JP2020529067A - 電気インピーダンス測定値を使用して手の動きを追跡するためのアームバンド - Google Patents

電気インピーダンス測定値を使用して手の動きを追跡するためのアームバンド Download PDF

Info

Publication number
JP2020529067A
JP2020529067A JP2020503308A JP2020503308A JP2020529067A JP 2020529067 A JP2020529067 A JP 2020529067A JP 2020503308 A JP2020503308 A JP 2020503308A JP 2020503308 A JP2020503308 A JP 2020503308A JP 2020529067 A JP2020529067 A JP 2020529067A
Authority
JP
Japan
Prior art keywords
user
arm
hand
signal
wrist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020503308A
Other languages
English (en)
Inventor
ベイペング ム,
ベイペング ム,
ナルディ, レンゾ デ
ナルディ, レンゾ デ
リチャード アンドリュー ニューカム,
リチャード アンドリュー ニューカム,
レイモンド キング,
レイモンド キング,
エヴァン ポール ガンダー,
エヴァン ポール ガンダー,
ロバート ワイ. ワン,
ロバート ワイ. ワン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meta Platforms Technologies LLC
Original Assignee
Facebook Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Facebook Technologies LLC filed Critical Facebook Technologies LLC
Publication of JP2020529067A publication Critical patent/JP2020529067A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/002Specific input/output arrangements not covered by G06F3/01 - G06F3/16
    • G06F3/005Input arrangements through a video camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/014Hand-worn input/output arrangements, e.g. data gloves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0308Detection arrangements using opto-electronic means comprising a plurality of distinctive and separately oriented light emitters or reflectors associated to the pointing device, e.g. remote cursor controller with distinct and separately oriented LEDs at the tip whose radiations are captured by a photo-detector associated to the screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/28Recognition of hand or arm movements, e.g. recognition of deaf sign language
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • User Interface Of Digital Computer (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

システムが、ウェアラブルデバイス上の異なるロケーションに配置されたセンサーを含むウェアラブルデバイスを含む。各センサーは、ユーザの手首または腕から送信される電気信号を測定する。位置算出回路がセンサーに結合される。位置算出回路は、機械学習モデルとともに電気信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力を算出する。【選択図】図1

Description

本開示は、一般に、センサーを使用する身体の動きの追跡に関し、詳細には、電気インピーダンス測定値を使用する人間の手の位置(hand position)の追跡に関する。
関連技術の説明
ジェスチャーなどの身体的動きは、ジェスチャーが、すでに、人々が伝達を行うための自然なやり方であるので、ユーザがコンピューティングデバイスと対話するための魅力的なやり方であり得る。ハンドジェスチャー追跡デバイスは、ユーザが、コンピューティングデバイスに物理的に触れることなしにコンピューティングデバイスを制御することまたはコンピューティングデバイスと対話することを可能にし得る。たとえば、ジェスチャー追跡デバイスは、ローカルまたはリモート環境においてメモリまたはディスプレイデバイスを制御するためにユーザによって使用され得る。
ジェスチャー認識システムは、使用するのに扱いにくく、抑制的であり、不快であり得る。たとえば、手の動き(hand motion)を追跡するために機械的信号を使用するグローブ状のデバイスは、手の触覚を妨害し得る。グローブ状のデバイスはまた、様々な手のサイズを有する異なるユーザにカスタマイズすることが困難であり得る。カメラベースのジェスチャー追跡システムは、キャプチャされた画像からユーザの手のエリアを検出するが、しばしば、ユーザの手全体がカメラビュー範囲にあることを必要とする。カメラベースのジェスチャー追跡システムはまた、画像中に物体のオクルージョンがあるとき、失敗を経験し得る。
したがって、ジェスチャー追跡器は、使用するのがやっかいであり、管理することが困難であり、システム構成または周囲環境からひずみを受ける。また、旧来のジェスチャー追跡器のコストは高く、したがって、ユーザ普及率を制限し得る。さらに、ジェスチャー認識システムは、あらかじめ規定されたジェスチャーの小さいセットに限定される。これらおよび他の理由のために、そのようなジェスチャー認識システムは、ヘッドマウントディスプレイ(HMD)のための有効な手の追跡にとって不適当である。
