JP2021001389A - Chemically-treated steel sheet and method for manufacturing same - Google Patents

Chemically-treated steel sheet and method for manufacturing same Download PDF

Info

Publication number
JP2021001389A
JP2021001389A JP2020016539A JP2020016539A JP2021001389A JP 2021001389 A JP2021001389 A JP 2021001389A JP 2020016539 A JP2020016539 A JP 2020016539A JP 2020016539 A JP2020016539 A JP 2020016539A JP 2021001389 A JP2021001389 A JP 2021001389A
Authority
JP
Japan
Prior art keywords
chemical conversion
steel sheet
metal
group
conversion treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020016539A
Other languages
Japanese (ja)
Inventor
義勝 西田
Yoshikatsu Nishida
義勝 西田
雅典 松野
Masanori Matsuno
雅典 松野
晋 上野
Susumu Ueno
晋 上野
山木 信彦
Nobuhiko Yamaki
信彦 山木
上田 耕一郎
Koichiro Ueda
耕一郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2021001389A publication Critical patent/JP2021001389A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To provide: a chemically-treated steel sheet which has superior corrosion resistance even in a flat section and in which degradation of corrosion resistance is unlikely to occur at a portion that has been machined; and a method for manufacturing the same.SOLUTION: The chemically-treated steel sheet (1A) comprises a Zn-plated steel sheet (10) and a chemically-treated film (20A). The chemically-treated film (20A) has, as a portion of a matrix formed via a metal oxide polymer (25) that is a polymer of a Group IV metal oxoacid, a salt in which a Group IV metal (M) and a specific oxoacid are bonded, the salt dispersed in the matrix. The chemically-treated film (20A) has a sea-island structure in which the matrix is a sea part and island parts including the salt are dispersed in the matrix.SELECTED DRAWING: Figure 6

Description

本発明は、Zn系めっき鋼板の表面に化成処理皮膜が形成された化成処理鋼板、およびその製造方法に関する。 The present invention relates to a chemical conversion-treated steel sheet in which a chemical conversion-treated film is formed on the surface of a Zn-based plated steel sheet, and a method for producing the same.

Zn系めっき鋼板は、自動車、建材、家電製品などの幅広い用途で使用されている。通常、めっき鋼板の表面には、塗油せずに耐食性を付与するため、クロムフリーの化成処理が施されている。クロムフリーの化成処理は、有機系処理と無機系処理とに大別される。 Zn-based galvanized steel sheets are used in a wide range of applications such as automobiles, building materials, and home appliances. Normally, the surface of a plated steel sheet is subjected to a chrome-free chemical conversion treatment in order to impart corrosion resistance without oiling. Chromium-free chemical conversion treatment is roughly divided into organic treatment and inorganic treatment.

従来、無機系処理に用いられる化成処理液として、防錆剤の違いにより、チタン系、ジルコニウム系、モリブデン系、これらを複合化させた系などが開発されている。また、耐食性を高めるために、シランカップリング剤やシランなどをさらに添加した系も開発されている(例えば、特許文献1〜4を参照)。 Conventionally, as a chemical conversion treatment liquid used for inorganic treatment, titanium-based, zirconium-based, molybdenum-based, and composite systems thereof have been developed depending on the difference in rust preventive. Further, in order to enhance the corrosion resistance, a system in which a silane coupling agent, silane, or the like is further added has been developed (see, for example, Patent Documents 1 to 4).

特開2003−055777号公報Japanese Unexamined Patent Publication No. 2003-055777 特許第5638191号公報Japanese Patent No. 5638191 特許第5317516号公報Japanese Patent No. 5317516 特許第5431721号公報Japanese Patent No. 5431721

しかしながら、無機成分を主体とする化成処理皮膜は比較的硬質であるため、該化成処理皮膜を有する化成処理鋼板を加工(曲げ加工等)すると加工部にクラック(亀裂)が発生し易い。そのため、加工後の上記化成処理鋼板を例えば屋外にて使用する場合、上記加工部に白錆が早期に発生し得る。 However, since the chemical conversion-treated film mainly composed of an inorganic component is relatively hard, cracks are likely to occur in the processed portion when the chemical conversion-treated steel sheet having the chemical conversion-treated film is processed (bending or the like). Therefore, when the processed steel sheet for chemical conversion is used outdoors, for example, white rust may occur in the processed portion at an early stage.

特に、めっき層にMgを含有するZn系めっき鋼板の表面に、無機成分を主体とする化成処理皮膜を形成してなる化成処理鋼板では、上記めっき層も硬質であるため、該化成処理鋼板に加工を施した場合、上記化成処理皮膜だけでなく上記めっき層にもクラックが発生し易い。その結果、加工部における白錆の発生がより顕著となり得る。 In particular, in a chemical conversion-treated steel sheet formed by forming a chemical conversion-treated film mainly composed of an inorganic component on the surface of a Zn-based plated steel sheet containing Mg in the plating layer, the plating layer is also hard, so that the chemical conversion-treated steel sheet can be used. When processed, cracks are likely to occur not only in the chemical conversion coating but also in the plating layer. As a result, the occurrence of white rust in the processed portion may become more remarkable.

特許文献1には、ジルコニウム化合物とバナジル化合物とを含有する皮膜を有するクロメートフリー処理溶融Zn−Al系合金めっき鋼板が記載されている。また、特許文献2には、第4族元素(4族金属)の化合物を含む皮膜を金属板上に形成した化成処理金属板が記載されている。そして、特許文献1、2には、これらの技術を用いて得られた試料は、エリクセン加工を施した加工部の耐食性に優れることが示されている。しかし、上記試料は皮膜が硬質であることから、厳しい加工(例えば180°曲げ加工)を施した場合には、上述のように加工部の耐食性が劣化し得る。 Patent Document 1 describes a chromate-free treated molten Zn—Al alloy plated steel sheet having a film containing a zirconium compound and a vanadyl compound. Further, Patent Document 2 describes a chemical conversion-treated metal plate in which a film containing a compound of a Group 4 element (Group 4 metal) is formed on the metal plate. Further, Patent Documents 1 and 2 show that the samples obtained by using these techniques are excellent in the corrosion resistance of the processed portion subjected to the Eriksen processing. However, since the film of the sample is hard, the corrosion resistance of the processed portion may deteriorate as described above when severe processing (for example, 180 ° bending processing) is performed.

また、特許文献3、4には、有機樹脂または有機物が主体となる化成処理皮膜を有する化成処理鋼板が記載されている。しかし、このような化成処理皮膜は、皮膜の導電性が乏しいためスポット溶接を行う用途へは適用できない。そして、引用文献1、2と同様に、これらの技術においても厳しい加工を施した場合には加工部の耐食性が劣化し得る。 Further, Patent Documents 3 and 4 describe chemical conversion-treated steel sheets having a chemical conversion-treated film mainly composed of an organic resin or an organic substance. However, such a chemical conversion-treated film cannot be applied to applications for spot welding because the film has poor conductivity. Further, as in the cited documents 1 and 2, the corrosion resistance of the processed portion may deteriorate when severe processing is performed in these techniques as well.

本発明の一態様は、上記従来の問題点に鑑みなされたものであって、その目的は、加工を施した部分に耐食性の劣化が生じにくいとともに、平坦部においても耐食性に優れる化成処理鋼板およびその製造方法を提供することにある。 One aspect of the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a chemical conversion-treated steel sheet which is less likely to deteriorate in corrosion resistance in a processed portion and has excellent corrosion resistance even in a flat portion. The purpose is to provide the manufacturing method.

本発明者らは、鋭意検討の結果、マトリックス中に応力緩和点として作用し得る構造が分散して存在するように化成処理皮膜を形成することにより、加工時のクラックの発生を抑制し得るという新たな知見を得て、本願発明を想到した。 As a result of diligent studies, the present inventors have stated that the generation of cracks during processing can be suppressed by forming a chemical conversion treatment film so that structures that can act as stress relaxation points are dispersed in the matrix. With new knowledge, the invention of the present application was conceived.

すなわち、本発明の一態様における化成処理鋼板は、基材鋼板の表面にZn系めっき層を有するZn系めっき鋼板と、前記Zn系めっき層の表面上に形成された化成処理皮膜と、を有し、前記化成処理皮膜において、少なくとも1種の4族金属オキソ酸の重合体である金属酸化物ポリマーによって形成されたマトリックスの一部として、前記4族金属オキソ酸が有する4族金属と特定のオキソ酸とが結合した塩が、前記マトリックス中に分散して存在しており、前記化成処理皮膜は、前記マトリックスを海部とし、前記塩を含む島部が前記マトリックス中に分散して存在する海島構造を有していることを特徴とする。 That is, the chemical conversion-treated steel sheet according to one aspect of the present invention includes a Zn-based plated steel sheet having a Zn-based plating layer on the surface of the base steel sheet, and a chemical conversion-treated film formed on the surface of the Zn-based plating layer. Then, in the chemical conversion treatment film, as a part of the matrix formed by the metal oxide polymer which is a polymer of at least one kind of group 4 metal oxo acid, it is specific to the group 4 metal possessed by the group 4 metal oxo acid. The salt bonded to the oxo acid is dispersed in the matrix, and the chemical conversion coating film has the matrix as a sea part, and the island part containing the salt is dispersed in the matrix. It is characterized by having a structure.

また、本発明の一態様における化成処理鋼板の製造方法は、基材鋼板の表面にZn系めっき層を有するZn系めっき鋼板に対して、(i)少なくとも1種の4族金属オキソ酸塩、および、(ii)特定のオキソ酸を含む塩、の両方を含む化成処理液を塗布する化成処理液塗布ステップと、前記化成処理液塗布ステップの直後から静置時間35秒以下にて前記化成処理液の加熱乾燥を開始し、前記Zn系めっき鋼板の温度が80℃に到達するまでの昇温時間を1秒以上10秒以下とし、最高到達温度を170℃以下として前記化成処理液を乾燥させて前記Zn系めっき鋼板の表面上に化成処理皮膜を形成する加熱乾燥ステップと、を含む。 Further, in the method for producing a chemical conversion-treated steel sheet according to one aspect of the present invention, with respect to a Zn-based plated steel sheet having a Zn-based plated layer on the surface of the base steel sheet, (i) at least one kind of Group 4 metal oxoate And (ii) a chemical conversion treatment liquid coating step of applying a chemical conversion treatment liquid containing both a salt containing a specific oxo acid, and the chemical conversion treatment with a standing time of 35 seconds or less immediately after the chemical conversion treatment liquid coating step. The heat-drying of the liquid is started, the temperature rise time until the temperature of the Zn-based plated steel sheet reaches 80 ° C. is set to 1 second or more and 10 seconds or less, and the maximum reaching temperature is set to 170 ° C. or lower to dry the chemical conversion treatment liquid. It includes a heat-drying step of forming a chemical conversion treatment film on the surface of the Zn-based plated steel sheet.

本発明の一態様によれば、加工を施した部分に耐食性の劣化が生じにくいとともに、平坦部においても耐食性に優れる化成処理鋼板およびその製造方法を提供することができる。 According to one aspect of the present invention, it is possible to provide a chemical conversion-treated steel sheet having excellent corrosion resistance even in a flat portion and a method for producing the same, in which deterioration of corrosion resistance does not easily occur in the processed portion.

本発明の実施形態1における化成処理鋼板を模式的に示す断面図である。It is sectional drawing which shows typically the chemical conversion treatment steel sheet in Embodiment 1 of this invention. 本発明の実施形態1における化成処理鋼板が有する化成処理皮膜の構造について説明するための模式図である。It is a schematic diagram for demonstrating the structure of the chemical conversion treatment film which the chemical conversion treatment steel sheet has in Embodiment 1 of this invention. 本発明の実施形態1における化成処理鋼板が有する化成処理皮膜に含まれる異種構造部の具体例について説明するための模式図である。It is a schematic diagram for demonstrating the specific example of the dissimilar structure part contained in the chemical conversion treatment film which the chemical conversion treatment steel sheet has in Embodiment 1 of this invention. 本発明の実施形態1における化成処理鋼板が有する化成処理皮膜についてXPSスペクトルを測定した結果および測定結果に基づいて原子比率を算出した結果を示す表である。It is a table which shows the result of having measured the XPS spectrum about the chemical conversion-treated film which the chemical conversion-treated steel sheet has in Embodiment 1 of this invention, and the result of having calculated the atomic ratio based on the measurement result. 本発明の実施形態1における化成処理鋼板の製造方法の一例を概略的に示すフローチャートである。It is a flowchart which shows typically an example of the manufacturing method of the chemical conversion-treated steel sheet in Embodiment 1 of this invention. 本発明の実施形態2における化成処理鋼板を模式的に示す断面図である。It is sectional drawing which shows typically the chemical conversion treatment steel sheet in Embodiment 2 of this invention. 本発明の実施形態2における化成処理鋼板が有する化成処理皮膜の電子顕微鏡画像の一例を示す図である。It is a figure which shows an example of the electron microscope image of the chemical conversion treatment film which the chemical conversion treatment steel sheet has in Embodiment 2 of this invention.

〔実施形態1〕
以下、本発明の実施の形態について説明する。なお、以下の記載は発明の趣旨をよりよく理解させるためのものであり、特に指定のない限り、本発明を限定するものでは無い。また、本明細書において、「A〜B」とは、A以上B以下であることを示している。
[Embodiment 1]
Hereinafter, embodiments of the present invention will be described. The following description is intended to better understand the gist of the invention, and does not limit the present invention unless otherwise specified. Further, in the present specification, "A to B" indicates that it is A or more and B or less.

<発明の知見の概略的な説明>
始めに、本発明者らの見出した知見の概要について説明すれば以下のとおりである。
<Summary explanation of findings of the invention>
First, the outline of the findings found by the present inventors is as follows.

4族金属オキソ酸塩は無機高分子化し易く、4族金属オキソ酸塩を含む化成処理液を用いることにより、4族金属の化合物による緻密な3次元構造の化成処理皮膜を形成することができる。そのため、一般に、4族金属オキソ酸塩は、化成処理の原料として多用されている。 The group 4 metal oxoate is easily polymerized as an inorganic polymer, and by using a chemical conversion treatment solution containing the group 4 metal oxoate, a chemical conversion treatment film having a dense three-dimensional structure can be formed by the compound of the group 4 metal. .. Therefore, in general, Group 4 metal oxoacid salts are often used as raw materials for chemical conversion treatment.

しかし、一般に、4族金属オキソ酸塩から形成した化成処理皮膜はガラス質であり非常に硬質であるため、必然的に、当該化成処理皮膜を有する化成処理鋼板に例えば曲げ加工を施した場合には曲げ加工部にクラックが発生し易い。 However, in general, a chemical conversion-treated film formed from a Group 4 metal oxoate is vitreous and extremely hard. Therefore, inevitably, when a chemical conversion-treated steel sheet having the chemical conversion-treated film is bent, for example. Is prone to cracks in the bent portion.

本発明者らは、曲げ加工を施した場合におけるクラックの発生が効果的に抑制された化成処理鋼板を実現すべく鋭意検討し、その結果、以下のような知見を得て本願発明を想到した。 The present inventors have diligently studied to realize a chemical conversion-treated steel sheet in which the occurrence of cracks in the case of bending is effectively suppressed, and as a result, the following findings have been obtained and the present invention has been conceived. ..

先ず、4族金属オキソ酸塩を含む化成処理液を用いて化成処理鋼板を製造する場合、概略的には、以下のような反応が生じると考えられる。 First, when a chemical conversion-treated steel sheet is produced using a chemical conversion-treated liquid containing a Group 4 metal oxoacid salt, it is considered that the following reactions generally occur.

すなわち、化成処理液を塗布した原板(例えばZn系めっき鋼板)上において化成処理液が乾燥するに伴って、4族金属オキソ酸塩が重合(典型的には脱水縮合)して多量体化する。これにより、4族金属と酸素との結合を有するガラス質のポリマー(アモルファスポリマー)が形成され、このポリマーは、化成処理皮膜におけるマトリックスを形成する。 That is, as the chemical conversion treatment liquid dries on the original plate (for example, Zn-based plated steel plate) coated with the chemical conversion treatment liquid, the group 4 metal oxoacids are polymerized (typically dehydrated and condensed) to be multimerized. .. As a result, a vitreous polymer (amorphous polymer) having a bond between the Group 4 metal and oxygen is formed, and this polymer forms a matrix in the chemical conversion treatment film.

例えば、一般に、4族金属オキソ酸塩と、リン酸塩とを含む化成処理液を用いて化成処理皮膜を作製する場合、それらの成分が協働して緻密な化成処理皮膜を形成することが知られている。この場合、上記ポリマー中において、4族金属のオキソ酸とリン酸とが複合的に重合している、または、4族金属オキソ酸が主体の重合体と、リン酸が主体の重合体とが複合的に存在していると考えられる。このような内部構造が比較的均質な化成処理皮膜では、曲げ加工を施した場合におけるクラックの発生が生じ易い。 For example, in general, when a chemical conversion treatment film containing a group 4 metal oxo acid salt and a phosphate is used to prepare a chemical conversion treatment film, these components may cooperate to form a dense chemical conversion treatment film. Are known. In this case, in the above polymer, the oxo acid of the Group 4 metal and the phosphoric acid are polymerized in a complex manner, or the polymer mainly composed of the Group 4 metal oxo acid and the polymer mainly composed of phosphoric acid are present. It is considered that they exist in a complex manner. In such a chemical conversion-treated film having a relatively homogeneous internal structure, cracks are likely to occur when bending is performed.

本発明者らは、化成処理皮膜中に、硬質な連続皮膜を途切れさせる(すなわち、ポリマーの繰り返し構造を切断する)ように機能する部分構造を分散して存在させることによって、該部分構造が化成処理皮膜に生じる応力を緩和するように作用し、曲げ加工を施した場合におけるクラックの発生を抑制することができることを見出した。化成処理皮膜の形成過程において、上述のように通常は連続皮膜が形成され易いが、本願発明者らは、化成処理の成膜条件について詳細に検討を行った結果、上記のような部分構造(以下、応力緩和点と称することがある)を化成処理皮膜中に分散して好適に存在させることを可能とした。 The present inventors disperse and exist in a chemical conversion-treated film a partial structure that functions to interrupt a hard continuous film (that is, cut a repeating structure of a polymer), thereby forming the partial structure. It has been found that it acts to relieve the stress generated in the treated film and can suppress the occurrence of cracks when bending is performed. In the process of forming the chemical conversion treatment film, a continuous film is usually easily formed as described above, but as a result of detailed examination of the film formation conditions of the chemical conversion treatment, the inventors of the present application have found that the partial structure as described above ( Hereinafter, it may be referred to as a stress relaxation point), and it is possible to disperse it in the chemical conversion coating film so that it can be appropriately present.

