JP2021001860A - Storage container and method for designing storage container - Google Patents

Storage container and method for designing storage container Download PDF

Info

Publication number
JP2021001860A
JP2021001860A JP2019170598A JP2019170598A JP2021001860A JP 2021001860 A JP2021001860 A JP 2021001860A JP 2019170598 A JP2019170598 A JP 2019170598A JP 2019170598 A JP2019170598 A JP 2019170598A JP 2021001860 A JP2021001860 A JP 2021001860A
Authority
JP
Japan
Prior art keywords
flow path
hole
storage container
side wall
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019170598A
Other languages
Japanese (ja)
Other versions
JP7285182B2 (en
Inventor
一人 前田
Kazuto Maeda
一人 前田
ひとみ 栗須
Hitomi Kurisu
ひとみ 栗須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JP2021001860A publication Critical patent/JP2021001860A/en
Application granted granted Critical
Publication of JP7285182B2 publication Critical patent/JP7285182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

To simplify disposal work without deteriorating shielding performance.SOLUTION: A storage container has an accommodation body 10 that accommodates high-dose substances, and a lid that closes an accommodation port of the accommodation body 10. The accommodation body 10 has a bottom 11, a side wall 12 connected to the bottom 11 and extending along the vertical direction of the bottom 11, and a through hole 13 penetrating from a connection part 15 between an inner surface 11a of the bottom 11 and an inner surface 12e of the side wall 12 to the outside of the accommodation body 10. The through hole 13 has at least one refraction part 13p.SELECTED DRAWING: Figure 3

Description

本発明は、保管容器及び保管容器の設計方法に関する。 The present invention relates to a storage container and a method for designing a storage container.

原子力発電所等では、原子炉圧力容器内の炉内構造物等を水中で切断解体し、処分容器へ充填した後、埋設処分施設等へ搬出する。特許文献1には、放射性廃棄物の処分方法が開示されている。具体的には、特許文献1の処分方法は、プール内において、放射性廃棄物を保管容器に収容し、当該保管容器を輸送用容器に収容した状態で、保管容器及び輸送用容器の内部の水を外部へ排出している。 At a nuclear power plant, etc., the internal structures in the reactor pressure vessel are cut and disassembled in water, filled in the disposal vessel, and then carried out to the buried disposal facility, etc. Patent Document 1 discloses a method for disposing of radioactive waste. Specifically, the disposal method of Patent Document 1 is to store radioactive waste in a storage container in a pool, and with the storage container housed in a transportation container, water inside the storage container and the transportation container. Is discharged to the outside.

特許第4954520号公報Japanese Patent No. 4954520

従来の処分方法は、保管容器の内部に高線量の廃棄物を保管しているが、当該保管容器には水抜き穴(貫通穴)が形成されている。従来の保管容器は、水抜き穴から遮蔽欠損の影響を受ける可能性がある。このため、従来の処分方法では、保管容器を輸送容器に収容した後に水抜きを行っているが、遮蔽性能を低下させることなく、処分の作業を簡単化することが望まれている。 In the conventional disposal method, a high dose of waste is stored inside the storage container, but the storage container is formed with a drain hole (through hole). Conventional storage containers can be affected by shielding defects from drain holes. For this reason, in the conventional disposal method, water is drained after the storage container is housed in the transport container, but it is desired to simplify the disposal work without deteriorating the shielding performance.

本発明は、このような問題に鑑みてなされたものであり、遮蔽性能を低下させることなく、処分の作業を簡単化することができる保管容器及び保管容器の設計方法を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a storage container and a method for designing a storage container that can simplify the disposal work without deteriorating the shielding performance. To do.

本発明の保管容器は、高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有する保管容器であって、前記収容本体は、底部と、前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、を有し、前記貫通孔は、少なくとも1つの屈折部を有することを特徴とする。 The storage container of the present invention is a storage container having a storage body for storing a high-dose substance and a lid portion for closing the storage port of the storage body, and the storage body is connected to a bottom portion and the bottom portion. Further, the side wall portion extending along the vertical direction of the bottom portion and a through hole penetrating from the connecting portion between the inner surface of the bottom portion and the inner surface of the side wall portion to the outside of the accommodation main body are provided. It is characterized by having at least one refracting portion.

本発明の保管容器によれば、保管容器は、底部の内面と側壁部の内面との連接部から収容本体の外部へ貫通する貫通孔を収容本体に形成し、当該貫通孔に少なくとも1つの屈折部が形成される。これにより、保管容器は、収容本体に高線量物質を収容しても、貫通孔の屈折部によって遮蔽欠損を抑制した状態で、貫通孔から収容本体の内部の液体、気体等を排出することができる。その結果、保管容器は、収容本体に貫通孔を設けても、他の容器等に収容する必要がなくなるので、遮蔽性能を低下させることなく、処分の作業を簡単化することができる。 According to the storage container of the present invention, in the storage container, a through hole penetrating from the connecting portion between the inner surface of the bottom portion and the inner surface of the side wall portion to the outside of the accommodating body is formed in the accommodating body, and at least one refraction is formed in the through hole. The part is formed. As a result, even if a high-dose substance is stored in the storage body, the storage container can discharge the liquid, gas, etc. inside the storage body from the through hole in a state where the shielding defect is suppressed by the refracting part of the through hole. it can. As a result, even if the storage container is provided with a through hole in the storage body, it is not necessary to store the storage container in another container or the like, so that the disposal work can be simplified without deteriorating the shielding performance.

また、本発明の保管容器では、前記側壁部は、複数の側面と、隣り合う側面同士を所定の角度で連接する角部と、を有し、前記貫通孔は、前記底部の内面と前記角部の内面との前記連接部に形成されてもよい。 Further, in the storage container of the present invention, the side wall portion has a plurality of side surfaces and a corner portion that connects adjacent side surfaces at a predetermined angle, and the through hole is an inner surface of the bottom portion and the corner portion. It may be formed in the connecting portion with the inner surface of the portion.

この構成によれば、保管容器は、側壁部の角部と底部の内面との連接部に貫通孔が形成される。これにより、保管容器は、矩形状の収容本体の場合、側壁よりも厚みのある角部に貫通孔を形成することができる。すなわち、保管容器は、収容本体の内面から外面までの距離が最大となる箇所に貫通孔を形成することができる。その結果、保管容器は、貫通孔を屈折させる範囲を確保できるので、遮蔽欠損をさらに抑制することができる。 According to this configuration, in the storage container, a through hole is formed at the connecting portion between the corner portion of the side wall portion and the inner surface of the bottom portion. As a result, in the case of a rectangular storage body, the storage container can form a through hole at a corner portion thicker than the side wall. That is, the storage container can form a through hole at a position where the distance from the inner surface to the outer surface of the storage body is maximized. As a result, the storage container can secure a range in which the through hole is refracted, so that the shielding defect can be further suppressed.

また、本発明の保管容器では、前記収容本体は、前記収容本体の内部に気体を吸気する吸気孔をさらに有し、前記吸気孔は、前記収容本体の中心点を基準として、前記貫通孔と対向する前記収容本体の部分に形成されてもよい。 Further, in the storage container of the present invention, the accommodating body further has an intake hole for sucking gas inside the accommodating body, and the intake hole is a through hole with reference to the center point of the accommodating body. It may be formed on the opposite portion of the accommodating body.

この構成によれば、保管容器は、貫通孔と吸気孔とを中心点を基準として対向するように収容本体に形成することができる。その結果、保管容器は、吸気孔から吸気して貫通孔から排出する気体を収容本体の内部で循環させることができるので、収容本体の内部を効率良く乾燥させることができる。 According to this configuration, the storage container can be formed in the storage body so that the through hole and the intake hole face each other with respect to the center point. As a result, since the storage container can circulate the gas taken in from the intake hole and discharged from the through hole inside the accommodating main body, the inside of the accommodating main body can be efficiently dried.

また、本発明の保管容器では、前記貫通孔は、前記収容本体が液体を収容している場合、当該液体を前記収容本体の外部に排出し、前記収容本体が前記吸気孔から前記気体が吸気されている場合、当該気体を前記収容本体の外部に排出してもよい。 Further, in the storage container of the present invention, when the storage body contains a liquid, the through hole discharges the liquid to the outside of the storage body, and the storage body sucks the gas from the intake hole. If so, the gas may be discharged to the outside of the storage body.

この構成によれば、保管容器は、収容本体が液体を収容している場合、貫通孔から液体を収容本体の外部に排出することができる。保管容器は、収容本体が吸気孔から気体が吸気されている場合、貫通孔から気体を収容本体の外部に排出することができる。その結果、保管容器は、貫通孔から収容本体の内部の気体及び液体を排出することが可能となるので、遮蔽性能を低下させることなく、処分の作業を簡単化することができる。 According to this configuration, when the storage body stores the liquid, the storage container can discharge the liquid to the outside of the storage body through the through hole. When the storage container is sucked with gas from the intake hole, the storage container can discharge the gas to the outside of the storage body through the through hole. As a result, the storage container can discharge the gas and the liquid inside the accommodating body from the through hole, so that the disposal work can be simplified without deteriorating the shielding performance.

また、本発明の保管容器では、前記貫通孔は、tanαとT/Tとの関係がtanα≦T/Tを満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ

Figure 2021001860

で規定される距離t、P=b/sinαで規定される直線P、及び、tanθ≦T/Tの場合、P=(T/cosθ)−(a/cosθ)、tanθ>T/Tの場合、P=(T/sinθ)−(a/cosθ)で規定される直線Pが、T=Min(T−ΔT,T2−ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含む。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(−1/μ・ln(φ/φ),−1/μ・ln(φ/φ))の値
η:T+d・sinθの値
β:b+(T−a)・tanαの値
ε:β+d・(cosθ−1/cosα)の値
A’:(β+d・cosθ−T・tanθ)/(β−η・tanθ)の値
B’:d/(cosα・(β−η・tanθ))の値
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ1:第1流路の欠損により影響を受ける部位のγ線束
φ2:第2流路の欠損により影響を受ける部位のγ線束 Further, in the storage container of the present invention, the through-hole, the relationship between tan [alpha and T o / T 1 satisfies the tanα ≦ T o / T 1, the connecting portion between the first flow path and said connecting portion and The distance from the first point where the straight line passing through the connection point between the second flow path and the outer surface of the accommodating body intersects the second flow path to the second point where the straight line intersects the first flow path. And
Figure 2021001860

In defined as a distance t, the straight line P 1 is defined by P 1 = b / sin .alpha and, in the case of tanθ ≦ T o / T 1, P 2 = (T 1 / cosθ) - (a / cosθ), tanθ > for T o / T 1, P 2 = (T 0 / sinθ) - straight P 2 defined by (a / cos [theta]) is defined by T B = Min (T 0 -ΔT , T 2 -ΔT) said high so as to satisfy the evaluation equation showing that dose material is the receiving body of the reference plate thickness T B or based on dose being determines geometrical conditions of the through hole, the geometric conditions, the The first length of the first flow path from the inner surface of the side wall portion in the first direction along the inner surface of the bottom portion of the first flow path, and the inner surface of the bottom portion in the second direction along the inner surface of the side wall portion. Includes the second length of the first flow path from the above, the angle formed by the second flow path and the first direction, and the diameter of the through hole.
a: First length of the first flow path from the inner surface of the side wall in the first direction along the inner surface of the bottom b: First flow path from the inner surface of the bottom in the second direction along the inner surface of the side wall Second length d: Through hole diameter α: Angle formed by the second flow path and the first direction θ: Angle formed by the first flow path and the virtual line extending from the inner surface of the bottom to the side surface T 0 : Storage container Bottom thickness T 1 : Thickness of the corner where the storage body is cut diagonally T 2 : Thickness of the side surface of the storage container ΔT = Min (-1 / μ ・ ln (φ 1 / φ 0 ), -1 / μ ・ln (φ 2 / φ 0 )) value η: T 1 + d · sin θ value β: b + (T 1 −a) · tan α value ε: β + d · (cos θ-1 / cos α) value A': ( β + d ・ cosθ-T 1・ tanθ) / (β-η ・ tanθ) value B': d / (cosα ・ (β-η ・ tanθ)) value μ: Attenuation coefficient φ 0 : Center point C of the housing body Nearby γ-ray bundle φ 1 : γ-ray bundle of the part affected by the defect of the first flow path φ 2 : γ-ray bundle of the part affected by the defect of the second flow path

この構成によれば、保管容器は、貫通孔に関する距離t、直線P及び直線Pが基準板厚T以上であることを示す評価式を満たすように、貫通孔の幾何学条件を決定することができる。その結果、保管容器は、高線量物質を収容した収容本体の線量を考慮した幾何学条件に基づく貫通孔を形成することで、当該貫通孔による遮蔽性能の低下を抑制することができる。 According to this configuration, storage container, so as to satisfy the evaluation equation showing that distance t about the through-holes, linear P 1 and the straight line P 2 is the reference thickness T B above, determines the geometrical conditions of the through-hole can do. As a result, the storage container can suppress the deterioration of the shielding performance due to the through hole by forming the through hole based on the geometric condition in consideration of the dose of the storage body containing the high dose substance.