実施形態は、ユーザの腕の電気インピーダンス測定値を使用して人間の手の動きを追跡するためのウェアラブルデバイスに関する。ウェアラブルデバイス上に位置するセンサーが、ユーザの手首または腕から、ユーザの手の位置に対応する電気信号を受信する。電気信号(たとえば、腱などのユーザの腕の構造の状態を示し、したがって、ユーザの手の位置または姿勢をも示すインピーダンス値)から情報が抽出される。電気信号からのインピーダンスまたは他の抽出された値は、機械学習モデルを実装する位置算出回路への入力として使用され得る。位置算出回路は、機械学習モデルを使用して、入力からユーザの手の位置を決定する。いくつかの実施形態では、ウェアラブルデバイスは、ユーザの腕の動きを測定する慣性測定ユニット(IMU:inertial measurement unit)を含み、手の位置の決定のために、入力として位置算出回路に慣性信号を与える。いくつかの実施形態では、機械学習モデルは、電子信号のキャプチャと同時に撮られるユーザの手のビデオ画像から抽出されるグランドトゥルースの手の位置を使用してトレーニングされる。
一実施形態では、システムがウェアラブルデバイスを含み、ウェアラブルデバイスは、ウェアラブルデバイス上に配置されたセンサーを含む。各センサーは、ユーザの手首または腕から送信される電気信号を測定する。位置算出回路がセンサーに結合される。位置算出回路は、機械学習モデルとともに電気信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力を算出する。
一実施形態では、位置算出回路は、ウェアラブルデバイス中に位置する。
一実施形態では、位置算出回路は、ホストシステム、またはウェアラブルデバイスの外部の他のコンピューティングデバイス中に位置する。
一実施形態では、各センサーは、電極、および電極とユーザの手首または腕との間に位置する導電剤を含む。各センサーは、好ましくはユーザの手首または腕中に、交流(AC:alternative current)信号、直流(DC:direct current)信号、または複数の周波数を含む広帯域幅AC信号を送信することができる。
一実施形態では、各電気信号は、電圧および電圧の位相、電流および電流の位相、またはDC信号の大きさのうちの1つを含み得る。
一実施形態では、センサーはグリッドアレイまたはチェッカーボードパターンにおいて配置される。
一実施形態では、電気信号から導出された情報は、センサーの各ペア間で測定される電気インピーダンスに基づくアグリゲート値を含む。電気インピーダンスは、センサーのペアによってユーザの手首または腕中に送信されるプローブ信号と測定された電気信号とに基づいて決定される。一実施形態では、導出された情報は、電気信号の波の形状、電気信号の周波数領域表現、または電気信号の時間領域サンプルを含み得る。
一実施形態では、位置算出回路は、電気信号から導出された情報から特徴を抽出する。特徴は、ユーザの手首または腕の手の手の位置を規定する関節間の角度と、ユーザの手首または腕の手の手の位置の変化の低減された表現とのうちの1つまたは複数を含む。低減された表現は、ユーザの手首または腕の手の前の手の位置から、ユーザの手首または腕の手の現在の手の位置の間の差を規定する。
一実施形態では、各センサーは、プローブ信号の時間期間、プローブ信号の振幅、またはプローブ信号の位相を変動させることによって、ユーザの手首または腕中にプローブ信号をさらに送信する。
一実施形態では、第1のセンサーが、他のセンサーによる他のプローブ信号の送信に対してプローブ信号の送信をスタッガする(stagger)ことによって、ユーザの手首または腕中にプローブ信号を送信する。
一実施形態では、慣性測定ユニットが、ウェアラブルデバイスとユーザの腕との移動に対応する慣性信号を生成する。位置算出回路は、機械学習モデルとともに慣性信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力をさらに算出する。
一実施形態では、慣性測定ユニットは、ジャイロスコープと、加速度計と、磁力計とのうちの1つまたは複数を含む。
一実施形態では、1つまたは複数のカメラが、1つまたは複数の角度からの手の位置を示す画像など、ユーザの手の画像信号を生成する。位置算出回路は、機械学習モデルとともに画像信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力をさらに算出する。
一実施形態では、カメラは、深度カメラ、赤緑青(RGB)カメラ、赤外線カメラ、またはHMD上に取り付けられたカメラである。
一実施形態では、慣性測定ユニットが、ウェアラブルデバイスの移動に対応する慣性信号を生成する。位置算出回路は、慣性信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力を生成するように、機械学習モデルをさらにトレーニングする。
一実施形態では、カメラが、ユーザの手首または腕の手の画像信号を生成する。位置算出回路は、機械学習モデルとともに画像信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力を生成するように、機械学習モデルをさらにトレーニングする。
一実施形態では、算出された出力は、ユーザの手に触れている物体上にユーザの手によって加えられる力をさらに表す。腱などのユーザの腕の構造は、手が弛緩しているときと比較して、手が力を加えているとき、手の全体的位置が似て見える場合でも、異なる状態にある。したがって、手の追跡のための電気信号の使用は、他のタイプのセンサー追跡システムの場合に可能であるものよりもさらに多くのタイプのデータ抽出を可能にする。
一実施形態では、位置算出回路は、HMD上に取り付けられたカメラから画像信号をさらに受信する。画像信号を算出された出力と比較することによって、比較信号が決定される。比較信号はホストシステムに送信される。
一実施形態では、算出された出力は手形状モデルのパラメータを含む。パラメータは、ユーザの手首または腕の手の関節と、関節のペア間のエッジ(edge)と、エッジのペア間の角度と、頂点を含むメッシュと、各頂点についての、頂点と1つまたは複数の関節との間の距離とに対応する。
一実施形態では、HMD(ヘッドマウントディスプレイ)は、
ウェアラブルデバイス上の異なるロケーションに配置された複数のセンサーに結合された位置算出回路であって、各センサーが、ユーザの手首または腕から送信される電気信号を測定するように設定され、位置算出回路が、機械学習モデルとともに電気信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力を算出するように設定された、位置算出回路と、
位置算出回路からの算出された出力を受信するように設定されたディスプレイパネルと
を備え得る。
一実施形態では、HMDは、
ユーザの手首または腕の手の画像信号を生成するように設定されたカメラであって、位置算出回路が、機械学習モデルとともに画像信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力を算出するようにさらに設定された、カメラ
を備え得る。
カメラは、深度カメラ、赤緑青(RGB)カメラ、赤外線カメラ、またはHMD上に取り付けられたカメラであり得る。
一実施形態では、HMDは、