より詳細には、4族金属オキソ酸塩と、特定のオキソ酸を含む塩(例えばリン酸塩)とを含有する化成処理液の乾燥中に生じる反応場において、4族金属オキソ酸塩の重合反応が適切な速度(状態)にて進行するように成膜条件を設定する。これにより、上記のような応力緩和点として作用する、4族金属と特定のオキソ酸とが結合した塩が、マトリックス中に分散して存在するように化成処理皮膜を製造することができる。 More specifically, the polymerization of the Group 4 metal oxoate in the reaction field generated during the drying of the chemical conversion treatment solution containing the Group 4 metal oxoacid and a salt containing a specific oxo acid (for example, a phosphate). The film formation conditions are set so that the reaction proceeds at an appropriate rate (state). This makes it possible to produce a chemical conversion-treated film so that a salt in which a Group 4 metal and a specific oxo acid are bonded, which acts as a stress relaxation point as described above, is dispersed and present in the matrix.

上記化成処理液の乾燥速度を遅くすると、4族金属オキソ酸塩の重合による緻密なマトリックスが形成され易くなり、マトリックス中に上記塩を含有させにくくなる。また、比較的低温での(緩やかな)重合反応の進行によってマトリックス中に収縮応力が蓄積され易くなり、その結果、化成処理皮膜が硬質化する。 When the drying rate of the chemical conversion treatment solution is slowed down, a dense matrix is easily formed by the polymerization of the group 4 metal oxoate, and it becomes difficult to contain the salt in the matrix. In addition, shrinkage stress is likely to be accumulated in the matrix due to the progress of the (slow) polymerization reaction at a relatively low temperature, and as a result, the chemical conversion coating is hardened.

一方、上記化成処理液の乾燥速度を速くすると、マトリックス中に上記塩が取り込まれ易くなる。但し、上記化成処理液の乾燥速度を速くするほど、上記化成処理液中において、溶解度積の小さい上記塩が沈殿(析出)し易くなる。その結果、マトリックス中に上記塩が取り込まれるよりも、化成処理皮膜中に特定のオキソ酸の重合体が生じ易くなり、この場合、加工前の平坦部の耐食性が低下し得る。そして、上記化成処理液の乾燥速度が速すぎると、マトリックス中に分散して存在する応力緩和点が減少し、この場合、曲げ加工を施した曲げ加工部にクラックが発生し易くなる。 On the other hand, if the drying rate of the chemical conversion treatment liquid is increased, the salt is easily incorporated into the matrix. However, the faster the drying rate of the chemical conversion treatment liquid, the easier it is for the salt having a small solubility product to precipitate (precipitate) in the chemical conversion treatment liquid. As a result, a polymer of a specific oxo acid is more likely to be formed in the chemical conversion coating than the salt is incorporated into the matrix, and in this case, the corrosion resistance of the flat portion before processing may be lowered. If the drying rate of the chemical conversion treatment liquid is too fast, the stress relaxation points dispersed in the matrix are reduced, and in this case, cracks are likely to occur in the bent portion that has been subjected to the bending process.

以下に、本発明の一態様における化成処理鋼板およびその製造方法について詳述する。 Hereinafter, a chemical conversion-treated steel sheet and a method for producing the same according to one aspect of the present invention will be described in detail.

<化成処理鋼板>
図1は、本発明の一態様における化成処理鋼板を模式的に示す断面図である。図1に示すように、本実施形態における化成処理鋼板1は、基材鋼板11の表面にZn系めっき層12を有するZn系めっき鋼板10と、Zn系めっき層12の表面(すなわちZn系めっき鋼板10の表面)上に形成された化成処理皮膜20と、を有する。
<Chemical conversion steel sheet>
FIG. 1 is a cross-sectional view schematically showing a chemical conversion-treated steel sheet according to one aspect of the present invention. As shown in FIG. 1, the chemical conversion-treated steel sheet 1 in the present embodiment has a Zn-based plated steel sheet 10 having a Zn-based plated layer 12 on the surface of the base steel sheet 11 and the surface of the Zn-based plated layer 12 (that is, Zn-based plating). It has a chemical conversion treatment film 20 formed on the surface of the steel plate 10).

(Zn系めっき鋼板)
本発明の一態様において、化成処理の対象となる原板(化成処理原板)は、耐食性に優れるZn系めっき鋼板10が使用される。本実施形態における「Zn系めっき鋼板」とは、基材鋼板11の表面にZn系めっき層12を有するめっき鋼板を意味する。
(Zn-based galvanized steel sheet)
In one aspect of the present invention, a Zn-based galvanized steel sheet 10 having excellent corrosion resistance is used as the original plate (chemical conversion treatment original plate) to be subjected to chemical conversion treatment. The “Zn-based plated steel sheet” in the present embodiment means a plated steel sheet having a Zn-based plated layer 12 on the surface of the base steel sheet 11.

Zn系めっき層12は、Zn系めっき層12と化成処理皮膜20との密着性を向上させるために、Znを40質量%以上含有することが好ましい。これは、Zn系めっき層12がZnを40質量%以上含有することにより、化成処理皮膜20が形成されるZn系めっき層12の表面においてZnを含有する相の割合が大きくなり、Zn系めっき層12と化成処理皮膜20との間において充分な密着性が得られるためである。 The Zn-based plating layer 12 preferably contains 40% by mass or more of Zn in order to improve the adhesion between the Zn-based plating layer 12 and the chemical conversion treatment film 20. This is because the Zn-based plating layer 12 contains 40% by mass or more of Zn, so that the proportion of the Zn-containing phase on the surface of the Zn-based plating layer 12 on which the chemical conversion coating 20 is formed increases, and the Zn-based plating This is because sufficient adhesion can be obtained between the layer 12 and the chemical conversion coating film 20.

また、Zn系めっき層12は、Al、Mg、Si、Ti、Bからなる群から選ばれる少なくとも1種を含有してもよい。本実施形態におけるZn系めっき鋼板10のZn系めっき層12は、Al含有量が0.1質量%以上55.0質量%以下であってよく、Mg含有量が0.2質量%以上10.0質量%以下であってもよい。また、Zn系めっき層12は、基材鋼板11とZn系めっき層12との密着性を向上させるために、Siを0.005質量%以上2.0質量%の範囲で含有してもよい。さらに、Zn系めっき鋼板10の外観および耐食性に悪影響を与えるZn11Mg相の生成および成長を抑制するために、Tiを0.001質量%以上0.1質量%以下の範囲内、および、Bを0.0005質量%以上0.045質量%以下の範囲内で含有することが好ましい。 Further, the Zn-based plating layer 12 may contain at least one selected from the group consisting of Al, Mg, Si, Ti and B. The Zn-based plating layer 12 of the Zn-based plated steel sheet 10 in the present embodiment may have an Al content of 0.1% by mass or more and 55.0% by mass or less, and a Mg content of 0.2% by mass or more and 10. It may be 0% by mass or less. Further, the Zn-based plating layer 12 may contain Si in the range of 0.005% by mass or more and 2.0% by mass in order to improve the adhesion between the base steel plate 11 and the Zn-based plating layer 12. .. Further, in order to suppress the formation and growth of Zn 11 Mg 2- phase, which adversely affects the appearance and corrosion resistance of the Zn-based galvanized steel sheet 10, Ti is contained in the range of 0.001% by mass or more and 0.1% by mass or less, and It is preferable that B is contained in the range of 0.0005% by mass or more and 0.045% by mass or less.

Zn系めっき鋼板10は、溶融めっき法、電気めっき法等の一般的な製造条件にて製造されてよい。Zn系めっき鋼板10の基材鋼板11の種類は、特に限定されず、例えば、普通鋼、低合金鋼、ステンレス鋼、等を用いることができる。 The Zn-based plated steel sheet 10 may be manufactured under general manufacturing conditions such as a hot-dip galvanizing method and an electroplating method. The type of the base steel sheet 11 of the Zn-based plated steel sheet 10 is not particularly limited, and for example, ordinary steel, low alloy steel, stainless steel, and the like can be used.

(化成処理皮膜)
化成処理皮膜20は、Zn系めっき鋼板10の耐食性を向上させるための膜である。本明細書における「耐食性」とは、平坦部耐食性および加工部耐食性の両方を含む。「加工部耐食性」とは、化成処理鋼板1における、化成処理鋼板1を変形させる加工(例えば、曲げ加工)を施した部分(加工部)の耐食性であって、本願明細書では、特に180°曲げ加工のような厳しい曲げ加工を施した場合における加工部の耐食性である。「平坦部耐食性」とは、化成処理鋼板1における、上記加工部以外の部分の耐食性である。
(Chemical conversion coating)
The chemical conversion treatment film 20 is a film for improving the corrosion resistance of the Zn-based plated steel sheet 10. As used herein, the term "corrosion resistance" includes both flat portion corrosion resistance and processed portion corrosion resistance. The “processed portion corrosion resistance” is the corrosion resistance of the portion (processed portion) of the chemical conversion-treated steel sheet 1 that has been subjected to processing (for example, bending) to deform the chemical conversion-treated steel sheet 1, and is particularly 180 ° in the present specification. Corrosion resistance of the processed part when severe bending such as bending is applied. “Flat portion corrosion resistance” is the corrosion resistance of a portion of the chemical conversion-treated steel sheet 1 other than the processed portion.

本実施形態の化成処理皮膜20は、(i)化成処理液とZn系めっき鋼板10の表面との反応により形成された、Zn系めっき鋼板10の表面に位置する反応層(第1化成処理層)21と、(ii)該反応層21の上層に形成された、4族金属オキソ酸の重合体であるポリマーを主体とする化成処理層(第2化成処理層)22と、を有する。ここで、曲げ加工処理された場合におけるクラックの生じ易さは、主に化成処理層22の性質に関係する。また、本実施形態における化成処理皮膜20は非常に薄い膜(例えば厚さが1μm以下)であるとともに、反応層21は、厚さが更に薄く化成処理皮膜20に占める体積割合が小さい。そのため、以下では、説明の平明化のために、反応層21と化成処理層22とを区別することなく化成処理皮膜20について説明するが、以下に説明することは主に化成処理層22に関連する。 The chemical conversion treatment film 20 of the present embodiment is a reaction layer (first chemical conversion treatment layer) located on the surface of the Zn-based plated steel plate 10 formed by the reaction of (i) the chemical conversion treatment liquid and the surface of the Zn-based plated steel plate 10. ) 21 and (ii) a chemical conversion treatment layer (second chemical conversion treatment layer) 22 mainly composed of a polymer which is a polymer of a group 4 metal oxo acid formed on the upper layer of the reaction layer 21. Here, the susceptibility to cracks in the case of bending processing is mainly related to the properties of the chemical conversion treatment layer 22. Further, the chemical conversion-treated film 20 in the present embodiment is a very thin film (for example, a thickness of 1 μm or less), and the reaction layer 21 is even thinner and has a small volume ratio to the chemical conversion-treated film 20. Therefore, in the following, for the sake of clarity of explanation, the chemical conversion treatment film 20 will be described without distinguishing between the reaction layer 21 and the chemical conversion treatment layer 22, but the following description is mainly related to the chemical conversion treatment layer 22. To do.

本実施形態の化成処理皮膜20について、該化成処理皮膜20を形成するために用いられる化成処理液の成分と併せて以下に説明する。 The chemical conversion treatment film 20 of the present embodiment will be described below together with the components of the chemical conversion treatment liquid used for forming the chemical conversion treatment film 20.

本実施形態における化成処理皮膜20は、(i)少なくとも1種の4族金属オキソ酸塩および(ii)特定のオキソ酸を含む塩の両方を少なくとも含む化成処理液を、Zn系めっき鋼板10に塗布して該化成処理液を乾燥させることにより、Zn系めっき鋼板10の表面に形成される。 In the chemical conversion treatment film 20 of the present embodiment, a chemical conversion treatment liquid containing at least both (i) at least one group 4 metal oxo acid salt and (ii) a salt containing a specific oxo acid is applied to the Zn-based galvanized steel sheet 10. By applying and drying the chemical conversion treatment liquid, it is formed on the surface of the Zn-based plated steel sheet 10.

4族金属オキソ酸塩としては様々な種類が存在するが、4族金属オキソ酸塩の化合物群から選択(特定)した1種の化合物を、本願明細書では説明の便宜上、「特定4族金属オキソ酸塩」と称することがある。 There are various types of Group 4 metal oxoacids, but one type of compound selected (specified) from the compound group of Group 4 metal oxoacids is referred to in the present specification as "Specific Group 4 metal" for convenience of explanation. Sometimes referred to as "oxoacid".

本実施形態の化成処理鋼板1の製造方法では、詳しくは後述するように、化成処理液の乾燥(反応)を適切に進行させるように乾燥条件を制御している。これにより得られる化成処理皮膜20は、以下のような構造を有している。 In the method for producing the chemical conversion-treated steel sheet 1 of the present embodiment, the drying conditions are controlled so that the drying (reaction) of the chemical conversion treatment liquid proceeds appropriately, as will be described in detail later. The chemical conversion treatment film 20 thus obtained has the following structure.

図2は、本実施形態における化成処理皮膜20の構造について説明するための模式図である。図2における符号2001に示す図は、化成処理皮膜20の内部を局所的に拡大した領域20Pにおける内部構造を模式的に示している。 FIG. 2 is a schematic view for explaining the structure of the chemical conversion treatment film 20 in the present embodiment. The figure shown by reference numeral 2001 in FIG. 2 schematically shows the internal structure in the region 20P in which the inside of the chemical conversion treatment film 20 is locally enlarged.

化成処理皮膜20は、金属酸化物ポリマー25によってマトリックスが形成されている。金属酸化物ポリマー25とは、特定4族金属オキソ酸塩の重合により形成された、特定4族金属(図中M)と酸素(図中O)との結合を主骨格とする立体構造を有するガラス質な状態のポリマーである。このような金属酸化物ポリマー25は、金属オキソ酸塩の重合体(クラスター)として知られるポリオキソメタレート(ポリ酸とも呼ばれる)が更に多量体化した構造(ポリ酸類似構造)を有すると表現することができ、アモルファス状の金属酸化物であるとも表現できる。本明細書において、特定4族金属(図中M)に酸素(図中O)が結合(1つの金属元素に典型的には4つの酸素原子が結合)した構造を基本構造部(基本構造)26と称する。金属酸化物ポリマー25は、基本構造部26が多数結び付いて(多数回繰り返されて結合して)立体網目状に形成された構造を主構造としている。 The chemical conversion coating 20 has a matrix formed of the metal oxide polymer 25. The metal oxide polymer 25 has a three-dimensional structure having a bond between a specific group 4 metal (M in the figure) and oxygen (O in the figure) formed by polymerization of a specific group 4 metal oxoate. It is a polymer in a vitreous state. Such a metal oxide polymer 25 is described as having a structure (polyacid-like structure) in which polyoxometallate (also called polyacid) known as a polymer (cluster) of metal oxometalate is further multimerized. It can also be expressed as an amorphous metal oxide. In the present specification, the basic structure (basic structure) is a structure in which oxygen (O in the figure) is bonded to a specific group 4 metal (M in the figure) (typically four oxygen atoms are bonded to one metal element). It is called 26. The main structure of the metal oxide polymer 25 is a structure in which a large number of basic structural portions 26 are bonded (repeatedly repeated many times) to form a three-dimensional network.

ここで、化成処理皮膜20中にて金属酸化物ポリマー25が均質に形成されている従来の化成処理鋼板では、曲げ加工を施された場合等に、化成処理皮膜20にクラックが生じ易い。これに対し、図2における符号2002にて示す図のように、本実施形態における化成処理皮膜20は、金属酸化物ポリマー25によって形成されたマトリックスの一部として、特定4族金属Mと特定のオキソ酸とが結合した塩が、マトリックス中に分散して存在している。上記塩は、金属酸化物ポリマー25における主構造(基本構造部26をモノマーユニットとする構造)とは異なる構造を有する部分であり、本明細書において上記塩を異種構造部(第1の異種構造部)30と称する。異種構造部30は、特定4族金属Mと、特定のオキソ酸塩がイオン化したアニオン種31とが結合して形成される。異種構造部30は、金属酸化物ポリマー25の一つの末端となっており、アニオン種31は、1つの特定4族金属Mと結合している。 Here, in the conventional chemical conversion-treated steel sheet in which the metal oxide polymer 25 is uniformly formed in the chemical conversion-treated film 20, cracks are likely to occur in the chemical conversion-treated film 20 when it is bent or the like. On the other hand, as shown by the reference numeral 2002 in FIG. 2, the chemical conversion treatment film 20 in the present embodiment is designated as the specific group 4 metal M as a part of the matrix formed by the metal oxide polymer 25. The salt bound to the oxo acid is dispersed and present in the matrix. The salt is a portion having a structure different from the main structure (structure in which the basic structure portion 26 is a monomer unit) in the metal oxide polymer 25, and in the present specification, the salt is referred to as a heterologous structure portion (first heterogeneous structure). Part) 30. The heterogeneous structure portion 30 is formed by combining the specific group 4 metal M and the anion species 31 in which the specific oxoacid is ionized. The dissimilar structure portion 30 is one end of the metal oxide polymer 25, and the anion species 31 is bonded to one specific group 4 metal M.

換言すれば、金属酸化物ポリマー25は、ポリマー構造の末端に、特定のオキソ酸と特定4族金属Mとが結合した塩からなる異種構造部30を含むとともに、特定4族金属Mと酸素との結合を主骨格とする立体構造中に、異種構造部30が分散して存在している。 In other words, the metal oxide polymer 25 contains a heterogeneous structure portion 30 composed of a salt in which a specific oxo acid and a specific Group 4 metal M are bonded at the end of the polymer structure, and also contains the specific Group 4 metal M and oxygen. The heterogeneous structural parts 30 are dispersed and exist in the three-dimensional structure having the bond of the above as the main skeleton.

実際上、化成処理皮膜20中の具体的な構造について、何らかの測定手法を用いて詳細に特定することは容易では無いが、本実施形態の化成処理鋼板は、従来よりも加工部の耐食性に優れている。このことおよび後述する構造分析の結果から、異種構造部30は、マトリックス中において連続皮膜(金属酸化物ポリマー25)に不連続な部分を形成するように分散して存在していると考えられる。 In practice, it is not easy to specify the specific structure in the chemical conversion coating film 20 in detail by using some measuring method, but the chemical conversion steel sheet of the present embodiment has superior corrosion resistance in the processed portion as compared with the conventional one. ing. From this and the results of the structural analysis described later, it is considered that the heterogeneous structural portions 30 are dispersed and exist in the matrix so as to form discontinuous portions in the continuous film (metal oxide polymer 25).

