JP2021000607A - Operational method of biological treatment apparatus - Google Patents

Operational method of biological treatment apparatus Download PDF

Info

Publication number
JP2021000607A
JP2021000607A JP2019115614A JP2019115614A JP2021000607A JP 2021000607 A JP2021000607 A JP 2021000607A JP 2019115614 A JP2019115614 A JP 2019115614A JP 2019115614 A JP2019115614 A JP 2019115614A JP 2021000607 A JP2021000607 A JP 2021000607A
Authority
JP
Japan
Prior art keywords
gas
condensed water
biological treatment
treatment apparatus
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019115614A
Other languages
Japanese (ja)
Other versions
JP7283253B2 (en
Inventor
大地 澤村
Daichi Sawamura
大地 澤村
和也 小松
Kazuya Komatsu
和也 小松
哲朗 深瀬
Tetsuro Fukase
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=73994600&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2021000607(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2019115614A priority Critical patent/JP7283253B2/en
Publication of JP2021000607A publication Critical patent/JP2021000607A/en
Application granted granted Critical
Publication of JP7283253B2 publication Critical patent/JP7283253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

To provide an operation method of a biological treatment apparatus capable of easily discharging condensed water from a gas dissolving film and maintaining high gas dissolving efficiency for a long period of time.SOLUTION: Gas dissolving membrane modules 1 to 4 are arranged in parallel in a reaction tank 11. During normal operation, gas is uniformly supplied from a blower 12 to each gas dissolving membrane module 1 to 4. When the gas supply pressure increases more than a predetermined value compared to the normal operation, some valves, for example, two valves are closed and others are opened to increase the gas supply to the gas dissolving membrane modules 1, 2 or 3, 4 connected to the other valves to discharge the condensate.SELECTED DRAWING: Figure 1

Description

本発明は、有機性排水をガス溶解膜を用いて生物処理する生物処理装置の運転方法に係り、特にガス溶解膜に酸素含有ガスを通気して膜を通じて酸素を供給することで好気性生物処理を行う生物処理装置や、ガス溶解膜にメタン含有ガスを通気して膜を通じてメタンを供給することで生物脱窒処理を行う生物処理装置に適用するのに好適な生物処理装置の運転方法に関する。 The present invention relates to an operation method of a biological treatment apparatus for biologically treating organic wastewater using a gas dissolution membrane, and particularly aerobic biological treatment by aerating an oxygen-containing gas through the gas dissolution membrane and supplying oxygen through the membrane. The present invention relates to a method for operating a biological treatment apparatus suitable for application to a biological treatment apparatus for performing biological denitrification treatment by aerating a methane-containing gas through a gas dissolution membrane and supplying methane through the membrane.

好気性生物処理方法は安価であるため有機性廃水の処理法として多用されている。本方法では、被処理水への酸素の溶解が必要であり、通常は散気管による曝気が行われている。 Since aerobic organism treatment methods are inexpensive, they are often used as treatment methods for organic wastewater. In this method, it is necessary to dissolve oxygen in the water to be treated, and aeration is usually performed by an air diffuser.

散気管による曝気は溶解効率が5〜20%程度と低い。また、散気管の設置される水深にかかる水圧以上の圧力で曝気することが必要であり、高圧で多量の空気を送風するため、ブロワの電力費が高い。通常は、好気性生物処理における電力費の2/3以上が酸素溶解のために使用されている。 Aeration with an air diffuser has a low dissolution efficiency of about 5 to 20%. In addition, it is necessary to aerate at a pressure higher than the water pressure applied to the water depth where the air diffuser is installed, and a large amount of air is blown at a high pressure, so that the power cost of the blower is high. Usually, more than two-thirds of the electricity costs in aerobic biotreatment are used for oxygen dissolution.

中空糸膜の外側に生物膜を付着させ、内側から酸素を供給することで好気性生物処理を行うメンブレンエアレーションバイオリアクター(MABR)は、気泡の発生なしで酸素溶解できる。MABRでは、水深にかかる水圧よりも低い圧力の空気を通気すればよいため、ブロワの必要圧力が低く、また、酸素の溶解効率が高い。 A membrane aeration bioreactor (MABR) that performs aerobic biological treatment by adhering a biofilm to the outside of a hollow fiber membrane and supplying oxygen from the inside can dissolve oxygen without generating bubbles. In MABR, since it is sufficient to ventilate air having a pressure lower than the water pressure applied to the water depth, the required pressure of the blower is low and the oxygen dissolution efficiency is high.

中空糸膜を用いたMABR型排水処理装置では、膜の内側に凝縮水が発生し、空気の流れを妨げる。これにより、十分な酸素(もしくはメタンなど)が反応槽内に溶解しない現象が生じる。特に比表面積の大きな細い膜は毛細管現象などにより、凝縮水の除去が難しい。 In the MABR type wastewater treatment apparatus using a hollow fiber membrane, condensed water is generated inside the membrane and obstructs the flow of air. This causes a phenomenon in which sufficient oxygen (or methane, etc.) does not dissolve in the reaction vessel. In particular, it is difficult to remove condensed water from a thin film having a large specific surface area due to capillarity.