また、本発明の保管容器では、前記貫通孔は、tanαとT/Tとの関係がtanα>T/Tを満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ

Figure 2021001860

で規定される距離t、P=a/cosαで規定される直線P、及び、P=(T/cosθ)−(a/cosθ)で規定される直線Pが、T=Min(T−ΔT,T−ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含む。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(−1/μ・ln(φ/φ),−1/μ・ln(φ/φ))の値
β:b+(T−a)・tanαの値
ε:β+d・(cosθ−1/cosα)の値
A″:(β−d/cosα−η・tanθ)/(ε−T・tanθ)
B″:d/(cosα・(T・tanα−ε))
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ:第1流路の欠損により影響を受ける部位のγ線束
φ:第2流路の欠損により影響を受ける部位のγ線束 Further, in the storage container of the present invention, the through-hole, the relationship between tan [alpha and T o / T 1 satisfies the tanα> T o / T 1, the connecting portion between the first flow path and said connecting portion and The distance from the first point where the straight line passing through the connection point between the second flow path and the outer surface of the accommodating body intersects the second flow path to the second point where the straight line intersects the first flow path. And
Figure 2021001860

In defined as a distance t, the straight line P 1 is defined by P 1 = a / cos [alpha], and, P 2 = (T 1 / cosθ) - linear P 2 defined by (a / cosθ), T B = Min (T 0 -ΔT, T 2 -ΔT) so as to satisfy the evaluation equation showing that at the housing body of the reference plate thickness T B above defined based on the dose of the high dose substance, of the through hole The geometric conditions are determined by the first length of the first flow path from the inner surface of the side wall in the first direction along the inner surface of the bottom of the first flow path and the side wall. The second length of the first flow path from the inner surface of the bottom in the second direction along the inner surface of the portion, the angle formed by the second flow path and the first direction, and the diameter of the through hole. And, including.
a: First length of the first flow path from the inner surface of the side wall in the first direction along the inner surface of the bottom b: First flow path from the inner surface of the bottom in the second direction along the inner surface of the side wall Second length d: Through hole diameter α: Angle formed by the second flow path and the first direction θ: Angle formed by the first flow path and the virtual line extending from the inner surface of the bottom to the side surface T 0 : Storage container Bottom thickness T 1 : Thickness of the corner where the storage body is cut diagonally T 2 : Thickness of the side surface of the storage container ΔT = Min (-1 / μ ・ ln (φ 1 / φ 0 ), -1 / μ ・ln (φ 2 / φ 0 )) value β: b + (T 1 −a) · tan α value ε: β + d · (cos θ-1 / cos α) value A ″: (β − d / cos α −η · tan θ ) / (Ε-T 1. tan θ)
B ": d / (cosα · (T 1 · tanα-ε))
μ: Attenuation coefficient φ 0 : γ-ray bundle near the center point C of the accommodating body φ 1 : γ-ray bundle of the part affected by the defect of the first flow path φ 2 : γ of the part affected by the defect of the second flow path Line bundle

この構成によれば、保管容器は、貫通孔に関する距離t、直線P及び直線Pが基準板厚T以上であることを示す評価式を満たすように、貫通孔の幾何学条件を決定することができる。その結果、保管容器は、高線量物質を収容した収容本体の線量を考慮した幾何学条件に基づく貫通孔を形成することで、当該貫通孔による遮蔽性能の低下を抑制することができる。 According to this configuration, storage container, so as to satisfy the evaluation equation showing that distance t about the through-holes, linear P 1 and the straight line P 2 is the reference thickness T B above, determines the geometrical conditions of the through-hole can do. As a result, the storage container can suppress the deterioration of the shielding performance due to the through hole by forming the through hole based on the geometric condition in consideration of the dose of the storage body containing the high dose substance.

また、本発明の保管容器では、前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、前記屈折部は、前記第1流路と前記第2流路とが連接する前記貫通孔の部分であってもよい。 Further, in the storage container of the present invention, the through hole has a first flow path extending from the connecting portion in a direction intersecting the vertical direction and a second flow path refracting from the first flow path and extending to the outside of the storage body. The refracting portion may be a portion of the through hole in which the first flow path and the second flow path are connected to each other.

この構成によれば、保管容器は、鉛直方向と交わる方向へ連接部から延びる第1流路と、第1流路から屈折しかつ収容本体の外部へ延びる第2流路とを屈折部で連接した貫通孔を収容本体に形成することができる。その結果、保管容器は、第1流路と第2流路との屈折によって遮蔽性能の低下を抑制することができるとともに、連接部から第1流路への液体の排出の効率を向上させることができる。 According to this configuration, in the storage container, the first flow path extending from the connecting portion in the direction intersecting the vertical direction and the second flow path refracting from the first flow path and extending to the outside of the accommodating body are connected by the bending portion. The through hole can be formed in the housing body. As a result, the storage container can suppress the deterioration of the shielding performance due to the refraction between the first flow path and the second flow path, and improve the efficiency of discharging the liquid from the connecting portion to the first flow path. Can be done.

本発明の保管容器の設計方法は、高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有し、前記収容本体は、底部と、前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、を有し、前記貫通孔は、少なくとも1つの屈折部を有する保管容器の設計方法であって、前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、tanαとT/Tとの関係がtanα≦T/Tを満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ

Figure 2021001860

で規定される距離t、P=b/sinαで規定される直線P、及び、tanθ≦T/Tの場合、P=(T/cosθ)−(a/cosθ)、tanθ>T/Tの場合、P=(T/sinθ)−(a/cosθ)で規定される直線Pが、T=Min(T−ΔT,T2−ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(−1/μ・ln(φ/φ),−1/μ・ln(φ/φ))の値
η:T+d・sinθの値
β:b+(T−a)・tanαの値
ε:β+d・(cosθ−1/cosα)の値
A’:(β+d・cosθ−T・tanθ)/(β−η・tanθ)の値
B’:d/(cosα・(β−η・tanθ))の値
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ1:第1流路の欠損により影響を受ける部位のγ線束
φ2:第2流路の欠損により影響を受ける部位のγ線束 The method for designing a storage container of the present invention includes a storage body for storing a high-dose substance and a lid portion for closing the storage port of the storage body, and the storage body is connected to a bottom portion and the bottom portion. It has a side wall portion extending along the vertical direction of the bottom portion and a through hole penetrating from the connecting portion between the inner surface of the bottom portion and the inner surface of the side wall portion to the outside of the accommodation body, and the through hole is at least. A method of designing a storage container having one bending portion, in which the through hole is a first flow path extending from the connecting portion in a direction intersecting the vertical direction, and a first flow path that is bent from the first flow path and the storage body. and a second flow passage extending to the outside of, the, relationship between the tan [alpha and T o / T 1 satisfies the tanα ≦ T o / T 1, the connecting portion between the first flow path and said connecting portion and The distance from the first point where the straight line passing through the connection point between the second flow path and the outer surface of the accommodating body intersects the second flow path to the second point where the straight line intersects the first flow path. And
Figure 2021001860

In defined as a distance t, the straight line P 1 is defined by P 1 = b / sin .alpha and, in the case of tanθ ≦ T o / T 1, P 2 = (T 1 / cosθ) - (a / cosθ), tanθ > for T o / T 1, P 2 = (T 0 / sinθ) - straight P 2 defined by (a / cos [theta]) is defined by T B = Min (T 0 -ΔT , T 2 -ΔT) said high so as to satisfy the evaluation equation showing that dose material is the receiving body of the reference plate thickness T B or based on dose being determines geometrical conditions of the through hole, the geometric conditions, the The first length of the first flow path from the inner surface of the side wall portion in the first direction along the inner surface of the bottom portion of the first flow path, and the inner surface of the bottom portion in the second direction along the inner surface of the side wall portion. It is characterized by including the second length of the first flow path from the above, the angle formed by the second flow path and the first direction, and the diameter of the through hole.
a: First length of the first flow path from the inner surface of the side wall in the first direction along the inner surface of the bottom b: First flow path from the inner surface of the bottom in the second direction along the inner surface of the side wall Second length d: Through hole diameter α: Angle formed by the second flow path and the first direction θ: Angle formed by the first flow path and the virtual line extending from the inner surface of the bottom to the side surface T 0 : Storage container Bottom thickness T 1 : Thickness of the corner where the storage body is cut diagonally T 2 : Thickness of the side surface of the storage container ΔT = Min (-1 / μ ・ ln (φ 1 / φ 0 ), -1 / μ ・ln (φ 2 / φ 0 )) value η: T 1 + d · sin θ value β: b + (T 1 −a) · tan α value ε: β + d · (cos θ-1 / cos α) value A': ( β + d ・ cosθ-T 1・ tanθ) / (β-η ・ tanθ) value B': d / (cosα ・ (β-η ・ tanθ)) value μ: Attenuation coefficient φ 0 : Center point C of the housing body Nearby γ-ray bundle φ 1 : γ-ray bundle of the part affected by the defect of the first flow path φ 2 : γ-ray bundle of the part affected by the defect of the second flow path

本発明の保管容器の設計方法は、高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有し、前記収容本体は、底部と、前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、を有し、前記貫通孔は、少なくとも1つの屈折部を有する保管容器の設計方法であって、前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、tanαとT/Tとの関係がtanα>T/Tを満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ

Figure 2021001860

で規定される距離t、P=a/cosαで規定される直線P、及び、P=(T/cosθ)−(a/cosθ)で規定される直線Pが、T=Min(T−ΔT,T−ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(−1/μ・ln(φ/φ),−1/μ・ln(φ/φ))の値
β:b+(T−a)・tanαの値
ε:β+d・(cosθ−1/cosα)の値
A″:(β−d/cosα−η・tanθ)/(ε−T・tanθ)
B″:d/(cosα・(T・tanα−ε))
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ:第1流路の欠損により影響を受ける部位のγ線束
φ:第2流路の欠損により影響を受ける部位のγ線束 The method for designing a storage container of the present invention includes a storage body for storing a high-dose substance and a lid portion for closing the storage port of the storage body, and the storage body is connected to a bottom portion and the bottom portion. It has a side wall portion extending along the vertical direction of the bottom portion and a through hole penetrating from the connecting portion between the inner surface of the bottom portion and the inner surface of the side wall portion to the outside of the accommodation body, and the through hole is at least. A method of designing a storage container having one bending portion, in which the through hole is a first flow path extending from the connecting portion in a direction intersecting the vertical direction, and a first flow path that is bent from the first flow path and the storage body. and a second flow passage extending to the outside of, the, relationship between the tan [alpha and T o / T 1 satisfies the tanα> T o / T 1, the connecting portion between the first flow path and said connecting portion and The distance from the first point where the straight line passing through the connection point between the second flow path and the outer surface of the accommodating body intersects the second flow path to the second point where the straight line intersects the first flow path. And
Figure 2021001860

In defined as a distance t, the straight line P 1 is defined by P 1 = a / cos [alpha], and, P 2 = (T 1 / cosθ) - linear P 2 defined by (a / cosθ), T B = Min (T 0 -ΔT, T 2 -ΔT) so as to satisfy the evaluation equation showing that at the housing body of the reference plate thickness T B above defined based on the dose of the high dose substance, of the through hole The geometric conditions are determined by the first length of the first flow path from the inner surface of the side wall in the first direction along the inner surface of the bottom of the first flow path and the side wall. The second length of the first flow path from the inner surface of the bottom portion in the second direction along the inner surface of the portion, the angle formed by the second flow path and the first direction, and the diameter of the through hole. It is characterized by including.
a: First length of the first flow path from the inner surface of the side wall in the first direction along the inner surface of the bottom b: First flow path from the inner surface of the bottom in the second direction along the inner surface of the side wall Second length d: Through hole diameter α: Angle formed by the second flow path and the first direction θ: Angle formed by the first flow path and the virtual line extending from the inner surface of the bottom to the side surface T 0 : Storage container Bottom thickness T 1 : Thickness of the corner where the storage body is cut diagonally T 2 : Thickness of the side surface of the storage container ΔT = Min (-1 / μ ・ ln (φ 1 / φ 0 ), -1 / μ ・ln (φ 2 / φ 0 )) value β: b + (T 1 −a) · tan α value ε: β + d · (cos θ-1 / cos α) value A ″: (β − d / cos α −η · tan θ ) / (Ε-T 1. tan θ)
B ": d / (cosα · (T 1 · tanα-ε))
μ: Attenuation coefficient φ 0 : γ-ray bundle near the center point C of the accommodating body φ 1 : γ-ray bundle of the part affected by the defect of the first flow path φ 2 : γ of the part affected by the defect of the second flow path Line bundle

本発明によれば、遮蔽性能を低下させることなく、処分の作業を簡単化することができる保管容器及び保管容器の設計方法を提供することができる。 According to the present invention, it is possible to provide a storage container and a method for designing a storage container that can simplify the disposal work without deteriorating the shielding performance.

図1は、本実施形態に係る保管容器の一例を示す分解斜視図である。FIG. 1 is an exploded perspective view showing an example of a storage container according to the present embodiment. 図2は、本実施形態に係る保管容器の収容本体の上面を示す図である。FIG. 2 is a diagram showing an upper surface of a storage container main body according to the present embodiment. 図3は、本実施形態に係る収容本体の側面を示す図である。FIG. 3 is a view showing a side surface of the accommodation main body according to the present embodiment. 図4は、図2におけるA−A線の部分Bを拡大した断面図である。FIG. 4 is an enlarged cross-sectional view of a portion B of the line AA in FIG. 図5は、図2におけるA−A線の部分Bを拡大した断面部分のγ線束の一例を示す図である。FIG. 5 is a diagram showing an example of a γ-ray bundle in a cross-sectional portion obtained by enlarging the portion B of the line AA in FIG. 図6は、本実施形態に係る保管容器における貫通孔を決定する一例を説明するための図である。FIG. 6 is a diagram for explaining an example of determining a through hole in the storage container according to the present embodiment. 図7は、本実施形態に係る保管容器における貫通孔の成立性測定結果の一例を示す図である。FIG. 7 is a diagram showing an example of the result of measuring the feasibility of the through hole in the storage container according to the present embodiment. 図8は、本実施形態に係る保管容器における貫通孔の実施例1を示す図である。FIG. 8 is a diagram showing Example 1 of a through hole in the storage container according to the present embodiment. 図9は、本実施形態に係る保管容器における貫通孔の実施例2を示す図である。FIG. 9 is a diagram showing Example 2 of a through hole in the storage container according to the present embodiment. 図10は、本実施形態に係る保管容器における貫通孔を決定する他の例を説明するための図である。FIG. 10 is a diagram for explaining another example of determining a through hole in the storage container according to the present embodiment. 図11は、本実施形態に係る保管容器を使用する一例を説明するための図である。FIG. 11 is a diagram for explaining an example of using the storage container according to the present embodiment. 図12は、本実施形態に係る保管容器の乾燥処理を説明するための図である。FIG. 12 is a diagram for explaining the drying process of the storage container according to the present embodiment.

以下、本発明の実施形態について、添付図面を参照して詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to this embodiment. In addition, the components in the following embodiments include those that can be easily replaced by those skilled in the art, or those that are substantially the same. Further, the components described below can be appropriately combined, and when there are a plurality of embodiments, the respective embodiments can be combined.