これにより、マトリックス形成時の重合反応により生じる収縮応力を緩和するように異種構造部30が作用すると考えられる。また、異種構造部30が、化成処理鋼板1に加工を施した際に生じる応力を緩和する応力緩和点として作用するとともに、化成処理皮膜20に生じたクラックの進展(伝播)を妨害する作用を奏すると考えられる。 As a result, it is considered that the dissimilar structure portion 30 acts so as to relax the contraction stress generated by the polymerization reaction during matrix formation. Further, the dissimilar structure portion 30 acts as a stress relaxation point for relaxing the stress generated when the chemical conversion-treated steel sheet 1 is processed, and also acts to prevent the growth (propagation) of cracks generated in the chemical conversion-treated film 20. It is thought to play.

(基本構造部)
金属酸化物ポリマー25における基本構造部26は、化成処理液に含まれる特定4族金属オキソ酸塩に由来して形成される。特定4族金属オキソ酸塩は、緻密な化成処理皮膜を形成するための成分であり、化成処理鋼板1の耐食性を向上させる。4族金属は、特に限定されるものではなく、チタン(Ti)、ジルコニウム(Zr)、またはハフニウム(Hf)を用いることができる。
(Basic structure)
The basic structural portion 26 of the metal oxide polymer 25 is formed from the specific group 4 metal oxoacid salt contained in the chemical conversion treatment liquid. The specific group 4 metal oxoate is a component for forming a dense chemical conversion-treated film, and improves the corrosion resistance of the chemical conversion-treated steel sheet 1. The Group 4 metal is not particularly limited, and titanium (Ti), zirconium (Zr), or hafnium (Hf) can be used.

なお、本願明細書において、「オキソ酸」および「オキソ酸塩」とはIUPAC NIC1990にて定義されている意味で用いる。また、4族金属オキソ酸塩は、4族金属元素である核の周囲に複数(典型的には4、5、または6個)の酸素原子が配位した構造を有する4族金属オキソ酸イオンと、何らかのカチオン種とからなる塩である。 In addition, in this specification, "oxo acid" and "oxo acid salt" are used in the meaning defined in IUPAC NIC1990. In addition, the group 4 metal oxoate is a group 4 metal oxoacid ion having a structure in which a plurality of (typically 4, 5, or 6) oxygen atoms are coordinated around the nucleus, which is a group 4 metal element. And a salt consisting of some cation species.

本明細書において、特定4族金属Mとは、本実施形態における化成処理鋼板1の製造に用いた化成処理液中の「特定4族金属オキソ酸塩」に含まれる4族金属と同種の金属である。例えば、特定4族金属オキソ酸塩が炭酸ジルコニウムアンモニウムである場合、特定4族金属はジルコニウムである。金属酸化物ポリマー25の主構造は、例えば、単一種の特定4族金属を核種とする多核構造である(但し不可避的不純物として異種の4族金属を含むことを許容する)。なお、金属酸化物ポリマー25は、特定4族金属とは異なる金属を核種としてさらに含む、複数種の金属を核種とする多核構造であってもよく、この場合、主構造中に含まれる複数の金属種に対して80%以上(原子比率)が特定4族金属であることが好ましい。 In the present specification, the specific group 4 metal M is a metal of the same type as the group 4 metal contained in the "specific group 4 metal oxoacid" in the chemical conversion treatment liquid used for producing the chemical conversion-treated steel plate 1 in the present embodiment. Is. For example, when the specific Group 4 metal oxoacid is ammonium carbonate, the specific Group 4 metal is zirconium. The main structure of the metal oxide polymer 25 is, for example, a multi-nuclide structure having a single specific group 4 metal as a nuclide (however, it is allowed to contain a different group 4 metal as an unavoidable impurity). The metal oxide polymer 25 may have a multi-nuclide structure having a plurality of types of metals as nuclides, which further contains a metal different from the specific group 4 metal as a nuclide. In this case, a plurality of metals contained in the main structure. It is preferable that 80% or more (atomic ratio) of the metal species is a specific group 4 metal.

4族金属オキソ酸塩は、4族金属オキソ酸の、例えば、水素酸塩、アンモニウム塩、アルカリ金属塩、アルカリ土類金属塩などであり、特に、耐食性の観点から4族金属オキソ酸のアンモニウム塩であることが好ましく、炭酸ジルコニウムアンモニウムが特に好ましい。特定4族金属オキソ酸塩は、Zrオキソ酸塩であることが好ましい。すなわち、特定4族金属はZrであることが好ましい。 Group 4 metal oxoacids are group 4 metal oxoacids such as hydrides, ammonium salts, alkali metal salts, alkaline earth metal salts, etc., and in particular, ammonium group 4 metal oxoacids from the viewpoint of corrosion resistance. It is preferably a salt, and ammonium zirconium carbonate is particularly preferable. The specific group 4 metal oxo acid salt is preferably Zr oxo acid salt. That is, the specific group 4 metal is preferably Zr.

Zrオキソ酸塩を含有する化成処理液を用いる場合、基本構造部26は、Zr−Oの結合を有する。基本構造部26においては、例えば2つのZrの間に、2つのOが並列に配置されてZr−O結合を形成していてもよい。 When a chemical conversion treatment solution containing Zroxoate is used, the basic structural part 26 has a Zr—O bond. In the basic structure unit 26, for example, two O's may be arranged in parallel between the two Zr's to form a Zr-O bond.

(異種構造部)
金属酸化物ポリマー25における異種構造部30は、化成処理液に含まれる特定のオキソ酸を含む塩に由来するアニオン種31と、特定4族金属Mとが結合した塩として形成される。異種構造部30は、金属酸化物ポリマー25の立体構造における1つの末端基を形成しており、アニオン種31は、特定4族金属Mとのみ結合している。
(Heterogeneous structure part)
The heterogeneous structure portion 30 in the metal oxide polymer 25 is formed as a salt in which a specific group 4 metal M and an anion species 31 derived from a salt containing a specific oxo acid contained in the chemical conversion treatment liquid are bonded. The dissimilar structure portion 30 forms one terminal group in the three-dimensional structure of the metal oxide polymer 25, and the anion species 31 is bonded only to the specific group 4 metal M.

本実施形態におけるアニオン種31は特定のオキソ酸であり、本明細書において、「特定のオキソ酸」とは、本実施形態の化成処理鋼板1の製造に用いた化成処理液中の「特定のオキソ酸を含む塩」における対アニオン(カウンターアニオンとも呼ばれる)と同種の物質である。例えば、特定のオキソ酸を含む塩がリン酸水素二アンモニウムである場合、特定のオキソ酸はリン酸である。この場合、より詳細には、異種構造部30は、例えば特定4族金属Mのリン酸二水素塩であってよく、リン酸一水素塩であってもよい。 The anion species 31 in the present embodiment is a specific oxo acid, and in the present specification, the “specific oxo acid” is a “specific oxo acid” in the chemical conversion treatment liquid used for producing the chemical conversion-treated steel sheet 1 of the present embodiment. It is a substance similar to the counter anion (also called counter anion) in "salt containing oxo acid". For example, if the salt containing the particular oxoacid is diammonium hydrogen phosphate, the particular oxoacid is phosphoric acid. In this case, more specifically, the dissimilar structure portion 30 may be, for example, a dihydrogen phosphate of the specific Group 4 metal M, or a monohydrogen phosphate.

化成処理液に含まれる特定のオキソ酸を含む塩は、少なくとも、当該化成処理液に含まれる特定4族金属オキソ酸塩とは異なる種類の塩である。換言すれば、異種構造部30を形成するアニオン種31としての特定のオキソ酸は、少なくとも、化成処理液に含まれる特定4族金属オキソ酸塩を構成する特定4族金属オキソ酸に含まれるオキソ酸とは異なる種類のものである。 The salt containing a specific oxoacid contained in the chemical conversion treatment liquid is at least a salt of a type different from the specific group 4 metal oxo acid salt contained in the chemical conversion treatment liquid. In other words, the specific oxo acid as the anion species 31 forming the heterologous structure portion 30 is at least the oxo contained in the specific group 4 metal oxo acid constituting the specific group 4 metal oxo acidate contained in the chemical conversion treatment liquid. It is a different kind of acid.

特定のオキソ酸を含む塩は、例えば、リン酸塩、5族金属オキソ酸塩、6族金属オキソ酸塩(但しCrオキソ酸塩を除く)である。これらの塩は、いずれも無機高分子を形成しやすい成分であるため、特定4族金属オキソ酸塩と重合してマトリックスを形成し易いと考えられる。 The salt containing a specific oxo acid is, for example, a phosphate, a group 5 metal oxo acid salt, or a group 6 metal oxo acid salt (excluding Cr oxo acid salt). Since all of these salts are components that easily form an inorganic polymer, it is considered that they are likely to polymerize with a specific group 4 metal oxoate to form a matrix.

リン酸塩の種類は特に限定されるものではなく、無機リン酸塩または有機リン酸塩を用いることができる。無機リン酸塩の具体例としては、リン酸アルカリ金属塩(例えば、二リン酸ナトリウム、二リン酸カリウム、トリポリリン酸ナトリウム)、リン酸アルカリ土類金属塩(二リン酸カルシウムなど)、リン酸アンモニウム(例えば、リン酸水素二アンモニウム、リン酸二水素アンモニウム、リン酸三アンモニウムなど)などが挙げられる。有機リン酸塩の具体例としては、1−ヒドロキシエタン−1,1−ジホスホン酸、ニトリロトリス(メチレン−ホスホン酸)などが挙げられる。 The type of phosphate is not particularly limited, and inorganic phosphate or organic phosphate can be used. Specific examples of the inorganic phosphate include alkali metal phosphates (eg, sodium diphosphate, potassium diphosphate, sodium tripolyphosphate), alkaline earth metal phosphates (calcium diphosphate, etc.), ammonium phosphate (eg, calcium diphosphate). For example, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, triammonium phosphate, etc.) and the like. Specific examples of the organic phosphate include 1-hydroxyethane-1,1-diphosphonic acid, nitrilotris (methylene-phosphonic acid) and the like.

5族金属オキソ酸塩は、例えば、5族金属オキソ酸の、塩素酸塩、水素酸塩、硫酸塩、硝酸塩、リン酸塩、アンモニウム塩、アルカリ金属塩、アルカリ土類金属塩、などであり、特に、耐食性の観点から5族金属オキソ酸のアンモニウム塩であることが好ましい。5族金属は、特に限定されるものではなく、V、Nb、またはTaを用いることができる。5族金属がVの場合、5族金属オキソ酸塩は、耐食性の観点から、バナジン酸塩が好ましい。 The group 5 metal oxo acid salt is, for example, a chlorate, hydride, sulfate, nitrate, phosphate, ammonium salt, alkali metal salt, alkaline earth metal salt, etc. of the group 5 metal oxo acid. In particular, from the viewpoint of corrosion resistance, an ammonium salt of a group 5 metal oxoacid is preferable. The Group 5 metal is not particularly limited, and V, Nb, or Ta can be used. When the Group 5 metal is V, the Group 5 metal oxoacid salt is preferably vanadate from the viewpoint of corrosion resistance.

6族金属オキソ酸塩は、例えば、6族金属オキソ酸の、塩素酸塩、水素酸塩、硫酸塩、硝酸塩、リン酸塩、アンモニウム塩、アルカリ金属塩、アルカリ土類金属塩、などであり、特に、耐食性の観点から6族金属オキソ酸のアンモニウム塩であることが好ましい。6族金属は、MoまたはWを用いることができる。なお、本願発明の対象とする化成処理は、クロムフリー処理であることから、6族金属としてはCrを除外する。 The group 6 metal oxo acid salt is, for example, a chlorate, hydride, sulfate, nitrate, phosphate, ammonium salt, alkali metal salt, alkaline earth metal salt, etc. of the group 6 metal oxo acid. In particular, from the viewpoint of corrosion resistance, an ammonium salt of a Group 6 metal oxoacid is preferable. As the Group 6 metal, Mo or W can be used. Since the chemical conversion treatment that is the subject of the present invention is a chromium-free treatment, Cr is excluded from the Group 6 metal.

図3は、異種構造部30の具体例について説明するための図である。図3における符号3001にて示す図のように、一例では、異種構造部30は、特定4族金属Mとリン酸イオン31Aとが結合した塩である。別の例では、図3における符号3002にて示す図のように、異種構造部30は、特定4族金属Mと硫酸イオン31Bとが結合した塩である。さらに別の例では、図3における符号3003にて示す図のように、異種構造部30は、特定4族金属Mと硝酸イオン31Cとが結合した塩である。 FIG. 3 is a diagram for explaining a specific example of the heterogeneous structure portion 30. As shown by reference numeral 3001 in FIG. 3, in one example, the heterogeneous structure portion 30 is a salt in which the specific group 4 metal M and the phosphate ion 31A are bonded. In another example, as shown by the reference numeral 3002 in FIG. 3, the heterogeneous structure portion 30 is a salt in which the specific group 4 metal M and the sulfate ion 31B are bonded. In yet another example, as shown by reference numeral 3003 in FIG. 3, the heterogeneous structure portion 30 is a salt in which the specific group 4 metal M and the nitrate ion 31C are bonded.

さらには、図3における符号3004にて示す図のように、異種構造部30は、特定4族金属Mと、特定4族金属M以外の金属(例えばZn)のリン酸化合物イオン31Dとが結合した塩であってもよい。すなわち、化成処理皮膜20は、マトリックス中に、さらに、特定4族金属M以外の金属のリン酸塩(例えばZnのリン酸塩)を含有していてもよい。この場合、通常、化成処理皮膜20は、化成処理液に含まれるリン酸イオンに由来して、異種構造部30として特定4族金属Mのリン酸塩も含む。 Further, as shown by the reference numeral 3004 in FIG. 3, in the dissimilar structure portion 30, the specific group 4 metal M and the phosphoric acid compound ion 31D of a metal (for example, Zn) other than the specific group 4 metal M are bonded. It may be salted salt. That is, the chemical conversion-treated film 20 may further contain a phosphate of a metal other than the specific group 4 metal M (for example, a phosphate of Zn) in the matrix. In this case, usually, the chemical conversion treatment film 20 is derived from the phosphate ion contained in the chemical conversion treatment liquid, and also contains a phosphate of the specific group 4 metal M as a heterogeneous structure portion 30.

また、図示は省略するが、アニオン種31は、5族金属オキソ酸および6族金属オキソ酸(但しCrオキソ酸を除く)の少なくとも一方であってもよい。この場合、特定4族金属Mと、5族金属オキソ酸(例えばモリブデン酸)または6族金属オキソ酸(例えばバナジン酸)と、が互いに結合して異種構造部30が形成される。 Although not shown, the anion species 31 may be at least one of a group 5 metal oxo acid and a group 6 metal oxo acid (excluding Cr oxo acid). In this case, the specific group 4 metal M and the group 5 metal oxo acid (for example, molybdic acid) or the group 6 metal oxo acid (for example, vanadic acid) are bonded to each other to form the heterogeneous structural portion 30.

化成処理皮膜20中における異種構造部30の存在量が少ない場合、化成処理皮膜20が硬質となり、加工部耐食性が低下する。一方、化成処理皮膜20中の異種構造部30の存在量が多くなり過ぎると腐食因子のバリア性が低下し、化成処理鋼板1の平坦部耐食性が低下する。 When the abundance of the dissimilar structure portion 30 in the chemical conversion treatment film 20 is small, the chemical conversion treatment film 20 becomes hard and the corrosion resistance of the processed portion is lowered. On the other hand, if the abundance of the dissimilar structure portion 30 in the chemical conversion treatment film 20 becomes too large, the barrier property of the corrosion factor is lowered, and the corrosion resistance of the flat portion of the chemical conversion treatment steel sheet 1 is lowered.

そのため、化成処理皮膜20中に含まれる4族金属の中で、基本構造部26を形成している4族金属の原子比率をX、アニオン種31と結合して異種構造部30を形成している4族金属の原子比率をYとして、Y/(X+Y)=αとすると、αの値は0.1以上0.6以下が適正である。αの値が0.1未満では、化成処理皮膜20が硬くなりすぎ、加工部の耐食性が低下する傾向にある。一方、αの値が0.6を超えると、化成処理皮膜20が連続皮膜を形成しにくくなり、平坦部耐食性が低下する傾向となる。 Therefore, among the Group 4 metals contained in the chemical conversion coating film 20, the atomic ratio of the Group 4 metal forming the basic structure portion 26 is combined with X and the anion species 31 to form the heterogeneous structure portion 30. Assuming that the atomic ratio of the Group 4 metal is Y and Y / (X + Y) = α, the appropriate value of α is 0.1 or more and 0.6 or less. If the value of α is less than 0.1, the chemical conversion coating film 20 tends to be too hard and the corrosion resistance of the processed portion tends to decrease. On the other hand, when the value of α exceeds 0.6, it becomes difficult for the chemical conversion coating film 20 to form a continuous film, and the corrosion resistance of the flat portion tends to decrease.

上記のような原子比率の測定には、一般的な手法を用いてよい。例えば、化成処理皮膜20に対して光電子分光分析装置を用いてXPSスペクトルを測定した結果を用いて、上記X,Yを算出することができる。XPSスペクトルは、X線を照射された物体表面における表面近傍(典型的には深さ数nm)の各元素の状態に関する情報を示す。XPSスペクトルを測定する前には、測定対象とする試料に前処理を施して、清浄な試料表面とする。 A general method may be used for measuring the atomic ratio as described above. For example, the above X and Y can be calculated using the result of measuring the XPS spectrum of the chemical conversion-treated film 20 using a photoelectron spectroscopic analyzer. The XPS spectrum shows information about the state of each element near the surface (typically several nm in depth) on the surface of an object irradiated with X-rays. Before measuring the XPS spectrum, the sample to be measured is pretreated to obtain a clean sample surface.

一例として、特定4族金属がZrであり、異種構造部30としてZrのリン酸塩およびZrの硫酸塩を含む化成処理皮膜20についてXPSスペクトルを測定した結果および測定結果に基づいて原子比率を算出した結果を図4に示す。 As an example, the specific group 4 metal is Zr, and the atomic ratio is calculated based on the results of measuring the XPS spectrum and the measurement results of the chemical conversion-treated film 20 containing Zr phosphate and Zr sulfate as the heterogeneous structural part 30. The results are shown in FIG.

図4に示すように、例えば、測定したXPSスペクトルにおけるZrの3d3/2スペクトルについて、各結合に対応するピーク位置(結合エネルギー)に基づいてピーク分離を行う。そして、分離した各ピークの面積(ピーク面積)に基づいて、上記原子比率Xおよび原子比率Yを算出する。この例では、αの値は0.67となっている。 As shown in FIG. 4, for example, for the 3d3 / 2 spectrum of Zr in the measured XPS spectrum, peak separation is performed based on the peak position (binding energy) corresponding to each bond. Then, the atomic ratio X and the atomic ratio Y are calculated based on the area (peak area) of each separated peak. In this example, the value of α is 0.67.