通常、凝縮水は連続的に発生するため、定期的に水抜きを実施して凝縮水を排除する必要がある。 Normally, condensed water is continuously generated, so it is necessary to drain the condensed water regularly to eliminate the condensed water.

上記課題は好気性生物処理に限らず、反応槽内に浸漬したガス溶解膜を通じて生物処理に使用される電子伝達体(電子供与体、電子受容体)を供給する方式の生物処理に共通の課題である。 The above-mentioned problems are not limited to aerobic biological treatment, but are common problems in biological treatment of a method of supplying electron carriers (electron donors, electron acceptors) used for biological treatment through a gas dissolution membrane immersed in a reaction vessel. Is.

特許文献2には、酸素透過中空糸膜を上下方向に配設し、酸素含有ガスを上向きに流し、凝縮水を蒸発し易くした好気性生物処理装置が記載されている。 Patent Document 2 describes an aerobic biological treatment apparatus in which an oxygen-permeable hollow fiber membrane is arranged in the vertical direction, an oxygen-containing gas is allowed to flow upward, and condensed water is easily evaporated.

特開2006−87310号公報JP-A-2006-87310 特開2018−89564号公報JP-A-2018-89564

本発明はガス溶解膜内から凝縮水が容易に排出され、高いガス溶解効率を長期間維持することができる生物処理装置の運転方法を提供することを目的とする。 An object of the present invention is to provide a method for operating a biological treatment apparatus in which condensed water is easily discharged from the gas dissolution membrane and high gas dissolution efficiency can be maintained for a long period of time.

本発明の生物処理装置の運転方法は、有機性排水が通水される反応槽と、該反応槽内に設置されたガス溶解膜モジュールと、該ガス溶解膜モジュールに気体状の電子伝達体を含有する電子伝達体含有ガスを供給するガス供給手段と、ガス溶解膜に溶解しなかったガスを該ガス溶解膜モジュールから反応槽外に排出する排ガス配管とを備えてなる生物処理装置の運転方法において、電子伝達体含有ガスの供給量を通常運転時よりも増加させて凝縮水をガス溶解膜モジュール外に排出する凝縮水排出工程を行うことを特徴とする。 In the operation method of the biological treatment apparatus of the present invention, a reaction tank through which organic wastewater is passed, a gas dissolution film module installed in the reaction tank, and a gaseous electron transmitter are provided in the gas dissolution film module. A method of operating a biological treatment apparatus including a gas supply means for supplying a gas containing an electron transmitter and an exhaust gas pipe for discharging a gas not dissolved in the gas dissolution film from the gas dissolution film module to the outside of the reaction vessel. The present invention is characterized in that a condensed water discharge step is performed in which the supply amount of the electron transmitter-containing gas is increased as compared with the normal operation and the condensed water is discharged to the outside of the gas dissolution film module.

本発明の一態様では、前記ガス供給手段はブロワを備えており、前記凝縮水排出工程では該ブロワの送風量を通常運転時よりも増大させる。 In one aspect of the present invention, the gas supply means includes a blower, and in the condensed water discharge step, the amount of air blown by the blower is increased as compared with the normal operation.

本発明の一態様では、前記反応槽内に前記ガス溶解膜モジュールが複数設置されており、前記ガス供給手段は、前記凝縮水排出工程では、一部のガス溶解膜モジュールへの電子伝達体含有ガス供給量を減少させるか又は電子伝達体含有ガス供給を停止することにより、他のガス溶解膜モジュールへの電子伝達体含有ガス供給量を増加させて該他のガス溶解膜モジュールについて凝縮水排出を行う。 In one aspect of the present invention, a plurality of the gas dissolution membrane modules are installed in the reaction vessel, and the gas supply means contains an electron carrier to a part of the gas dissolution membrane modules in the condensed water discharge step. By reducing the gas supply or stopping the electron carrier-containing gas supply, the electron carrier-containing gas supply to the other gas-dissolved membrane module is increased and the condensed water is discharged from the other gas-dissolved membrane module. I do.

本発明の一態様では、前記電子伝達体含有ガス供給量を減少させるか又は停止するガス溶解膜モジュールを順次に切り替える。 In one aspect of the present invention, the gas dissolution membrane module that reduces or stops the electron carrier-containing gas supply amount is sequentially switched.

本発明の一態様では、前記凝縮水排出工程を行うガス溶解膜モジュールへの電子伝達体含有ガス供給量を、通常運転時の電子伝達体含有ガス供給量の2〜20倍とする。 In one aspect of the present invention, the amount of hydrogen carrier-containing gas supplied to the gas dissolution membrane module that performs the condensed water discharge step is 2 to 20 times the amount of hydrogen carrier-containing gas supplied during normal operation.