[実施形態]
図1から図3の図面を参照しながら、本実施形態に係る保管容器1の構成の一例を説明する。図1は、本実施形態に係る保管容器の一例を示す分解斜視図である。図2は、本実施形態に係る保管容器1の収容本体10の上面を示す図である。図3は、本実施形態に係る収容本体10の側面を示す図である。
[Embodiment]
An example of the configuration of the storage container 1 according to the present embodiment will be described with reference to the drawings of FIGS. 1 to 3. FIG. 1 is an exploded perspective view showing an example of a storage container according to the present embodiment. FIG. 2 is a view showing the upper surface of the storage main body 10 of the storage container 1 according to the present embodiment. FIG. 3 is a view showing a side surface of the accommodation main body 10 according to the present embodiment.

図1に示す一例では、保管容器1は、原子力発電所で発生した高線量物質等を収容する。高線量物質は、例えば、原子炉圧力容器の内部の炉内構造物を切断解体した物質等を含む。なお、図1に示す一例では、保管容器1は、外形を簡単化して図示している。実際には、保管容器1は、例えば、吊り具を係止するための構造等を有している。 In the example shown in FIG. 1, the storage container 1 stores a high-dose substance or the like generated at a nuclear power plant. The high-dose substance includes, for example, a substance obtained by cutting and disassembling the internal structure of the reactor pressure vessel. In the example shown in FIG. 1, the storage container 1 is shown in a simplified external shape. Actually, the storage container 1 has, for example, a structure for locking a hanging tool or the like.

高線量物質については、処分規制の見直しが進められており、廃棄体を受け入れる処分施設の受入基準が決まってない。このため、高線量物質を処分する処分容器の仕様が確定するまでは、解体した高線量物質を保管容器1で保管し、搬出時に基準化された処分容器へ収納したいとの要望がある。また、高線量物質は、水中で解体され、保管容器1に収容される。この場合、保管容器1は、水分が残存しており、放射線分解ガスによる水素爆発等が懸念される。このため、保管容器1は、安全確保の観点から、内部の乾燥処理を行う必要がある。 For high-dose substances, the disposal regulations are being reviewed, and the acceptance criteria for disposal facilities that accept waste have not been decided. Therefore, until the specifications of the disposal container for disposing of the high-dose substance are finalized, there is a desire to store the disassembled high-dose substance in the storage container 1 and store it in the standardized disposal container at the time of carrying out. Further, the high-dose substance is disassembled in water and stored in the storage container 1. In this case, water remains in the storage container 1, and there is a concern that hydrogen may explode due to the radiolyzed gas. Therefore, the storage container 1 needs to be internally dried from the viewpoint of ensuring safety.

本実施形態では、遮蔽性能を低下させることなく、高線量物質の処分の作業を簡単化することができる保管容器1を実現する場合の一例について説明する。 In this embodiment, an example will be described in which a storage container 1 capable of simplifying the work of disposing of a high-dose substance without deteriorating the shielding performance is realized.

保管容器1は、例えば、鉄、ステンレス鋼等の金属によって中空方形状に形成されている。保管容器1は、収容本体10と、蓋部20と、を有する。収容本体10は、高線量物質を内部に収容する。収容本体10の厚さは、例えば、遮蔽性、製作性等を考慮すると、100mmよりも大きいことが望ましい。蓋部20は、収容本体10の収容口10aを塞ぐように収容本体10に装着される。収容本体10と蓋部20とは、着脱可能に構成されている。保管容器1は、蓋部20が収容本体10の収容口10aを塞ぐように装着されることで、密封された中空方形状の容器となる。 The storage container 1 is formed in a hollow rectangular shape by, for example, a metal such as iron or stainless steel. The storage container 1 has a storage body 10 and a lid 20. The accommodating body 10 accommodates a high-dose substance inside. The thickness of the housing body 10 is preferably larger than 100 mm in consideration of, for example, shielding property and manufacturability. The lid 20 is attached to the storage body 10 so as to close the storage port 10a of the storage body 10. The accommodating body 10 and the lid 20 are detachably configured. The storage container 1 becomes a sealed hollow square container when the lid 20 is attached so as to close the storage port 10a of the storage body 10.

図2及び図3に示すように、収容本体10は、底部11と、側壁部12と、貫通孔13と、吸気孔14と、を有している。底部11と側壁部12とは、上述した金属によって一体に形成されている。貫通孔13及び吸気孔14は、収容本体10を貫通する穴として形成されている。 As shown in FIGS. 2 and 3, the accommodating main body 10 has a bottom portion 11, a side wall portion 12, a through hole 13, and an intake hole 14. The bottom portion 11 and the side wall portion 12 are integrally formed of the above-mentioned metal. The through hole 13 and the intake hole 14 are formed as holes penetrating the accommodating main body 10.

底部11は、装着された蓋部20と対向し、高線量物質が設置される収容本体10の部分である。側壁部12は、底部11に連接しかつ底部11の鉛直方向に沿って延びるように形成されている。図3に示す一例では、鉛直方向は、Y軸方向である。側壁部12は、底部11の縁部に設けられた複数の側面121a、側面121b、側面121c及び側面121dを有する。側面121aと側面121cは対向している。側面121bと側面121dは対向している。側壁部12は、側面121a、側面121b、側面121c、側面121dの順で連接されて一連の側壁を形成している。 The bottom portion 11 faces the attached lid portion 20 and is a portion of the housing body 10 in which a high-dose substance is installed. The side wall portion 12 is formed so as to be connected to the bottom portion 11 and extend along the vertical direction of the bottom portion 11. In the example shown in FIG. 3, the vertical direction is the Y-axis direction. The side wall portion 12 has a plurality of side surfaces 121a, side surfaces 121b, side surfaces 121c and side surfaces 121d provided on the edge of the bottom portion 11. The side surface 121a and the side surface 121c face each other. The side surface 121b and the side surface 121d face each other. The side wall portion 12 is connected in the order of the side surface 121a, the side surface 121b, the side surface 121c, and the side surface 121d to form a series of side walls.

図3に示す一例では、側壁部12は、4つの角部122a、角部122b、角部122c及び角部122dを有する。角部122aは、側面121dと側面121aとを所定の角度で連接し、側壁部12における1つの内角の部分である。所定の角度は、例えば、直角、鋭角、鈍角等を含む。角部122bは、側面121aと側面121bとを所定の角度で連接し、側壁部12における1つの内角の部分である。角部122cは、側面121bと側面121cとを所定の角度で連接し、側壁部12における1つの内角の部分である。角部122dは、側面121aと側面121dとを連接し、側壁部12における1つの内角の部分である。 In the example shown in FIG. 3, the side wall portion 12 has four corner portions 122a, corner portions 122b, corner portions 122c, and corner portions 122d. The corner portion 122a connects the side surface 121d and the side surface 121a at a predetermined angle, and is a portion of one internal angle on the side wall portion 12. The predetermined angle includes, for example, a right angle, an acute angle, an obtuse angle, and the like. The corner portion 122b connects the side surface 121a and the side surface 121b at a predetermined angle, and is a portion of one internal angle on the side wall portion 12. The corner portion 122c connects the side surface 121b and the side surface 121c at a predetermined angle, and is a portion of one internal angle on the side wall portion 12. The corner portion 122d connects the side surface 121a and the side surface 121d, and is a portion of one internal angle on the side wall portion 12.

収容本体10は、底部11と側壁部12とによって高線量物質を収容する収容部10sを形成している。収容部10sは、収容本体10に蓋部20が装着されることで、遮蔽された状態になる。 The accommodating body 10 forms an accommodating portion 10s for accommodating a high-dose substance by a bottom portion 11 and a side wall portion 12. The accommodating portion 10s is in a shielded state by attaching the lid portion 20 to the accommodating main body 10.

貫通孔13は、底部11の内面11aと側壁部12の内面12eとの連接部15から収容本体10の外部へ貫通している。例えば、底部11の内面11aと側壁部12の内面12eとが直角に連結している場合、連接部15は、底部11の内面11aと側壁部12の内面12eとの間の内角の部分となる。例えば、底部11の内面11aと側壁部12の内面12eとが傾斜面を介して連結している場合、連接部15は、底部11の内面11aと側壁部12の内面12eとの間の傾斜面の部分となる。 The through hole 13 penetrates from the connecting portion 15 between the inner surface 11a of the bottom portion 11 and the inner surface 12e of the side wall portion 12 to the outside of the accommodating main body 10. For example, when the inner surface 11a of the bottom portion 11 and the inner surface 12e of the side wall portion 12 are connected at right angles, the connecting portion 15 becomes a portion of an internal angle between the inner surface 11a of the bottom portion 11 and the inner surface 12e of the side wall portion 12. .. For example, when the inner surface 11a of the bottom portion 11 and the inner surface 12e of the side wall portion 12 are connected via an inclined surface, the connecting portion 15 is an inclined surface between the inner surface 11a of the bottom portion 11 and the inner surface 12e of the side wall portion 12. It becomes the part of.

貫通孔13は、収容本体10の内部から外部までの距離が最大となる箇所に形成されている。例えば、保管容器1が矩形状である場合、収容本体10は、4つの角部122a、角部122b、角部122c及び角部122dの部分が、側面部分よりも板厚が厚くなる。本実施形態では、貫通孔13は、側壁部12の角部122aにおける連接部15に形成されている。換言すると、連接部15は、底部11の内面11aと側壁部12の内面12eとの間の角の部分になっている。 The through hole 13 is formed at a position where the distance from the inside to the outside of the accommodating body 10 is maximized. For example, when the storage container 1 has a rectangular shape, the four corner portions 122a, the corner portions 122b, the corner portions 122c, and the corner portions 122d of the storage main body 10 are thicker than the side surface portions. In the present embodiment, the through hole 13 is formed in the connecting portion 15 at the corner portion 122a of the side wall portion 12. In other words, the connecting portion 15 is a corner portion between the inner surface 11a of the bottom portion 11 and the inner surface 12e of the side wall portion 12.

貫通孔13は、少なくとも1つの屈折部13pを有する。屈折部13pは、例えば、貫通孔13を屈折させた部分、貫通孔13を円弧状に曲げた部分等を含む。貫通孔13は、第1流路13aと、第2流路13bと、を有する。第1流路13aと第2流路13bとは、連続した1つの流路を形成しており、幅方向における断面形状が同一となっている。第1流路13aは、Y軸方向(鉛直方向)と交わる方向へ連接部15から下方へ延びる流路となっている。第2流路13bは、第1流路13aから屈折しかつ収容本体10の外部へ延びる流路となっている。第2流路13bは、収容本体10の側面121dに貫通することで、保管容器1が置かれた状態でも、液体、気体等の排出を可能としている。屈折部13pは、第1流路13aと第2流路13bとを屈折した状態で連接した貫通孔13の部分となっている。また、本実施形態では、底部11の内面11aは、貫通孔13に向かって下るように傾斜させている。これにより、保管容器1は、収容部10sの液体を貫通孔13から排出する効率を向上させることができる。 The through hole 13 has at least one refracting portion 13p. The refracting portion 13p includes, for example, a portion in which the through hole 13 is refracted, a portion in which the through hole 13 is bent in an arc shape, and the like. The through hole 13 has a first flow path 13a and a second flow path 13b. The first flow path 13a and the second flow path 13b form one continuous flow path, and have the same cross-sectional shape in the width direction. The first flow path 13a is a flow path extending downward from the connecting portion 15 in a direction intersecting the Y-axis direction (vertical direction). The second flow path 13b is a flow path that is refracted from the first flow path 13a and extends to the outside of the accommodating main body 10. The second flow path 13b penetrates the side surface 121d of the accommodating body 10 so that liquids, gases, and the like can be discharged even when the storage container 1 is placed. The refracting portion 13p is a portion of a through hole 13 in which the first flow path 13a and the second flow path 13b are connected in a bent state. Further, in the present embodiment, the inner surface 11a of the bottom portion 11 is inclined so as to descend toward the through hole 13. As a result, the storage container 1 can improve the efficiency of discharging the liquid in the accommodating portion 10s from the through hole 13.

吸気孔14は、収容本体10の内部に気体を吸気する穴である。吸気孔14は、貫通孔13と対向し、収容口10aの近傍の側壁部12の上部部分に形成されている。吸気孔14は、側壁部12の内面12eから外部に向かって下る傾斜穴として形成されている。吸気孔14は、貫通孔13と同様に屈折させてもよい。 The intake hole 14 is a hole for sucking gas into the housing body 10. The intake hole 14 faces the through hole 13 and is formed in the upper portion of the side wall portion 12 in the vicinity of the accommodating port 10a. The intake hole 14 is formed as an inclined hole that descends outward from the inner surface 12e of the side wall portion 12. The intake hole 14 may be refracted in the same manner as the through hole 13.

本実施形態では、収容本体10は、貫通孔13と吸気孔14とが対向するように形成されている。例えば、収容本体10は、図2及び図3に示すように、中心点Cを基準として点対称となるように、貫通孔13と吸気孔14とを配置している。換言すると、収容本体10は、図3に示すように、側壁部12の角部122aと角部122cとを結ぶ対向線(A−A線)上に配置されている。貫通孔13と吸気孔14とは、A−A線に沿うように形成されている。これにより、収容本体10は、吸気孔14から収容部10sに吸気した気体を効率良く循環させ、当該気体を貫通孔13から排出させることを可能としている。 In the present embodiment, the accommodating main body 10 is formed so that the through hole 13 and the intake hole 14 face each other. For example, as shown in FIGS. 2 and 3, the accommodating main body 10 has a through hole 13 and an intake hole 14 arranged so as to be point-symmetrical with respect to the center point C. In other words, as shown in FIG. 3, the accommodating main body 10 is arranged on the opposite line (AA line) connecting the corner portion 122a and the corner portion 122c of the side wall portion 12. The through hole 13 and the intake hole 14 are formed along the AA line. As a result, the accommodating main body 10 can efficiently circulate the gas taken in from the intake hole 14 to the accommodating portion 10s, and discharge the gas from the through hole 13.