ユーザの手首または腕の手の画像信号を生成するように設定されたカメラであって、位置算出回路が、機械学習モデルとともに画像信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力を生成するように、機械学習モデルをトレーニングするようにさらに設定された、カメラ
を備え得る。
位置算出回路は、
画像信号を算出された出力と比較することによって比較信号を決定することと、比較信号をホストシステムに送信することとを行うようにさらに設定され得る。
一実施形態では、方法は、
ウェアラブルデバイス上の異なるロケーションに配置された複数のセンサーからトレーニング電気信号を受信することであって、トレーニング電気信号がユーザの手首または腕から送信される、トレーニング電気信号を受信することと、トレーニング電気信号からトレーニング特徴を抽出することと、
ユーザの手首または腕の手の手の位置を決定するように、抽出されたトレーニング特徴を使用して機械学習モデルをトレーニングすることと、
複数のセンサーから電気信号を受信することであって、電気信号がユーザの手首または腕から送信される、電気信号を受信することと、
電気信号から特徴を抽出することと、
ユーザの手首または腕の手の手の位置を表す出力を算出するために、特徴を機械学習モデルに送信することと、
出力をホストシステムに送信することと
を含み得る。
一実施形態では、方法が、
ユーザの手首または腕中に、AC信号、DC信号、または複数の周波数を含む広帯域幅AC信号を送信すること
を含み得る。
一実施形態では、方法は、電気信号から情報を導出することをさらに含み得、情報は、
センサーの各ペア間で測定される電気インピーダンスに基づくアグリゲート値であって、電気インピーダンスが、センサーのペアによってユーザの手首または腕中に送信されるプローブ信号と電気信号とに基づいて決定される、アグリゲート値と、
電気信号の波の形状と、
電気信号の周波数領域表現と、電気信号の時間領域サンプルと
のうちの1つまたは複数を含む。
一実施形態では、方法は、電気信号から導出された情報から特徴を抽出することを含み得、特徴は、
ユーザの手首または腕の手の手の位置を規定する関節間の角度と、
ユーザの手首または腕の手の手の位置の変化の低減された表現であって、低減された表現が、ユーザの手首または腕の手の前の手の位置から、ユーザの手首または腕の手の現在の手の位置の間の差を規定する、低減された表現と
のうちの1つまたは複数を含む。
一実施形態では、方法が、
プローブ信号の時間期間と、
プローブ信号の振幅と、プローブ信号の位相と
のうちの1つまたは複数を変動させることによって、ユーザの手首または腕中にプローブ信号を送信することを含み得る。
一実施形態では、方法は、
第1のセンサーによって、ユーザの手首または腕中にプローブ信号を送信することであって、他のセンサーによって送信される他のプローブ信号の送信に対してプローブ信号の送信をスタッガすることによって、プローブ信号を送信すること
を含み得る。
一実施形態では、方法が、
慣性測定ユニットによって、ウェアラブルデバイスの移動に対応する慣性信号を生成することと、
機械学習モデルとともに慣性信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力を算出することと
を含み得る。
一実施形態では、方法が、
1つまたは複数のカメラによって、ユーザの手首または腕の手の画像信号を生成することと、
機械学習モデルとともに画像信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力を算出することと
を含み得る。
一実施形態では、方法は、
慣性測定ユニットによって、ウェアラブルデバイスの移動に対応する慣性信号を生成することと、
慣性信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力を生成するように、機械学習モデルをトレーニングすることと
を含み得る。
一実施形態では、方法が、
1つまたは複数のカメラによって、ユーザの手首または腕の手の画像信号を生成することと、
画像信号から導出された情報を使用して、ユーザの手首または腕の手の手の位置を表す出力を生成するように、機械学習モデルをトレーニングすることと
を含み得る。
一実施形態では、方法が、
1つまたは複数のカメラから、ユーザの手首または腕の手の画像信号を受信することと、
画像信号を算出された出力と比較することによって比較信号を決定することと、
比較信号をホストシステムに送信することと
を含み得る。
本発明による一実施形態では、1つまたは複数のコンピュータ可読非一時的記憶媒体は、実行されたとき、本発明による方法または上述の実施形態のいずれかを実施するように動作可能であるソフトウェアを具現し得る。
本発明による一実施形態では、システムは、1つまたは複数のプロセッサと、プロセッサに結合され、プロセッサによって実行可能な命令を備える少なくとも1つのメモリとを備え得、プロセッサは、命令を実行するとき、本発明による方法または上述の実施形態のいずれかを実施するように動作可能である。
本発明による一実施形態では、好ましくはコンピュータ可読非一時的記憶媒体を備えるコンピュータプログラム製品は、データ処理システム上で実行されるとき、本発明による方法または上述の実施形態のいずれかを実施するように動作可能であり得る。
本発明による実施形態は、特に、システム、HMD、および方法を対象とする添付の特許請求の範囲において開示され、1つの請求項カテゴリー、たとえば、システムにおいて言及された特徴は、別の請求項カテゴリー、たとえば、HMD、システム、記憶媒体、およびコンピュータプログラム製品においても請求され得る。添付の特許請求の範囲における従属性または参照は、形式的理由のみで選定される。ただし、前の請求項への意図的な参照(特に複数の従属性)から生じる主題も請求され得、その結果、請求項とその特徴との任意の組合せが、開示され、添付の特許請求の範囲で選定された従属性にかかわらず請求され得る。請求され得る主題は、添付の特許請求の範囲に記載の特徴の組合せだけでなく、特許請求の範囲における特徴の任意の他の組合せをも含み、特許請求の範囲において述べられた各特徴は、特許請求の範囲における任意の他の特徴または他の特徴の組合せと組み合わせられ得る。さらに、本明細書で説明または示される実施形態および特徴のいずれかは、別個の請求項において、ならびに/あるいは、本明細書で説明もしくは示される任意の実施形態もしくは特徴との、または添付の特許請求の範囲の特徴のいずれかとの任意の組合せで請求され得る。
実施形態の教示は、添付の図面とともに以下の発明を実施するための形態を考慮することによって容易に理解され得る。
一実施形態による、センサーのアレイを含むウェアラブルデバイスの例示的な図である。 一実施形態による、図1中のラインXYに沿ってとられたウェアラブルデバイスの例示的な断面図である。 一実施形態による、ユーザの腕の周囲のセンサーを有するウェアラブルデバイスの例示的な断面図である。 一実施形態による、ユーザの手形状モデルの例示的な説明である。 一実施形態による、センサーのアレイの例示的な図である。 一実施形態による、センサーのチェッカーボードパターンの例示的な図である。 一実施形態による、センサーの不均一分布の例示的な図である。 一実施形態による、ユーザの手の位置の変化を追跡するためのシステムの例示的なブロック図である。 一実施形態による、機械学習モデルをトレーニングすることに関連する構成要素を表す例示的なブロック図である。 一実施形態による、ユーザの手の位置を追跡するための例示的なプロセスである。