本発明の一態様では、前記通常運転時に前記ガス溶解膜モジュールへの電子伝達体含有ガス供給圧力が所定値よりも高くなったときに前記凝縮水排出工程を行う。 In one aspect of the present invention, the condensed water discharge step is performed when the gas supply pressure containing an electron carrier to the gas dissolution membrane module becomes higher than a predetermined value during the normal operation.

本発明の生物処理装置の運転方法では、ガス溶解膜モジュールへの電子伝達体含有ガス供給量を増加させて凝縮水を排出する凝縮水排出工程を行うので、ガス溶解膜から凝縮水が速やかに反応槽外へ排出される。そのため、ガス溶解膜の電子伝達体溶解効率を常に高く維持することができる。 In the operation method of the biological treatment apparatus of the present invention, the condensed water discharge step of increasing the amount of the gas containing the electron carrier to the gas dissolution film module and discharging the condensed water is performed, so that the condensed water is quickly discharged from the gas dissolution film. It is discharged to the outside of the reaction tank. Therefore, the electron carrier dissolution efficiency of the gas dissolution membrane can always be maintained high.

実施の形態に係る生物処理装置の縦断面図である。It is a vertical sectional view of the biological processing apparatus which concerns on embodiment. 実験結果を示すグラフである。It is a graph which shows the experimental result. 実施の形態に用いた生物処理装置の縦断面図である。It is a vertical sectional view of the biological treatment apparatus used in the embodiment.

以下、図面を参照して本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.

図1は実施の形態に係る好気性生物処理装置10の縦断面図である。この好気性生物処理装置10は、反応槽(槽体)11と、該反応槽11内に配置された複数の酸素溶解膜モジュール(ガス溶解膜モジュールに相当)1,2,3,4を備えている。 FIG. 1 is a vertical cross-sectional view of the aerobic organism treatment apparatus 10 according to the embodiment. The aerobic biological treatment apparatus 10 includes a reaction tank (tank body) 11 and a plurality of oxygen dissolution membrane modules (corresponding to gas dissolution membrane modules) 1, 2, 3 and 4 arranged in the reaction tank 11. ing.

各酸素溶解膜モジュール1〜4には、ブロワ12から酸素含有ガス(電子伝達体含有ガスに相当)として空気が配管13、該配管13から分岐した配管21,22,23,24及びバルブ31,32,33,34を介して供給される。酸素溶解膜モジュール1〜4を通過した排ガスは、配管41,42,43,44及び合流配管45(排ガス配管に相当)を介して反応槽11外に流出する。 In each of the oxygen dissolution film modules 1 to 4, air is supplied from the blower 12 as an oxygen-containing gas (corresponding to an electron carrier-containing gas) to the pipe 13, the pipes 21, 22, 23, 24 and the valve 31 branched from the pipe 13. It is supplied via 32, 33, 34. The exhaust gas that has passed through the oxygen dissolution membrane modules 1 to 4 flows out of the reaction tank 11 through the pipes 41, 42, 43, 44 and the merging pipe 45 (corresponding to the exhaust gas pipe).

図1では、反応槽11に流動床担体を充填しておらず、酸素溶解膜はMABRとして作用する。即ち、酸素溶解膜の表面に生物膜が付着して酸素溶解膜の一次側から溶解・供給された酸素が二次側の生物膜に消費されて好気性生物処理が行われる。ただし、反応槽11に流動床担体を充填して、酸素溶解膜の表面への生物膜の付着を担体の流動による剪断力によって抑制して生物膜の大部分が流動床担体に付着するようにしてもよく、このとき、酸素溶解膜は酸素供給の目的のみに用いられる。 In FIG. 1, the reaction vessel 11 is not filled with a fluidized bed carrier, and the oxygen dissolution membrane acts as a MABR. That is, the biofilm adheres to the surface of the oxygen-dissolved membrane, and the oxygen dissolved and supplied from the primary side of the oxygen-dissolved membrane is consumed by the biofilm on the secondary side to perform aerobic biological treatment. However, the reaction vessel 11 is filled with a fluidized bed carrier so that the adhesion of the biofilm to the surface of the oxygen dissolution film is suppressed by the shearing force due to the flow of the carrier so that most of the biofilm adheres to the fluidized bed carrier. At this time, the oxygen dissolving membrane may be used only for the purpose of supplying oxygen.