次に、図4の図面を参照しながら、本実施形態に係る保管容器1の貫通孔13の設計方法の一例を説明する。図4は、図2におけるA−A線の部分Bを拡大した断面図である。すなわち、図4に示す断面図は、側壁部12の1つの角部122aを斜めに切断した場合の収容本体10の断面を示している。収容本体10は、底部11及び側壁部12の厚みが厚さTとなっている。このため、収容本体10を斜めに切断した角部122aの厚みTは、収容本体10の厚さTに2の平方根を乗じた値より欠損部T5(図1参照)を引いた値となっている。 Next, an example of the design method of the through hole 13 of the storage container 1 according to the present embodiment will be described with reference to the drawing of FIG. FIG. 4 is an enlarged cross-sectional view of a portion B of the line AA in FIG. That is, the cross-sectional view shown in FIG. 4 shows a cross section of the accommodating main body 10 when one corner portion 122a of the side wall portion 12 is cut diagonally. Housing body 10, the thickness of the bottom 11 and the sidewall portion 12 has a thickness T 0. Therefore, the thickness T 1 of the corner portion 122 a obtained by cutting the housing body 10 diagonally is the value obtained by multiplying the thickness T 0 of the housing body 10 by the square root of 2 minus the defect portion T 5 (see FIG. 1). It has become.

例えば、収容本体10は、縦横の長さが同じ、かつ底部11及び側壁部12の厚さが同じであることを前提とする。この場合、収容本体10の貫通孔13は、後述する評価式EAを満足するように、幾何学条件が決定される。幾何学条件は、例えば、第1流路13aのX軸方向の第1長さa、Y軸方向の第2長さb、XY平面における第2流路13bの傾きα、貫通孔13の径d等の条件を含む。収容本体10の貫通孔13は、幾何学条件を満たすように収容本体10における設置箇所、構造等が決定される。 For example, it is assumed that the accommodation main body 10 has the same length and width, and the thickness of the bottom portion 11 and the side wall portion 12 is the same. In this case, the geometric conditions of the through hole 13 of the accommodating body 10 are determined so as to satisfy the evaluation formula EA described later. The geometric conditions are, for example, the first length a of the first flow path 13a in the X-axis direction, the second length b in the Y-axis direction, the inclination α of the second flow path 13b in the XY plane, and the diameter of the through hole 13. Includes conditions such as d. The installation location, structure, and the like of the through hole 13 of the accommodation body 10 are determined so as to satisfy the geometrical conditions.

以下、図4に示す貫通孔13の評価式EAを用いた保管容器1の設計方法の一例について説明する。保管容器1の設計方法は、例えば、コンピュータがプログラムを実行することでコンピュータによって実現される。 Hereinafter, an example of a method for designing the storage container 1 using the evaluation formula EA of the through hole 13 shown in FIG. 4 will be described. The design method of the storage container 1 is realized by the computer, for example, when the computer executes a program.

貫通孔13は、第1流路13aと連接部15とを連接する箇所が点Pである。貫通孔13は、第2流路13bと収容本体10の外面10bとを連接する箇所が点Qである。貫通孔13は、第1流路13aと、底部11の内面11aから側面121dに延びる仮想線11bとのなす角が角度θである。貫通孔13は、第2流路13bと、点Qを通りかつ仮想線11bと並行な仮想線11cとのなす角の傾きαである。なお、保管容器1の角部122aの外側の角SPは、XY座標系の原点となっている。この場合、点Pの座標は、(T+d・sinθ,T)とする。点Qの座標は、(0,T−b−(T−a)・tanα)とする。また、本実施形態では、数式中の「・」は、乗算の記号を示す。図4に示す貫通孔13は、tanα≦T/Tを満たす。つまり、第1流路13aの傾斜が第2流路13bの傾斜よりも急となる形状である。 The point P of the through hole 13 is a point where the first flow path 13a and the connecting portion 15 are connected to each other. The point Q of the through hole 13 is a point where the second flow path 13b and the outer surface 10b of the accommodating body 10 are connected to each other. The through hole 13 has an angle θ formed by the angle formed by the first flow path 13a and the virtual line 11b extending from the inner surface 11a of the bottom portion 11 to the side surface 121d. The through hole 13 is an inclination α of an angle formed by the second flow path 13b and the virtual line 11c passing through the point Q and parallel to the virtual line 11b. The outer corner SP of the corner portion 122a of the storage container 1 is the origin of the XY coordinate system. In this case, the coordinates of the point P are (T 1 + d · sin θ, T 0 ). The coordinates of the point Q are (0, T 0 −b− (T 1 − a) · tan α). Further, in the present embodiment, "・" in the mathematical formula indicates a symbol of multiplication. Through-hole 13 shown in FIG. 4 satisfies tanα ≦ T o / T 1. That is, the shape is such that the inclination of the first flow path 13a is steeper than the inclination of the second flow path 13b.

点Pと点Qとを通る直線F(X)は、例えば、式(1)で表すことができる。
F(X)=(b+(T−a)・tanα)/(T+d・sinθ)・X+T−b−(T−a)・tanα ・・・式(1)
The straight line F (X) passing through the point P and the point Q can be expressed by, for example, the equation (1).
F (X) = (b + (T 1 −a) ・ tan α) / (T 1 + d ・ sin θ) ・ X + T 0 −b− (T 1 −a) ・ tan α ・ ・ ・ Equation (1)

貫通孔13は、直線F(X)と第2流路13bとの交点が点Rである。貫通孔13は、直線F(X)と第1流路13aとの交点が点Sである。貫通孔13は、点Rと点Sとを結ぶ直線が距離tである。貫通孔13の第2流路13bの上面を通る直線f(X)は、例えば、式(2)で表すことができる。
(X)=tanα・X+(T−b−(T−a)・tanα+d/cosθ) ・・・式(2)
In the through hole 13, the intersection of the straight line F (X) and the second flow path 13b is a point R. In the through hole 13, the intersection of the straight line F (X) and the first flow path 13a is the point S. In the through hole 13, the straight line connecting the point R and the point S is the distance t. Straight f 1 through the upper surface of the second flow path 13b of the through-hole 13 (X), for example, can be expressed by Equation (2).
f 1 (X) = tanα · X + (T 0 −b− (T 1 −a) · tan α + d / cos θ) ・ ・ ・ Equation (2)

貫通孔13の第1流路13aの上面を通る直線f(X)は、例えば、式(3)で表すことができる。
(X)=tanθ・X+T−tanθ・T+d・cosθ ・・・式(3)
Straight f 2 which passes through the upper surface of the first flow path 13a of the through-hole 13 (X), for example, can be expressed by Equation (3).
f 2 (X) = tan θ ・ X + T 0 − tan θ ・ T 1 + d ・ cos θ ・ ・ ・ Equation (3)

XY平面における点SのXs座標は、F(Xs)=f(Xs)の関係に基づいて、以下のように求めることができる。
Xs=(b+d・cosθ+(T−a)・tanα−T・tanθ)・(T+d・sinθ)/(b+(T−a)tanα−(T+d・sinθ)・tanθ)
The Xs coordinate of the point S in the XY plane can be obtained as follows based on the relationship of F (Xs) = f 2 (Xs).
Xs = (b + d · cosθ + (T 1 −a) · tan α −T 1 · tan θ) · (T 1 + d · sin θ) / (b + (T 1 − a) tan α − (T 1 + d · sin θ) · tan θ)

ここで、簡単化のため、β=b+(T−a)・tanαとすると、Xs座標は以下のように変形される。
Xs=(β+d・cosθ−T・tanθ)・(T+d・sinθ)/(β−(T+d・sinθ)・tanθ)
Here, for the sake of simplicity, if β = b + (T 1 −a) · tan α, the Xs coordinates are transformed as follows.
Xs = (β + d · cosθ −T 1 · tanθ) · (T 1 + d · sinθ) / (β- (T 1 + d · sinθ) · tanθ)

XY平面における点SのYs座標は、式(1)のF(X)にXsを代入して求めることができる。
Ys=β・(β+d・cosθ−T・tanθ)/(β−(T+d・sinθ)・tanθ)+T−β
The Ys coordinate of the point S on the XY plane can be obtained by substituting Xs for F (X) in the equation (1).
Ys = β · (β + d · cosθ −T 1 · tanθ) / (β- (T 1 + d · sinθ) · tanθ) + T 0 −β

さらに、簡単化のため、η=T+d・sinθとすると、XY平面における点SのXY座標は、以下のように示すことができる。
点S((β+d・cosθ−T・tanθ)・η/(β−η・tanθ),β・(β+d・cosθ−T・tanθ)/(β−η・tanθ)+T−β)
Further, for simplification, if η = T 1 + d · sin θ, the XY coordinates of the point S in the XY plane can be shown as follows.
Point S ((β + d ・ cosθ-T 1・ tanθ) ・ η / (β-η ・ tanθ), β ・ (β + d ・ cosθ-T 1・ tanθ) / (β-η ・ tanθ) + T 0- β)

同様に、XY平面における点RのXY座標は、F(Xr)=f(Xr)の関係と式(1)のF(X)にXrを代入した結果により、以下のように示すことができる。
点R(d・η/cosα・(β−η・tanα),β・d/cosα・(β−η・tanα)+T−β)
Similarly, the XY coordinates of the point R in the XY plane can be shown as follows based on the relationship of F (Xr) = f 1 (Xr) and the result of substituting Xr for F (X) in the equation (1). it can.
Point R (d ・ η / cosα ・ (β-η ・ tanα), β ・ d / cosα ・ (β-η ・ tanα) + T 0- β)

点Rと点Sとの距離tは、点Rと点Sとの長さであるので、t=(Xs−Xr)+(Ys−Yr)から式(4)として表すことができる。なお、簡単化のため、A’=(β+d・cosθ−T・tanθ)/(β−η・tanθ)、B’=d/(cosα・(β−η・tanθ))としている。 Since the distance t between the point R and the point S is the length between the point R and the point S, it can be expressed as equation (4) from t 2 = (Xs-Xr) 2 + (Ys-Yr) 2. .. For simplification, A'= (β + d · cosθ−T 1 · tanθ) / (β-η · tanθ), B'= d / (cosα · (β-η · tanθ)).

Figure 2021001860
・・・式(4)
Figure 2021001860
... Equation (4)

保管容器1は、遮蔽欠損の影響を最小化するためには、貫通孔13のγ線束が収容本体10の中央部分と同等となることが望ましい。なお、γ線束の範囲は、例えば、2.72×10 n/cm/sから1.26×10 n/cm/sである。 In the storage container 1, in order to minimize the influence of the shielding defect, it is desirable that the γ-ray bundle of the through hole 13 is equivalent to the central portion of the storage body 10. The range of the γ-ray bundle is, for example, 2.72 × 10 9 n / cm 2 / s to 1.26 × 10 6 n / cm 2 / s.

例えば、遮蔽厚さが最大350mmで収容本体10の表面が2mSv/hの場合、放射線の透過率は3.85×10−5となる。線量率換算係数と透過率から遮蔽透過前のγ線束は、2.72×10 n/cm/sとなる。この場合の表面線量率を2mSv/hとすると、透過率は8.34×10−2であるので、収容本体10の内面におけるγ線束は1.26×106 n/cm/sとなる。 For example, when the maximum shielding thickness is 350 mm and the surface of the housing body 10 is 2 mSv / h, the radiation transmittance is 3.85 × 10-5 . From the dose rate conversion coefficient and the transmittance, the γ-ray flux before the shielding transmission is 2.72 × 10 9 n / cm 2 / s. When the surface dose rate in this case the 2 mSv / h, since the transmittance is 8.34 × 10 -2, gamma ray flux in the inner surface of the housing body 10 becomes 1.26 × 106 n / cm 2 / s.

図5は、図2におけるA−A線の部分Bを拡大した断面部分のγ線束の一例を示す図である。図5に示すように、γ線束φは、貫通孔13の第1流路13aの欠損により影響を受ける部位のγ線束である。すなわち、γ線束φは、第1流路13aに沿った方向に向かうγ線束である。γ線束φは、貫通孔13の第2流路13bの欠損により影響を受ける部位のγ線束である。すなわち、γ線束φは、第2流路13bに沿った方向に向かうγ線束である。γ線束φは、収容本体10の中心点C付近のγ線束である。 FIG. 5 is a diagram showing an example of a γ-ray bundle in a cross-sectional portion obtained by enlarging the portion B of the line AA in FIG. As shown in FIG. 5, gamma ray flux phi 1 is a gamma ray flux sites affected by a deficiency of the first flow path 13a of the through-hole 13. That is, the γ-ray bundle φ 1 is a γ-ray bundle directed in the direction along the first flow path 13a. The γ-ray bundle φ 2 is a γ-ray bundle at a portion affected by a defect in the second flow path 13b of the through hole 13. That is, the γ-ray bundle φ 2 is a γ-ray bundle directed in the direction along the second flow path 13b. γ-ray flux phi 0 is a γ-ray beam near the center point C of the housing body 10.

例えば、γ線束φについては、貫通孔13と吸気孔14とがない状態で収容本体10の遮蔽厚をT’とした場合、以下の式(5)が成り立つ。以下の説明では、expは指数関数、lnは自然対数をそれぞれ示している。μは、減衰係数を示している。
exp(−μ・T’)/exp(−μ・T)=φ/φ ・・・式(5)
For example, for γ-ray flux phi 1, if the shielding thickness of the housing main body 10 in the absence and the through-hole 13 and the intake hole 14 has a T ', the following equation holds (5). In the following description, exp is an exponential function and ln is a natural logarithm. μ indicates the damping coefficient.
exp (-μ ・ T') / exp (-μ ・ T 0 ) = φ 1 / φ 0 ... Equation (5)

式(5)を展開すると、T’−T=−1/μ・ln(φ/φ)となる。そして、遮蔽欠損がないときの収容本体10の厚さの裕度ΔTは、T’−Tで表すことができる。裕度ΔTは、遮蔽厚T’と底部11の厚さTとの差のうち、許容できる範囲を示している。これにより、γ線束φについては、厚さの裕度ΔTは、−1/μ・ln(φ/φ)となる。また、γ線束φについても同様に、厚さの裕度ΔTは、ΔT=−1/μ・ln(φ/φ)となる。 When equation (5) is expanded, T'−T 0 = -1 / μ · ln (φ 1 / φ 0 ). Then, the margin ΔT of the thickness of the accommodating main body 10 when there is no shielding defect can be represented by T'−T 0 . The margin ΔT indicates an acceptable range of the difference between the shielding thickness T'and the thickness T 0 of the bottom 11. As a result, for the γ-ray bundle φ 1 , the thickness margin ΔT becomes -1 / μ · ln (φ 1 / φ 0 ). Similarly, the γ-ray flux phi 2, tolerance [Delta] T of the thickness becomes ΔT = -1 / μ · ln ( φ 2 / φ 0).

