が完了する。この状態では、板状溶着部24のうち下壁部13に溶着すべき所期の領域(外周側溶着面27と内周側溶着面28)の全領域が、確実に下壁部13に溶着されているので、必要最少の溶着面積が確保されている。また、板状溶着部24のうち溝部26を構成する部位の大部分は、熱板Hから遠い位置にあるので、溝部26は殆ど変形せず、溝部26の径方向の溝幅寸法も溶着によって大きく変動していない。したがって、フランジ部22と下壁部13との溶着面積は、所期の面積が確保されている。下側のフランジ部22と同様の手順で、上側のフランジ部22と上壁部14との溶着も行われる。 Then, when the entire region of the outer peripheral side welding surface 27 and the entire region of the inner peripheral side welding surface 28 are in close contact with the lower wall portion 13, the lower flange portion 22 (plate-shaped welding portion 24) and the lower wall portion 13 are brought into close contact with each other. Welding with is completed. In this state, the entire area of the plate-shaped welded portion 24 that should be welded to the lower wall portion 13 (the outer peripheral side welded surface 27 and the inner peripheral side welded surface 28) is surely welded to the lower wall portion 13. Therefore, the minimum required welding area is secured. Further, since most of the portions constituting the groove portion 26 of the plate-shaped welded portion 24 are located far from the hot plate H, the groove portion 26 is hardly deformed, and the groove width dimension in the radial direction of the groove portion 26 is also formed by welding. It has not changed significantly. Therefore, the desired area is secured for the welded area between the flange portion 22 and the lower wall portion 13. Welding of the upper flange portion 22 and the upper wall portion 14 is also performed in the same procedure as the lower flange portion 22.

上述のように本実施例1の燃料タンク10は、合成樹脂製のタンク本体11と、タンク本体11内に収容された合成樹脂製の支柱部材20とを有している。支柱部材20には、タンク本体11の下壁部13及び上に溶着された環状のフランジ部22が形成されている。フランジ部22における下壁部13及び上壁部14との対向面25には、周方向の溝部26が形成されている。支柱部材20(フランジ部22)には、溝部26内と支柱部材20の外部とを連通させる通気部29が形成されている。 As described above, the fuel tank 10 of the first embodiment has a tank body 11 made of synthetic resin and a support member 20 made of synthetic resin housed in the tank body 11. The strut member 20 is formed with a lower wall portion 13 of the tank body 11 and an annular flange portion 22 welded onto the tank body 11. A groove portion 26 in the circumferential direction is formed on the surface 25 of the flange portion 22 facing the lower wall portion 13 and the upper wall portion 14. The strut member 20 (flange portion 22) is formed with a ventilation portion 29 that communicates the inside of the groove portion 26 with the outside of the strut member 20.

支柱部材20をタンク本体11の下壁部13及び上壁部14に溶着する際には、フランジ部22(板状溶着部24)を、加熱して軟化させた状態で下壁部13又は上壁部14に押し付ける。溶着の過程では、フランジ部22と下壁部13又は上壁部14との間に空気溜まりが生じても、溶着が進むのに伴って、空気溜まりの空気は溝部26と通気部29を通って支柱部材20の外部へ排出される。 When the support column member 20 is welded to the lower wall portion 13 and the upper wall portion 14 of the tank body 11, the flange portion 22 (plate-shaped welded portion 24) is heated and softened to be the lower wall portion 13 or the upper wall portion 13. Press against the wall 14. In the process of welding, even if an air pool is generated between the flange portion 22 and the lower wall portion 13 or the upper wall portion 14, the air in the air pool passes through the groove portion 26 and the ventilation portion 29 as the welding progresses. Is discharged to the outside of the support column member 20.

これにより、溶着完了時には、フランジ部22と壁部との間において溝部26だけに空気を残留させる形態にすることが可能である。溝部26の大きさは、支柱部材20の成形時に管理され、フランジ部22が湾曲変形しても大きく変動することはない。このように本実施例1の燃料タンク10及び支柱部材20によれば、フランジ部22と壁部との溶着面積を管理することができるので、溶着品質を安定させることができる。 Thereby, when the welding is completed, it is possible to form a form in which air remains only in the groove portion 26 between the flange portion 22 and the wall portion. The size of the groove portion 26 is controlled at the time of molding the strut member 20, and does not fluctuate significantly even if the flange portion 22 is curved and deformed. As described above, according to the fuel tank 10 and the support column member 20 of the first embodiment, the welding area between the flange portion 22 and the wall portion can be controlled, so that the welding quality can be stabilized.