図1では、酸素溶解膜として非多孔質(ノンポーラス)の酸素溶解膜を用い、酸素含有気体をブロワ12から配管13,21〜24を通じて酸素溶解膜の一次側に通気して、排気は配管41〜45を通じて槽外に排出するように構成している。そのため、酸素含有気体を、低圧で酸素溶解膜に通気し、酸素を酸素分子として酸素溶解膜の構成原子の間を通過し(膜に浸透し)、酸素分子として被処理水と接触させる(水に直接溶解させるので気泡を生じない)という、いわば濃度勾配による分子拡散のメカニズムを用いた処理を行っているため、従来のように散気管などによる散気が不要となる。 In FIG. 1, a non-porous (non-porous) oxygen-dissolving film is used as the oxygen-dissolving film, oxygen-containing gas is ventilated from the blower 12 to the primary side of the oxygen-dissolving film through pipes 13, 21 to 24, and the exhaust is piped. It is configured to be discharged to the outside of the tank through 41 to 45. Therefore, the oxygen-containing gas is aerated through the oxygen dissolving membrane at low pressure, oxygen is passed between the constituent atoms of the oxygen dissolving membrane as oxygen molecules (penetrates into the membrane), and is brought into contact with the water to be treated as oxygen molecules (water). Since it dissolves directly in oxygen, no bubbles are generated), so to speak, the treatment using the mechanism of molecular diffusion by the concentration gradient is performed, so that the air diffusion by the air diffuser or the like becomes unnecessary as in the conventional case.

また酸素溶解膜として疎水性の素材を用いると膜中に浸水しづらいので好ましいが、疎水性であっても微量の浸水は免れないので本発明の使用が好ましい。 Further, it is preferable to use a hydrophobic material as the oxygen dissolving membrane because it is difficult for water to enter the membrane, but even if it is hydrophobic, a small amount of water is unavoidable, so the use of the present invention is preferable.

この酸素溶解膜モジュール1〜4は酸素溶解膜として中空糸膜を用いたものであってもよい。特に、内径0.1〜2mmの中空糸で構成されるとき本発明の課題が顕著となる。中空糸膜は上下方向に配列され、各中空糸膜の上端は上部ヘッダーに連なり、下端は下部ヘッダーに連なり、中空糸膜の内部は、それぞれ上部ヘッダー及び下部ヘッダー内に連通した構成とすることが好ましい。 The oxygen dissolution membrane modules 1 to 4 may use a hollow fiber membrane as the oxygen dissolution membrane. In particular, the problem of the present invention becomes remarkable when it is composed of a hollow yarn having an inner diameter of 0.1 to 2 mm. The hollow fiber membranes are arranged in the vertical direction, the upper end of each hollow fiber membrane is connected to the upper header, the lower end is connected to the lower header, and the inside of the hollow fiber membrane is connected to the upper header and the lower header, respectively. Is preferable.

酸素溶解膜モジュール1〜4の上部に供給された空気等の酸素含有ガスは上部ヘッダーから中空糸膜を通って下部ヘッダーへ流れ、この間に酸素が中空糸膜を透過して反応槽11内の水に溶解する。 Oxygen-containing gas such as air supplied to the upper part of the oxygen dissolution membrane modules 1 to 4 flows from the upper header through the hollow fiber membrane to the lower header, and during this time, oxygen permeates the hollow fiber membrane and enters the reaction tank 11. Dissolves in water.

図1の実施の形態では、酸素溶解膜モジュール1〜4が並列に設置されており、通常運転時には、ブロワ12により給気された空気が各酸素溶解膜モジュール1〜4に均等に供給される。反応槽11に被処理水(有機性排水)が供給され、好気性生物処理された処理水が反応槽11から流出する。 In the embodiment of FIG. 1, the oxygen dissolved membrane modules 1 to 4 are installed in parallel, and the air supplied by the blower 12 is evenly supplied to the oxygen dissolved membrane modules 1 to 4 during normal operation. .. Water to be treated (organic wastewater) is supplied to the reaction tank 11, and the treated water treated with aerobic organisms flows out from the reaction tank 11.

凝縮水排出工程を行うときには、バルブ31〜34のうち一部のものを閉じ、該一部のバルブが連なる酸素溶解膜モジュールへの空気供給を停止し、他の酸素溶解膜モジュールへの空気供給量を増大させる。 When performing the condensed water discharge step, some of the valves 31 to 34 are closed, the air supply to the oxygen dissolution film module to which the some valves are connected is stopped, and the air supply to the other oxygen dissolution film modules is performed. Increase the amount.