以上により、保管容器1の基準値となる基準板厚Tは、T=T−ΔTで求めることができる。基準板厚Tは、例えば、収容本体10の底部11及び側壁部12の基準の厚さを示している。基準板厚Tは、γ線束φ、φに基づいて求められている。このため、遮蔽欠損の影響を最小化するには、点Rと点Sとの距離tは、t≧Tとなるように、角度θ、第2流路13bの傾きα、貫通孔13の径dを決定すればよい。 Thus, the reference thickness T B of the reference value of the storage container 1 can be calculated by T B = T 0 -.DELTA.T. Reference thickness T B, for example, shows a thickness of the reference of the bottom 11 and the side wall 12 of the housing body 10. Reference thickness T B is determined based γ-ray flux phi 1, the phi 2. Therefore, to minimize the effect of shielding deficiency, the distance t between the point R and the point S, so that the t ≧ T B, the angle theta, the second flow path 13b inclination alpha, the through-hole 13 The diameter d may be determined.

図6は、本実施形態に係る保管容器1における貫通孔13を決定する一例を説明するための図である。図6において、直線Pは、貫通孔13の第2流路13bの延長方向に延在し、貫通孔13の屈折部13pから底部11の内面11aへ向かう直線である。直線Pは、貫通孔13の第1流路13aの延長方向に延在し、貫通孔13の屈折部13pから収容本体10の外面10bへ向かう直線である。 FIG. 6 is a diagram for explaining an example of determining the through hole 13 in the storage container 1 according to the present embodiment. 6, the straight line P 1 extends in the extending direction of the second flow path 13b of the through-hole 13 is a straight line towards the inner surface 11a of the bottom portion 11 from the bent portion 13p of the through-hole 13. Linear P 2 extends in the extending direction of the first flow path 13a of the through-hole 13 is a straight line extending from the bent portion 13p of the through-hole 13 to the outer surface 10b of the housing body 10.

図6に示す一例では、tanθはb/aであるので、角度θは、tan−1・(b/a)となる。例えば、tanθ≦T/Tの場合、直線Pは、(T/cosθ)−(a/cosθ)で示される。例えば、tanθ>T/Tの場合、直線Pは、(T/sinθ)−(a/cosθ)で示される。また、直線Pは、b/sinαで示される。この場合、直線Pと基準板厚Tとの関係は、P≧Tとなり、直線Pと基準板厚Tとの関係は、P≧Tとなる。 In the example shown in FIG. 6, since tan θ is b / a, the angle θ is tan -1 · (b / a). For example, in the case of tanθ ≦ T o / T 1, the straight line P 2 is, (T 1 / cosθ) - represented by (a / cosθ). For example, in the case of tanθ> T o / T 1, the straight line P 2 is, (T 0 / sinθ) - represented by (a / cosθ). The straight line P 1 is represented by b / sin α. In this case, the relationship between the straight line P 1 and the reference thickness T B is, P 1T B, and the relationship between the straight line P 2 and the reference thickness T B, the P 2T B.

以上により、収容本体10における貫通孔13の評価式EAは、例えば、t≧T、P≧T、P≧Tとなる。貫通孔13は、評価式EAの関係を満たすように、第1流路13aのX軸方向の第1長さa、Y軸方向の第2長さb、XY平面における第2流路13bの傾きα、貫通孔13の径d等を決定すればよい。すなわち、保管容器1は、評価式EAを満足するように、貫通孔13の幾何学条件を決定することで、γ線のストリーミングを防止することができる。なお、評価式EAの必要条件は、T−β>0を含む。評価式EAの必要条件は、上述した点RのX座標が正かつ点SのX座標よりも小さいことを含む。評価式EAの必要条件は、点RのY座標が板厚以下であることを含む。評価式EAの必要条件は、式(2)が示す直線f(X)の切片が正であることを含む。なお、収容本体10の底部及び側壁部の長さ及び厚さは、本実施形態のように同じであることが好ましいが異なる厚みでもよい。 Thus, evaluation formula EA of the through-hole 13 in the housing body 10, for example, t ≧ T B, P 1 ≧ T B, the P 2T B. The through hole 13 is formed by the first length a of the first flow path 13a in the X-axis direction, the second length b in the Y-axis direction, and the second flow path 13b in the XY plane so as to satisfy the relationship of the evaluation formula EA. The inclination α, the diameter d of the through hole 13, and the like may be determined. That is, the storage container 1 can prevent the streaming of γ-rays by determining the geometrical conditions of the through hole 13 so as to satisfy the evaluation formula EA. The necessary condition of the evaluation formula EA includes T 0 − β> 0. The necessary condition of the evaluation formula EA includes that the X coordinate of the point R described above is positive and smaller than the X coordinate of the point S. The necessary condition of the evaluation formula EA includes that the Y coordinate of the point R is equal to or less than the plate thickness. Requirements evaluation formula EA includes sections of straight lines f 1 (X) indicated by the equation (2) is positive. The length and thickness of the bottom portion and the side wall portion of the housing body 10 are preferably the same as in the present embodiment, but may be different.

図7は、本実施形態に係る保管容器1における貫通孔13の成立性測定結果の一例を示す図である。図7に示す結果は、第1流路13aのX軸方向の第1長さaと、Y軸方向の第2長さbとの組み合わせに対し、XY平面における第2流路13bの傾きαの角度を変化させた場合の成立性の結果を示している。成立性は、「○」が評価式EAを満たし、「×」が評価式EAを満たさないことを意味している。図7に示す結果は、複数の第1長さaと複数の第2長さbとを組み合わせごとに、第2流路13bの傾きαを変化させた場合の成立性の測定結果を示している。 FIG. 7 is a diagram showing an example of the feasibility measurement result of the through hole 13 in the storage container 1 according to the present embodiment. The result shown in FIG. 7 shows the inclination α of the second flow path 13b in the XY plane with respect to the combination of the first length a of the first flow path 13a in the X-axis direction and the second length b in the Y-axis direction. The result of the feasibility when the angle of is changed is shown. The feasibility means that "○" satisfies the evaluation formula EA and "x" does not satisfy the evaluation formula EA. The results shown in FIG. 7 show the measurement results of the feasibility when the inclination α of the second flow path 13b is changed for each combination of the plurality of first lengths a and the plurality of second lengths b. There is.

図7に示す成立性測定結果では、第2流路13bの傾きαは、角度が45°以下で設定することを示している。第2長さbは、250mm以下が適用範囲であることを示している。また、第1長さaと第2長さbとの比(a/b)は、1.5以下で設定すればよいことを示している。これにより、貫通孔13は、第2流路13bの傾きαが30°以下、かつ、第2長さbが250mm以下となるように設計される。 In the feasibility measurement result shown in FIG. 7, it is shown that the inclination α of the second flow path 13b is set at an angle of 45 ° or less. The second length b indicates that the applicable range is 250 mm or less. Further, it is shown that the ratio (a / b) of the first length a and the second length b may be set to 1.5 or less. As a result, the through hole 13 is designed so that the inclination α of the second flow path 13b is 30 ° or less and the second length b is 250 mm or less.

本実施形態に係る保管容器1は、第1流路13aの鉛直方向の第1長さaと水平方向の第2長さbとの比が6.0以下で、第2長さbは250mm以下で、第2流路13bと底部11の水平方向とのなす角が45°以下となるように、貫通孔13が収容本体10に形成される。その結果、保管容器1は、高線量物質を収容した収容本体10の中央のガンマ線束を考慮した貫通孔13を形成することで、当該貫通孔13による遮蔽性能の低下を抑制することができる。 In the storage container 1 according to the present embodiment, the ratio of the first length a in the vertical direction to the second length b in the horizontal direction of the first flow path 13a is 6.0 or less, and the second length b is 250 mm. Below, the through hole 13 is formed in the accommodating main body 10 so that the angle formed by the second flow path 13b and the bottom portion 11 in the horizontal direction is 45 ° or less. As a result, the storage container 1 can suppress the deterioration of the shielding performance due to the through hole 13 by forming the through hole 13 in consideration of the gamma ray bundle in the center of the storage body 10 containing the high-dose substance.

図8は、本実施形態に係る保管容器1における貫通孔13の実施例1を示す図である。図8に示す収容本体10の厚さTは、350mmとなっている。収容本体10の角部122aを斜めに切断した厚みTは、495mmとなっている。収容本体10は、第1流路13aのX軸方向の第1長さa1が15mm、Y軸方向の第2長さb1が45mmとなっている。貫通孔13の径dは、15mmとなっている。第2流路13bの傾きαは、10°となっている。 FIG. 8 is a diagram showing Example 1 of the through hole 13 in the storage container 1 according to the present embodiment. The thickness T 0 of the accommodating body 10 shown in FIG. 8 is 350 mm. The thickness T 1 obtained by diagonally cutting the corner portion 122 a of the housing body 10 is 495 mm. The accommodation body 10 has a first flow path 13a having a first length a1 in the X-axis direction of 15 mm and a second length b1 in the Y-axis direction of 45 mm. The diameter d of the through hole 13 is 15 mm. The inclination α of the second flow path 13b is 10 °.

この場合、点Rと点Sとを結ぶ直線が距離tは、上述した式(4)により、307mmと求めることができる。貫通孔13の第1流路13aと仮想線11bとのなす角である角度θが45°以下の場合、直線Pは、上述した計算式を用いて1518mmと求めることができる。また、角度θが45°よりも大きい場合、直線Pは、上述した計算式を用いて322mmと求めることができる。直線Pは、上述した計算式を用いて259mmと求めることができる。そして、距離t、直線P、直線Pの全てがγ線束に基づいて定められた基準板厚T以上である場合、貫通孔13は、収容本体10の遮蔽欠損を考慮した幾何学条件を決定することができる。 In this case, the distance t of the straight line connecting the points R and S can be determined to be 307 mm by the above equation (4). When the angle θ formed by the first flow path 13a of the through hole 13 and the virtual line 11b is 45 ° or less, the straight line P 2 can be determined to be 1518 mm by using the above-mentioned calculation formula. Further, when the angle θ is larger than 45 °, the straight line P 2 can be calculated as 322 mm by using the above-mentioned calculation formula. The straight line P 1 can be determined to be 259 mm by using the above-mentioned calculation formula. The distance t, the linear P 1, if all the straight line P 2 is greater than or equal to the reference thickness T B defined on the basis of the γ-ray beam, the through-hole 13, taking into account the shielding defect of the housing body 10 geometry conditions Can be determined.

図9は、本実施形態に係る保管容器1における貫通孔13の実施例2を示す図である。図9に示す収容本体10の厚さTは、350mmとなっている。収容本体10の角部122aを斜めに切断した厚みTは、495mmとなっている。収容本体10は、第1流路13aのX軸方向の第1長さa2が150mm、Y軸方向の第2長さb2が170mmとなっている。貫通孔13の径dは、20mmとなっている。第2流路13bの傾きαは、20°となっている。 FIG. 9 is a diagram showing Example 2 of the through hole 13 in the storage container 1 according to the present embodiment. The thickness T 0 of the accommodating body 10 shown in FIG. 9 is 350 mm. The thickness T 1 obtained by diagonally cutting the corner portion 122 a of the housing body 10 is 495 mm. The accommodation body 10 has a first length a2 of the first flow path 13a in the X-axis direction of 150 mm and a second length b2 in the Y-axis direction of 170 mm. The diameter d of the through hole 13 is 20 mm. The inclination α of the second flow path 13b is 20 °.

この場合、点Rと点Sとを結ぶ直線が距離tは、上述した式(4)により、412mmと求めることができる。貫通孔13の第1流路13aと仮想線11bとのなす角である角度θが45°以下の場合、直線Pは、上述した計算式を用いて521mmと求めることができる。また、角度θが45°よりも大きい場合、直線Pは、上述した計算式を用いて240mmと求めることができる。直線Pは、上述した計算式を用いて497mmと求めることができる。そして、距離t、直線P、直線Pの全てがγ線束に基づいて定められた基準板厚T以上である場合、貫通孔13は、収容本体10の遮蔽欠損を考慮した幾何学条件を決定することができる。 In this case, the distance t of the straight line connecting the points R and S can be determined to be 412 mm by the above equation (4). When the angle θ formed by the first flow path 13a of the through hole 13 and the virtual line 11b is 45 ° or less, the straight line P 2 can be determined to be 521 mm by using the above-mentioned calculation formula. Further, when the angle θ is larger than 45 °, the straight line P 2 can be calculated as 240 mm by using the above-mentioned calculation formula. The straight line P 1 can be determined to be 497 mm by using the above-mentioned calculation formula. The distance t, the linear P 1, if all the straight line P 2 is greater than or equal to the reference thickness T B defined on the basis of the γ-ray beam, the through-hole 13, taking into account the shielding defect of the housing body 10 geometry conditions Can be determined.

上記実施形態では、貫通孔13の形状が、tanα≦T/Tの場合で説明したが、貫通孔13の形状はこれに限定されず、tanα>T/Tでもよい。図10に示す保管容器の容器本体110aは、貫通孔113がtanα>T/Tの場合の形状を満たす。 In the above embodiment, the shape of the through-hole 13 has been described in the case of tanα ≦ T o / T 1, the shape of the through-hole 13 is not limited thereto, tan [alpha> may be T o / T 1. The container body 110a of the storage container shown in FIG. 10 satisfy the shape when the through-hole 113 is tanα> T o / T 1.

以下、図10に示す貫通孔113の評価式EAを用いた保管容器の設計方法の他の例について説明する。 Hereinafter, another example of a method for designing a storage container using the evaluation formula EA of the through hole 113 shown in FIG. 10 will be described.