また、溝部26はフランジ部22の全周にわたって連続した形態であるから、板状溶着部24と下壁部13との間には、管理できない形態の空気溜まりが生じることがない。したがって、フランジ部22と壁部との溶着面積を、フランジ部22の全周にわたって管理することができるので、溶着品質を高いレベルで安定させることができる。 Further, since the groove portion 26 has a continuous shape over the entire circumference of the flange portion 22, an uncontrollable form of air pool does not occur between the plate-shaped welded portion 24 and the lower wall portion 13. Therefore, the welding area between the flange portion 22 and the wall portion can be controlled over the entire circumference of the flange portion 22, so that the welding quality can be stabilized at a high level.

また、通気部29は、板状溶着部24の外周面や板状溶着部24の内周面を凹ませた形態ではなく、フランジ部22(板状溶着部24)を厚さ方向に貫通した形態である。したがって、フランジ部22に通気部29を形成しても、フランジ部22における壁部との溶着面積が減少することはない。これにより、通気部29を形成することに起因する溶着強度の低下を、回避できる。 Further, the ventilation portion 29 does not have a shape in which the outer peripheral surface of the plate-shaped welded portion 24 and the inner peripheral surface of the plate-shaped welded portion 24 are recessed, but penetrates the flange portion 22 (plate-shaped welded portion 24) in the thickness direction. It is a form. Therefore, even if the ventilation portion 29 is formed on the flange portion 22, the welding area of the flange portion 22 with the wall portion does not decrease. As a result, it is possible to avoid a decrease in welding strength due to the formation of the ventilation portion 29.

<実施例2>
次に、本発明を具体化した実施例2を図6を参照して説明する。本実施例2の支柱部材30は、フランジ部22(板状溶着部24)に形成されている通気部31を上記実施例1とは異なる構成としたものである。その他の構成については上記実施例1と同じであるため、同じ構成については、同一符号を付し、構造、作用及び効果の説明は省略する。
<Example 2>
Next, Example 2 embodying the present invention will be described with reference to FIG. The support column member 30 of the second embodiment has a structure in which the ventilation portion 31 formed in the flange portion 22 (plate-shaped welding portion 24) is different from that of the first embodiment. Since other configurations are the same as those in the first embodiment, the same configurations are designated by the same reference numerals, and the description of the structure, action, and effect will be omitted.

実施例1の通気部29が、板状溶着部24を板厚方向(支柱部材20の軸線方向)に貫通した孔形状であるのに対し、本実施例2の通気部31は、板状溶着部24の外周面を凹ませて、溝部26内を板状溶着部24の外周面へ開放させた形態である。通気部31は、板状溶着部24の上面と下面(外周側溶着面27)にも開口している。 The ventilation portion 29 of the first embodiment has a hole shape that penetrates the plate-shaped welding portion 24 in the plate thickness direction (the axial direction of the support column member 20), whereas the ventilation portion 31 of the second embodiment has a plate-like welding portion. The outer peripheral surface of the portion 24 is recessed so that the inside of the groove portion 26 is opened to the outer peripheral surface of the plate-shaped welded portion 24. The ventilation portion 31 is also open to the upper surface and the lower surface (outer peripheral side welding surface 27) of the plate-shaped welding portion 24.

<実施例3>
次に、本発明を具体化した実施例3を図7を参照して説明する。本実施例3の支柱部材32は、フランジ部22(板状溶着部24)に形成されている通気部33を上記実施例1とは異なる構成としたものである。その他の構成については上記実施例1と同じであるため、同じ構成については、同一符号を付し、構造、作用及び効果の説明は省略する。
<Example 3>
Next, Example 3 embodying the present invention will be described with reference to FIG. The support column member 32 of the third embodiment has a structure in which the ventilation portion 33 formed in the flange portion 22 (plate-shaped welding portion 24) is different from that of the first embodiment. Since other configurations are the same as those in the first embodiment, the same configurations are designated by the same reference numerals, and the description of the structure, action, and effect will be omitted.