本発明では、凝縮水排出工程における空気供給量は、通常運転時の2倍以上、特に2〜20倍とりわけ2〜5以上であることが好ましい。空気供給量を2倍とするときには、例えばまずバルブ31,32を閉じてバルブ33,34は開のままとすることで、酸素溶解膜モジュール3,4への空気供給量を通常運転時の2倍とする。所定時間この状態とした後、バルブ33,34を閉じ、バルブ31,32を開とすることで、酸素溶解膜モジュール1,2への空気供給量を通常運転時の2倍とする。所定時間経過後、すべてのバルブ31〜34を開とし、通常運転に復帰する。 In the present invention, the amount of air supplied in the condensed water discharge step is preferably twice or more, particularly 2 to 20 times, particularly 2 to 5 or more in the normal operation. When doubling the air supply amount, for example, by first closing the valves 31 and 32 and leaving the valves 33 and 34 open, the air supply amount to the oxygen dissolution membrane modules 3 and 4 is set to 2 during normal operation. Double. After this state is maintained for a predetermined time, the valves 33 and 34 are closed and the valves 31 and 32 are opened, so that the amount of air supplied to the oxygen dissolution membrane modules 1 and 2 is doubled during normal operation. After a lapse of a predetermined time, all valves 31 to 34 are opened to return to normal operation.

凝縮水排出工程の空気供給量を通常運転時の4倍とするときには、例えばバルブ31のみを開とし、他のバルブ32〜34を閉とすることで、酸素溶解膜モジュール1への空気供給量を通常運転時の4倍とする。順次にバルブ32のみ、33のみ、34のみを開とし、酸素溶解膜モジュール2,3,4での凝縮水排出を行う。 When the amount of air supplied in the condensed water discharge process is four times that in normal operation, for example, by opening only the valve 31 and closing the other valves 32 to 34, the amount of air supplied to the oxygen dissolution film module 1 Is four times that during normal operation. Only the valves 32, 33, and 34 are opened in sequence, and the condensed water is discharged by the oxygen dissolution membrane modules 2, 3 and 4.

図1では4個の酸素溶解膜モジュール1〜4が並列設置されているが、酸素溶解膜モジュールの設置数は任意である。ただし、本実施形態のようにバルブ開閉によって空気供給量を切り替える場合は酸素溶解膜モジュールの設置数は2以上である必要がある。 In FIG. 1, four oxygen dissolution membrane modules 1 to 4 are installed in parallel, but the number of oxygen dissolution membrane modules installed is arbitrary. However, when the air supply amount is switched by opening and closing the valve as in the present embodiment, the number of installed oxygen dissolution membrane modules needs to be 2 or more.

凝縮水排出工程は、定期的に行ってもよく、配管13における空気供給圧力が所定圧力よりも高くなったとき(例えば通常運転時の圧力の1.2倍以上になったとき)又は空気供給量が所定量よりも少なくなったときに行うようにしてもよい。 The condensed water discharge step may be performed periodically, and when the air supply pressure in the pipe 13 becomes higher than the predetermined pressure (for example, when the pressure becomes 1.2 times or more the pressure during normal operation) or the air supply It may be performed when the amount becomes less than a predetermined amount.

凝縮水排出は、通常、1〜2週間に1回程度の頻度で、1個の酸素溶解膜モジュールにつき1回の凝縮水排出を1〜30分程度行えば十分である。 Condensed water is usually discharged once every 1 to 2 weeks, and it is sufficient to discharge the condensed water once per oxygen-dissolved membrane module for about 1 to 30 minutes.

<推定される作用機構>
酸素溶解膜モジュールを浸漬した反応槽で長期間継続運転する場合に、本発明に従った凝縮水排出を実施しなかった場合と、本発明に従った凝縮水排出を定期的に実施した場合の酸素溶解膜モジュール内圧(通気圧損)の経時変化の一例を図2に示す。
<Estimated mechanism of action>
When the reaction tank in which the oxygen dissolution film module is immersed is continuously operated for a long period of time, the case where the condensed water discharge according to the present invention is not carried out and the case where the condensed water discharge according to the present invention is carried out periodically FIG. 2 shows an example of the change over time in the oxygen dissolution film module internal pressure (ventilation pressure loss).

凝縮水の排出を行わない場合は、凝縮水の蓄積により閉塞する中空糸の本数が徐々に増えていき、それに伴って、酸素溶解膜モジュールの通気抵抗が高くなるため、内圧が徐々に高くなるものと推定される(図2の△)。 When the condensed water is not discharged, the number of hollow fibers that are blocked due to the accumulation of the condensed water gradually increases, and the ventilation resistance of the oxygen dissolution membrane module increases accordingly, so that the internal pressure gradually increases. It is presumed to be (Δ in Fig. 2).

一方、凝縮水を排出することにより、閉塞している中空糸の本数が減少し、酸素溶解膜モジュールの内圧が所定値以下まで低下すると推定される。この凝縮水の排出を定期的に行うことにより、酸素溶解膜モジュールの内圧を長期的に所定値以下に維持することができ、安定した酸素供給が可能となる(図2の○)。 On the other hand, it is presumed that by discharging the condensed water, the number of closed hollow fibers is reduced and the internal pressure of the oxygen dissolution membrane module is lowered to a predetermined value or less. By periodically discharging the condensed water, the internal pressure of the oxygen dissolution membrane module can be maintained below a predetermined value for a long period of time, and a stable oxygen supply becomes possible (◯ in FIG. 2).