図は、単に例示の目的で様々な実施形態を示す。
実施形態の以下の説明では、より完全な理解を与えるために、多数の具体的な詳細が記載される。ただし、実施形態が、これらの具体的な詳細のうちの1つまたは複数なしに実施され得ることに留意されたい。他の事例では、説明を不必要に複雑にすることを回避するために、よく知られている特徴は詳細に説明されていない。
実施形態は、同様の参照番号が同等または機能的に同様の要素を示す図を参照しながら本明細書で説明される。また、図において、各参照番号の最左の数字は、参照番号が最初に使用される図に対応する。
実施形態は、電気インピーダンス測定値を使用して人間の手の動きを追跡するためのウェアラブルデバイスに関する。デバイス上に位置するセンサーは、ユーザの腕の、腱および筋肉などの内部構造にプローブ信号を送信し、ユーザの腕から電気信号を受信し得る。特に、腕の内部構造およびそれらの状態により、プローブ信号は変化し、その結果、異なる電気信号がセンサーによって受信される。別の例では、センサーは、プローブ信号を使用せずにユーザの腕および内部構造のインピーダンスを測定する。受信される電気信号は変動し、ユーザの手の位置に対応することができる。特徴が電気信号から抽出され得る。たとえば、電気信号は、電気信号に対応する手の位置をプログラム的に検出するために、各ユーザについてトレーニングされ得る機械学習モデルを使用してニューラルネットワークによって処理され得る。
ウェアラブルデバイスの例示的な図
図1は、一実施形態による、センサーのアレイ108を含むウェアラブルデバイス100の例示的な図である。ウェアラブルデバイス100は、プラスチック(たとえば、ポリエチレンまたはポリプロピレン)、ゴム、ナイロン、合成繊維、ポリマーなど、可とう性機械基板であり得るウェアラブル構造116を含む。ウェアラブル構造116は、ユーザの手首または腕104の少なくとも一部分の周りに着用されるように設定される。ウェアラブルデバイス100は、ウェアラブル構造116上の異なるロケーションに配置されたセンサー112を含む。たとえば、センサーは、センサーが腕104に電気的に接触しているように、腕104に面するウェアラブル構造116の内面に沿ったパターンにおいて配置され得る。
各センサー112は、ユーザの手首または腕104内の内部身体的構造の移動または状態に対応する電気信号を測定する。いくつかの実施形態では、センサー112は、ユーザの手首または腕104の電気インピーダンスを測定するためにウェアラブル構造116上に取り付けられた電極を含む。
いくつかの実施形態では、慣性測定ユニット128がウェアラブル構造116に固定され、慣性測定ユニット128の移動、したがって、ユーザの腕104の移動に対応する慣性信号を生成する。ウェアラブル構造116は、ウェアラブルデバイス100をユーザの手首または腕104に留める。いくつかの実施形態では、ウェアラブル構造116の一部または全部は、可とう性材料ではなく剛性材料であり得る。たとえば、ウェアラブル構造116は、センサー112を含む剛性本体部分と、本体部分をユーザの腕104に留めるバンド部分とを含み得る。いくつかの実施形態では、ウェアラブルデバイス100は、慣性測定ユニット128を含まない。
ウェアラブルデバイス100は、ユーザの手120の手の位置を検出するためにユーザの腕104上に置かれる。手の位置は、ユーザの手の手のひらと指関節(knuckle)と指との角度および位置を含み、図2Cに関して以下で詳細に図示および説明されるように、手の関節と、関節のペア間のエッジと、エッジのペア間の角度とに対応するパラメータを含む。ウェアラブルデバイス100上の各センサー112は、腕104を通して電気信号を受信するために個々に機能し得る。別の例では、センサーのペアは一緒に動作し、いくつかのセンサーはプローブ信号を送信し、いくつかのセンサーは電気信号を受信する。センサー112は、ユーザの腕104から、ユーザの手120の位置を表現する電気信号を受信する。
ウェアラブルデバイス100は、ポータブルで、軽量で、低電力であり得、ゲームコントローラ、メディアコントローラ、キーボードコントローラ、ロボットデバイスコントローラなどとしての使用に好適である。ウェアラブルデバイス100は、コンピューティングデバイス、VRシステム、またはHMDとインターフェースするためにマイクロUSB、Bluetooth(登録商標)、またはWi−Fiコネクティビティを含み得る。いくつかの実施形態では、ウェアラブルデバイス100は、VRシステムにおいて完全な手のモデルをレンダリングするために、または実環境において人間と物体との対話を追跡するために使用され得る。
いくつかの実施形態では、センサー112は、ユーザの手120の手の位置を決定するために使用される入力を生成するために電気インピーダンス断層撮影(EIT)を使用する電極を含む。EITは、ユーザの手120の導電率、誘電率、またはインピーダンスが表面電極測定値から推論され得る非侵襲性方法である。ウェアラブルデバイス100は、単一の周波数においてAC信号を印加するか、またはユーザの手120内の組織をより良く区別するために複数の周波数を使用し得る。いくつかの実施形態では、AC信号は、周波数のスペクトルを含む広帯域幅信号に対応する。
AC信号は、センサー112の一部または全部に印加され得、得られた電圧は、センサー112によって受信され得る。得られたインピーダンスおよびそれらの位相が、測定された電流および電圧から決定される。インピーダンスの異なる値は、ユーザの手首または腕の内部構造(たとえば、関節、骨、腱など)の異なる状態または構成に対応し、したがって異なる手の位置に対応する。このプロセスは、センサー112によって電圧および/または電流の測定値のセットを生成するために繰り返され得る。センサー112は、図2A、図2B、図3A、図3B、および図3Cを参照しながら以下で図示および説明されるように、異なる設定において配置され得る。いくつかの実施形態では、各センサー112および慣性測定ユニット128は、図2Bを参照しながら以下で図示および説明されるように、ウェアラブル構造116上に取り付けられ、ウェアラブル構造116はユーザの腕104に巻き付けられて、センサーのアレイ108が、ユーザの腕104の異なるエリアからの電気信号をカバーし、受信することができることを確実にする。
いくつかの実施形態では、センサー112は、人間の皮膚との接触を行うように設計された電極を含む。電極は、円形、正方形、または矩形であり得、直径または直線寸法が変わり得る。いくつかの実施形態では、電極は、サイズが1〜10mmで変わり得る。電極は、Ag−AgClなどの金属材料、またはポリウレタン(PU)と混合された(3,4−エチレンジオキシチオフェン)(PEDOT)などの伸縮自在の導電性ポリマーから製造され得る。電極は、Agメッキのポリフッ化ビニリデン(PVDF)ナノ繊維ウェブと金属ねじとを使用して作製され得る。対象者の快適さを改善し、接触インピーダンスを低減するために、各電極の後ろでウェアラブルデバイス100上で、導電剤とパディングとを有する接触エリアが使用され得る。電極と皮膚との間の導電剤は、プロピレングリコールとNaClとからなり得る導電性ゲルを使用する「ウェット」接続であるか、または導電性ポリマー(たとえば、炭素ドープPDMS)の薄層などの「ドライ」接続であり得る。