(第2の異種構造部)
本実施形態における化成処理皮膜20は、上記のような異種構造部30が存在するとともに、特定4族金属オキソ酸塩と、5族金属オキソ酸塩または6族金属オキソ酸塩とが重合することにより、金属酸化物ポリマー25の一部として、5族金属または6族金属を含んでいてもよい。換言すれば、5族金属または6族金属が、金属酸化物ポリマー25に含まれる特定4族金属Mの一部を置換して、金属酸化物ポリマー25中に存在してもよい。この場合、金属酸化物ポリマー25中に、基本構造部26とは大きさの異なる5族金属または6族金属のモノマーユニットが存在し、本明細書において該モノマーユニットを第2の異種構造部と称する。
(Second heterogeneous structure part)
The chemical conversion-treated film 20 in the present embodiment has the above-mentioned heterogeneous structural portion 30, and the specific group 4 metal oxoate and the group 5 metal oxoate or the group 6 metal oxoate are polymerized. Therefore, a Group 5 metal or a Group 6 metal may be contained as a part of the metal oxide polymer 25. In other words, the group 5 or group 6 metal may be present in the metal oxide polymer 25 by substituting a part of the specific group 4 metal M contained in the metal oxide polymer 25. In this case, the metal oxide polymer 25 contains a monomer unit of a group 5 metal or a group 6 metal having a size different from that of the basic structural portion 26, and the monomer unit is referred to as a second heterogeneous structural portion in the present specification. Refer to.

化成処理皮膜20は、例えば、異種構造部30として特定4族金属Mのリン酸塩を含むとともに、マトリックス中に、より詳しくは主構造中に、5族金属オキソ酸および6族金属オキソ酸(但しCrオキソ酸を除く)の少なくとも一方をさらに含んでいてもよい。第2の異種構造部である、主構造中の5族金属オキソ酸または6族金属オキソ酸は、応力緩和点として機能し得る。そのため、第2の異種構造部を含有する化成処理鋼板1は、加工部耐食性に優れる。 The chemical conversion coating 20 contains, for example, a phosphate of a specific Group 4 metal M as a heterologous structure portion 30, and in the matrix, more specifically in the main structure, a Group 5 metal oxo acid and a Group 6 metal oxo acid ( However, at least one of (excluding Cr oxo acid) may be further contained. The second heterogeneous structural part, the Group 5 metal oxoacid or the Group 6 metal oxoacid in the main structure, can function as stress relaxation points. Therefore, the chemical conversion-treated steel sheet 1 containing the second dissimilar structure portion is excellent in corrosion resistance of the processed portion.

(1族金属)
また、化成処理鋼板1の製造に用いられる化成処理液は1族金属を含んでいてもよく、この場合、化成処理皮膜20は1族金属を含む。1族金属は、1族金属のリン酸化合物、またはその他の化合物(例えば、水酸化物)として化成処理液に添加されてもよい。
(Group 1 metal)
Further, the chemical conversion treatment liquid used for producing the chemical conversion-treated steel sheet 1 may contain a Group 1 metal, and in this case, the chemical conversion-treated film 20 contains a Group 1 metal. The Group 1 metal may be added to the chemical conversion treatment liquid as a phosphoric acid compound of the Group 1 metal or another compound (for example, a hydroxide).

化成処理皮膜20中に1族金属を含有することにより、化成処理皮膜20中の水酸基が増加する。これにより、化成処理皮膜20とZn系めっき鋼板10との間に結合が生じやすくなる。その結果、化成処理皮膜20とZn系めっき鋼板10との密着性を向上させることができる。また、化成処理皮膜20中の水酸基が増加すると、化成処理液を乾燥させる際に、化成処理皮膜20中から水分が除去されることを抑制される。これにより、化成処理皮膜20を形成するときに、化成処理皮膜にクラックが発生することを抑制することができる。その結果、製造される化成処理鋼板1の耐食性を向上させることができる。 By containing the Group 1 metal in the chemical conversion treatment film 20, the number of hydroxyl groups in the chemical conversion treatment film 20 increases. As a result, a bond is likely to occur between the chemical conversion coating 20 and the Zn-based plated steel sheet 10. As a result, the adhesion between the chemical conversion coating 20 and the Zn-based plated steel sheet 10 can be improved. Further, when the number of hydroxyl groups in the chemical conversion treatment film 20 increases, it is suppressed that water is removed from the chemical conversion treatment film 20 when the chemical conversion treatment liquid is dried. As a result, it is possible to prevent cracks from being generated in the chemical conversion coating film when the chemical conversion coating film 20 is formed. As a result, the corrosion resistance of the manufactured chemical conversion-treated steel sheet 1 can be improved.

また、1族金属は、化成処理液の長期保存性(処理液安定性)を向上させる機能を有する。これは、1族金属が化成処理液中に含まれることによって化成処理液中の水酸基の量が多くなることにより、4族金属およびリンが結合することを抑制できるためである。すなわち、1族金属を化成処理液に含めることにより、化成処理液がゲル状になることを抑制する、すなわち、化成処理液の長期保管性を向上させることができる。 Group 1 metals also have the function of improving the long-term storage stability (treatment liquid stability) of the chemical conversion treatment liquid. This is because the inclusion of the Group 1 metal in the chemical conversion treatment liquid increases the amount of hydroxyl groups in the chemical conversion treatment liquid, so that the binding of the Group 4 metal and phosphorus can be suppressed. That is, by including the Group 1 metal in the chemical conversion treatment liquid, it is possible to suppress the chemical conversion treatment liquid from becoming a gel, that is, to improve the long-term storage property of the chemical conversion treatment liquid.

(その他の物質)
なお、化成処理鋼板1は、化成処理皮膜20とZn系めっき鋼板10との密着性を低下させず、本実施形態における化成処理鋼板1の効果を妨げない程度の量であれば、加工時の潤滑性を付与するために化成処理皮膜20中にワックスまたは有機樹脂を含んでいてもよい。
(Other substances)
The amount of the chemical conversion-treated steel sheet 1 at the time of processing is such that the adhesion between the chemical conversion-treated film 20 and the Zn-based plated steel sheet 10 is not deteriorated and the effect of the chemical conversion-treated steel sheet 1 in the present embodiment is not hindered. A wax or an organic resin may be contained in the chemical conversion coating film 20 in order to impart lubricity.

(モル比について)
本実施形態の化成処理鋼板1の製造に用いられる化成処理液に含有される、特定4族金属オキソ酸塩等のモル比について説明すれば、以下のとおりである。
(About molar ratio)
The molar ratio of the specific group 4 metal oxoacid salt and the like contained in the chemical conversion treatment liquid used for producing the chemical conversion treatment steel sheet 1 of the present embodiment will be described as follows.

例えば、化成処理液に、特定のオキソ酸を含む塩としてリン酸塩を含むとともに1族金属を含む場合、化成処理液は、4族金属に対するリンのモル比が0.5〜4であり、4族金属に対する1族金属のモル比が0.02〜0.8であり、かつ、リンに対する1族金属のモル比が0.01以上であることが好ましい。 For example, when the chemical conversion treatment liquid contains a phosphate as a salt containing a specific oxo acid and also contains a group 1 metal, the chemical conversion treatment liquid has a molar ratio of phosphorus to the group 4 metal of 0.5 to 4. It is preferable that the molar ratio of the Group 1 metal to the Group 4 metal is 0.02 to 0.8, and the molar ratio of the Group 1 metal to phosphorus is 0.01 or more.

化成処理液中の、4族金属に対するリンのモル比が0.5よりも小さい場合、および、4族金属に対するリンのモル比が4よりも大きい場合、化成処理皮膜が塩化物イオンなどの腐食因子を透過させやすい膜となるため、化成処理鋼板の耐食性が低下してしまう。 When the molar ratio of phosphorus to Group 4 metal in the chemical conversion treatment liquid is less than 0.5, and when the molar ratio of phosphorus to Group 4 metal is larger than 4, the chemical conversion treatment film is corroded by chloride ions and the like. Since the film is easy to permeate the factors, the corrosion resistance of the chemical conversion-treated steel sheet is lowered.

化成処理液中の、4族金属またはリンに対する1族金属のモル比が上記の値よりも小さい場合、形成した化成処理皮膜において、1族金属に由来する水酸基の数が十分ではなくなる。そのため、4族金属およびリンを主成分とする化成処理皮膜と、Zn系めっき鋼板との間に結合が少なくなる。その結果、化成処理皮膜とZn系めっき鋼板との密着性が十分ではなくなる。 When the molar ratio of the Group 1 metal to the Group 4 metal or phosphorus in the chemical conversion treatment liquid is smaller than the above value, the number of hydroxyl groups derived from the Group 1 metal becomes insufficient in the formed chemical conversion treatment film. Therefore, the number of bonds between the chemical conversion-treated film containing Group 4 metal and phosphorus as main components and the Zn-based plated steel sheet is reduced. As a result, the adhesion between the chemical conversion coating and the Zn-based plated steel sheet becomes insufficient.

化成処理液中の、4族金属に対する1族金属のモル比が0.8よりも大きい場合、化成処理皮膜が腐食因子により分解されやすくなるため、化成処理鋼板の耐食性が低下してしまう。 When the molar ratio of the Group 1 metal to the Group 4 metal in the chemical conversion treatment liquid is larger than 0.8, the chemical conversion treatment film is easily decomposed by the corrosion factor, so that the corrosion resistance of the chemical conversion treatment steel sheet is lowered.

また、化成処理液の長期保管性の観点からは、4族金属に対する1族金属のモル比が0.5以上であり、かつ、リンに対する1族金属のモル比が0.18以上であることが好ましい。 From the viewpoint of long-term storage of the chemical conversion treatment liquid, the molar ratio of the Group 1 metal to the Group 4 metal is 0.5 or more, and the molar ratio of the Group 1 metal to phosphorus is 0.18 or more. Is preferable.

本実施形態の化成処理液は、例えば、4族金属の濃度が5〜35g/L、リンの濃度が0.8〜60g/L、1族金属の濃度が0.2g/L以上である。また、本実施形態の化成処理液は、上述の物質以外に、アミン、シランカップリング剤などを含んでいてもよい。アミンは、Vの価数を5価に維持した状態で、バナジウムを含む塩を化成処理液中に溶解させるとともに、モリブデン酸塩から5価または6価のMoの複合オキソ酸塩を形成させる。アミンは、分子量が80以下の低沸点アミンであることが好ましい。アミンとして、例えば、エタノールアミン、1−アミノ−2−プロパノール、エチレンジアミンなどを用いることができる。 The chemical conversion treatment liquid of the present embodiment has, for example, a group 4 metal concentration of 5 to 35 g / L, a phosphorus concentration of 0.8 to 60 g / L, and a group 1 metal concentration of 0.2 g / L or more. Further, the chemical conversion treatment liquid of the present embodiment may contain an amine, a silane coupling agent, or the like in addition to the above-mentioned substances. The amine dissolves a salt containing vanadium in a chemical conversion treatment solution while maintaining the valence of V at a pentavalent value, and forms a pentavalent or hexavalent Mo composite oxoacidate from the molybdate. The amine is preferably a low boiling point amine having a molecular weight of 80 or less. As the amine, for example, ethanolamine, 1-amino-2-propanol, ethylenediamine and the like can be used.

化成処理液中の4族金属の濃度が35g/Lよりも高い場合、上記化成処理液を保存している間に、4族金属同士が結合し上記化成処理液がゲル状化してしまう。そのため、化成処理皮膜20を良好に形成することができなくなる。すなわち、本実施形態の化成処理液は、4族金属の濃度が35g/L以下とすることにより、長期保管性が高いものとなっている。 When the concentration of the Group 4 metal in the chemical conversion treatment liquid is higher than 35 g / L, the Group 4 metals are bonded to each other while the chemical conversion treatment liquid is being stored, and the chemical conversion treatment liquid becomes a gel. Therefore, the chemical conversion treatment film 20 cannot be formed satisfactorily. That is, the chemical conversion treatment liquid of the present embodiment has high long-term storage stability by setting the concentration of the Group 4 metal to 35 g / L or less.

なお、化成処理液は、pHが7以上9以下の範囲内であることが好ましく、この場合、4族金属オキソ酸塩の重合が好適に進行する。 The pH of the chemical conversion treatment liquid is preferably in the range of 7 or more and 9 or less, and in this case, the polymerization of the group 4 metal oxo acid salt proceeds preferably.

また、本実施形態における化成処理液の組成と、その化成処理液を塗布して乾燥させて形成した化成処理皮膜20の組成と、は互いにほぼ同等であることが確認されている。 Further, it has been confirmed that the composition of the chemical conversion treatment liquid in the present embodiment and the composition of the chemical conversion treatment film 20 formed by applying and drying the chemical conversion treatment liquid are substantially the same as each other.

(硬度について)
本実施形態の化成処理鋼板1は、化成処理皮膜20の硬度が、70HV0.01以上200HV0.01以下(ビッカース硬さ)である。このビッカース硬さは、化成処理鋼板の表面について、JIS Z 2244で規定されたビッカース硬さ試験方法に準じて測定した値である。
(About hardness)
In the chemical conversion-treated steel sheet 1 of the present embodiment, the hardness of the chemical conversion-treated film 20 is 70 HV 0.01 or more and 200 HV 0.01 or less (Vickers hardness). This Vickers hardness is a value measured on the surface of the chemical conversion-treated steel sheet according to the Vickers hardness test method specified in JIS Z 2244.

(製造方法)
以下、本発明の一態様における化成処理鋼板1の製造方法(以下、単に「本製造方法」と称することがある)について、図5を用いて説明する。本製造方法の説明と併せて、化成処理液の調製についても説明する。
(Production method)
Hereinafter, a method for producing the chemical conversion-treated steel sheet 1 according to one aspect of the present invention (hereinafter, may be simply referred to as “the present production method”) will be described with reference to FIG. Along with the description of the present production method, the preparation of the chemical conversion treatment liquid will also be described.

図5に示すように、本製造方法では、概略的には、先ず、化成処理原板としてのZn系めっき鋼板10を準備する(S1:原板準備ステップ)。次いで、Zn系めっき鋼板10に化成処理を適切に施すための前処理を行う(S2:前処理ステップ)。前処理ステップS2では、化成処理において一般的に行われる前処理を行えばよく、概略的には、Zn系めっき鋼板10の表面を清浄にする処理が行われる。 As shown in FIG. 5, in the present manufacturing method, generally, first, a Zn-based plated steel sheet 10 as a chemical conversion treatment original plate is prepared (S1: original plate preparation step). Next, a pretreatment for appropriately applying the chemical conversion treatment to the Zn-based plated steel sheet 10 is performed (S2: pretreatment step). In the pretreatment step S2, the pretreatment generally performed in the chemical conversion treatment may be performed, and roughly, a treatment for cleaning the surface of the Zn-based plated steel sheet 10 is performed.

次いで、化成処理液を塗布する直前の段階(S3:処理液塗布直前ステップ)において、前処理後のZn系めっき鋼板10の板温を60℃以下とし、好ましくは50℃以下とする。前処理後のZn系めっき鋼板10の板温を常温とすることが好ましい。これは、化成処理液を塗布直前の板温が高すぎると、化成処理液の乾燥(すなわち化成処理液中での反応)が促進されることにより、所望の組織構造を有する化成処理皮膜20を得にくくなるためである。 Next, in the step immediately before applying the chemical conversion treatment liquid (S3: step immediately before coating the treatment liquid), the plate temperature of the Zn-based plated steel sheet 10 after the pretreatment is set to 60 ° C. or lower, preferably 50 ° C. or lower. The plate temperature of the Zn-based plated steel sheet 10 after the pretreatment is preferably set to room temperature. This is because if the plate temperature immediately before applying the chemical conversion treatment liquid is too high, the drying of the chemical conversion treatment liquid (that is, the reaction in the chemical conversion treatment liquid) is promoted, so that the chemical conversion treatment film 20 having a desired structural structure is formed. This is because it is difficult to obtain.

ここで、上記Zn系めっき鋼板10に塗布するための化成処理液は、予め調製される(S10:化成処理液調製ステップ)。本実施形態における化成処理皮膜20を得るためには、化成処理液の組成が重要となる。化成処理液の溶媒は、典型的には水である。 Here, the chemical conversion treatment liquid for coating on the Zn-based plated steel sheet 10 is prepared in advance (S10: chemical conversion treatment liquid preparation step). In order to obtain the chemical conversion treatment film 20 in the present embodiment, the composition of the chemical conversion treatment liquid is important. The solvent of the chemical conversion treatment liquid is typically water.

化成処理液を調製するための原料として用いる4族金属の化合物は、水への可溶性が要求され、例えば、フッ化物塩、炭酸塩、ペルオキソ酸塩などを用いることができる。4族金属の化合物としては、炭酸塩が好ましい。 The compound of the Group 4 metal used as a raw material for preparing the chemical conversion treatment liquid is required to be soluble in water, and for example, fluoride salts, carbonates, peroxoates and the like can be used. As the group 4 metal compound, a carbonate is preferable.

また、化成処理液を調製するための他の原料として用いる特定のオキソ酸を含む塩としては、4族金属の硝酸塩、4族金属の硫酸塩などが挙げられ、さらには乾燥時に4族金属オキソ酸塩と化合物を形成しやすいリン酸塩が挙げられる。 Examples of the salt containing a specific oxoacid used as another raw material for preparing the chemical conversion treatment liquid include a nitrate of a group 4 metal and a sulfate of a group 4 metal, and further, a group 4 metal oxo when dried. Examples thereof include phosphates that easily form compounds with acid salts.

さらに、原料に5族金属オキソ酸塩または6族金属オキソ酸塩を用いる方法が挙げられる。加工時の皮膜のクラック発生を抑制すること、すなわち化成処理皮膜20のマトリックス中に異種構造部30を形成することができれば、特定のオキソ酸を含む塩は特に限定されない。しかし、加工部および平坦部の耐食性を充分に確保するためには、腐食因子が皮膜中に存在することは好ましくないため、原料としては、リン酸塩、または、5族金属オキソ酸塩若しくは6族金属オキソ酸塩が好ましい。 Further, a method of using a group 5 metal oxo acid salt or a group 6 metal oxo acid salt as a raw material can be mentioned. The salt containing a specific oxo acid is not particularly limited as long as it is possible to suppress the generation of cracks in the film during processing, that is, to form the heterogeneous structural portion 30 in the matrix of the chemical conversion-treated film 20. However, in order to sufficiently secure the corrosion resistance of the processed portion and the flat portion, it is not preferable that the corrosive factor is present in the film. Therefore, as the raw material, phosphate, group 5 metal oxoacid, or 6 Group metal oxoacids are preferred.

化成処理皮膜20の製造に用いる4族金属は、Zrであることが好ましい。Tiを用いる場合、水溶性の化合物はフッ化物塩であり、前記のように貯蔵安定性が低下傾向である。また、Hfは高価であるために化成処理皮膜20のコストが高くなる。 The Group 4 metal used for producing the chemical conversion coating film 20 is preferably Zr. When Ti is used, the water-soluble compound is a fluoride salt, and the storage stability tends to decrease as described above. Further, since Hf is expensive, the cost of the chemical conversion coating film 20 is high.