貫通孔113は、第1流路113aと連接部15とを連接する箇所が点Pである。貫通孔13は、第2流路113bと収容本体110の外面110bとを連接する箇所が点Qである。貫通孔113は、第1流路113aと、底部11の内面11aから側面121dに延びる仮想線11bとのなす角が角度θである。貫通孔113は、第2流路113bと、点Qを通りかつ仮想線11bと並行な仮想線11cとのなす角の傾きαである。なお、保管容器1の角部122aの外側の角SPは、XY座標系の原点となっている。 The point P of the through hole 113 is a point where the first flow path 113a and the connecting portion 15 are connected to each other. The point Q of the through hole 13 is a point where the second flow path 113b and the outer surface 110b of the accommodating body 110 are connected to each other. The angle θ of the through hole 113 is formed by an angle formed by the first flow path 113a and the virtual line 11b extending from the inner surface 11a of the bottom portion 11 to the side surface 121d. The through hole 113 is an inclination α of an angle formed by the second flow path 113b and the virtual line 11c passing through the point Q and parallel to the virtual line 11b. The outer corner SP of the corner portion 122a of the storage container 1 is the origin of the XY coordinate system.

貫通孔113は、上記と同様に評価式EAに基づいて評価を行うと、底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さa、側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さb、貫通孔の径をd、第2流路と第1方向とのなす角α、第1流路と底部の内面から側面に延びる仮想線とのなす角θ、収納容器の底の厚みT、収容本体を斜めに切断した角部の厚みT、収納容器の側面の厚みT、減衰係数μ、収容本体の中心点C付近のγ線束φ0、第1流路の欠損により影響を受ける部位のγ線束Φ1、第2流路の欠損により影響を受ける部位のγ線束Φ2から、Min(−1/μ・ln(φ/φ),−1/μ・ln(φ/φ))の値ΔT、b+(T−a)・tanαの値β、β+d・(cosθ−1/cosα)の値ε、(β−d/cosα−η・tanθ)/(ε−T・tanθ)の値A″、d/(cosα・(T・tanα−ε))の値B″を算出することができる。 When the through hole 113 is evaluated based on the evaluation formula EA in the same manner as described above, the first length a of the first flow path from the inner surface of the side wall portion in the first direction along the inner surface of the bottom portion and the side wall portion. The second length b of the first flow path from the inner surface of the bottom in the second direction along the inner surface, the diameter of the through hole is d, the angle α between the second flow path and the first direction, and the first flow path. The angle θ between the virtual line extending from the inner surface of the bottom to the side surface, the thickness T 0 of the bottom of the storage container, the thickness T 1 of the corner cut diagonally from the storage body, the thickness T 2 of the side surface of the storage container, the attenuation coefficient μ From the γ-ray bundle φ0 near the center point C of the accommodating body, the γ-ray bundle Φ1 of the part affected by the defect of the first flow path, and the γ-ray bundle Φ2 of the part affected by the defect of the second flow path, Min (-1) / Μ · ln (φ 1 / φ 0 ), -1 / μ · ln (φ 2 / φ 0 )) values ΔT, b + (T 1 −a) · tan α values β, β + d · (cos θ-1 /) the value of cos [alpha]) epsilon, the "value B of (, d / (cosα · ( T 1 · tanα-ε) β-d / cosα-η · tanθ) / (ε-T 1 · tanθ) value a)" Can be calculated.

さらに、上記関係に基づいて、貫通孔113は、下記式を満足する構造とする。 Further, based on the above relationship, the through hole 113 has a structure satisfying the following equation.

tanα>T/T

Figure 2021001860

=a/cosα
=(T1/cosθ)−(a/cosθ)
=Min(T−ΔT,T−ΔT) tanα> T o / T 1
Figure 2021001860

P 1 = a / cos α
P 2 = (T1 / cosθ)-(a / cosθ)
T B = Min (T 0 -ΔT , T 2 -ΔT)

つまり、貫通孔113は、tanαとT/Tとの関係がtanα>T/Tを満足し、第1流路と連接部との連接箇所及び第2流路と収容本体の外面との連接箇所を通る直線が第2流路と交わる第1点から、当該直線が第1流路と交わる第2点までの距離であり、かつ上記式で規定される距離t、P=a/cosαで規定される直線P、及び、P=(T/cosθ)−(a/cosθ)で規定される直線Pが、T=Min(T−ΔT,T−ΔT)で規定される高線量物質の線量に基づく収容本体の基準板厚TB以上であることを示す評価式を満たすように、貫通孔の幾何学条件を決定し、幾何学条件は、第1流路の底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さと、側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さと、第2流路と第1方向とのなす角の角度と、貫通孔の径と、を含む。貫通孔113は、tanα>T/Tを満たす形状とする場合、上記関係を満たすことで、当該貫通孔113による遮蔽性能の低下を抑制することができる。 In other words, the through hole 113, satisfies tan [alpha and T o / T 1 relationship between the tanα> T o / T 1, the outer surface of the connecting portion and the second flow passage and the accommodating body between the first flow path and the connecting portion The distance from the first point where the straight line passing through the connection point with the second flow path intersects with the second flow path to the second point where the straight line intersects with the first flow path, and the distance t, P 1 = defined by the above equation. linear P 1 is defined by a / cos [alpha], and, P 2 = (T 1 / cosθ) - straight P 2 defined by (a / cos [theta]) is, T B = Min (T 0 -ΔT, T 2 - The geometric condition of the through hole is determined so as to satisfy the evaluation formula indicating that the reference plate thickness of the containment body is TB or more based on the dose of the high-dose substance defined by ΔT), and the geometric condition is the first. The first length of the first flow path from the inner surface of the side wall in the first direction along the inner surface of the bottom of the flow path, and the first flow path from the inner surface of the bottom in the second direction along the inner surface of the side wall. Includes the second length, the angle between the second flow path and the first direction, and the diameter of the through hole. Through holes 113, when a shape satisfying tanα> T o / T 1, by satisfying the above relationships, it is possible to suppress a decrease in shielding performance due to the through hole 113.

次に、図11を参照しながら、実施形態に係る保管容器1を用いた高線量物質の収容方法の一例を説明する。図11は、本実施形態に係る保管容器1を使用する一例を説明するための図である。図12は、本実施形態に係る保管容器1の乾燥処理を説明するための図である。 Next, an example of a method for accommodating a high-dose substance using the storage container 1 according to the embodiment will be described with reference to FIG. FIG. 11 is a diagram for explaining an example in which the storage container 1 according to the present embodiment is used. FIG. 12 is a diagram for explaining the drying process of the storage container 1 according to the present embodiment.

図11及び図12に示すように、保管容器1の収容方法は、工程ST1、工程ST2、工程ST3、工程ST4、工程ST5、工程ST6及び工程ST7を有する。 As shown in FIGS. 11 and 12, the storage container 1 accommodating method includes process ST1, process ST2, process ST3, process ST4, process ST5, process ST6, and process ST7.

工程ST1では、保管容器1は、収容本体10がプール200内の底面201に配置され、当該収容本体10の収容部10sに高線量物質100が収容される。 In step ST1, the storage container 1 has a storage body 10 arranged on the bottom surface 201 in the pool 200, and the high-dose substance 100 is stored in the storage portion 10s of the storage body 10.

工程ST2では、保管容器1の蓋部20は、吊り具300にセットされ、吊り具300によって収容本体10上から吊り下ろされる。そして、工程ST3では、プール200内において、保管容器1は、吊り具300によって蓋部20が収容本体10にセットされるとともに、当該吊り具300の係止部301が収容本体10の吊り部10cにセットされる。 In the step ST2, the lid 20 of the storage container 1 is set on the hanging tool 300, and is hung from the storage body 10 by the hanging tool 300. Then, in the step ST3, in the pool 200, the lid portion 20 of the storage container 1 is set in the accommodating main body 10 by the suspending tool 300, and the locking portion 301 of the suspending tool 300 is set in the suspending portion 10c of the accommodating main body 10. Is set to.

工程ST4では、保管容器1は、蓋部20が装着された収容本体10が吊り具300によってプール200の水上に吊り上げられ、収容本体10の内部の水を貫通孔13から排水する。詳細には、保管容器1は、収容本体10の内部の水が重力に応じて貫通孔13を通過し、外部に排出される。この場合、保管容器1は、貫通孔13に屈折部13pを有しているので、貫通孔13による遮蔽欠損の影響を抑制することができる。 In the step ST4, in the storage container 1, the storage body 10 to which the lid 20 is attached is lifted above the water of the pool 200 by the hanging tool 300, and the water inside the storage body 10 is drained from the through hole 13. Specifically, in the storage container 1, the water inside the storage body 10 passes through the through hole 13 according to gravity and is discharged to the outside. In this case, since the storage container 1 has the refracting portion 13p in the through hole 13, the influence of the shielding defect by the through hole 13 can be suppressed.

工程ST5では、保管容器1は、プール200の水上に吊り上げられた状態で、収容本体10の外面10bが水洗いされる。これにより、保管容器1は、外面10bの放射能が除去される。 In the step ST5, the outer surface 10b of the storage main body 10 is washed with water while the storage container 1 is suspended above the water of the pool 200. As a result, the radioactivity on the outer surface 10b of the storage container 1 is removed.

工程ST6では、保管容器1は、吊り具300によって容器置き場に搬送され、蓋部20が収容本体10にボルト締めされる。なお、容器置き場は、例えば、処分施設へ搬出するまで原子力発電所で仮保管する保管場所等を含む。これにより、保管容器1は、収容本体10の内部に収容された高線量物質100が蓋部20によって覆い隠された密封状態で、容器置き場に仮保管される。工程ST6が終了すると、図12に示す工程ST7に遷移する。 In step ST6, the storage container 1 is conveyed to the container storage place by the hanging tool 300, and the lid portion 20 is bolted to the storage main body 10. In addition, the container storage place includes, for example, a storage place for temporary storage at a nuclear power plant until it is carried out to a disposal facility. As a result, the storage container 1 is temporarily stored in the container storage place in a sealed state in which the high-dose substance 100 contained inside the storage body 10 is covered by the lid 20. When the step ST6 is completed, the process transitions to the step ST7 shown in FIG.

図12に示すように、工程ST7では、保管容器1は、乾燥装置400が接続され、乾燥装置400から収容本体10の収容部10sに供給される加熱空気によって乾燥処理が行われる。乾燥装置400は、例えば、供給する空気を加熱するヒータと、加熱空気を送出するブロアと、を有する。保管容器1は、乾燥装置400からの加熱空気が吸気孔14から吸気されると、当該加熱空気が収容部10sの内部を移動することで、収容部10sの内部の水分を蒸発させる。保管容器1は、収容部10sの内部の加熱空気を貫通孔13から乾燥装置400に排出する。保管容器1は、収容部10sが乾燥すると、水分が残存していない状態で、容器置き場に仮保管される。これにより、保管容器1は、放射線分解ガス等も発生しないので、安全性を維持することができる。その後、保管容器1は、例えば、搬送容器、処分容器等に収納され、処分施設に搬出される。 As shown in FIG. 12, in the step ST7, the storage container 1 is connected to the drying device 400, and the drying treatment is performed by the heated air supplied from the drying device 400 to the accommodating portion 10s of the accommodating main body 10. The drying device 400 has, for example, a heater for heating the supplied air and a blower for delivering the heated air. When the heated air from the drying device 400 is taken in from the intake hole 14, the storage container 1 moves the heated air inside the accommodating portion 10s to evaporate the moisture inside the accommodating portion 10s. The storage container 1 discharges the heated air inside the accommodating portion 10s from the through hole 13 to the drying device 400. When the storage container 10s dries, the storage container 1 is temporarily stored in the container storage place in a state where no water remains. As a result, the storage container 1 does not generate radiolytic gas or the like, so that the safety can be maintained. After that, the storage container 1 is stored in, for example, a transport container, a disposal container, or the like, and is carried out to a disposal facility.

以上により、保管容器1は、底部11の内面11aと側壁部12の内面12eとの連接部15から収容本体10の外部へ貫通する貫通孔13を収容本体10に形成し、当該貫通孔13に1つの屈折部13pが形成される。これにより、保管容器1は、収容本体に高線量物質100を収容しても、貫通孔13の屈折部13pによって遮蔽欠損を抑制した状態で、貫通孔13から収容本体10の内部の液体、気体等を排出することができる。その結果、保管容器1は、貫通孔13を設けても、他の容器に収容する必要がなくなるので、遮蔽性能を低下させることなく、高線量物質100の処分の作業を簡単化することができる。 As described above, the storage container 1 is formed with a through hole 13 in the accommodating body 10 that penetrates from the connecting portion 15 between the inner surface 11a of the bottom portion 11 and the inner surface 12e of the side wall portion 12 to the outside of the accommodating main body 10. One refracting portion 13p is formed. As a result, even if the high-dose substance 100 is stored in the storage body 1, the storage container 1 has the liquid and gas inside the storage body 10 from the through hole 13 in a state where the shielding defect is suppressed by the refracting portion 13p of the through hole 13. Etc. can be discharged. As a result, even if the storage container 1 is provided with the through hole 13, it is not necessary to store the storage container 1 in another container, so that the work of disposing of the high-dose substance 100 can be simplified without deteriorating the shielding performance. ..

また、保管容器1は、側壁部12の角部122aと底部11の内面11aとの連接部15に貫通孔13が形成される。これにより、保管容器1は、矩形状の収容本体10において、側壁部12よりも厚みのある角部122aに貫通孔13を形成することができる。すなわち、保管容器1は、収容本体10の内面11aから外面10bまでの距離が最大となる箇所に貫通孔13を形成することができる。その結果、保管容器1は、貫通孔13を屈折させる範囲を確保できるので、遮蔽欠損をさらに抑制することができる。 Further, in the storage container 1, a through hole 13 is formed in the connecting portion 15 between the corner portion 122a of the side wall portion 12 and the inner surface 11a of the bottom portion 11. As a result, the storage container 1 can form a through hole 13 in the corner portion 122a, which is thicker than the side wall portion 12, in the rectangular storage body 10. That is, the storage container 1 can form a through hole 13 at a position where the distance from the inner surface 11a to the outer surface 10b of the storage body 10 is maximized. As a result, the storage container 1 can secure a range in which the through hole 13 is refracted, so that the shielding defect can be further suppressed.