いくつかの実施形態では、電極は、ユーザの腕104中に10〜100kHzの周波数における数ミリアンペアのAC信号を駆動し、次いで、得られた電圧または電流を測定して、インピーダンスのインピーダンス値および位相を決定し得る。いくつかの実施形態では、電極は、MHz領域を含む複数の周波数を含む広帯域幅信号に対応するAC信号を送信し得る。
慣性測定ユニット128は、ユーザの腕104の動きを示す情報を生成する。慣性測定ユニット128は、ジャイロスコープ、加速度計、および/または磁力計を含み得る。慣性測定ユニット128は、ユーザの手120または腕104の周囲の力、角速度、および/または磁界を測定および報告する。たとえば、慣性測定ユニット128は、1つまたは複数の加速度計を使用して線形加速度を検出し、1つまたは複数のジャイロスコープを使用して回転速度を検出する。慣性測定ユニット128の例示的な設定は、3つの軸、すなわち、ピッチ、ロールおよびヨーの各々について、軸ごとに1つの加速度計、ジャイロメータ、および磁力計を含んでいることがある。ウェアラブルデバイス100は、ユーザの腕104が移動していることを検出し得、センサー112からの電気信号と組み合わせて、ユーザの手の位置の識別を改善し、ジェスチャー識別を可能にする。生成された慣性信号は、電流、電圧、またはデジタルデータであり得る。
追跡アームバンドの例示的な断面図
図2Aは、一実施形態による、図1に示されているXYラインに沿ってとられたウェアラブルデバイス100の例示的な断面図200である。断面図200は、ユーザの腕104と、ユーザの腕104内の腱204とを示す。
ウェアラブルデバイス100はユーザの手首または腕104上に着用され、センサー112は、導電剤120を介して腕104を通してプローブ信号212を送信する。導電剤120は、センサー112と腕104の皮膚との間の接触においてプローブ信号212に提示されるインピーダンスを低減する。いくつかの実施形態では、センサー112のアレイ108は、手首または腕104に完全に巻き付けられるとは限らず、図2Aに示されているように手首または腕104の手のひら側上にのみ配置され得る。プローブ信号212は、腱204など、腕104の内部構造を通過し、示されているセンサー112(または別のセンサー112)によって電気信号216として検出され得る。センサー112は、ユーザの手首または腕104中にAC信号またはDC信号をプローブ信号212として送信する電極を含み得る。
いくつかの実施形態では、プローブ信号212は、周波数の範囲を含む広帯域幅AC信号である。たとえば、プローブ信号212は周波数領域において拡散され、より広い帯域幅をもつ信号212を生じ得る。特に、広帯域幅信号の使用は、信号干渉からの影響を減少させる。いくつかの実施形態では、プローブ信号212は、バッテリーなどの電源によって生成され、固定の大きさ(振幅)を有するDC信号であり得る。
いくつかの実施形態では、プローブ信号212は、正弦波形またはAC波形など、時間変動波形を有し得る。たとえば、プローブ信号212は、時間に関して正の最大値と負の最大値との間でそれぞれ交番して半周期ごとに極性を連続的に変化させ得る。プローブ信号212の時間期間は、波形が波形自体を始めから終わりまで繰り返すのにかかる、秒単位の時間の長さである。振幅は、ボルトまたはアンペア単位で測定される信号波形の大きさまたは強度である。各プローブ信号212の位相は、接地または別のセンサーのプローブ信号など、共通基準に対して測定される。位相差により、任意のセンサー上の電気信号216は、他のセンサーのうちの1つの後に異なる時間においてピーク値に達する。いくつかの実施形態では、各センサー112は、プローブ信号212の時間期間と、プローブ信号212の振幅と、プローブ信号212の位相とのうちの1つまたは複数を変動させることによって、ユーザの手首または腕104中にプローブ信号212をさらに送信する。
いくつかの実施形態では、センサー112は、ユーザの手首または腕104中にプローブ信号212をスタッガ様式で(in a staggered manner)送信し、ここで、センサーの異なるサブセットが、異なる時間においてプローブ信号112を送信する。2つまたはそれ以上のセンサー112からのプローブ信号212は、10〜100kHzの周波数において、典型的には数ミリアンペアの交流(alternating current)を送信することができる。残りのセンサーは、得られた電圧信号216を測定するために使用され得る。この手順は、次いで、プローブ信号212を放出するように選択されたセンサーのペアの順序を規定する複数の刺激パターンについて繰り返され得る。いくつかの実施形態では、単一の電流源が、プローブ信号212を生成するためにマルチプレクサを使用して複数のセンサー112間で切り替えられる。いくつかの実施形態では、各々がデジタルアナログコンバータによって制御される、各センサー112について1つの電圧電流コンバータのシステムが、プローブ信号212を生成するために使用される。
各電気信号216は、プローブ信号212がAC信号である場合、電圧および電圧の位相、または電流および電流の位相などの特性を含み得る。DC信号がプローブ信号212のために使用される場合、電気信号216はDC信号の大きさを含む。電気信号216の測定値は、センサー112にわたって多重化される単一の電圧測定回路、または各センサー112についての別個の回路のいずれかによってとられ得る。いくつかの実施形態では、アナログデジタルコンバータによるさらなる処理の前に、交流電圧をDCレベルにコンバートするためにアナログ復調回路が使用され得る。いくつかの実施形態では、交流信号は、デジタル復調を実施する直前にコンバートされ得る。デバイス100は、複数の周波数において動作し、電気信号216の電圧の大きさと位相の両方を測定し得る。電気信号216から導出されたインピーダンスは、画像再設定を実施し、電気信号216に少なくとも部分的に基づいて表示するために、コンピューティングデバイス(たとえば、別個のホストシステム、またはウェアラブルデバイス100と統合されたプロセッサ)上に受け渡され得る。
いくつかの実施形態では、センサー112の各ペア間の電気インピーダンスの位相データは、センサーのペア間の測定された電気信号216から抽出される。センサーから位置算出回路に送信されるインピーダンスデータストリームは、センサーの各ペアからのペアごとのインピーダンス測定値のセットを含む。センサーの各組合せは、センサーの数がNによって示される場合、Nインピーダンス値を生じるペアごとの測定を実施するために使用される。いくつかの実施形態では、測定された電気信号216から抽出された情報は、センサーの各ペアについての時間によるインピーダンスの変化(インピーダンス/s)を含む。このインピーダンス/sは、時間によるユーザの腕104の状態の変化を示し、したがって、ユーザの手の位置を決定するために使用される。