本実施例3の通気部33は、板状溶着部24における下壁部13及び上壁部14との対向面25を凹ませた形態である。通気部33は、対向面25を構成する外周側溶着面27と内周側溶着面28のうち外周側溶着面27のみに形成されている。通気部33は、溝部26内を板状溶着部24の外周面へ開放させた形態である。 The ventilation portion 33 of the third embodiment has a form in which the facing surface 25 of the plate-shaped welding portion 24 with the lower wall portion 13 and the upper wall portion 14 is recessed. The ventilation portion 33 is formed only on the outer peripheral side welding surface 27 of the outer peripheral side welding surface 27 and the inner peripheral side welding surface 28 forming the facing surface 25. The ventilation portion 33 has a form in which the inside of the groove portion 26 is opened to the outer peripheral surface of the plate-shaped welding portion 24.

<実施例4>
次に、本発明を具体化した実施例4を図8を参照して説明する。本実施例4の支柱部材34は、フランジ部22(板状溶着部24)に形成されている溝部35を上記実施例1とは異なる構成としたものである。その他の構成については上記実施例1と同じであるため、同じ構成については、同一符号を付し、構造、作用及び効果の説明は省略する。
<Example 4>
Next, Example 4 embodying the present invention will be described with reference to FIG. The support column member 34 of the fourth embodiment has a groove portion 35 formed in the flange portion 22 (plate-shaped welded portion 24) having a configuration different from that of the first embodiment. Since other configurations are the same as those in the first embodiment, the same configurations are designated by the same reference numerals, and the description of the structure, action, and effect will be omitted.

上記実施例1のフランジ部22には、全周にわたって連続した円形をなす1つの溝部26が形成されていたのに対し、本実施例4のフランジ部22には、フランジ部22と同心円の円弧状をなす4つの溝部35が形成されている。4つの溝部35は、周方向に間隔を空けて配されている。通気部29は、各溝部35に1つずつ形成されている。 The flange portion 22 of the first embodiment is formed with one groove portion 26 having a continuous circular shape over the entire circumference, whereas the flange portion 22 of the fourth embodiment is a circle concentric with the flange portion 22. Four arcuate groove 35s are formed. The four groove portions 35 are arranged at intervals in the circumferential direction. One ventilation portion 29 is formed in each groove portion 35.