また、保管容器1は、貫通孔13と吸気孔14とを中心点Cを基準として対向するように収容本体10に形成することができる。その結果、保管容器1は、吸気孔14から吸気して貫通孔13から排出する気体を収容本体10の内部で循環させることができるので、収容本体10の内部を効率良く乾燥させることができる。 Further, the storage container 1 can be formed in the storage main body 10 so that the through hole 13 and the intake hole 14 face each other with respect to the center point C. As a result, since the storage container 1 can circulate the gas taken in from the intake hole 14 and discharged from the through hole 13 inside the accommodating main body 10, the inside of the accommodating main body 10 can be efficiently dried.

また、保管容器1は、収容本体10が水を収容している場合、貫通孔13から水を収容本体10の外部に排出することができる。保管容器1は、収容本体10が吸気孔14から加熱空気が吸気されている場合、貫通孔13から加熱空気を収容本体10の外部に排出することができる。その結果、保管容器1は、貫通孔13から収容本体10の内部の加熱空気及び水を排出することが可能となるので、遮蔽性能を低下させることなく、処分の作業を簡単化することができる。 Further, in the storage container 1, when the storage body 10 stores water, water can be discharged to the outside of the storage body 10 through the through hole 13. In the storage container 1, when the accommodating main body 10 is sucking heated air from the intake hole 14, the heated air can be discharged to the outside of the accommodating main body 10 through the through hole 13. As a result, the storage container 1 can discharge the heated air and water inside the storage body 10 from the through hole 13, so that the disposal work can be simplified without deteriorating the shielding performance. ..

また、保管容器1は、鉛直方向と交わる方向へ連接部15から延びる第1流路13aと、第1流路13aから屈折しかつ収容本体10の外部へ延びる第2流路13bとを屈折部13pで連接した貫通孔13を収容本体10に形成することができる。その結果、保管容器1は、第1流路13aと第2流路13bとの屈折によって遮蔽性能の低下を抑制することができるともに、連接部15から第1流路13aへの液体の排出の効率を向上させることができる。 Further, the storage container 1 has a first flow path 13a extending from the connecting portion 15 in the direction intersecting the vertical direction and a second flow path 13b refracting from the first flow path 13a and extending to the outside of the accommodating main body 10. A through hole 13 connected at 13p can be formed in the accommodating body 10. As a result, the storage container 1 can suppress the deterioration of the shielding performance due to the refraction between the first flow path 13a and the second flow path 13b, and discharge the liquid from the connecting portion 15 to the first flow path 13a. Efficiency can be improved.

上記の実施形態では、保管容器1は、貫通孔13の第1流路13aを第2流路13bよりも急な傾斜としているが、これに限定されない。保管容器1は、例えば、第1流路13aを第2流路13bよりも緩やかな傾斜となるように貫通孔13を構成してもよい。 In the above embodiment, in the storage container 1, the first flow path 13a of the through hole 13 has a steeper slope than the second flow path 13b, but the storage container 1 is not limited to this. The storage container 1 may be configured with a through hole 13 so that the first flow path 13a has a gentler inclination than the second flow path 13b, for example.

上記の実施形態では、保管容器1は、貫通孔13を1つの屈折部13pで曲げる場合について説明したが、これに限定されない。保管容器1は、例えば、3つ以上の流路を有する貫通孔を、2つ以上の屈折部で異なる方向に屈折されるように構成してもよい。この場合、保管容器1は、収容本体10の角部に形成することで、内面から外面までに十分な距離を確保することができる。 In the above embodiment, the storage container 1 has described the case where the through hole 13 is bent by one refracting portion 13p, but the storage container 1 is not limited to this. The storage container 1 may be configured such that, for example, a through hole having three or more flow paths is refracted in different directions by two or more refracting portions. In this case, by forming the storage container 1 at the corner of the storage main body 10, a sufficient distance can be secured from the inner surface to the outer surface.

1 保管容器
10 収容本体
10a 収容口
10b 外面
10c 吊り部
10s 収容部
11 底部
11a 内面
11b、11c 仮想線
12 側壁部
12e 内面
13 貫通孔
13a 第1流路
13b 第2流路
13p 屈折部
14 吸気孔
15 連接部
20 蓋部
100 高線量物質
121a、121b、121c、121d 側面
122a、122b、122c、122d 角部
200 プール
201 プール底面
300 吊り具
301 係止部
400 乾燥装置
1 Storage container 10 Storage body 10a Storage port 10b Outer surface 10c Suspension part 10s Storage part 11 Bottom part 11a Inner surface 11b, 11c Virtual line 12 Side wall part 12e Inner surface 13 Through hole 13a First flow path 13b Second flow path 13p Refraction part 14 Intake hole 15 Connecting part 20 Lid part 100 High-dose substance 121a, 121b, 121c, 121d Side surface 122a, 122b, 122c, 122d Square part 200 Pool 201 Pool bottom 300 Hanging tool 301 Locking part 400 Drying device

Claims (10)

高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有する保管容器であって、
前記収容本体は、
底部と、
前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、
前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、
を有し、
前記貫通孔は、少なくとも1つの屈折部を有することを特徴とする保管容器。
A storage container having a storage body for storing a high-dose substance and a lid for closing the storage port of the storage body.
The containment body
At the bottom
A side wall that is connected to the bottom and extends along the vertical direction of the bottom,
A through hole penetrating from the connecting portion between the inner surface of the bottom portion and the inner surface of the side wall portion to the outside of the accommodating body,
Have,
A storage container characterized in that the through hole has at least one refracting portion.
前記側壁部は、複数の側面と、隣り合う側面同士を所定の角度で連接する角部と、を有し、
前記貫通孔は、前記底部の内面と前記角部の内面との前記連接部に形成されていることを特徴とする請求項1に記載の保管容器。
The side wall portion has a plurality of side surfaces and a corner portion that connects adjacent side surfaces at a predetermined angle.
The storage container according to claim 1, wherein the through hole is formed in the connecting portion between the inner surface of the bottom portion and the inner surface of the corner portion.
前記収容本体は、前記収容本体の内部に気体を吸気する吸気孔をさらに有し、
前記吸気孔は、前記収容本体の中心点を基準として、前記貫通孔と対向する前記収容本体の部分に形成されていることを特徴とする請求項1または2に記載の保管容器。
The accommodating body further has an intake hole for sucking gas inside the accommodating body.
The storage container according to claim 1 or 2, wherein the intake hole is formed in a portion of the storage body facing the through hole with reference to the center point of the storage body.
前記貫通孔は、前記収容本体が液体を収容している場合、当該液体を前記収容本体の外部に排出し、前記収容本体が前記吸気孔から前記気体が吸気されている場合、当該気体を前記収容本体の外部に排出することを特徴とする請求項3に記載の保管容器。 The through hole discharges the liquid to the outside of the accommodating body when the accommodating body contains the liquid, and when the accommodating body sucks the gas from the intake hole, the gas is discharged. The storage container according to claim 3, wherein the storage container is discharged to the outside of the storage body. 前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、
前記屈折部は、前記第1流路と前記第2流路とが連接する前記貫通孔の部分であることを特徴とする請求項1から4のいずれか1項に記載の保管容器。
The through hole has a first flow path extending from the connecting portion in a direction intersecting the vertical direction, and a second flow path refracting from the first flow path and extending to the outside of the accommodation body.
The storage container according to any one of claims 1 to 4, wherein the refracting portion is a portion of the through hole in which the first flow path and the second flow path are connected to each other.
前記貫通孔は、tanαとT/Tとの関係がtanα≦T/T下記式を満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ、
Figure 2021001860

で規定される距離t、P=b/sinαで規定される直線P、及び、tanθ≦T/Tの場合、P=(T/cosθ)−(a/cosθ)、tanθ>T/Tの場合、P=(T/sinθ)−(a/cosθ)で規定される直線Pが、T=Min(T−ΔT,T2−ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、
前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする請求項5に記載の保管容器。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(−1/μ・ln(φ/φ),−1/μ・ln(φ/φ))の値
η:T+d・sinθの値
β:b+(T−a)・tanαの値
ε:β+d・(cosθ−1/cosα)の値
A’:(β+d・cosθ−T・tanθ)/(β−η・tanθ)の値
B’:d/(cosα・(β−η・tanθ))の値
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ1:第1流路の欠損により影響を受ける部位のγ線束
φ2:第2流路の欠損により影響を受ける部位のγ線束
The through hole, the relationship between tan [alpha and T o / T 1 satisfies the tanα ≦ T o / T 1 following formula, wherein the connecting portion and the second flow path between the said first flow path connecting portion The distance from the first point where the straight line passing through the connection point with the outer surface of the accommodating body intersects the second flow path to the second point where the straight line intersects the first flow path, and
Figure 2021001860

In defined as a distance t, the straight line P 1 is defined by P 1 = b / sin .alpha and, in the case of tanθ ≦ T o / T 1, P 2 = (T 1 / cosθ) - (a / cosθ), tanθ > for T o / T 1, P 2 = (T 0 / sinθ) - straight P 2 defined by (a / cos [theta]) is defined by T B = Min (T 0 -ΔT , T 2 -ΔT) said high so as to satisfy the evaluation equation showing that dose material is the receiving body of the reference plate thickness T B or based on dose, it determines the geometrical conditions of the through hole being,
The geometric conditions are the first length of the first flow path from the inner surface of the side wall portion in the first direction along the inner surface of the bottom portion of the first flow path, and the first length along the inner surface of the side wall portion. It is characterized by including a second length of the first flow path from the inner surface of the bottom in two directions, an angle formed by the second flow path and the first direction, and a diameter of the through hole. The storage container according to claim 5.
a: First length of the first flow path from the inner surface of the side wall in the first direction along the inner surface of the bottom b: First flow path from the inner surface of the bottom in the second direction along the inner surface of the side wall Second length d: Through hole diameter α: Angle formed by the second flow path and the first direction θ: Angle formed by the first flow path and the virtual line extending from the inner surface of the bottom to the side surface T 0 : Storage container Bottom thickness T 1 : Thickness of the corner where the storage body is cut diagonally T 2 : Thickness of the side surface of the storage container ΔT = Min (-1 / μ ・ ln (φ 1 / φ 0 ), -1 / μ ・ln (φ 2 / φ 0 )) value η: T 1 + d · sin θ value β: b + (T 1 −a) · tan α value ε: β + d · (cos θ-1 / cos α) value A': ( β + d ・ cosθ-T 1・ tanθ) / (β-η ・ tanθ) value B': d / (cosα ・ (β-η ・ tanθ)) value μ: Attenuation coefficient φ 0 : Center point C of the housing body Nearby γ-ray bundle φ 1 : γ-ray bundle of the part affected by the defect of the first flow path φ 2 : γ-ray bundle of the part affected by the defect of the second flow path
前記貫通孔は、tanαとT/Tとの関係がtanα>T/Tを満足し、前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ
Figure 2021001860

で規定される距離t、P=a/cosαで規定される直線P1、及び、P=(T/cosθ)−(a/cosθ)で規定される直線P2が、T=Min(T−ΔT,T−ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚TB以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、
前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする請求項5に記載の保管容器。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
T0:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(−1/μ・ln(φ/φ),−1/μ・ln(φ/φ))の値
β:b+(T−a)・tanαの値
ε:β+d・(cosθ−1/cosα)の値
A″:(β−d/cosα−η・tanθ)/(ε−T・tanθ)
B″:d/(cosα・(T・tanα−ε))
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ:第1流路の欠損により影響を受ける部位のγ線束
φ:第2流路の欠損により影響を受ける部位のγ線束
The through hole, tan [alpha and T o / T 1 relationship between satisfies the tanα> T o / T 1, connecting portion and the second flow path and said housing body and said connection portion and the first flow path The distance from the first point where the straight line passing through the connection point with the outer surface of the above intersects with the second flow path to the second point where the straight line intersects with the first flow path.
Figure 2021001860

In defined as a distance t, the straight line P1 defined by P 1 = a / cosα, and, P 2 = (T 1 / cosθ) - (a / cosθ) straight P2 defined by the, T B = Min ( Geometric conditions of the through hole so as to satisfy the evaluation formula indicating that the reference plate thickness TB or more of the accommodation body is based on the dose of the high-dose substance defined by T 0 − ΔT, T 2 − ΔT). Decide,
The geometric conditions are the first length of the first flow path from the inner surface of the side wall portion in the first direction along the inner surface of the bottom portion of the first flow path, and the first length along the inner surface of the side wall portion. It is characterized by including a second length of the first flow path from the inner surface of the bottom in two directions, an angle formed by the second flow path and the first direction, and a diameter of the through hole. The storage container according to claim 5.
a: First length of the first flow path from the inner surface of the side wall in the first direction along the inner surface of the bottom b: First flow path from the inner surface of the bottom in the second direction along the inner surface of the side wall Second length d: Diameter of through hole α: Angle formed by the second flow path and the first direction θ: Angle formed by the first flow path and the virtual line extending from the inner surface of the bottom to the side surface T0: Of the storage container Bottom thickness T 1 : Thickness of the corner where the storage body is cut diagonally T 2 : Thickness of the side surface of the storage container ΔT = Min (-1 / μ · ln (φ 1 / φ 0 ), -1 / μ · ln (Φ 2 / φ 0 )) value β: b + (T 1 −a) · tan α value ε: β + d · (cos θ-1 / cos α) value A ″: (β − d / cos α −η · tan θ) / (Ε-T 1 · tan θ)
B ": d / (cosα · (T 1 · tanα-ε))
μ: Attenuation coefficient φ 0 : γ-ray bundle near the center point C of the accommodating body φ 1 : γ-ray bundle of the part affected by the defect of the first flow path φ 2 : γ of the part affected by the defect of the second flow path Line bundle
前記貫通孔は、第1流路13aの鉛直方向の第1長さaと水平方向の第2長さbとの比が6.0以下で、第2長さbは250mm以下で、前記第2流路と水平方向とのなす角が45°以下であることを特徴とする請求項6または請求項7に記載の保管容器。 The through hole has a ratio of a first length a in the vertical direction to a second length b in the horizontal direction of the first flow path 13a of 6.0 or less, and a second length b of 250 mm or less. 2. The storage container according to claim 6 or 7, wherein the angle between the flow path and the horizontal direction is 45 ° or less. 高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有し、前記収容本体は、底部と、前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、を有し、前記貫通孔は、少なくとも1つの屈折部を有する保管容器の設計方法であって、
前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、
tanαとT/Tとの関係がtanα≦T/Tを満足し、
前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ
Figure 2021001860