上記説明では、バルブ31〜34を開閉切替作動させているが、閉動作の代りに、開度を絞る操作を行うことによって他の酸素溶解膜モジュールへの空気供給量を増加させるようにしてもよい。 In the above description, the valves 31 to 34 are switched between opening and closing, but instead of the closing operation, the amount of air supplied to the other oxygen dissolution membrane module may be increased by performing an operation of narrowing the opening. Good.

また、バルブを開閉(又は開度調整)する代りに、ブロワの出力を上げるか稼働台数を増やすことで供給風量を増大させることにより凝縮水排出を行ってもよい。ブロワ風量増大とバルブ操作とを組み合わせてもよい。 Further, instead of opening / closing (or adjusting the opening degree) the valve, the condensed water may be discharged by increasing the supply air volume by increasing the output of the blower or increasing the number of operating units. Blower air volume increase and valve operation may be combined.

凝縮水排出工程を行うときには、被処理水の流入量を減少させることが好ましいが、凝縮水排出工程が短時間であれば減少させなくてもよく、また凝縮水排出工程が長時間であれば被処理水流入を停止してもよい。 When performing the condensed water discharge step, it is preferable to reduce the inflow amount of the water to be treated, but if the condensed water discharge step is short, it is not necessary to reduce it, and if the condensed water discharge step is long. The inflow of water to be treated may be stopped.

本実施形態では好気性生物処理について説明したが、これに限らず、生物処理反応槽内に浸漬したガス溶解膜を通じて生物処理に使用される電子伝達体が供給される方式の生物処理であれば本発明を好適に用いることができる。 In this embodiment, aerobic biological treatment has been described, but the present invention is not limited to this, as long as it is a biological treatment in which an electron carrier used for biological treatment is supplied through a gas dissolution membrane immersed in a biological treatment reaction vessel. The present invention can be preferably used.

例えば、本実施形態は電子供与体として酸素を供給するために酸素含有ガスである空気を通気して好気性生物処理を行うものであるが、電子受容体としてメタンを供給するためにメタンガスを通気して生物脱窒処理を行うものであってもよい。 For example, in the present embodiment, air, which is an oxygen-containing gas, is aerated to supply oxygen as an electron donor to perform aerobic biological treatment, but methane gas is aerated to supply methane as an electron acceptor. It may be subjected to biological denitrification treatment.

なお、ガス溶解膜を用いる方式では、電子伝達体(電子供与体や電子受容体)が気体状である必要があり、またガス溶解膜の表面から内部へ分子拡散しうる物質である必要がある。 In the method using a gas dissolution film, the electron carrier (electron donor or electron acceptor) needs to be in a gaseous state, and it needs to be a substance capable of molecular diffusion from the surface of the gas dissolution film to the inside. ..

[実施例1]
図3に示す、25℃の純水を満たした200L反応槽51に酸素溶解膜モジュール52を浸漬配置した試験装置を作製した。配管53から酸素溶解膜モジュール52に空気を一定流量で通気し、排ガスを配管54から流出させた。空気流量及び圧力は流量計55、圧力計56で検出した。
[Example 1]
A test apparatus was prepared in which the oxygen dissolution membrane module 52 was immersed and arranged in a 200 L reaction tank 51 filled with pure water at 25 ° C. shown in FIG. Air was ventilated from the pipe 53 to the oxygen dissolution membrane module 52 at a constant flow rate, and the exhaust gas was discharged from the pipe 54. The air flow rate and pressure were detected by the flow meter 55 and the pressure gauge 56.

1週間に1回、1回当り10分間、通気量を2倍に調整して凝縮水を排出するようにした。酸素溶解膜入口側の圧力P(圧力計56検出値)は当初10kPaであった。 Once a week, the air volume was adjusted to double for 10 minutes each time to discharge the condensed water. The pressure P on the inlet side of the oxygen dissolution membrane (value detected by the pressure gauge 56) was initially 10 kPa.

2週間通常の運転を行ったところ、酸素溶解膜入口側の圧力P(圧力計56検出値)は約30kPaまで上昇した。そこで、通常運転の3倍の通気量で10分間通気し、その後初期の通気量に戻した。これにより、酸素溶解膜入口側の圧力P(圧力計56検出値)は約10kPaまで低下した。 After normal operation for 2 weeks, the pressure P (pressure gauge 56 detection value) on the oxygen dissolution membrane inlet side increased to about 30 kPa. Therefore, the air was ventilated for 10 minutes at a ventilation volume three times that of the normal operation, and then returned to the initial ventilation volume. As a result, the pressure P on the inlet side of the oxygen dissolution membrane (value detected by the pressure gauge 56) decreased to about 10 kPa.