<他の実施例>
本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
(1)上記実施例1〜4では、4つの通気部を設けたが、通気部の数は3つ以下でもよく、5つ以上でもよい。
(2)上記実施例1〜4では、複数の通気部を周方向に等角度ピッチで配したが、複数の通気部を、周方向において不等角度のピッチで配してもよい。
(3)上記実施例1〜4では、径方向における溝部の幅寸法が、周方向の全長に亘って一定の寸法であるが、径方向における溝部の幅寸法は、周方向において異なっていてもよい。
(4)上記実施例1〜4では、支柱部材がタンク本体の上壁部と下壁部の両方に溶着されるが、支柱部材は、上壁部と下壁部のうちいずれか一方の壁部のみに溶着されるようにしてもよい。
(5)上記実施例1〜4では、溶着が完了した状態で溝部内に空気が残留するようにしたが、溶着が完了した状態で、溝部が溶着時の変形部位で埋められ、溝部内に空気が残留しないようにしてもよい。この場合、フランジ部における上壁部及び下壁部との対向面のうち、少なくとも溝部以外の領域は溶着されるので、必要最少の溶着面積を確保することができる。
(6)上記実施例1〜4では、フランジ部の外周形状が円形又は円弧形であるが、フランジ部の外周形状は楕円形、長円形、多角形等であってもよい。
(7)上記実施例1〜4では、溝部の形状が円形又は円弧形であるが、溝部の形状は楕円形、長円形、多角形等であってもよい。
(8)上記実施例1〜4では、溝部の断面形状が方形であるが、溝部の断面形状は、台形、三角形、半円形等であってもよい。
(9)上記実施例4において、通気部を、実施例2,3のようにフランジ部の外周面に開口する形態としてもよい。
<Other Examples>
The present invention is not limited to the examples described by the above description and drawings, and for example, the following examples are also included in the technical scope of the present invention.
(1) In Examples 1 to 4 above, four ventilation portions are provided, but the number of ventilation portions may be three or less, or five or more.
(2) In Examples 1 to 4 above, a plurality of ventilation portions are arranged at equal angles in the circumferential direction, but a plurality of ventilation portions may be arranged at unequal angles in the circumferential direction.
(3) In Examples 1 to 4 above, the width dimension of the groove portion in the radial direction is a constant dimension over the entire length in the circumferential direction, but the width dimension of the groove portion in the radial direction may be different in the circumferential direction. Good.
(4) In the above-described first to fourth embodiments, the strut member is welded to both the upper wall portion and the lower wall portion of the tank body, but the strut member is a wall of either the upper wall portion or the lower wall portion. It may be welded only to the part.
(5) In Examples 1 to 4 above, air was allowed to remain in the groove in the state where welding was completed, but in the state where welding was completed, the groove was filled with the deformed portion at the time of welding, and the inside of the groove was filled. Air may not remain. In this case, of the surfaces of the flange portion facing the upper wall portion and the lower wall portion, at least a region other than the groove portion is welded, so that the minimum required welding area can be secured.
(6) In Examples 1 to 4, the outer peripheral shape of the flange portion is circular or arcuate, but the outer peripheral shape of the flange portion may be elliptical, oval, polygonal or the like.
(7) In Examples 1 to 4 above, the shape of the groove is circular or arcuate, but the shape of the groove may be elliptical, oval, polygonal or the like.
(8) In Examples 1 to 4 above, the cross-sectional shape of the groove is square, but the cross-sectional shape of the groove may be trapezoidal, triangular, semicircular or the like.
(9) In the fourth embodiment, the ventilation portion may be opened to the outer peripheral surface of the flange portion as in the second and third embodiments.

10…燃料タンク
11…タンク本体
13…下壁部(壁部)
14…上壁部(壁部)
20,30,32,34…支柱部材
22…フランジ部
25…対向面
26,35…溝部
29,31,33…通気部
10 ... Fuel tank 11 ... Tank body 13 ... Lower wall (wall)
14 ... Upper wall (wall)
20, 30, 32, 34 ... Strut member 22 ... Flange part 25 ... Facing surface 26, 35 ... Groove part 29, 31, 33 ... Ventilation part

Claims (4)

合成樹脂製のタンク本体と、
前記タンク本体内に収容された合成樹脂製の支柱部材と、
前記支柱部材に形成され、前記タンク本体の壁部に溶着された環状のフランジ部と、
前記フランジ部における前記壁部との対向面に形成された周方向の溝部と、
前記溝部内と前記支柱部材の外部とを連通させる通気部とを備えていることを特徴とする燃料タンク。
The tank body made of synthetic resin and
A strut member made of synthetic resin housed in the tank body and
An annular flange portion formed on the support column member and welded to the wall portion of the tank body,
A groove portion in the circumferential direction formed on the surface of the flange portion facing the wall portion and
A fuel tank including a ventilation portion that communicates the inside of the groove portion with the outside of the support column member.
前記溝部が、前記フランジ部の全周にわたって連続した形態であることを特徴とする請求項1記載の燃料タンク。 The fuel tank according to claim 1, wherein the groove portion has a continuous shape over the entire circumference of the flange portion. 前記通気部が、前記フランジ部を厚さ方向に貫通した形態であることを特徴とする請求項1又は請求項2記載の燃料タンク。 The fuel tank according to claim 1 or 2, wherein the ventilation portion penetrates the flange portion in the thickness direction. 合成樹脂製のタンク本体内に収容され、燃料タンクを構成する合成樹脂製の支柱部材であって、
前記タンク本体の壁部に溶着される環状のフランジ部と、
前記フランジ部における前記壁部との対向面に形成された周方向の溝部と、
前記溝部内を外部に連通させる通気部とを備えていることを特徴とする支柱部材。
It is a support member made of synthetic resin that is housed in the tank body made of synthetic resin and constitutes a fuel tank.
An annular flange portion welded to the wall portion of the tank body and
A groove portion in the circumferential direction formed on the surface of the flange portion facing the wall portion and
A strut member including a ventilation portion that communicates the inside of the groove portion with the outside.
JP2019119310A 2019-06-27 2019-06-27 Fuel tank and strut members Active JP7349825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019119310A JP7349825B2 (en) 2019-06-27 2019-06-27 Fuel tank and strut members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119310A JP7349825B2 (en) 2019-06-27 2019-06-27 Fuel tank and strut members