化成処理液を調製するために、4族金属の原料として、4族金属オキソ酸塩と、4族金属オキソ酸塩以外のものとを混合させても構わないが、その場合、処理液の貯蔵安定性が悪くなり得る。また、4族金属オキソ酸塩と、4族金属のフッ化物塩とを含む化成処理液を用いても構わないが、フッ化物によってめっき層が溶解し、処理液中にめっき層成分が混入することで、貯蔵安定性が悪くなり得る。 In order to prepare the chemical conversion treatment liquid, a group 4 metal oxoacid salt and a substance other than the group 4 metal oxoacid salt may be mixed as a raw material for the group 4 metal, but in that case, the treatment liquid is stored. Stability can be poor. Further, a chemical conversion treatment solution containing a group 4 metal oxoacid salt and a group 4 metal fluoride salt may be used, but the plating layer is dissolved by the fluoride and the plating layer component is mixed in the treatment solution. This can lead to poor storage stability.

化成処理皮膜20における前述のαの値を調整するためには、処理液の乾燥過程での反応を制御することが重要である。製造条件として、Zn系めっき鋼板10に塗布する化成処理液の温度が比較的高温の場合、化成処理液の乾燥時間が短くなる。また、前述のように、Zn系めっき鋼板10の板温が比較的高温の場合も、化成処理液の乾燥時間が短くなる。 In order to adjust the above-mentioned value of α in the chemical conversion treatment film 20, it is important to control the reaction in the drying process of the treatment liquid. As a production condition, when the temperature of the chemical conversion treatment liquid applied to the Zn-based plated steel sheet 10 is relatively high, the drying time of the chemical conversion treatment liquid becomes short. Further, as described above, even when the plate temperature of the Zn-based plated steel sheet 10 is relatively high, the drying time of the chemical conversion treatment liquid is shortened.

ここで、化成処理皮膜20は膜厚が1μm以下程度であり、Zn系めっき鋼板10の表面上において生じる反応は、成膜条件の変化によって大きく影響される。化成処理液の乾燥が進行するに伴い、化成処理液がゲル化および固体化して化成処理皮膜20が生成する過程において、4族金属オキソ酸塩の高分子化反応を含む各種の反応が競合して進行する。 Here, the film thickness of the chemical conversion coating film 20 is about 1 μm or less, and the reaction that occurs on the surface of the Zn-based plated steel sheet 10 is greatly affected by changes in the film forming conditions. As the drying of the chemical conversion treatment solution progresses, various reactions including the polymerization reaction of the group 4 metal oxoate compete with each other in the process of gelation and solidification of the chemical conversion treatment solution to form the chemical conversion treatment film 20. To proceed.

化成処理液の温度やZn系めっき鋼板10の板温が比較的高温の場合、アニオン種31(例えばリン酸)が高分子化して析出したり、Zn系めっき層12と反応して反応層21に濃化したりすることにより、異種構造部30の存在量が小さくなる(異種構造部30を形成している4族金属の原子比率Yが小さくなり、そのためαの値が小さくなる)。 When the temperature of the chemical conversion treatment liquid or the plate temperature of the Zn-based plated steel sheet 10 is relatively high, the anion species 31 (for example, phosphoric acid) is polymerized and precipitated, or reacts with the Zn-based plated layer 12 to react with the reaction layer 21. The abundance of the dissimilar structure portion 30 becomes smaller (the atomic ratio Y of the group 4 metals forming the dissimilar structure portion 30 becomes smaller, and therefore the value of α becomes smaller).

よって、前処理後のZn系めっき鋼板の表面に化成処理液を塗布する(S4:化成処理液塗布ステップ)に際して、化成処理液の液温は55℃以下とし、好ましくは50℃以下とする。化成処理液の液温は、例えば常温であることが好ましい。 Therefore, when the chemical conversion treatment liquid is applied to the surface of the Zn-based plated steel sheet after the pretreatment (S4: chemical conversion treatment liquid application step), the liquid temperature of the chemical conversion treatment liquid is 55 ° C. or lower, preferably 50 ° C. or lower. The liquid temperature of the chemical conversion treatment liquid is preferably room temperature, for example.

化成処理液塗布ステップS4では、ロールコート法、スピンコート法、スプレー法などの手法を用いることができる。Zn系めっき鋼板10の表面への化成処理皮膜の付着量は、50〜1000mg/mの範囲であることが好ましい。付着量が50mg/m未満の場合、化成処理皮膜20の厚みが薄くなるため、十分な耐食性を得ることができない。また、付着量が1000mg/mよりも多い場合、化成処理皮膜20の厚みが厚くなり過ぎてしまい、耐食性が過剰となってしまう。スポット溶接性を考慮した場合、Zn系めっき鋼板10の表面への化成処理皮膜20の付着量は、50〜500mg/mの範囲であることがより好ましい。 In the chemical conversion treatment liquid application step S4, methods such as a roll coating method, a spin coating method, and a spray method can be used. The amount of the chemical conversion-treated film adhered to the surface of the Zn-based plated steel sheet 10 is preferably in the range of 50 to 1000 mg / m 2 . If the amount of adhesion is less than 50 mg / m 2, the thickness of the chemical conversion coating film 20 becomes thin, so that sufficient corrosion resistance cannot be obtained. On the other hand, if the amount of adhesion is more than 1000 mg / m 2 , the thickness of the chemical conversion coating film 20 becomes too thick, and the corrosion resistance becomes excessive. Considering the spot weldability, the amount of the chemical conversion coating 20 adhered to the surface of the Zn-based plated steel sheet 10 is more preferably in the range of 50 to 500 mg / m 2 .

次いで、化成処理液が表面に塗布されたZn系めっき鋼板10は、塗布直後から乾燥開始までの時間(本明細書において、セットリングタイムと称する)、短時間静置されることになる(S5:短時間静置ステップ)。このセットリングタイムが長いほど、化成処理液中での反応が進行し、基本構造部26を形成している4族金属の原子比率Xが高くなる。 Next, the Zn-based plated steel sheet 10 coated with the chemical conversion treatment liquid on the surface is allowed to stand for a short time from immediately after coating to the start of drying (referred to as setting time in the present specification) (S5). : Short-term standing step). The longer the settling time, the more the reaction in the chemical conversion treatment liquid proceeds, and the higher the atomic ratio X of the Group 4 metal forming the basic structural portion 26 becomes.

但し、セットリングタイムが長すぎると、基本構造部26によって緻密な膜が形成される結果、加熱乾燥後の化成処理皮膜20は、金属酸化物ポリマー25中に異種構造部30を含まないことがある。そのため、セットリングタイムは35秒以下とすることが好ましく、2秒以上30秒以下とすることがより好ましい。これは、化成処理液とZn系めっき鋼板10との反応時間を確保するため、セットリングタイムは2秒以上とすることが好ましいためである。 However, if the settling time is too long, the basic structural portion 26 forms a dense film, and as a result, the chemical conversion treatment film 20 after heat drying may not contain the heterogeneous structural portion 30 in the metal oxide polymer 25. is there. Therefore, the setting time is preferably 35 seconds or less, and more preferably 2 seconds or more and 30 seconds or less. This is because the settling time is preferably 2 seconds or more in order to secure the reaction time between the chemical conversion treatment liquid and the Zn-based plated steel sheet 10.

なお、短時間静置ステップS5においても化成処理液の乾燥は多少進行する。この段階での乾燥には、Zn系めっき鋼板10の板温および化成処理液の液温が影響する。 Even in the short-time standing step S5, the drying of the chemical conversion treatment liquid proceeds to some extent. The drying at this stage is affected by the plate temperature of the Zn-based plated steel sheet 10 and the liquid temperature of the chemical conversion treatment liquid.

次いで、化成処理液が表面に塗布されたZn系めっき鋼板10を加熱して、化成処理液をさらに乾燥させる(S6:加熱乾燥ステップ)。加熱乾燥ステップS6では、所望の化成処理皮膜20が得られるように、化成処理液中での反応を適正な速度で進行させる。適切な乾燥速度とすることにより、金属酸化物ポリマー25の一部である異種構造部30がマトリックス中に分散して存在する化成処理皮膜20を得ることができる。但し、乾燥速度が速すぎると、基本構造部26が生成する反応よりも、化成処理液中における溶解度積の小さい、4族金属とアニオン種31との反応生成物が析出する反応が生じ易くなる。 Next, the Zn-based plated steel sheet 10 coated with the chemical conversion treatment liquid on the surface is heated to further dry the chemical conversion treatment liquid (S6: heat drying step). In the heat-drying step S6, the reaction in the chemical conversion treatment liquid is allowed to proceed at an appropriate rate so that the desired chemical conversion treatment film 20 can be obtained. By setting an appropriate drying rate, it is possible to obtain a chemical conversion-treated film 20 in which the different structural portions 30 that are a part of the metal oxide polymer 25 are dispersed in the matrix. However, if the drying rate is too fast, a reaction in which the reaction product of the Group 4 metal and the anion species 31 having a small solubility product in the chemical conversion treatment liquid is precipitated is more likely to occur than the reaction generated by the basic structure part 26. ..

そのため、化成処理液が表面に塗布されたZn系めっき鋼板の温度が80℃に到達するまでの昇温時間を1秒以上10秒以下とし、好ましくは2秒以上7秒以下とする。 Therefore, the temperature rise time until the temperature of the Zn-based galvanized steel sheet coated with the chemical conversion treatment liquid reaches 80 ° C. is set to 1 second or more and 10 seconds or less, preferably 2 seconds or more and 7 seconds or less.

また、Zn系めっき鋼板10の最高到達温度が高い場合は、皮膜の脱水が進行しすぎて皮膜が硬くなり、加工部耐食性が劣化し得る。そのため、最高到達温度を170℃以下とし、好ましくは、160℃以下とする。加熱乾燥ステップS6では、例えば電気炉を用いて、大気雰囲気下にて加熱を行う。また、例えば化成処理液に窒素化合物を含む場合等には、Zn系めっき鋼板10の最高到達温度が低すぎると、化成処理皮膜20中に窒素が多く残存することに起因して平坦部の耐食性が低下し得る。この観点から、例えば、最高到達温度を70℃以上としてもよい。なお、本実施形態における化成処理鋼板を得ることができれば、最高到達温度は70℃未満であってもよい。 Further, when the maximum temperature reached by the Zn-based plated steel sheet 10 is high, dehydration of the film progresses too much, the film becomes hard, and the corrosion resistance of the processed portion may deteriorate. Therefore, the maximum temperature reached is 170 ° C. or lower, preferably 160 ° C. or lower. In the heating / drying step S6, heating is performed in an air atmosphere using, for example, an electric furnace. Further, for example, when the chemical conversion treatment liquid contains a nitrogen compound, if the maximum temperature reached by the Zn-based plated steel sheet 10 is too low, a large amount of nitrogen remains in the chemical conversion treatment film 20, resulting in corrosion resistance of the flat portion. Can decrease. From this point of view, for example, the maximum temperature reached may be 70 ° C. or higher. If the chemical conversion-treated steel sheet in the present embodiment can be obtained, the maximum temperature reached may be less than 70 ° C.

次いで、Zn系めっき鋼板10の表面に化成処理皮膜20が形成された化成処理鋼板1を冷却する(S7:冷却ステップ)。これにより、本実施形態の化成処理鋼板1が得られる。 Next, the chemical conversion-treated steel sheet 1 having the chemical conversion-treated film 20 formed on the surface of the Zn-based plated steel sheet 10 is cooled (S7: cooling step). As a result, the chemical conversion-treated steel sheet 1 of the present embodiment is obtained.

(変形例)
本実施形態における化成処理鋼板1は、Zn系めっき鋼板10の表面に化成処理皮膜20が形成されていたが、これに限定されない。例えば、Zn系めっき層12は、基材鋼板11の表面に施された別種のめっき層(例えばAl系めっき層)の上層に形成されていてもよい。すなわち、本発明の他の一態様における化成処理鋼板は、化成処理原板として複層めっき鋼板を用いて製造されてもよい。
(Modification example)
The chemical conversion-treated steel sheet 1 in the present embodiment has a chemical conversion-treated film 20 formed on the surface of the Zn-based plated steel sheet 10, but is not limited thereto. For example, the Zn-based plating layer 12 may be formed on an upper layer of another type of plating layer (for example, an Al-based plating layer) applied to the surface of the base steel plate 11. That is, the chemical conversion-treated steel sheet in another aspect of the present invention may be manufactured by using a multi-layer plated steel sheet as the chemical conversion-treated original plate.

〔実施形態2〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.

前記実施形態1における化成処理鋼板1では、特定4族金属Mと、特定のオキソ酸を含む塩がイオン化したアニオン種31と、が結合して形成された塩(異種構造部30)を化成処理層22に含んでいた。これに対して、本実施形態における化成処理鋼板では、化成処理層は、金属酸化物ポリマー25によって形成されたマトリックスを海部とし、前記塩を含む島部が前記マトリックス中に分散して存在する海島構造を有している。化成処理層における島部は、応力緩和点として作用する。 In the chemical conversion-treated steel sheet 1 of the first embodiment, a salt (different structure portion 30) formed by combining a specific group 4 metal M and an anion species 31 in which a salt containing a specific oxo acid is ionized is subjected to chemical conversion treatment. It was included in layer 22. On the other hand, in the chemical conversion-treated steel sheet of the present embodiment, the chemical conversion-treated layer has a matrix formed of the metal oxide polymer 25 as a sea portion, and the island portions containing the salt are dispersed in the matrix. It has a structure. The islands in the chemical conversion layer act as stress relaxation points.

<化成処理鋼板>
図6は、本実施形態における化成処理鋼板1Aを模式的に示す断面図である。図6に示すように、本実施形態における化成処理鋼板1Aは、基材鋼板11およびZn系めっき層12を有するZn系めっき鋼板10と、Zn系めっき鋼板10の表面上に形成された化成処理皮膜20Aと、を有する。化成処理皮膜20Aは、反応層21および化成処理層22Aを有する。
<Chemical conversion steel sheet>
FIG. 6 is a cross-sectional view schematically showing the chemical conversion-treated steel sheet 1A in the present embodiment. As shown in FIG. 6, the chemical conversion-treated steel sheet 1A in the present embodiment is a Zn-based plated steel sheet 10 having a base steel sheet 11 and a Zn-based plated layer 12, and a chemical conversion treatment formed on the surfaces of the Zn-based plated steel sheet 10. It has a film of 20A. The chemical conversion treatment film 20A has a reaction layer 21 and a chemical conversion treatment layer 22A.

以下、前記実施形態1と同様に、反応層21と化成処理層22Aとを区別することなく化成処理皮膜20Aについて説明するが、以下に説明することは主に化成処理層22Aに関連する。 Hereinafter, the chemical conversion treatment film 20A will be described without distinguishing between the reaction layer 21 and the chemical conversion treatment layer 22A as in the first embodiment, but the following description is mainly related to the chemical conversion treatment layer 22A.

本実施形態における化成処理鋼板1Aの化成処理皮膜20Aについて、該化成処理皮膜20Aを形成するために用いられる化成処理液の成分と併せて以下に説明する。 The chemical conversion treatment film 20A of the chemical conversion treatment steel sheet 1A in the present embodiment will be described below together with the components of the chemical conversion treatment liquid used for forming the chemical conversion treatment film 20A.

本実施形態における化成処理皮膜20Aは、化成処理液を、Zn系めっき鋼板10に塗布して該化成処理液を乾燥させることによりZn系めっき鋼板10の表面に形成される。上記化成処理液は、(i)少なくとも1種の4族金属オキソ酸塩、および、(ii)特定のオキソ酸を含む塩、の両方を含む。 The chemical conversion treatment film 20A in the present embodiment is formed on the surface of the Zn-based plated steel sheet 10 by applying the chemical conversion treatment liquid to the Zn-based plated steel sheet 10 and drying the chemical conversion treatment liquid. The chemical conversion treatment solution contains both (i) at least one group 4 metal oxoacid salt and (ii) a salt containing a specific oxo acid.

また、化成処理液は、4族金属(例えばTi)のフッ化物塩を含んでいてもよく、4族金属のフッ化物塩として、4族金属のフッ化アンモニウム塩(例えばチタンフッ化アンモニウム)を含んでいてもよい。化成処理液が4族金属のフッ化物塩を含む場合、化成処理液には4族金属オキソ酸塩が含まれていなくてもよい。 Further, the chemical conversion treatment liquid may contain a fluoride salt of a Group 4 metal (for example, Ti), and contains an ammonium fluoride salt of a Group 4 metal (for example, ammonium titanium fluoride) as a fluoride salt of the Group 4 metal. You may be. When the chemical conversion treatment liquid contains a fluoride salt of a Group 4 metal, the chemical conversion treatment liquid may not contain the Group 4 metal oxoacid salt.

本実施形態の化成処理鋼板1Aの製造方法では、詳しくは後述するように、化成処理液の乾燥(反応)を適切に進行させるように乾燥条件を制御している。これにより得られる化成処理皮膜20Aは、以下のような構造を有している。 In the method for producing the chemical conversion-treated steel sheet 1A of the present embodiment, the drying conditions are controlled so that the drying (reaction) of the chemical conversion-treated liquid proceeds appropriately, as will be described in detail later. The chemical conversion treatment film 20A thus obtained has the following structure.

図7は、本実施形態における化成処理皮膜20Aの構造について説明するための模式図であって、化成処理皮膜20Aの表面を走査電子顕微鏡により観察して得られた画像データの一例を示している。 FIG. 7 is a schematic view for explaining the structure of the chemical conversion treatment film 20A in the present embodiment, and shows an example of image data obtained by observing the surface of the chemical conversion treatment film 20A with a scanning electron microscope. ..

図7に示すように、化成処理皮膜20Aは、基本構造部26を主骨格とする金属酸化物ポリマー25によって形成されたマトリックスを海部41として、特定4族金属Mと特定のオキソ酸(アニオン種31)とが結合した塩(異種構造部30)を含む島部42が海部41中に分散して存在する海島構造を有している。 As shown in FIG. 7, in the chemical conversion treatment film 20A, a matrix formed by a metal oxide polymer 25 having a basic structural portion 26 as a main skeleton is used as a sea portion 41, and a specific group 4 metal M and a specific oxo acid (anionic species) are used. The island portion 42 containing the salt (heterogeneous structure portion 30) bound to 31) has a sea-island structure in which the island portion 42 is dispersed and exists in the sea portion 41.