センサー112は、腱204などの軟組織の状態を検出するために、ユーザの手首または腕104にわたるウェアラブル構造116上に配置される。ウェアラブルデバイス100は、ユーザの手120の手の位置を決定するために、筋収縮と、腱204の動きと、腱204の長さと、関節の堅さとのいずれかまたはすべてを測定し得る。たとえば、ユーザの腕104から測定されたそのような値の組合せは、ユーザの手120内の関節間の骨によって形成される角度を示すことができる。手の位置は、電気信号216から導出されるような、手における関節間で形成される角度を表現する値の集合によって表現され得る。
ウェアラブルデバイス100は、手首によって手120に接続された腕104内の構造の状態を決定することによって動作する。たとえば、橈骨および尺骨、橈骨茎状突起および尺骨茎状突起、手根骨、中手骨など、骨の状態は、ユーザの手120の位置を識別するために決定され得る。手根中手関節、中手指節関節、および指節間関節など、関節の状態は、ユーザの手120の位置を識別するために電気信号216から決定され得る。内在筋などの筋肉、屈筋腱、伸筋腱、腱鞘などの腱、ならびに正中神経および尺骨神経の状態は、ユーザの手120の位置を識別するために電気信号216から決定され得る。利点の中でも、ウェアラブルデバイス100は、物体を保持するときのユーザの手の圧力を決定することができ、手120において物体を把持しているユーザと、空の手120で把持するジェスチャーを行っているユーザとを区別することができる。
図2Bは、一実施形態による、ユーザの腕104の周囲のセンサー112を有するウェアラブルデバイス250の例示的な断面図である。ウェアラブル構造116は、ユーザの手首または腕104に巻き付けられる。腕104の一方の側のセンサーは、ユーザの腕中にプローブ信号212を送信し得、腕104の他方の側のセンサーは、ユーザの腕104の腱204を通って進む電気信号256を受信し得る。このようにして、システムは、手首または腕104の断面インピーダンス特性を測定することが可能である。
例示的な手形状モデル
図2Cは、一実施形態による、ユーザの手形状モデル280の例示的な説明である。いくつかの実施形態では、ユーザの手の位置は、手形状モデル280に関して表現される。手形状モデル280は、ユーザの手首または腕104の手120の関節と、関節のペア間のエッジと、エッジのペア間の角度の範囲と、頂点を含むメッシュと、各頂点についての、頂点と1つまたは複数の関節との間の関係(たとえば、距離)とに対応するパラメータを含む。ウェアラブルデバイス100によって生成される電気信号は、関節間のエッジのペア間で規定される角度など、手形状モデル280に関して手の位置を決定するために使用される。
手形状モデル280は、手120の変形可能な形状およびサイズを規定する。たとえば、手形状モデル280は、骨格282とメッシュ284とを含む。骨格282は、骨格のノード(関節)を表現する手の特徴286を含む。少なくともいくつかの手の特徴286は、骨格282の手のエッジ288によって示される、他の手の特徴286間の固定距離を有する。手のエッジ288は、手120の骨についてのモデルであり、手の特徴286は、骨を接続する関節についてのモデルである。
各手の特徴286は、関節の動き範囲を規定する1つまたは複数の自由度(DOF)に関連する。たとえば、手首における手の特徴は、2つの自由度(たとえば、ピッチおよびヨー)を含む。別の例では、各指関節における手の特徴286は、2つの自由度(たとえば、ロールおよびヨー)を含む。また別の例では、各手指関節(finger joint)における手の特徴286は、1つの自由度(たとえば、ヨー)を含む。自由度は、回転自由度または並進自由度を含み得る。各自由度は、関節が自由度に沿ってどのくらい移動することができるかを表現する、最大値と最小値とによって規定され得るような値の範囲に関連し得る。手の位置は、手形状モデル280の特定の状態によって規定される。たとえば、手の特徴286の各自由度についての値のセットは、手の特定の姿勢を規定し得る。
手形状モデル280のメッシュ284は、ユーザの手のモデル280の表面を規定する。メッシュ284は頂点を含み得、ここで、各頂点は、手の特徴286、または手のエッジ288に沿ったロケーションなど、骨格282の一部とアタッチされる。頂点は、相互接続されたとき、手の表面のモデルを規定する多角形メッシュを形成する。たとえば、頂点は、アタッチされた手の特徴286からのあらかじめ規定された距離を有し得る。手の特徴286が移動される場合、アタッチされた頂点は、それに応じて、メッシュ284が骨格282の移動とともに変化するように移動する。いくつかの実施形態では、メッシュ284の頂点は、骨格282の2つ以上のロケーションにアタッチされ得る。
センサーの例示的なアレイおよびチェッカーボードパターン
図3Aは、一実施形態による、センサー112のアレイ108の例示的な図である。各センサー112は、図2Aまたは図2Bを参照しながら上記で図示および説明されたように、ウェアラブル構造116上に取り付けられる。センサー112は、ここで、3つの行と5つの列とを有する矩形格子において配置され得る。アレイ108は、慣性測定ユニット128とともにウェアラブル構造116上に取り付けられ得る。いくつかの実施形態では、慣性測定ユニット128はウェアラブル構造116から省略される。
図3Bは、一実施形態による、センサー112のチェッカーボードパターンアレイ300の例示的な図である。各センサー112は、図2Aまたは図2Bを参照しながら上記で図示および説明されたように、ウェアラブル構造116上に取り付けられる。センサー112は、交互のチェッカーボードパターン300において配置される。チェッカーボードパターンアレイ300は、慣性測定ユニット128とともにウェアラブル構造116上に取り付けられ得る。いくつかの実施形態では、慣性測定ユニット128はウェアラブル構造116から省略される。
図3Cは、一実施形態による、センサー112の不均一分布アレイ360の例示的な図である。各センサー112は、図2Aまたは図2Bを参照しながら上記で図示および説明されたように、ウェアラブル構造116上に取り付けられる。ウェアラブル構造116上のセンサー112の配置は規則的なピッチ値に従わず、センサー112は、代わりに腕104における重要な構造の検出を最適化するように配置される。たとえば、センサー112のより高い集中は、(たとえば、関節と手の位置との間の角度を抽出するために)手根管ゾーンなど、ユーザの腕104の内部のより重要性が高いロケーションをカバーするウェアラブル構造116上のクラスタ368に位置する。センサー112のより低い集中は、より重要性が低いエリア364に位置する。
手の位置を追跡するための例示的なシステム
図4は、一実施形態による、ユーザの手の位置を追跡するためのシステムの例示的なブロック図である。システムは、ウェアラブルデバイス100と、ホストシステム428と、ヘッドマウントディスプレイ(HMD)424とを含む。ウェアラブルデバイスは、センサーのアレイ108と、センサーのアレイ108に結合された回路400とを含む。図4に示されているシステムは、仮想現実(VR)システム、拡張現実(AR)システム、または複合現実(MR)システムを表現し得る。