で規定される距離t、P=b/sinαで規定される直線P、及び、tanθ≦T/Tの場合、P=(T/cosθ)−(a/cosθ)、tanθ>T/Tの場合、P=(T/sinθ)−(a/cosθ)で規定される直線Pが、T=Min(T−ΔT,T2−ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、
前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする保管容器の設計方法。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(−1/μ・ln(φ/φ),−1/μ・ln(φ/φ))の値
η:T+d・sinθの値
β:b+(T−a)・tanαの値
ε:β+d・(cosθ−1/cosα)の値
A’:(β+d・cosθ−T・tanθ)/(β−η・tanθ)の値
B’:d/(cosα・(β−η・tanθ))の値
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ1:第1流路の欠損により影響を受ける部位のγ線束
φ2:第2流路の欠損により影響を受ける部位のγ線束
It has an accommodating body for accommodating a high-dose substance and a lid portion for closing the accommodating port of the accommodating body, and the accommodating body is connected to a bottom portion and a side wall extending along the vertical direction of the bottom portion. Design of a storage container having a portion, a through hole penetrating from the connecting portion between the inner surface of the bottom portion and the inner surface of the side wall portion to the outside of the accommodating body, and the through hole having at least one refracting portion. The way,
The through hole has a first flow path extending from the connecting portion in a direction intersecting the vertical direction, and a second flow path refracting from the first flow path and extending to the outside of the accommodation body.
the relationship between the tanα and T o / T 1 satisfies the tanα ≦ T o / T 1,
From the first point where the straight line passing through the connection point between the first flow path and the connection portion and the connection point between the second flow path and the outer surface of the accommodating body intersects with the second flow path, the straight line is the first. It is the distance to the second point where one flow path intersects, and
Figure 2021001860

In defined as a distance t, the straight line P 1 is defined by P 1 = b / sin .alpha and, in the case of tanθ ≦ T o / T 1, P 2 = (T 1 / cosθ) - (a / cosθ), tanθ > for T o / T 1, P 2 = (T 0 / sinθ) - straight P 2 defined by (a / cos [theta]) is defined by T B = Min (T 0 -ΔT , T 2 -ΔT) said high so as to satisfy the evaluation equation showing that dose material is the receiving body of the reference plate thickness T B or based on dose, it determines the geometrical conditions of the through hole being,
The geometric conditions are the first length of the first flow path from the inner surface of the side wall portion in the first direction along the inner surface of the bottom portion of the first flow path, and the first length along the inner surface of the side wall portion. It is characterized by including a second length of the first flow path from the inner surface of the bottom in two directions, an angle formed by the second flow path and the first direction, and a diameter of the through hole. How to design a storage container.
a: First length of the first flow path from the inner surface of the side wall in the first direction along the inner surface of the bottom b: First flow path from the inner surface of the bottom in the second direction along the inner surface of the side wall Second length d: Through hole diameter α: Angle formed by the second flow path and the first direction θ: Angle formed by the first flow path and the virtual line extending from the inner surface of the bottom to the side surface T 0 : Storage container Bottom thickness T 1 : Thickness of the corner where the storage body is cut diagonally T 2 : Thickness of the side surface of the storage container ΔT = Min (-1 / μ ・ ln (φ 1 / φ 0 ), -1 / μ ・ln (φ 2 / φ 0 )) value η: T 1 + d · sin θ value β: b + (T 1 −a) · tan α value ε: β + d · (cos θ-1 / cos α) value A': ( β + d ・ cosθ-T 1・ tanθ) / (β-η ・ tanθ) value B': d / (cosα ・ (β-η ・ tanθ)) value μ: Attenuation coefficient φ 0 : Center point C of the housing body Nearby γ-ray bundle φ 1 : γ-ray bundle of the part affected by the defect of the first flow path φ 2 : γ-ray bundle of the part affected by the defect of the second flow path
高線量物質を収容する収容本体と、前記収容本体の収容口を塞ぐ蓋部と、を有し、前記収容本体は、底部と、前記底部に連接しかつ前記底部の鉛直方向に沿って延びる側壁部と、前記底部の内面と前記側壁部の内面との連接部から前記収容本体の外部へ貫通する貫通孔と、を有し、前記貫通孔は、少なくとも1つの屈折部を有する保管容器の設計方法であって、
前記貫通孔は、前記鉛直方向と交わる方向へ前記連接部から延びる第1流路と、前記第1流路から屈折しかつ前記収容本体の外部へ延びる第2流路と、を有し、
tanαとT/Tとの関係がtanα>T/Tを満足し、
前記第1流路と前記連接部との連接箇所及び前記第2流路と前記収容本体の外面との連接箇所を通る直線が前記第2流路と交わる第1点から、当該直線が前記第1流路と交わる第2点までの距離であり、かつ
Figure 2021001860

で規定される距離t、P=a/cosαで規定される直線P、及び、P=(T/cosθ)−(a/cosθ)で規定される直線Pが、T=Min(T−ΔT,T−ΔT)で規定される前記高線量物質の線量に基づく前記収容本体の基準板厚T以上であることを示す評価式を満たすように、前記貫通孔の幾何学条件を決定し、
前記幾何学条件は、前記第1流路の前記底部の内面に沿った第1方向の前記側壁部の内面からの前記第1流路の第1長さと、前記側壁部の内面に沿った第2方向の前記底部の内面からの前記第1流路の第2長さと、前記第2流路と前記第1方向とのなす角の角度と、前記貫通孔の径と、を含むことを特徴とする保管容器の設計方法。
a:底部の内面に沿った第1方向の側壁部の内面からの第1流路の第1長さ
b:側壁部の内面に沿った第2方向の底部の内面からの第1流路の第2長さ
d:貫通孔の径
α:第2流路と第1方向とのなす角
θ:第1流路と、底部の内面から側面に延びる仮想線とのなす角
:収納容器の底の厚み
:収容本体を斜めに切断した角部の厚み
:収納容器の側面の厚み
ΔT=Min(−1/μ・ln(φ/φ),−1/μ・ln(φ/φ))の値
β:b+(T−a)・tanαの値
ε:β+d・(cosθ−1/cosα)の値
A″:(β−d/cosα−η・tanθ)/(ε−T・tanθ)
B″:d/(cosα・(T・tanα−ε))
μ:減衰係数
φ:収容本体の中心点C付近のγ線束
φ:第1流路の欠損により影響を受ける部位のγ線束
φ:第2流路の欠損により影響を受ける部位のγ線束
It has an accommodating body for accommodating a high-dose substance and a lid portion for closing the accommodating port of the accommodating body. Design of a storage container having a portion, a through hole penetrating from the connecting portion between the inner surface of the bottom portion and the inner surface of the side wall portion to the outside of the accommodating body, and the through hole having at least one refracting portion. The way,
The through hole has a first flow path extending from the connecting portion in a direction intersecting the vertical direction, and a second flow path refracting from the first flow path and extending to the outside of the accommodation body.
the relationship between the tanα and T o / T 1 satisfies the tanα> T o / T 1,
From the first point where the straight line passing through the connection point between the first flow path and the connection portion and the connection point between the second flow path and the outer surface of the accommodating body intersects with the second flow path, the straight line is the first. It is the distance to the second point where one flow path intersects, and
Figure 2021001860

In defined as a distance t, the straight line P 1 is defined by P 1 = a / cos [alpha], and, P 2 = (T 1 / cosθ) - linear P 2 defined by (a / cosθ), T B = Min (T 0 -ΔT, T 2 -ΔT) so as to satisfy the evaluation equation showing that at the housing body of the reference plate thickness T B above defined based on the dose of the high dose substance, of the through hole Determine the geometric conditions,
The geometric conditions are the first length of the first flow path from the inner surface of the side wall portion in the first direction along the inner surface of the bottom portion of the first flow path, and the first length along the inner surface of the side wall portion. It is characterized by including a second length of the first flow path from the inner surface of the bottom in two directions, an angle formed by the second flow path and the first direction, and a diameter of the through hole. How to design a storage container.
a: First length of the first flow path from the inner surface of the side wall in the first direction along the inner surface of the bottom b: First flow path from the inner surface of the bottom in the second direction along the inner surface of the side wall Second length d: Through hole diameter α: Angle formed by the second flow path and the first direction θ: Angle formed by the first flow path and the virtual line extending from the inner surface of the bottom to the side surface T 0 : Storage container Bottom thickness T 1 : Thickness of the corner where the storage body is cut diagonally T 2 : Thickness of the side surface of the storage container ΔT = Min (-1 / μ ・ ln (φ 1 / φ 0 ), -1 / μ ・ln (φ 2 / φ 0 )) value β: b + (T 1 −a) · tan α value ε: β + d · (cos θ-1 / cos α) value A ″: (β − d / cos α −η · tan θ ) / (Ε-T 1. tan θ)
B ": d / (cosα · (T 1 · tanα-ε))
μ: Attenuation coefficient φ 0 : γ-ray bundle near the center point C of the accommodating body φ 1 : γ-ray bundle of the part affected by the defect of the first flow path φ 2 : γ of the part affected by the defect of the second flow path Line bundle
JP2019170598A 2019-06-18 2019-09-19 Storage container and storage container design method Active JP7285182B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019112689 2019-06-18
JP2019112689 2019-06-18

Publications (2)

Publication Number Publication Date
JP2021001860A true JP2021001860A (en) 2021-01-07
JP7285182B2 JP7285182B2 (en) 2023-06-01

Family

ID=73995065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170598A Active JP7285182B2 (en) 2019-06-18 2019-09-19 Storage container and storage container design method

Country Status (1)

Country Link
JP (1) JP7285182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114822894A (en) * 2022-05-31 2022-07-29 四川先通原子医药科技有限公司 Container for holding radiopharmaceutical vial and use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854600U (en) * 1981-10-09 1983-04-13 三井造船株式会社 Radioactive waste transport storage container
JPS6244700A (en) * 1985-08-23 1987-02-26 株式会社日立製作所 Radioactive waste vessel
US5406600A (en) * 1993-10-08 1995-04-11 Pacific Nuclear Systems, Inc. Transportation and storage cask for spent nuclear fuels
JPH1184082A (en) * 1997-09-09 1999-03-26 Hitachi Ltd Ventilating structure for intake port and exhaust port of concrete cask
JP2002022881A (en) * 2000-07-13 2002-01-23 Mitsubishi Heavy Ind Ltd Concrete storage vessel
JP2002328194A (en) * 2001-05-01 2002-11-15 Ishikawajima Harima Heavy Ind Co Ltd Storage cask
JP2006058010A (en) * 2004-08-17 2006-03-02 Central Res Inst Of Electric Power Ind Shielding lid for concrete-made storage facility
JP4954520B2 (en) * 2005-09-21 2012-06-20 株式会社神戸製鋼所 How to store radioactive waste

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854600U (en) * 1981-10-09 1983-04-13 三井造船株式会社 Radioactive waste transport storage container
JPS6244700A (en) * 1985-08-23 1987-02-26 株式会社日立製作所 Radioactive waste vessel
US5406600A (en) * 1993-10-08 1995-04-11 Pacific Nuclear Systems, Inc. Transportation and storage cask for spent nuclear fuels
JPH1184082A (en) * 1997-09-09 1999-03-26 Hitachi Ltd Ventilating structure for intake port and exhaust port of concrete cask
JP2002022881A (en) * 2000-07-13 2002-01-23 Mitsubishi Heavy Ind Ltd Concrete storage vessel
JP2002328194A (en) * 2001-05-01 2002-11-15 Ishikawajima Harima Heavy Ind Co Ltd Storage cask
JP2006058010A (en) * 2004-08-17 2006-03-02 Central Res Inst Of Electric Power Ind Shielding lid for concrete-made storage facility
JP4954520B2 (en) * 2005-09-21 2012-06-20 株式会社神戸製鋼所 How to store radioactive waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114822894A (en) * 2022-05-31 2022-07-29 四川先通原子医药科技有限公司 Container for holding radiopharmaceutical vial and use thereof
CN114822894B (en) * 2022-05-31 2023-03-24 四川先通原子医药科技有限公司 Container for holding radiopharmaceutical vial and use thereof

Also Published As

Publication number Publication date
JP7285182B2 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP4268970B2 (en) Radioactive waste separation / clearance treatment system and method with high efficiency and high reliability
JP2021001860A (en) Storage container and method for designing storage container
JP4954520B2 (en) How to store radioactive waste
Lee et al. Preliminary evaluation of decommissioning wastes for the first commercial nuclear power reactor in South Korea
JP4880271B2 (en) Radioactive waste disposal method and radioactive waste burying disposal container structure
JP6893203B2 (en) Ship inspection method, ship manufacturing method
JPH10132989A (en) Solution tank
JP7234072B2 (en) Waste body radioactivity evaluation system and waste body radioactivity evaluation method
Shimada et al. Development of safety assessment code for decommissioning of nuclear facilities (DecDose)
JP2003207592A (en) Radioactive substance housing vessel and its bottom plate structure
JP7157712B2 (en) How to store radioactive waste
JP2001147289A (en) Criticality monitoring method for fuel vessel system, monitoring device and fuel vessel
JPH0719033Y2 (en) Drip tray
JP2019132778A (en) Accident countermeasures, nuclear power plant, and radiation shielding method
JP6638933B2 (en) Radioactivity concentration measurement device
JPH0244298A (en) Radioactive waste treatment system
JP2006010313A (en) Radioactive material storage building
JP2002328195A (en) Concrete cask
JP6473934B2 (en) Radiation shielding structure and inspection method using the same
JP2549164B2 (en) How to dispose of radioactive waste
Lamb Cesium‐137 Source Material for an Irradiator
JP2004170177A (en) Radioactive substance storing vessel
JPS59116594A (en) Pollution removing equipment for metal waste polluted by radioactive substance
Westphal et al. Replacement of a Hot Cell Window at the Hot Fuel Examination Facility
JP2006208127A (en) Transport container for radioactive substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7285182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150