Publications (2)

Publication Number Publication Date
JP2021004583A true JP2021004583A (en) 2021-01-14
JP7349825B2 JP7349825B2 (en) 2023-09-25

Family

ID=74097580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119310A Active JP7349825B2 (en) 2019-06-27 2019-06-27 Fuel tank and strut members

Country Status (1)

Country Link
JP (1) JP7349825B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506331A (en) * 2013-02-27 2016-03-03 カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテルハフツング ウント コンパニー コマンディートゲゼルシャフト Fuel tank
JP2017095022A (en) * 2015-11-27 2017-06-01 八千代工業株式会社 Manufacturing method of fuel tank
JPWO2016167018A1 (en) * 2015-04-15 2017-12-14 八千代工業株式会社 Fuel tank
WO2018225413A1 (en) * 2017-06-06 2018-12-13 八千代工業株式会社 Fuel tank manufacturing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167018A (en) 2015-03-10 2016-09-15 京セラドキュメントソリューションズ株式会社 Toner for electrostatic latent image development, two-component developer, image forming apparatus, and image forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506331A (en) * 2013-02-27 2016-03-03 カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテルハフツング ウント コンパニー コマンディートゲゼルシャフト Fuel tank
JPWO2016167018A1 (en) * 2015-04-15 2017-12-14 八千代工業株式会社 Fuel tank
JP2017095022A (en) * 2015-11-27 2017-06-01 八千代工業株式会社 Manufacturing method of fuel tank
WO2018225413A1 (en) * 2017-06-06 2018-12-13 八千代工業株式会社 Fuel tank manufacturing device

Also Published As

Publication number Publication date
JP7349825B2 (en) 2023-09-25

Similar Documents

Publication Publication Date Title
JP4733106B2 (en) Vent piece and mold fitted with the vent piece
KR860002820Y1 (en) Ball joint
JP2011251772A (en) Container made of thermoplastic resin
KR20010062210A (en) Molded cooling fan
JP5787563B2 (en) Heater support device, heating device, substrate processing device, semiconductor device manufacturing method, substrate manufacturing method, and holding piece
US20230085520A1 (en) Filter Disc for a Beverage Pod
JP2021004583A (en) Fuel tank and support member
EP0614817B1 (en) Metal container
CN102939251A (en) Pressure relief device for pressurized container
US3462246A (en) Fluidized bed reactor with improved constriction plate
KR19980081859A (en) Hole Formation Method of Plate and Hole Formation Punch
KR101735351B1 (en) Manufacturing method of integrated dome structure of propellant tank for launch vehicle
JP2020196510A (en) Food packaging container
JP2604499B2 (en) Biaxial stretch blow molded bottle
JPH0680191A (en) Tank for transportation
US11186119B2 (en) Wheel disc manufacturing method and wheel disc
JP2018061952A (en) Bearing element suitable for supporting grinding table in roller mill
JP4727456B2 (en) Metal container lid with internal pressure release characteristics
CN210772897U (en) Fin type condenser for industrial refrigeration
JP4810176B2 (en) Metal container lid with internal pressure release characteristics
JP7335602B2 (en) food packaging container
US20070154288A1 (en) Laminated nut with center tension sleeve
US20160250796A1 (en) Base for an accessory and tank accessory, method for producing a tank
KR20200026631A (en) Jig for heat-treating seal ring
JP6688947B1 (en) Pressure vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230912

R150 Certificate of patent or registration of utility model

Ref document number: 7349825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150