センサーのアレイ108は、図2Aおよび図2Bに関して上記で図示および説明されたように、ユーザの腕104にプローブ信号212を送信し、ユーザの腕104から電気信号216を受信し得る。センサーのアレイ108は、回路400に信号404を送信する。信号404は電気信号216であり得る。回路400は、ホストシステム428に信号408を送信する。信号408は、電気信号216、電気信号216から導出された情報、または電気信号216から回路400によって計算されるようなユーザの手120の位置を表す算出された出力であり得る。電気信号216から導出された情報は、電気インピーダンスと、センサー112の各ペア間で測定されたインピーダンスの位相とに基づくアグリゲート値を含み得る。電気インピーダンスは、センサー112のペアによってユーザの手首または腕104中に送信されるプローブ信号212と電気信号216とに基づいて決定される。
いくつかの実施形態では、算出された出力は、ユーザの手120の手の位置を表す情報の任意の個別の不連続な表現、または連続関数を使用してユーザの手120の位置の変化を表現するアナログ信号であり得る。ウェアラブルデバイス100と、ホストシステム428と、HMD424とは、ネットワーク412を介して通信し得、ネットワーク412は、有線通信システムおよび/または無線通信システムの両方を使用する、ローカルエリアネットワークおよび/またはワイドエリアネットワークの任意の組合せを含み得る。
ホストシステム428は、入力インターフェース回路432と、メモリ436と、出力インターフェース回路440と、位置算出回路448と、カメラ452とを含み得る。入力インターフェース回路432と、メモリ436と、出力インターフェース回路440と、位置算出回路448と、カメラ452とは、バス444を介して通信し得る。入力インターフェース回路432は、センサー112から電気信号216を受信する。いくつかの実施形態では、入力インターフェース回路432は、慣性測定ユニット128から慣性信号を受信し、および/または1つまたは複数のカメラから画像を受信する。
入力インターフェース回路432は、センサーのアレイ108の各センサー112から電気信号216を受信するためのデジタル論理および/またはアナログ回路から製造されるインターフェース回路である。入力インターフェース回路432は、電気信号216から、電流の磁界によって自己誘導されるユーザの手首または腕104における電圧の誘導(インダクタンス)などの情報を導出し得る。導出された情報は、電圧によって誘導されるユーザの手首または腕104の内部構造における電荷の静電記憶(キャパシタンス)を表現し得る。情報を導出することは、アグリゲート値を決定するために、位相決定、ヒルベルト変換(Hilbert transform)などを使用することなどによって、電気信号216を分析することを含み得る。センサー112がユーザの手首または腕104中にDC信号を駆動する場合、導出された情報は、ゼロ位相角をもつインピーダンスを表現し得る。
導出された情報は、電気信号216の波の形状を表現し得る。たとえば、S字形状は単一の周波数を表現し得るが、方形パルスは周波数のスペクトルを表現し得る。情報を導出することは、受信された電気信号216の波形の分析的に規定された形状を検出するために、たとえば、ハフ変換を使用することによって、受信された電気信号216の波形の形状を抽出することを含み得る。
導出された情報は、電気信号216の周波数領域表現を表現し得る。情報を導出することは、電気信号216の周波数領域表現を作成することを含み得る。たとえば、高速フーリエ変換(FFT)などのフーリエ変換を使用して、電気信号216を時間領域または空間領域から周波数領域にコンバートすることが、電気信号216の周波数領域表現を作成するために使用され得る。電気信号216から導出された例示的な周波数領域情報は、各周波数の大きさおよび位相成分、どの周波数が存在するか、どれが消失しているかなどである。
導出された情報は、電気信号216の時間領域サンプルを表現し得る。情報を導出することは、電気信号216の時間領域サンプリングを実施することを含み得る。時間領域サンプリングは、電気信号216を、時間および/または空間におけるある点における値のセットなど、離散時間サンプルのセットまで低減する。
メモリ436は、メモリカードおよびコンピュータハードドライブのうちの1つまたは複数に記憶された、データベース、テーブル、ファイルなどとして編成され得る。いくつかの実施形態では、メモリ436は、図2Cを参照しながら上記で詳細に図示および説明されたように、手の追跡のためにユーザの手形状モデル280を記憶する。ユーザの手形状モデル280は3次元(3D)空間における手の形状を規定し、手120の姿勢または位置を規定するように変形可能である。ユーザの手形状モデル280は、関節を表現する「手の特徴」を含む。これらの「手の特徴」286はユーザの関節自体を表現し、電気信号216から位置算出回路448によって抽出された「特徴508」とは異なる。電気信号216から位置算出回路448によって抽出された特徴508は、手の特徴286間で規定された角度を表現する値のセットである。
手の特徴286は、関節配向を表現する自由度を含み得る。したがって、ユーザの手の位置、または手の位置の変化は、ユーザの手形状モデルの関節の各々についての関節配向を表現する値のセットによって規定され得る。ユーザの手形状モデル280の説明は、参照により本明細書にその全体が組み込まれる、2017年4月13日に出願された米国出願第15/487,355号にある。いくつかの実施形態では、ユーザについてカスタマイズされたユーザの手形状モデル280は、10個の主成分(principle component)手形状モデルの重み付けされた組合せなど、主成分手形状モデルのセットとして生成され得る。各主成分手形状モデルは、ユーザの手形状の線形的に無相関なパラメータを制御し得る。限られた数の主成分手形状モデルの使用は、ユーザの手形状の決定をより少ない数の変数まで低減し、参照により本明細書にその全体が組み込まれる、2017年4月13日に出願された米国出願第15/487,361号に記載されている。
位置算出回路448は、入力インターフェース回路432に結合される。位置算出回路448は、電気信号216から抽出された特徴を機械学習モデルへの入力として使用して、ユーザの手120の位置および/またはユーザの手120の手の位置の変化を表す出力を算出する。たとえば、機械学習モデルは、入力としての電気信号216と、出力としての手形状モデル280のパラメータとの間の関係を規定し得る。位置算出回路448は、命令によって指定された基本算術演算、論理演算、制御演算および入出力(I/O)演算を実施することによってコンピュータプログラムの命令を実行する中央処理ユニット(CPU)の一部であり得る。
いくつかの実施形態では、図4に示されているホストシステム428の1つまたは複数の構成要素は、HMD424またはウェアラブルデバイス100中に位置する。たとえば、算出回路448は回路400中に位置し得、回路400は、ウェアラブルデバイス100またはHMD424の一部であり得る。