上記島部42は、典型的には、特定のオキソ酸の重合体を含む。例えば、特定のオキソ酸がリン酸である場合、島部42は、ポリリン酸を含む。島部42は、化成処理液に含まれる成分に由来して形成されるものであればよく、その他の種類のオキソ酸を含んでいてもよい。化成処理液は、例えば、4族金属オキソ酸塩として4族金属のリン酸塩を含んでいてもよい。化成処理液は、前記実施形態1と同様のものであってもよい。 The island 42 typically contains a polymer of a particular oxoacid. For example, if the particular oxo acid is phosphoric acid, the island 42 comprises polyphosphoric acid. The island portion 42 may be formed from a component contained in the chemical conversion treatment liquid, and may contain other types of oxo acids. The chemical conversion treatment liquid may contain, for example, a phosphate of a group 4 metal as a group 4 metal oxolate. The chemical conversion treatment liquid may be the same as that of the first embodiment.

前記実施形態1にて説明したことと同様に、化成処理皮膜20Aに含まれる特定のオキソ酸は、化成処理液に含まれる成分に由来する。例えば、特定のオキソ酸を含む塩として化成処理液にリン酸水素二アンモニウムが含まれている場合、当該化成処理液を用いて製造した化成処理鋼板1Aの化成処理皮膜20Aは、特定のオキソ酸としてリン酸を含む。この場合、より詳細には、異種構造部30は、例えば特定4族金属Mのリン酸二水素塩であってよく、リン酸一水素塩であってもよい。 Similar to that described in the first embodiment, the specific oxo acid contained in the chemical conversion treatment film 20A is derived from the component contained in the chemical conversion treatment liquid. For example, when diammonium hydrogen phosphate is contained in the chemical conversion treatment liquid as a salt containing a specific oxo acid, the chemical conversion treatment film 20A of the chemical conversion treatment steel plate 1A produced using the chemical conversion treatment liquid has a specific oxo acid. Contains phosphoric acid as. In this case, more specifically, the dissimilar structure portion 30 may be, for example, a dihydrogen phosphate of the specific Group 4 metal M, or a monohydrogen phosphate.

つまり、「特定のオキソ酸」における「特定の」とは、化成処理鋼板1Aの製造に用いられた化成処理液に含まれる成分によって特定されることを意味しており、「特定のオキソ酸」は、化成処理皮膜20A中において特定4族金属Mと結合して異種構造部30を形成するようなオキソ酸であればよい。 That is, "specific" in "specific oxo acid" means that it is specified by the component contained in the chemical conversion treatment liquid used for producing the chemical conversion treatment steel plate 1A, and "specific oxo acid". Is an oxo acid that binds to the specific group 4 metal M in the chemical conversion coating film 20A to form a heterogeneous structural portion 30.

異種構造部30を形成する特定のオキソ酸の具体例としては、前記実施形態1にて説明したように、リン酸、硫酸、硝酸、特定4族金属M以外の金属(例えばZn)のリン酸化合物、5族金属オキソ酸、6族金属オキソ酸(但しCrオキソ酸を除く)、等が挙げられる。 Specific examples of the specific oxoacid forming the heterogeneous structure portion 30 include phosphoric acid, sulfuric acid, nitric acid, and phosphoric acid of a metal (for example, Zn) other than the specific group 4 metal M, as described in the first embodiment. Examples thereof include compounds, group 5 metal oxo acids, group 6 metal oxo acids (excluding Cr oxo acids), and the like.

化成処理皮膜20A中の海部41および島部42の具体的な構造について、何らかの測定手法を用いて詳細に特定することは容易では無いが、本実施形態の化成処理鋼板1Aは、従来よりも加工部の耐食性に優れている。このことおよび後述する構造分析の結果から、海部41に含まれる異種構造部30、および島部42は、化成処理皮膜20A中において応力緩和点として作用すると考えられる。 Although it is not easy to specify in detail the specific structures of the sea portion 41 and the island portion 42 in the chemical conversion-treated film 20A by using some measurement method, the chemical conversion-treated steel sheet 1A of the present embodiment is processed more than before. Excellent corrosion resistance of the part. From this and the results of the structural analysis described later, it is considered that the heterogeneous structural portion 30 and the island portion 42 contained in the sea portion 41 act as stress relaxation points in the chemical conversion treatment film 20A.

化成処理皮膜20Aは、4族金属オキソ酸の重合体である金属酸化物ポリマー25によって海部41(マトリックス)が形成されており、換言すれば、金属酸化物ポリマー25を主体としている。金属酸化物ポリマー25を主体とする化成処理皮膜20Aとは、化成処理皮膜20Aを構成する各種の元素(但し酸素を除く)のうち、最大の含有量である元素が特定4族金属M(例えばZrまたはTi)であることを意味する。金属酸化物ポリマー25を主体とする化成処理皮膜20Aは、特定4族金属Mの含有量が20質量%以上であることが好ましい。つまり、特定4族金属MがZrである場合、化成処理皮膜20Aは、Zrの含有量が20質量%以上である。また、特定4族金属MがTiである場合、化成処理皮膜20Aは、Tiの含有量が10質量%以上である。 In the chemical conversion treatment film 20A, the sea portion 41 (matrix) is formed by the metal oxide polymer 25 which is a polymer of the group 4 metal oxo acid, in other words, the metal oxide polymer 25 is the main component. The chemical conversion-treated film 20A mainly composed of the metal oxide polymer 25 is a specific group 4 metal M (for example, the element having the maximum content among various elements (excluding oxygen) constituting the chemical conversion-treated film 20A). It means that it is Zr or Ti). The chemical conversion-treated film 20A mainly composed of the metal oxide polymer 25 preferably contains 20% by mass or more of the specific group 4 metal M. That is, when the specific group 4 metal M is Zr, the chemical conversion coating film 20A has a Zr content of 20% by mass or more. When the specific group 4 metal M is Ti, the chemical conversion coating 20A has a Ti content of 10% by mass or more.

例えば、海部41においてクラックが生じた場合、島部42に到達した時点でクラックの進展(伝播)が妨害されやすい。図7に示す画像において、島部42によってクラックの進展が妨害されている部分があることがわかる。 For example, when a crack occurs in the sea portion 41, the progress (propagation) of the crack is likely to be hindered when the crack reaches the island portion 42. In the image shown in FIG. 7, it can be seen that there is a portion where the growth of the crack is hindered by the island portion 42.

本発明者らは、鋭意検討の結果、化成処理皮膜20Aの耐食性を向上させる上で、以下の条件を満たすことが好ましいことを見出した。 As a result of diligent studies, the present inventors have found that it is preferable to satisfy the following conditions in order to improve the corrosion resistance of the chemical conversion coating film 20A.

化成処理皮膜20A中における島部42の存在割合が少ない場合、皮膜が硬く、加工時にクラックが生じ、加工部耐食性が低下する。一方、島部42の存在割合が多くなりすぎると腐食因子に対するバリア性が低下し、平坦部耐食性が低下する。そのため、化成処理皮膜20A中に占める島部42の面積率は、10%以上50%以下が適正である。また、島部42の平均粒径が過剰に大きい場合、または過剰に小さい場合は加工時にクラックが進展しやすくなるため、島部42の平均粒径は0.01μm以上0.5μm以下が適正である。 When the abundance ratio of the island portion 42 in the chemical conversion-treated film 20A is small, the film is hard, cracks occur during processing, and the corrosion resistance of the processed portion is lowered. On the other hand, if the abundance ratio of the island portion 42 becomes too large, the barrier property against the corrosion factor is lowered, and the corrosion resistance of the flat portion is lowered. Therefore, the area ratio of the island portion 42 in the chemical conversion treatment film 20A is appropriately 10% or more and 50% or less. Further, if the average particle size of the island portion 42 is excessively large or excessively small, cracks are likely to develop during processing. Therefore, it is appropriate that the average particle size of the island portion 42 is 0.01 μm or more and 0.5 μm or less. is there.

なお、上記面積率は、例えば走査型電子顕微鏡を用いて化成処理皮膜20Aを観察し、撮像した写真(平面視した場合)における所定範囲の全体面積(例えば画像全体の面積)に対する、当該画像中に存在する島部42の面積を合計した値の比(百分率)を意味している。上記面積率は、例えば、異なる複数の視野(例えば無作為に撮像した10個の視野)の電子顕微鏡画像のそれぞれについて求めた島部42の面積率を平均した値であってもよい。上記視野は、例えば、少なくとも50個の島部を含むように設定されてよい。 The area ratio is determined in the image with respect to the total area of a predetermined range (for example, the area of the entire image) in the photograph (when viewed in a plan view) obtained by observing the chemical conversion coating film 20A using, for example, a scanning electron microscope. It means the ratio (percentage) of the total value of the areas of the islands 42 existing in. The area ratio may be, for example, a value obtained by averaging the area ratios of the islands 42 obtained for each of the electron microscope images of a plurality of different visual fields (for example, 10 randomly captured visual fields). The field of view may be set to include, for example, at least 50 islands.

また、上記平均粒径は、撮像した電子顕微鏡画像を用いて算出すればよい。 Further, the average particle size may be calculated using an captured electron microscope image.

なお、化成処理皮膜20Aは、上記海島構造に関する条件を満たすとともに、前記実施形態1にて説明した上記αに関する条件(αの値は0.1以上0.6以下)を満たすことがより好ましい。 It is more preferable that the chemical conversion coating film 20A satisfies the conditions relating to the sea-island structure and the conditions relating to α described in the first embodiment (the value of α is 0.1 or more and 0.6 or less).

本実施形態に係る化成処理鋼板1Aの製造方法では、化成処理液の乾燥中に生じる反応場において、4族金属オキソ酸塩の重合反応が適切な速度(状態)にて進行するように成膜条件を設定する。これにより、応力緩和点として作用する異種構造部30および島部42が、マトリックス中に分散して存在する化成処理皮膜20Aを有する化成処理鋼板1Aを製造することができる。 In the method for producing the chemical conversion-treated steel sheet 1A according to the present embodiment, the film is formed so that the polymerization reaction of the Group 4 metal oxoacid salt proceeds at an appropriate rate (state) in the reaction field generated during the drying of the chemical conversion treatment liquid. Set the conditions. As a result, it is possible to manufacture the chemical conversion-treated steel sheet 1A having the chemical conversion-treated film 20A in which the heterogeneous structural portions 30 and the island portions 42 that act as stress relaxation points are dispersed and exist in the matrix.

化成処理皮膜20Aにおける島部42の存在割合および平均粒径を調整するためにも、化成処理液の乾燥過程での反応を制御することが重要である。このことは、前記実施形態1における化成処理鋼板1の製造方法と同様であり、本実施形態における化成処理鋼板1Aの製造方法においても、前記実施形態1にて説明したことと同様の条件を満たしていればよい。 In order to adjust the abundance ratio and the average particle size of the island portion 42 in the chemical conversion treatment film 20A, it is important to control the reaction of the chemical conversion treatment liquid in the drying process. This is the same as the manufacturing method of the chemical conversion-treated steel sheet 1 in the first embodiment, and the manufacturing method of the chemical conversion-treated steel sheet 1A in the present embodiment also satisfies the same conditions as described in the first embodiment. I just need to be there.

〔附記事項〕
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、上記説明において開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Appendix]
The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims, and the present invention also relates to an embodiment obtained by appropriately combining the technical means disclosed in the above description. It is included in the technical scope of the invention.

(実施例1)
以下、本発明の一態様における化成処理鋼板の実施例について説明するが、本発明はこれらの実施例に限定されない。
(Example 1)
Hereinafter, examples of the chemical conversion-treated steel sheet according to one aspect of the present invention will be described, but the present invention is not limited to these examples.

本実施例においては、板厚0.5mmの極低炭素Ti添加鋼の鋼帯を基材として、表1に示した条件により、連続溶融亜鉛めっき製造ラインを用いてZnを40質量%以上含有するZn系めっき鋼板を作製し、これを原板No.1〜14とした。また、同じ鋼帯を基材として、電気亜鉛めっき法により純亜鉛めっき鋼帯を作製し、これを原板No.15とした。このNo.15のZn系めっき鋼板のZn系めっき層は、不可避的不純物を除けば純亜鉛である。 In this embodiment, using a steel strip of ultra-low carbon Ti-added steel having a plate thickness of 0.5 mm as a base material, Zn is contained in an amount of 40% by mass or more using a continuous hot-dip galvanizing production line under the conditions shown in Table 1. A Zn-based galvanized steel sheet is produced, and the original plate No. It was set to 1-14. Further, using the same steel strip as a base material, a pure galvanized steel strip was produced by an electrogalvanizing method, and the original plate No. It was set to 15. This No. The Zn-based plating layer of the Zn-based plated steel sheet of No. 15 is pure zinc except for unavoidable impurities.

Figure 2021001389
Figure 2021001389

本実施例および比較例では、特定4族金属オキソ酸塩として水溶性の炭酸ジルコニウムアンモニウムを、特定のオキソ酸を含む塩としてリン酸水素二アンモニウムを水に溶解させて、Zr濃度10g/L、リン濃度1.7g/Lの化成処理液を調製した。表1に示す各種の原板に該化成処理液を塗布し、乾燥させることにより化成処理鋼板を作製した。 In this example and comparative example, water-soluble zirconium ammonium carbonate as a specific group 4 metal oxoacid salt and diammonium hydrogen phosphate as a salt containing a specific oxo acid are dissolved in water to obtain a Zr concentration of 10 g / L. A chemical conversion treatment solution having a phosphorus concentration of 1.7 g / L was prepared. The chemical conversion treatment liquid was applied to various original plates shown in Table 1 and dried to prepare a chemical conversion treatment steel sheet.

表2は、本発明の実施例および比較例の化成処理鋼板の製造に用いた各種の製造条件を示す表である。なお、下表2に示す製造条件No.12については、到達板温が80℃になるまで5秒要する乾燥条件で加熱し、板温が70℃になった時点で加熱を中止した。到達板温が80℃になるまでの時間は、加熱乾燥時の板温の昇温速度に対応する。 Table 2 is a table showing various production conditions used for producing the chemical conversion-treated steel sheet of Examples and Comparative Examples of the present invention. The manufacturing conditions No. 2 shown in Table 2 below. No. 12 was heated under a drying condition in which it took 5 seconds for the plate temperature to reach 80 ° C., and the heating was stopped when the plate temperature reached 70 ° C. The time until the reaching plate temperature reaches 80 ° C. corresponds to the rate of temperature rise of the plate temperature during heating and drying.

Figure 2021001389
Figure 2021001389

表3は、本発明の実施例および比較例の化成処理鋼板における化成処理皮膜の組成および物性、並びに化成処理鋼板の耐食性の試験結果を示す表である。 Table 3 is a table showing the composition and physical properties of the chemical conversion coating film in the chemical conversion-treated steel sheets of Examples and Comparative Examples of the present invention, and the test results of the corrosion resistance of the chemical conversion-treated steel sheet.

Figure 2021001389
Figure 2021001389

表3に示す実施例および比較例では、化成処理鋼板の原板として表1のめっきNo.1に示す溶融Zn系めっきを施したZn系めっき鋼板を用いて、化成処理鋼板No.1〜27を作製した。具体的には、まず、上記の化成処理鋼板の原板の表面を脱脂し、乾燥させた。次に、当該原板の表面に上記の化成処理液を塗布し、直後に自動排出型電気式熱風オーブンを用いて原板の温度を所定の温度まで上昇させ加熱乾燥させた。これにより、原板の表面に化成処理皮膜を形成させ、化成処理鋼板No.1〜27を作製した。 In the examples and comparative examples shown in Table 3, the plating No. of Table 1 was used as the original plate of the chemical conversion-treated steel sheet. Using the Zn-based plated steel sheet subjected to the hot-dip Zn-based plating shown in No. 1, the chemical conversion-treated steel sheet No. 1-27 were prepared. Specifically, first, the surface of the original plate of the chemical conversion-treated steel sheet was degreased and dried. Next, the above chemical conversion treatment liquid was applied to the surface of the original plate, and immediately after that, the temperature of the original plate was raised to a predetermined temperature using an automatic discharge type electric hot air oven and dried by heating. As a result, a chemical conversion-treated film is formed on the surface of the original plate, and the chemical conversion-treated steel sheet No. 1-27 were prepared.

なお、化成処理鋼板No.19は、特定4族金属のフッ化物塩としてチタンフッ化アンモニウムを使用した。化成処理鋼板No.20は、炭酸ジルコニウムアンモニウムを含むがリン酸水素二アンモニウムを含まない化成処理液を用いて作製した。また、化成処理鋼板No.23は、炭酸ジルコニウムアンモニウムおよびリン酸水素二アンモニウムを含まず、五酸化バナジウムを含む化成処理液を用いて作製した。化成処理鋼板No.24は、炭酸ジルコニウムアンモニウムおよびリン酸水素二アンモニウムを含まず、モリブデン酸アンモニウムおよび五酸化バナジウムを含む化成処理液を用いて作製した。 The chemical conversion treated steel sheet No. No. 19 used ammonium titanium fluoride as the fluoride salt of the specified Group 4 metal. Chemical conversion treated steel sheet No. No. 20 was prepared using a chemical conversion treatment solution containing ammonium zirconium carbonate but not diammonium hydrogen phosphate. In addition, chemical conversion treated steel sheet No. No. 23 was prepared using a chemical conversion treatment solution containing vanadium pentoxide without containing ammonium zirconium carbonate and diammonium hydrogen phosphate. Chemical conversion treated steel sheet No. No. 24 was prepared using a chemical conversion treatment solution containing ammonium molybdate and vanadium pentoxide without containing ammonium zirconium carbonate and diammonium hydrogen phosphate.

上記の一連の工程においては、前述の実施形態にて説明した本発明の一態様における化成処理鋼板の製造方法に基づいて、各種の条件を設定した。具体的な化成処理液の温度、塗布時の鋼板の温度、セットリングタイム(塗布から乾燥開始までの時間)、乾燥条件は、表2に示した製造条件のとおりである。 In the above series of steps, various conditions were set based on the method for producing a chemical conversion-treated steel sheet according to one aspect of the present invention described in the above-described embodiment. The specific temperature of the chemical conversion treatment liquid, the temperature of the steel sheet at the time of coating, the setting time (time from application to the start of drying), and the drying conditions are as shown in Table 2.

(化成処理皮膜中の金属の分析)
化成処理鋼板に対して、グロー放電発光分光分析装置(SPECTRUMA ANALYTIK GmbH社製;GDA750)により、化成処理皮膜中に存在する金属元素を特定した。表中に、GDS(Glow Discharge Spectroscopy)により検出された元素を記載した。なお、化成処理皮膜からC、N、O等の元素が検出されることは自明であるため、原子番号が11以上(Naを含む)の元素について表中に記載した(下記表4〜8においても同様)。
(Analysis of metal in chemical conversion coating)
For the chemical conversion-treated steel sheet, a metal element present in the chemical conversion-treated film was identified by a glow discharge emission spectrophotometer (SPECTRUMA ANALYTIK GmbH; GDA750). In the table, the elements detected by GDS (Glow Discharge Spectroscopy) are listed. Since it is obvious that elements such as C, N, and O are detected from the chemical conversion coating, the elements having an atomic number of 11 or more (including Na) are described in the table (in Tables 4 to 8 below). The same applies).