以上の通り、本発明に従って凝縮水排出工程を行うことにより、通気圧力損失が低下し、高い酸素溶解効率が維持されることが認められた。 As described above, it was confirmed that the aeration pressure loss was reduced and the high oxygen dissolution efficiency was maintained by performing the condensed water discharge step according to the present invention.

1〜4、52 酸素溶解膜モジュール
11 反応槽
31〜34 バルブ
1-4, 52 Oxygen Dissolved Membrane Module 11 Reaction Tank 31-34 Valve

Claims (6)

有機性排水が通水される反応槽と、
該反応槽内に設置されたガス溶解膜モジュールと、
該ガス溶解膜モジュールに気体状の電子伝達体を含有する電子伝達体含有ガスを供給するガス供給手段と、
ガス溶解膜に溶解しなかったガスを該ガス溶解膜モジュールから反応槽外に排出する排ガス配管と
を備えてなる生物処理装置の運転方法において、
電子伝達体含有ガスの供給量を通常運転時よりも増加させて凝縮水をガス溶解膜モジュール外に排出する凝縮水排出工程を行うことを特徴とする生物処理装置の運転方法。
A reaction tank through which organic wastewater is passed, and
The gas dissolution membrane module installed in the reaction vessel and
A gas supply means for supplying an electron carrier-containing gas containing a gaseous electron carrier to the gas dissolution membrane module, and
In the operation method of the biological treatment apparatus including the exhaust gas pipe for discharging the gas not dissolved in the gas dissolution membrane module from the gas dissolution membrane module to the outside of the reaction vessel.
A method for operating a biological treatment apparatus, which comprises performing a condensed water discharge step of discharging condensed water to the outside of a gas dissolution membrane module by increasing the supply amount of a gas containing an electron carrier as compared with normal operation.
前記ガス供給手段はブロワを備えており、前記凝縮水排出工程では該ブロワの送風量を通常運転時よりも増大させることを特徴とする請求項1に記載の生物処理装置の運転方法。 The method for operating a biological treatment apparatus according to claim 1, wherein the gas supply means includes a blower, and the amount of air blown by the blower is increased in the condensed water discharge step as compared with the normal operation. 前記反応槽内に前記ガス溶解膜モジュールが複数設置されており、
前記ガス供給手段は、前記凝縮水排出工程では、一部のガス溶解膜モジュールへの電子伝達体含有ガス供給量を減少させるか又は電子伝達体含有ガス供給を停止することにより、他のガス溶解膜モジュールへの電子伝達体含有ガス供給量を増加させて該他のガス溶解膜モジュールについて凝縮水排出を行うことを特徴とする請求項1に記載の生物処理装置の運転方法。
A plurality of the gas dissolution membrane modules are installed in the reaction vessel.
In the condensed water discharge step, the gas supply means dissolves another gas by reducing the amount of the hydrogen carrier-containing gas supplied to some of the gas dissolution membrane modules or by stopping the supply of the hydrogen carrier-containing gas. The method for operating a biological treatment apparatus according to claim 1, wherein the amount of gas supplied to the membrane module containing an electron carrier is increased to discharge condensed water from the other gas-dissolved membrane module.
前記電子伝達体含有ガス供給量を減少させるか又は停止するガス溶解膜モジュールを順次に切り替えることを特徴とする請求項3に記載の生物処理装置の運転方法。 The method for operating a biological treatment apparatus according to claim 3, wherein the gas dissolution film module for reducing or stopping the supply amount of the gas containing an electron carrier is sequentially switched. 前記凝縮水排出工程を行うガス溶解膜モジュールへの電子伝達体含有ガス供給量を、通常運転時の電子伝達体含有ガス供給量の2〜20倍とすることを特徴とする請求項1〜4のいずれかに記載の生物処理装置の運転方法。 Claims 1 to 4 are characterized in that the amount of the electron carrier-containing gas supplied to the gas dissolution film module performing the condensed water discharge step is 2 to 20 times the amount of the electron carrier-containing gas supplied during normal operation. The operation method of the biological treatment apparatus according to any one of. 前記通常運転時に前記ガス溶解膜モジュールへの電子伝達体含有ガス供給圧力が所定値よりも高くなったときに前記凝縮水排出工程を行うことを特徴とする請求項1〜5のいずれかに記載の生物処理装置の運転方法。
The invention according to any one of claims 1 to 5, wherein the condensed water discharge step is performed when the gas supply pressure containing an electron carrier to the gas dissolution film module becomes higher than a predetermined value during the normal operation. How to operate the biological processing equipment.
JP2019115614A 2019-06-21 2019-06-21 Operation method of biological treatment equipment Active JP7283253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019115614A JP7283253B2 (en) 2019-06-21 2019-06-21 Operation method of biological treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019115614A JP7283253B2 (en) 2019-06-21 2019-06-21 Operation method of biological treatment equipment

Publications (2)