(化成処理皮膜の組成)
作製した化成処理鋼板に対して、光電子分光分析装置(株式会社 島津製作所/KRATOS社製;ESCA−3400)を用いてX線源MgKαにて分析した。4族金属(例えば、Zr)の結合エネルギーに起因するXPSスペクトルを測定した。そして、化成処理皮膜におけるマトリックス中の基本構造部を形成している4族金属の結合エネルギーに起因するピーク面積と、アニオン種と結合して異種構造部を形成している4族金属の結合エネルギーに起因するピーク面積とを算出した。これにより、化成処理皮膜中に含まれる4族金属の中で、基本構造部を形成している4族金属の原子比率、および、アニオン種と結合して異種構造部30を形成している4族金属の原子比率を算出した。算出結果の一例としては、図4を参照することができる。
(Composition of chemical conversion coating)
The prepared chemical conversion-treated steel sheet was analyzed with an X-ray source MgKα using a photoelectron spectroscopy analyzer (Shimadzu Seisakusho Co., Ltd./KRATOS Co., Ltd .; ESCA-3400). The XPS spectrum due to the binding energy of the Group 4 metal (eg Zr) was measured. Then, the peak area due to the binding energy of the Group 4 metal forming the basic structural part in the matrix in the chemical conversion treatment film and the binding energy of the Group 4 metal forming a different structural part by bonding with the anion species. The peak area caused by the above was calculated. As a result, among the group 4 metals contained in the chemical conversion treatment film, the atomic ratio of the group 4 metal forming the basic structural part and the heterogeneous structural part 30 are formed by combining with the anion species 4 The atomic ratio of group metals was calculated. FIG. 4 can be referred to as an example of the calculation result.

(化成処理鋼板の平坦部耐食性)
化成処理鋼板1〜27に対して、以下のように耐食性試験を行った。まず、化成処理鋼板の70mm×150mmの試験片の端面をシールし、JIS Z2371に準拠して塩水噴霧試験を120時間行った。次に、試験片の表面に発生した白錆を観察した。表3に、耐食性試験の結果を示す。本耐食性試験では、白錆の発生面積率が5%以下の場合は「◎」、5%より大きく10%以下の場合は「○」、10%より大きく30%未満の場合は「△」、30%以上の場合は「×」と評価し、「△」以上を合格とした。
(Corrosion resistance of flat parts of chemical conversion treated steel sheet)
Corrosion resistance tests were conducted on the chemical conversion treated steel sheets 1 to 27 as follows. First, the end face of a 70 mm × 150 mm test piece of a chemical conversion-treated steel sheet was sealed, and a salt spray test was carried out for 120 hours in accordance with JIS Z2371. Next, white rust generated on the surface of the test piece was observed. Table 3 shows the results of the corrosion resistance test. In this corrosion resistance test, when the area ratio of white rust is 5% or less, it is "◎", when it is larger than 5% and 10% or less, it is "○", and when it is larger than 10% and less than 30%, it is "△". When it was 30% or more, it was evaluated as "x", and when it was "Δ" or more, it was passed.

(化成処理鋼板の加工部耐食性)
加工部の腐食試験では、JIS Z2248に準拠して、内側半径1mmになるように試験片を180度曲げ加工した後、同様な塩水噴霧を24時間継続した。そして、加工部表面に発生した白錆の面積を測定し、加工部表面に占める白錆の面積率が5%以下を「◎」、5〜10%を「○」、10〜30%を「△」、30〜50%を「黒塗り△」、50%以上を「×」として加工部の耐食性を評価し、「黒塗り△」以上を合格とした。
(Corrosion resistance of processed steel sheet of chemical conversion treatment)
In the corrosion test of the processed part, the test piece was bent 180 degrees so as to have an inner radius of 1 mm in accordance with JIS Z2248, and then the same salt spray was continued for 24 hours. Then, the area of white rust generated on the surface of the processed portion is measured, and the area ratio of white rust on the surface of the processed portion is "◎" for 5% or less, "○" for 5 to 10%, and "○" for 10 to 30%. The corrosion resistance of the processed portion was evaluated with "Δ", 30 to 50% as "black coating Δ", and 50% or more as "x", and "black coating Δ" or more was accepted.

表3に示すように、4族金属オキソ酸塩と特定のオキソ酸を含む塩の両方を含む化成処理液を用いて、適切な成膜条件にて製造された実施例の化成処理鋼板No.1〜19は、金属酸化物ポリマーによって形成されたマトリックスの一部として、異種構造部がマトリックス中に分散して適度に存在しており、優れた平坦部耐食性および加工部耐食性を示した。 As shown in Table 3, the chemical conversion-treated steel sheet Nos. of Examples produced under appropriate film formation conditions using a chemical conversion-treated liquid containing both a group 4 metal oxoacid salt and a salt containing a specific oxoacid. In Nos. 1 to 19, different structural parts were dispersed in the matrix and appropriately present as a part of the matrix formed by the metal oxide polymer, and exhibited excellent flat portion corrosion resistance and processed portion corrosion resistance.

比較例の化成処理鋼板No.20は、炭酸ジルコニウムアンモニウムを含む化成処理液を用いることにより緻密な化成処理皮膜が形成されているが、化成処理皮膜中に異種構造部を含まないため、加工部耐食性に劣る。 Chemical conversion-treated steel sheet No. of Comparative Example. In No. 20, a dense chemical conversion treatment film is formed by using a chemical conversion treatment solution containing ammonium zirconium carbonate, but the chemical conversion treatment film does not contain different structural parts, so that the corrosion resistance of the processed portion is inferior.

比較例の化成処理鋼板No.21では、製造条件No.18における乾燥速度が速すぎることにより、化成処理皮膜(少なくともXPSにて測定される化成処理皮膜の表層)がZrのリン酸塩によって形成されており、Zrの基本構造部が形成されなかった。この場合、α値の算出に用いたYは、XPS測定により算出した、化成処理皮膜中に含まれる4族金属の中で、アニオン種であるリン酸と結合している4族金属の原子比率を表している。 Chemical conversion-treated steel sheet No. of Comparative Example. In No. 21, the manufacturing condition No. 21 Since the drying rate in No. 18 was too fast, the chemical conversion treatment film (at least the surface layer of the chemical conversion treatment film measured by XPS) was formed by the phosphate of Zr, and the basic structural part of Zr was not formed. In this case, Y used to calculate the α value is the atomic ratio of the Group 4 metal bonded to phosphoric acid, which is an anionic species, among the Group 4 metals contained in the chemical conversion coating, which was calculated by XPS measurement. Represents.

一方で、比較例の化成処理鋼板No.22では、製造条件No.19における乾燥速度が遅すぎることにより、化成処理皮膜中(少なくともXPSにて測定される化成処理皮膜の表層)に異種構造部が形成されなかった。この場合、GDSによってZrだけでなくPが検出されることから、Pは、異種構造部以外の何らかの形で化成処理皮膜中に含まれると考えられる。 On the other hand, the chemical conversion-treated steel sheet No. of the comparative example. In No. 22, the manufacturing condition No. 22 Since the drying rate in No. 19 was too slow, heterogeneous structural parts were not formed in the chemical conversion treatment film (at least the surface layer of the chemical conversion treatment film measured by XPS). In this case, since P is detected not only by Zr but also by GDS, it is considered that P is contained in the chemical conversion coating in some form other than the heterogeneous structure.

比較例の化成処理鋼板No.25〜27では、セットリングタイム、昇温時間、および到達板温のいずれかが不適な条件であったことにより、化成処理皮膜中に異種構造部が形成されなかった。例えば、Pが、異種構造部を形成することなく、Zn系めっき層直上の反応層に濃縮されたと考えられる。 Chemical conversion-treated steel sheet No. of Comparative Example. In 25 to 27, different structural parts were not formed in the chemical conversion treatment film because any of the setting time, the temperature rising time, and the reaching plate temperature were unsuitable conditions. For example, it is considered that P was concentrated in the reaction layer directly above the Zn-based plating layer without forming different structural parts.

上記のように、特定4族金属オキソ酸塩と、特定のオキソ酸を含む塩との両方を含む化成処理液を用いて化成処理皮膜を作製するに際して、成膜条件が非常に敏感に影響を及ぼすことがわかる。セットリングタイム、昇温時間、および到達板温等の成膜条件を適正な範囲とすることによって、異種構造部がマトリックス中に分散して適度に存在する化成処理皮膜を有する化成処理鋼板を得ることができる。 As described above, when a chemical conversion treatment film containing both a specific group 4 metal oxoacid salt and a salt containing a specific oxo acid is used to prepare a chemical conversion treatment film, the film forming conditions have a very sensitive effect. You can see that it has an effect. By setting the film forming conditions such as settling time, temperature rising time, and reaching plate temperature within an appropriate range, a chemical conversion-treated steel sheet having a chemical conversion-treated film in which dissimilar structural parts are dispersed in a matrix and appropriately present is obtained. be able to.

(実施例2)
次に、表1のめっきNo.2〜14に示す各Znめっき鋼板を用いた以外は、上記と同様にして化成処理鋼板No.31〜43を作製した。表4は、化成処理鋼板No.31〜43の皮膜組成、物性および化成処理鋼板の耐食性について示す表である。
(Example 2)
Next, the plating No. in Table 1 Chemical conversion-treated steel sheet No. 2 was used in the same manner as above except that each Zn-plated steel sheet shown in 2 to 14 was used. 31-43 were prepared. Table 4 shows the chemical conversion treated steel sheet Nos. It is a table which shows the film composition, the physical property and the corrosion resistance of a chemical conversion-treated steel sheet of 31-43.

Figure 2021001389
Figure 2021001389

実施例の化成処理鋼板No.31〜44においても同様に、金属酸化物ポリマーによって形成されたマトリックスの一部として、異種構造部がマトリックス中に分散して適度に存在しており、優れた平坦部耐食性および加工部耐食性を示した。 Examples of chemical conversion-treated steel sheets No. Similarly, in 31 to 44, different structural parts are dispersed in the matrix and appropriately present as a part of the matrix formed by the metal oxide polymer, and excellent flat portion corrosion resistance and processed portion corrosion resistance are exhibited. It was.

(実施例3)
また、表1のめっきNo.1に示すZn系めっき鋼板を用い、化成処理液に用いる4族化合物として硫酸ジルコニウムまたは硝酸ジルコニウムを、5族金属オキソ酸塩としてモリブデン酸アンモニウムを、6族金属オキソ酸塩として五酸化バナジウムを、1族含有化合物として硫酸ナトリウム、硝酸カリウム、またはピロリン酸ナトリウムを用いた以外は、上記と同様にして化成処理鋼板No.51〜64を作製した。化成処理鋼板No.53〜55、59、60は、化成処理液にリン酸水素二アンモニウムを添加した。表5は、化成処理鋼板No.51〜64の皮膜組成、物性および化成処理鋼板の耐食性に関する表である。
(Example 3)
In addition, the plating No. in Table 1 Using the Zn-based plated steel sheet shown in No. 1, zirconium sulfate or zirconium nitrate was used as the Group 4 compound in the chemical conversion treatment solution, ammonium molybdate was used as the Group 5 metal oxoate, and vanadium pentoxide was used as the Group 6 metal oxoate. Chemically treated steel sheet No. 1 in the same manner as above, except that sodium sulfate, potassium nitrate, or sodium pyrophosphate was used as the Group 1 containing compound. 51-64 were made. Chemical conversion treated steel sheet No. For 53 to 55, 59 and 60, diammonium hydrogen phosphate was added to the chemical conversion treatment solution. Table 5 shows the chemical conversion treated steel sheet Nos. It is a table regarding the film composition, physical characteristics and corrosion resistance of the chemical conversion-treated steel sheet of 51-64.

Figure 2021001389
Figure 2021001389

化成処理鋼板No.51、52では、異種構造部としてのZrの硫酸塩またはZrの硝酸塩がマトリックス中に分散して存在し、高い加工部耐食性を示した。 Chemical conversion treated steel sheet No. In 51 and 52, Zr sulfate or Zr nitrate as different structural parts were dispersed in the matrix and showed high corrosion resistance in the processed part.

化成処理鋼板No.53〜55およびNo.59、60において、バナジン酸塩またはモリブデン酸塩は、第1の異種構造部または第2の異種構造部として、化成処理鋼板に含まれると考えられる。その結果、化成処理鋼板No.53〜55およびNo.59、60では、高い加工部耐食性を示すとともに、非常に高い平坦部耐食性を示した。 Chemical conversion treated steel sheet No. 53-55 and No. At 59 and 60, vanadate or molybdate is considered to be included in the chemical conversion-treated steel sheet as a first heterogeneous structural part or a second heterogeneous structural part. As a result, the chemical conversion treated steel sheet No. 53-55 and No. In 59 and 60, a high corrosion resistance of the processed portion was exhibited and a very high corrosion resistance of the flat portion was exhibited.

化成処理鋼板No.56〜58では、異種構造部がマトリックス中に分散した構造を有するだけでなく、化成処理皮膜中に1族金属を含むことによって、非常に高い加工部耐食性を示した。 Chemical conversion treated steel sheet No. In Nos. 56 to 58, not only did the different structural parts have a structure dispersed in the matrix, but also the chemical conversion treatment film contained a Group 1 metal, so that the processed part showed extremely high corrosion resistance.

化成処理鋼板No.61〜63では、バナジン酸またはモリブデン酸がZrと結合して第1の異種構造部を形成していると考えられる。これにより、非常に高い平坦部耐食性を示した。 Chemical conversion treated steel sheet No. In 61-63, it is considered that vanadate or molybdic acid is combined with Zr to form the first heterogeneous structural part. As a result, a very high flat portion corrosion resistance was exhibited.

化成処理鋼板No.64では、リン酸塩、バナジン酸塩、およびモリブデン酸塩が第1の異種構造部または第2の異種構造部として化成処理皮膜中に含まれるとともに、化成処理皮膜中に1族金属が含まれることによって、非常に高い平坦部耐食性かつ非常に高い加工部耐食性を示した。 Chemical conversion treated steel sheet No. In 64, phosphate, vanadate, and molybdate are contained in the chemical conversion coating as a first heterogeneous structure or a second heterogeneous structure, and a group 1 metal is contained in the chemical conversion coating. As a result, a very high flat portion corrosion resistance and a very high processed portion corrosion resistance were exhibited.

(実施例4)
以下、本発明の別の一態様(前述の実施形態2に対応)における化成処理鋼板の実施例について説明するが、本発明はこれらの実施例に限定されない。
(Example 4)
Hereinafter, examples of the chemical conversion-treated steel sheet in another aspect of the present invention (corresponding to the above-mentioned second embodiment) will be described, but the present invention is not limited to these examples.

以下に説明すること以外は、上記実施例1〜3と同様に、表1のめっきNo.1に示すZnめっき鋼板を用い、表2に示す各種の製造条件にて化成処理鋼板を製造した。そして、各種分析および評価を行った。 Except as described below, the plating numbers in Table 1 are the same as in Examples 1 to 3. Using the Zn-plated steel sheet shown in No. 1, a chemical conversion-treated steel sheet was manufactured under various manufacturing conditions shown in Table 2. Then, various analyzes and evaluations were performed.

(皮膜の性状)
作製した化成処理鋼板に対して、走査電子顕微鏡(日立ハイテク株式会社製/SU−6600)を用いて加速電圧5.0kVにて観察した。倍率を5万倍とし、任氏の5視野の画像データから、島部の面積率および平均粒径を測定した(電子顕微鏡画像の一例としては図7を参照することができる)。
(Film properties)
The prepared chemical conversion-treated steel sheet was observed at an acceleration voltage of 5.0 kV using a scanning electron microscope (manufactured by Hitachi High-Tech Corporation / SU-6600). The magnification was set to 50,000 times, and the area ratio and average particle size of the islands were measured from the image data of Mr. Toshi's five fields of view (see FIG. 7 as an example of the electron microscope image).

表6は、本発明の実施例および比較例の化成処理鋼板における化成処理皮膜の組成および物性、並びに化成処理鋼板の耐食性の試験結果を示す表である。 Table 6 is a table showing the composition and physical properties of the chemical conversion coating film in the chemical conversion-treated steel sheets of Examples and Comparative Examples of the present invention, and the test results of the corrosion resistance of the chemical conversion-treated steel sheet.

Figure 2021001389
Figure 2021001389

具体的には、表6に示す実施例および比較例では、まず、化成処理鋼板の原板の表面を脱脂し、乾燥させた後、当該原板の表面に各種の化成処理液を塗布し、直後に自動排出型電気式熱風オーブンを用いて原板の温度を所定の温度まで上昇させ加熱乾燥させた。これにより、原板の表面に化成処理皮膜を形成させ、化成処理鋼板No.71〜97を作製した。 Specifically, in the examples and comparative examples shown in Table 6, first, the surface of the original plate of the chemical conversion-treated steel sheet is degreased and dried, and then various chemical conversion treatment liquids are applied to the surface of the original plate, and immediately after that. The temperature of the original plate was raised to a predetermined temperature by using an automatic discharge type electric hot air oven, and the original plate was heated and dried. As a result, a chemical conversion-treated film is formed on the surface of the original plate, and the chemical conversion-treated steel sheet No. 71-97 were prepared.

なお、化成処理鋼板No.89は、特定4族金属のフッ化物塩としてチタンフッ化アンモニウムを使用した。化成処理鋼板No.90は、炭酸ジルコニウムアンモニウムを含むがリン酸水素二アンモニウムを含まない化成処理液を用いて作製した。また、化成処理鋼板No.93は、炭酸ジルコニウムアンモニウムおよびリン酸水素二アンモニウムを含まず、五酸化バナジウムを含む化成処理液を用いて作製した。化成処理鋼板No.94は、炭酸ジルコニウムアンモニウムおよびリン酸水素二アンモニウムを含まず、モリブデン酸アンモニウムおよび五酸化バナジウムを含む化成処理液を用いて作製した。化成処理鋼板No.91,92、95〜97は、炭酸ジルコニウムアンモニウムおよびリン酸水素二アンモニウムを含む化成処理液を用いて作製した。 The chemical conversion treated steel sheet No. 89 used ammonium titanium fluoride as the fluoride salt of the specified Group 4 metal. Chemical conversion treated steel sheet No. 90 was prepared using a chemical conversion treatment solution containing ammonium zirconium carbonate but not diammonium hydrogen phosphate. In addition, chemical conversion treated steel sheet No. 93 was prepared using a chemical conversion treatment solution containing vanadium pentoxide without containing ammonium zirconium carbonate and diammonium hydrogen phosphate. Chemical conversion treated steel sheet No. 94 was prepared using a chemical conversion treatment solution containing ammonium molybdate and vanadium pentoxide without containing ammonium zirconium carbonate and diammonium hydrogen phosphate. Chemical conversion treated steel sheet No. 91, 92, 95 to 97 were prepared using a chemical conversion treatment solution containing ammonium zirconium carbonate and diammonium hydrogen phosphate.

表6に示すように、実施例の化成処理鋼板No.71〜89では、金属酸化物ポリマーによって形成されたマトリックスの一部として、異種構造部および島部が適度に存在しており、優れた平坦部耐食性および加工部耐食性を示した。 As shown in Table 6, the chemical conversion-treated steel sheet Nos. In 71 to 89, dissimilar structures and islands were appropriately present as a part of the matrix formed by the metal oxide polymer, and excellent flat portion corrosion resistance and processed portion corrosion resistance were exhibited.

比較例の化成処理鋼板No.90では、炭酸ジルコニウムアンモニウムを含む化成処理液を用いることにより緻密な化成処理皮膜が形成されているが、化成処理皮膜中に異種構造部を含まないため、加工部耐食性に劣る。 Chemical conversion-treated steel sheet No. of Comparative Example. In No. 90, a dense chemical conversion treatment film is formed by using a chemical conversion treatment solution containing ammonium zirconium carbonate, but the chemical conversion treatment film does not contain different structural parts, so that the corrosion resistance of the processed part is inferior.

比較例の化成処理鋼板No.93、94では、4族金属を含まないことにより、本願発明の化成処理皮膜が形成せず、化成処理鋼板は、平坦部および加工部の耐食性に乏しかった。 Chemical conversion-treated steel sheet No. of Comparative Example. In 93 and 94, the chemical conversion-treated film of the present invention was not formed because the group 4 metal was not contained, and the chemical conversion-treated steel sheet had poor corrosion resistance in the flat portion and the processed portion.

比較例の化成処理鋼板No.91、92、95〜97では、本発明外の製造条件であったことにより、加工部耐食性に劣る。 Chemical conversion-treated steel sheet No. of Comparative Example. In 91, 92, 95 to 97, the corrosion resistance of the processed portion is inferior due to the production conditions outside the present invention.

上記のように、化成処理液を用いて化成処理皮膜を作製するに際して、成膜条件が非常に敏感に影響を及ぼすことがわかる。セットリングタイム、昇温時間、および到達板温等の成膜条件を適正な範囲とすることによって、異種構造部および島部がマトリックス中に分散して適度に存在する化成処理皮膜を有する化成処理鋼板を得ることができる。 As described above, it can be seen that the film formation conditions have a very sensitive effect on the production of the chemical conversion treatment film using the chemical conversion treatment liquid. By setting the film formation conditions such as settling time, temperature rise time, and reaching plate temperature within an appropriate range, a chemical conversion treatment having a chemical conversion coating in which different structural parts and islands are dispersed in a matrix and appropriately present is present. A steel plate can be obtained.

(実施例5)
表1のめっきNo.2〜14に示す各Znめっき鋼板を用いた以外は、上記実施例4と同様にして化成処理鋼板No.111〜123を作製した。表7は、化成処理鋼板No.111〜123の皮膜組成、物性および化成処理鋼板の耐食性について示す表である。
(Example 5)
Plating No. in Table 1 Chemical conversion-treated steel sheet No. 2 was used in the same manner as in Example 4 except that each Zn-plated steel sheet shown in 2 to 14 was used. 111-123 were made. Table 7 shows the chemical conversion treated steel sheet Nos. It is a table which shows the film composition, the physical property and the corrosion resistance of a chemical conversion-treated steel sheet of 111-123.

Figure 2021001389
Figure 2021001389

実施例の化成処理鋼板No.111〜123においても同様に、金属酸化物ポリマーによって形成されたマトリックスの一部として、異種構造部および島部がマトリックス中に分散して適度に存在しており、優れた平坦部耐食性および加工部耐食性を示した。 Examples of chemical conversion-treated steel sheets No. Similarly, in 111 to 123, as a part of the matrix formed by the metal oxide polymer, dissimilar structures and islands are dispersed and appropriately present in the matrix, and excellent flat portion corrosion resistance and processed portions are present. It showed corrosion resistance.

(実施例6)
表1のめっきNo.1に示すZn系めっき鋼板を用い、次のこと以外は上記と同様にして化成処理鋼板No.131〜144を作製した。化成処理液に炭酸ジルコニウムアンモニウムを添加した。化成処理鋼板No.133〜136、139、140、144では、リン酸水素二アンモニウムを更に添加した。化成処理鋼板No.134、135、140、142〜144では、化成処理液に5族金属オキソ酸塩としてモリブデン酸アンモニウムを更に添加した。化成処理鋼板No.133、135、139、141、143、144では、化成処理液に6族金属オキソ酸塩として五酸化バナジウムを更に添加した。化成処理鋼板No.136、137、144では、1族含有化合物としてピロリン酸ナトリウムを更に添加した。化成処理鋼板No.132、138、140では、硝酸ジルコニウムを更に添加した。化成処理鋼板No.138では、硝酸カリウムを更に添加した。
(Example 6)
Plating No. in Table 1 Using the Zn-based plated steel sheet shown in No. 1, the chemical conversion-treated steel sheet No. 1 was used in the same manner as above except for the following. 131-144 were made. Ammonium zirconium carbonate was added to the chemical conversion treatment solution. Chemical conversion treated steel sheet No. At 133-136, 139, 140, 144, diammonium hydrogen phosphate was further added. Chemical conversion treated steel sheet No. In 134, 135, 140, 142-144, ammonium molybdate was further added to the chemical conversion treatment solution as a group 5 metal oxoate. Chemical conversion treated steel sheet No. In 133, 135, 139, 141, 143, and 144, vanadium pentoxide was further added to the chemical conversion treatment solution as a Group 6 metal oxoacid salt. Chemical conversion treated steel sheet No. In 136, 137, 144, sodium pyrophosphate was further added as a Group 1 containing compound. Chemical conversion treated steel sheet No. In 132, 138 and 140, zirconium nitrate was further added. Chemical conversion treated steel sheet No. At 138, potassium nitrate was further added.

表8は、化成処理鋼板No.131〜144の皮膜組成、物性および化成処理鋼板の耐食性について示す表である。 Table 8 shows the chemical conversion treated steel sheet Nos. It is a table which shows the film composition, the physical property and the corrosion resistance of a chemical conversion-treated steel sheet of 131-144.

Figure 2021001389
Figure 2021001389

実施例の化成処理鋼板No.No.131〜144においても同様に、金属酸化物ポリマーによって形成されたマトリックスの一部として、異種構造部および島部がマトリックス中に分散して適度に存在しており、優れた平坦部耐食性および加工部耐食性を示した。 Examples of chemical conversion-treated steel sheets No. No. Similarly, in 131 to 144, different structural parts and island parts are dispersed in the matrix and appropriately present as a part of the matrix formed of the metal oxide polymer, and excellent flat part corrosion resistance and processed parts are present. It showed corrosion resistance.

1、1A 化成処理鋼板
10 Zn系めっき鋼板
11 基材鋼板
12 Zn系めっき層
20、20A 化成処理皮膜
41 海部
42 島部
1, 1A Chemical conversion treated steel sheet 10 Zn-based plated steel sheet 11 Base steel sheet 12 Zn-based plated layer 20, 20A Chemical conversion-treated film 41 Umibe 42 Shimabe

Claims (12)

基材鋼板の表面にZn系めっき層を有するZn系めっき鋼板と、
前記Zn系めっき層の表面上に形成された化成処理皮膜と、を有し、
前記化成処理皮膜において、少なくとも1種の4族金属オキソ酸の重合体である金属酸化物ポリマーによって形成されたマトリックスの一部として、(i)前記4族金属オキソ酸が有する4族金属と(ii)特定のオキソ酸とが結合した塩が、前記マトリックス中に分散して存在しており、
前記化成処理皮膜は、前記マトリックスを海部とし、前記塩を含む島部が前記マトリックス中に分散して存在する海島構造を有していることを特徴とする化成処理鋼板。
A Zn-based plated steel sheet having a Zn-based plated layer on the surface of the base steel sheet,
It has a chemical conversion treatment film formed on the surface of the Zn-based plating layer.
In the chemical conversion film, as a part of the matrix formed by the metal oxide polymer which is a polymer of at least one group 4 metal oxo acid, (i) the group 4 metal contained in the group 4 metal oxo acid (i). ii) A salt bound to a specific oxo acid is dispersed and present in the matrix.
The chemical conversion-treated steel sheet is characterized in that the matrix is a sea portion and the island portions containing the salt have a sea-island structure in which the island portions are dispersed in the matrix.
前記島部は、平均粒径が0.01μm以上0.5μm以下であり、前記化成処理皮膜を平面視したときの前記海島構造における面積率が10%以上50%以下であることを特徴とする請求項1に記載の化成処理鋼板。 The island portion has an average particle size of 0.01 μm or more and 0.5 μm or less, and has an area ratio of 10% or more and 50% or less in the sea-island structure when the chemical conversion treatment film is viewed in a plan view. The chemical conversion-treated steel sheet according to claim 1. 前記化成処理皮膜中に含まれる前記4族金属のうち、前記金属酸化物ポリマーの基本構造を形成している前記4族金属の原子比率をX、前記特定のオキソ酸と結合して塩を形成している前記4族金属の原子比率をYとすると、
前記化成処理皮膜は、Y/(X+Y)=0.1〜0.6であることを特徴とする請求項1または2に記載の化成処理鋼板。
Among the group 4 metals contained in the chemical conversion treatment film, the atomic ratio of the group 4 metal forming the basic structure of the metal oxide polymer is set to X, and the salt is formed by combining with the specific oxo acid. Assuming that the atomic ratio of the group 4 metal is Y,
The chemical conversion-treated steel sheet according to claim 1 or 2, wherein the chemical conversion-treated film is Y / (X + Y) = 0.1 to 0.6.
前記4族金属は、Zrであることを特徴とする請求項1〜3のいずれか1項に記載の化成処理鋼板。 The chemical conversion-treated steel sheet according to any one of claims 1 to 3, wherein the group 4 metal is Zr. 前記特定のオキソ酸がリン酸であり、
前記化成処理皮膜は、前記マトリックス中に、さらに、5族金属オキソ酸および6族金属オキソ酸(但しCrオキソ酸を除く)の少なくとも一方を含むことを特徴とする請求項1〜4のいずれか1項に記載の化成処理鋼板。
The specific oxo acid is phosphoric acid,
Any of claims 1 to 4, wherein the chemical conversion-treated film further contains at least one of a group 5 metal oxo acid and a group 6 metal oxo acid (excluding Cr oxo acid) in the matrix. The chemical conversion-treated steel plate according to item 1.
前記化成処理皮膜は、1族金属をさらに含有することを特徴とする請求項1〜5のいずれか1項に記載の化成処理鋼板。 The chemical conversion-treated steel sheet according to any one of claims 1 to 5, wherein the chemical conversion-treated film further contains a Group 1 metal. 前記化成処理皮膜は、前記マトリックス中に、さらに、前記4族金属以外の金属のリン酸塩を含有することを特徴とする請求項1〜6のいずれか1項に記載の化成処理鋼板。 The chemical conversion-treated steel sheet according to any one of claims 1 to 6, wherein the chemical conversion-treated film further contains a phosphate of a metal other than the group 4 metal in the matrix. 前記特定のオキソ酸が、5族金属オキソ酸および6族金属オキソ酸(但しCrオキソ酸を除く)の少なくとも一方であることを特徴とする請求項1〜7のいずれか1項に記載の化成処理鋼板。 The chemical conversion according to any one of claims 1 to 7, wherein the specific oxo acid is at least one of a group 5 metal oxo acid and a group 6 metal oxo acid (excluding Cr oxo acid). Treated steel plate. 前記島部は、有機リン酸塩を含むことを特徴とする請求項1〜8のいずれか1項に記載の化成処理鋼板。 The chemical conversion-treated steel sheet according to any one of claims 1 to 8, wherein the island portion contains an organic phosphate. 前記Zn系めっき層は、Znを40質量%以上含有することを特徴とする請求項1〜9のいずれか1項に記載の化成処理鋼板。 The chemical conversion-treated steel sheet according to any one of claims 1 to 9, wherein the Zn-based plating layer contains 40% by mass or more of Zn. 基材鋼板の表面にZn系めっき層を有するZn系めっき鋼板に対して、
(i)少なくとも1種の4族金属オキソ酸塩、および、(ii)特定のオキソ酸を含む塩、の両方を含む化成処理液を塗布する化成処理液塗布ステップと、
前記化成処理液塗布ステップの直後から静置時間35秒以下にて前記化成処理液の加熱乾燥を開始し、前記Zn系めっき鋼板の温度が80℃に到達するまでの昇温時間を1秒以上10秒以下とし、最高到達温度を170℃以下として前記化成処理液を乾燥させて前記Zn系めっき鋼板の表面上に化成処理皮膜を形成する加熱乾燥ステップと、を含むことを特徴とする化成処理鋼板の製造方法。
For a Zn-based plated steel sheet having a Zn-based plated layer on the surface of the base steel sheet,
A chemical conversion treatment liquid application step of applying a chemical conversion treatment liquid containing both (i) at least one group 4 metal oxoacid salt and (ii) a salt containing a specific oxo acid.
Immediately after the chemical conversion treatment liquid application step, the heat drying of the chemical conversion treatment liquid is started with a standing time of 35 seconds or less, and the temperature rise time until the temperature of the Zn-based galvanized steel sheet reaches 80 ° C. is 1 second or more. The chemical conversion treatment comprises 10 seconds or less, a maximum reaching temperature of 170 ° C. or less, and a heat-drying step of drying the chemical conversion treatment liquid to form a chemical conversion treatment film on the surface of the Zn-based plated steel sheet. Steel plate manufacturing method.
前記Zn系めっき層は、Znを40質量%以上含有することを特徴とする請求項11に記載の化成処理鋼板の製造方法。 The method for producing a chemical conversion-treated steel sheet according to claim 11, wherein the Zn-based plating layer contains 40% by mass or more of Zn.
JP2020016539A 2019-06-18 2020-02-03 Chemically-treated steel sheet and method for manufacturing same Pending JP2021001389A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019113076A JP6692480B1 (en) 2019-06-18 2019-06-18 Chemical conversion treated steel plate
JP2019113076 2019-06-18

Publications (1)

Publication Number Publication Date
JP2021001389A true JP2021001389A (en) 2021-01-07

Family

ID=70549729

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2019113076A Active JP6692480B1 (en) 2019-06-18 2019-06-18 Chemical conversion treated steel plate
JP2020016536A Pending JP2021001386A (en) 2019-06-18 2020-02-03 Chemically-treated steel sheet and method for manufacturing same
JP2020016538A Pending JP2021001388A (en) 2019-06-18 2020-02-03 Chemically-treated steel sheet and method for manufacturing same
JP2020016539A Pending JP2021001389A (en) 2019-06-18 2020-02-03 Chemically-treated steel sheet and method for manufacturing same
JP2020016537A Pending JP2021001387A (en) 2019-06-18 2020-02-03 Chemically-treated steel sheet and method for manufacturing same

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2019113076A Active JP6692480B1 (en) 2019-06-18 2019-06-18 Chemical conversion treated steel plate
JP2020016536A Pending JP2021001386A (en) 2019-06-18 2020-02-03 Chemically-treated steel sheet and method for manufacturing same
JP2020016538A Pending JP2021001388A (en) 2019-06-18 2020-02-03 Chemically-treated steel sheet and method for manufacturing same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020016537A Pending JP2021001387A (en) 2019-06-18 2020-02-03 Chemically-treated steel sheet and method for manufacturing same

Country Status (3)

Country Link
JP (5) JP6692480B1 (en)
TW (1) TW202100803A (en)
WO (1) WO2020255437A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4139254B2 (en) * 2003-03-26 2008-08-27 日新製鋼株式会社 Post-treatment method for galvanized steel sheet
JP5526589B2 (en) * 2009-04-20 2014-06-18 新日鐵住金株式会社 Surface-treated steel sheet, method for producing surface-treated steel sheet, and casing obtained from the steel sheet
JP5715556B2 (en) * 2011-12-27 2015-05-07 新日鐵住金株式会社 Galvanized steel sheet with excellent post-processing corrosion resistance and anti-degradation fuel resistance
JP6260708B2 (en) * 2015-06-15 2018-01-17 Jfeスチール株式会社 Surface-treated galvanized steel sheet and method for producing the same

Also Published As

Publication number Publication date
TW202100803A (en) 2021-01-01
JP2021001386A (en) 2021-01-07
JP6692480B1 (en) 2020-05-13
JP2021001387A (en) 2021-01-07
WO2020255437A1 (en) 2020-12-24
JP2021001388A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
TWI679303B (en) Surface-treated steel sheet and manufacturing method of surface-treated steel sheet
RU2750923C1 (en) Pretreatment of aluminum surfaces with compounds containing zirconium and molybdenum
JP6272207B2 (en) Chemical conversion solution
JP5157487B2 (en) Steel plate for containers and manufacturing method thereof
AU2014355320A1 (en) Method for treating surface of zinc-aluminum-magnesium alloy-plated steel sheet
JP2016089232A (en) Method for surface-treating zinc-aluminum magnesium alloy plated steel sheet
JP2009068115A (en) Production method of surface-treated steel sheet, surface-treated steel sheet and resin-coated surface-treated steel sheet obtained by coating surface-treated steel sheet with organic resin
JP2002194559A (en) Chemical conversion coated steel sheet superior in corrosion resistance
JP6040716B2 (en) Treatment liquid, steel plate for container, and method for producing steel plate for container
JP5611128B2 (en) Surface-treated aluminized steel sheet and its manufacturing method
JP6981493B2 (en) Manufacturing method of chemical conversion steel sheet
JP2021001389A (en) Chemically-treated steel sheet and method for manufacturing same
JP2003213458A (en) Cr-FREE CHEMICAL CONVERSION-TREATED ALUMINUM-BASED PLATED STEEL SHEET
TWI790366B (en) Chemical conversion treatment liquid and chemical conversion treatment steel plate
JP2018003165A (en) Chemically converted steel sheet
JP5338195B2 (en) Surface-treated galvanized steel sheet and method for producing the same
JP6672519B1 (en) Chemical conversion treated steel sheet
JP3305702B2 (en) Aluminum plated steel sheet for fuel tank
JP5442346B2 (en) Method for producing chemical conversion treated steel sheet
TW201940739A (en) Chemical treatment liquid and chemically treated steel sheet
JP2020066793A (en) Surface treatment liquid and manufacturing method of surface-treated steel plate and surface-treated steel plate
JP2006283101A (en) Surface treated steel sheet for organic resin coated steel sheet
JP2003293168A (en) PRECOATED Al-Si ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE
JP7099424B2 (en) Zinc-based plated steel sheet with surface treatment film and its manufacturing method
JP2020029623A (en) Chemical conversion solution, and chemical conversion treated steel sheet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901