Publication Number Publication Date
JP2021000607A true JP2021000607A (en) 2021-01-07
JP7283253B2 JP7283253B2 (en) 2023-05-30

Family

ID=73994600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115614A Active JP7283253B2 (en) 2019-06-21 2019-06-21 Operation method of biological treatment equipment

Country Status (1)

Country Link
JP (1) JP7283253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772898A (en) * 2021-10-12 2021-12-10 无锡市政设计研究院有限公司 Self-running slow-flow water body filter feeding water quality strengthening and purifying system
US20220356093A1 (en) 2021-05-06 2022-11-10 Prosper Technologies, Llc Systems of gas infusion for wastewater treatment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290659A (en) * 1998-04-13 1999-10-26 Nitto Denko Corp Operation of membrane module
JP2018047404A (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Biological treatment apparatus
JP2018047405A (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Biological treatment device
JP2018047403A (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Biological treatment apparatus
WO2018150055A1 (en) * 2017-02-20 2018-08-23 Oxymem Limited A low-pressure, reversible airlift mixing system for use with a membrane aerated biofilm reactor
WO2018168022A1 (en) * 2017-03-16 2018-09-20 栗田工業株式会社 Aerobic biological treatment device
JP2019089564A (en) * 2017-11-13 2019-06-13 日本クロージャー株式会社 Synthetic resin container lid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290659A (en) * 1998-04-13 1999-10-26 Nitto Denko Corp Operation of membrane module
JP2018047404A (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Biological treatment apparatus
JP2018047405A (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Biological treatment device
JP2018047403A (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Biological treatment apparatus
WO2018150055A1 (en) * 2017-02-20 2018-08-23 Oxymem Limited A low-pressure, reversible airlift mixing system for use with a membrane aerated biofilm reactor
WO2018168022A1 (en) * 2017-03-16 2018-09-20 栗田工業株式会社 Aerobic biological treatment device
JP2018153731A (en) * 2017-03-16 2018-10-04 栗田工業株式会社 Aerobic biological treatment apparatus
JP2019089564A (en) * 2017-11-13 2019-06-13 日本クロージャー株式会社 Synthetic resin container lid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220356093A1 (en) 2021-05-06 2022-11-10 Prosper Technologies, Llc Systems of gas infusion for wastewater treatment
US11643344B2 (en) 2021-05-06 2023-05-09 Prosper Technologies, Llc Methods of gas infusion for wastewater treatment
US11697606B2 (en) 2021-05-06 2023-07-11 Prosper Technologies, Llc Systems of gas infusion for wastewater treatment
US11795081B2 (en) 2021-05-06 2023-10-24 Prosper Technologies, Llc Systems of gas infusion for wastewater treatment
CN113772898A (en) * 2021-10-12 2021-12-10 无锡市政设计研究院有限公司 Self-running slow-flow water body filter feeding water quality strengthening and purifying system

Also Published As

Publication number Publication date
JP7283253B2 (en) 2023-05-30

Similar Documents

Publication Publication Date Title
KR20220130835A (en) Floating apparatus for membrane biofilm reactor and process for water treatment
JP2021000607A (en) Operational method of biological treatment apparatus
KR940011525B1 (en) Biological treatment apparatus for waste water using oxygen membrane
CZ301746B6 (en) Method of deep biological purification of waste water and apparatus to implement the same
JP2007075821A (en) Biological treatment process and device of nitrous oxide gas
JP5700537B2 (en) Air diffuser system and air diffuser cleaning method
WO2019159667A1 (en) Aerobic biological treatment device
JP2006087310A (en) Membrane-type bioreactor and liquid treatment method using the same
JP2006101805A (en) Hollow fiber membrane type bioreactor and liquid treatment method using the same
JP5456238B2 (en) Membrane separator
JP2015192949A (en) Installation and method for water treatment
JP2019141780A (en) Aerobic biological treatment apparatus
JP2018192419A (en) Organic waste water treatment method and organic waste water treatment system
JP6858146B2 (en) Aerobic biological treatment equipment and its operation method
KR20220134022A (en) Method and apparatus for nitrification using membrane aeration biofilm reactor
WO2019163424A1 (en) Aerobic biological treatment device and method for operating same
JP6601517B2 (en) Operating method of aerobic biological treatment equipment
KR200380963Y1 (en) Disposal Equipment for dirty or waster water
JP2019141779A (en) Operation method of aerobic biological treatment apparatus
JP2019166441A (en) Biological treatment apparatus
JP2007144372A (en) Water treatment device
JP6558455B1 (en) Aerobic biological treatment equipment
JP6610688B2 (en) Aerobic biological treatment equipment
JP2022138892A (en) Wastewater treatment apparatus and method for operating wastewater treatment apparatus
TW200815296A (en) Membrane separation method, immersion type membrane separation device and membrane separation process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R150 Certificate of patent or registration of utility model

Ref document number: 7283253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150