出力インターフェース回路440は位置算出回路448に結合され、ユーザの手120の手の位置を表す算出された出力を送信する。たとえば、出力インターフェース回路440が回路400中に含まれる場合、出力インターフェース回路440は、ホストシステム428またはHMD424に算出された出力を通信することになる。出力インターフェース回路440がホストシステム428中に含まれる場合、出力インターフェース回路440は、HMD424に算出された出力を通信することになる。
図5に関して以下でより詳細に説明されるように、位置算出回路448は、機械学習モデルトレーニングおよび/または推論を含む。たとえば、機械学習モデルは、電気信号から抽出された例示的な特徴のトレーニングデータセットと、対応する予想される出力(たとえば、手の位置を規定する値のセット)とを使用してトレーニングされ得る。いくつかの実施形態では、トレーニングデータの少なくとも一部分はトレーニングプロセスにおいて生成され、ここで、ユーザは、図5を参照しながら以下で詳細に説明されるように、光学マーカーを使用してキャプチャされる手の動きおよびジェスチャーを与える。
算出された出力は、ユーザの手120に触れている物体上にユーザの手120によって加えられる力をさらに表し得る。力は、電気信号216に基づいて算出された出力によって表される、ユーザの手首または腕104中の筋肉、腱、および他の内部構造の締め付けられた状態によって表現され得る。たとえば、センサーは、組織タイプ間の抵抗率の差と、骨格筋および他の組織の異なるインピーダンススペクトルとに基づいて、物体上に力を加えて締め付けられた生物組織の受動電気特性を測定し得る。
カメラ452は、深度カメラ、赤緑青(RGB)カメラ、赤外線カメラ、またはHMD424上に取り付けられたカメラであり得る。カメラ452は、知られている光速に基づいて距離を決めること、または画像の各点についてのカメラとユーザの手120との間の光信号の飛行時間を測定することによって、ユーザの手120の画像をキャプチャし得る。カメラ452は、ユーザの手120のカラー画像収集のための3つのRGBカラー信号を収集するために、独立した電荷結合デバイス(CCD)センサーを使用し得る。カメラ452は、14,000nm(14μm)と同程度の長さの波長を使用する赤外放射を使用して画像を形成する(赤外線カメラまたはサーマルイメージングカメラとも呼ばれる)サーモグラフィカメラであり得る。いくつかの実施形態では、カメラ452は、図5を参照しながら以下で説明されるように、トレーニングデータのためにグランドトゥルースの手の位置をキャプチャし得る。カメラ452はトレーニングのために使用され得るが、カメラ452は、手の位置の変化を推論するために必要とされない。
HMD424は、ネットワーク412を介してウェアラブルデバイス100とホストシステム428とに接続される。HMD424は、コンピュータ生成画像(CGI)および/または物理世界からのライブ画像を表示するために、ユーザの頭部に、またはユーザの眼の前の電子ディスプレイパネルを有するヘルメットの一部として、着用されるディスプレイデバイスを含み得る。センサーのアレイ108の電気信号216から生成される、ユーザの手120の手の位置を表す算出された出力は、ディスプレイパネルによってユーザに提示される仮想シーンにおけるアクションに変換され得る。HMD424は、回路400またはホストシステム428が、ユーザの手120の位置を決定するために電気信号216を処理した後に、ネットワーク412から、電気信号216、またはユーザの手120の手の位置に対応する算出された出力であり得る信号420を受信する。別の例では、HMD424は、ユーザの手の位置に対する変化に少なくとも部分的に基づいて生成される仮想シーンを含むビデオフィードを受信する。
入力インターフェース回路432は、カメラ452、またはHMD424上に取り付けられたカメラから画像信号を受信し得る。いくつかの実施形態では、機械学習モデルをトレーニングするためのフォワードパス中に、位置算出回路448は、画像信号を算出された出力と比較することによって比較信号を決定し得る。たとえば、位置算出回路448は、ユーザの手形状モデル280の関節配向の値のために画像信号と算出された出力との間の変化を決定するために画像差分(differencing)を使用し得る。位置算出回路448は、画像から導出された手の位置と、機械学習モデルから導出された手の位置との間の差についての誤差または損失関数をさらに決定し得る。バックワードパスでは、機械学習モデルのパラメータは、損失または誤差関数を最小限に抑えるために更新される。たとえば、機械学習モデルのパラメータに関して勾配が算出され、パラメータは、負の勾配方向に向かって最適化される。いくつかの実施形態では、画像信号と算出された出力との間の誤差は、結果に基づいて画像に変換され得る。たとえば、画像信号と算出された出力との間の不一致を測定するために、ハッチンソンメトリック(Hutchinson metric)が使用され得る。出力インターフェース回路440は、ホストシステム428またはHMD424に比較信号をさらに送信し得る。他のタイプの機械学習が使用され得る。いくつかの実施形態では、機械学習モデルは、勾配ベース最適化ではなく線形回帰を使用する。
上記で説明されたように、電気信号216からユーザの手120の手の位置を表す出力を算出することは、異なる実施形態では、回路400、ホストシステム428、またはHMD424内の回路によって実施され得る。
例示的な機械学習トレーニング
図5は、一実施形態による、機械学習モデル556をトレーニングすることに関連する構成要素を表す例示的なブロック図である。いくつかの実施形態では、プロセスは、図5に関して説明されるプロセスとは異なるおよび/または追加のステップを有し得る。いくつかのステップは、並列に実行され得る。代替的に、ステップのうちのいくつかは、並列に実行され、いくつかのステップは、連続的に実行され得る。代替的に、いくつかのステップは、ステップの実行が前のステップの実行の前に開始されるようなパイプライン様式で実行し得る。
ブロック図は、位置算出回路448内の特徴抽出回路548および機械学習モデル556を示す。電気信号216から導出された情報は、図4を参照しながら上記で説明されたように、特徴抽出回路548によって受信される。情報は、センサー112の各ペア間で測定される電気インピーダンスのインピーダンス値と位相データとを含み得る。たとえば、情報は、ユーザの腕104の内部構造204がプローブ信号212にもたらす電気的対立を表現し得る。情報は、受信される電気的電圧信号216と送信されるプローブ電流信号212との複素比であり得、大きさと位相の両方を有し得る。センサーの数がNによって示される場合、これは、N個のそのようなインピーダンス値を生じる。いくつかの実施形態では、情報は、センサーの各ペアについての時間によるインピーダンスの変化(インピーダンス/s)を含む。このインピーダンス/sは、時間によるユーザの手120における関節間の角度の変化を示す。
特徴抽出回路548は、電気信号216から、または電気信号216から導出された情報から特徴508を抽出する。いくつかの実施形態では、特徴508は、ユーザの手首または腕の手120の手の位置を規定する関節間の角度を含む。この実施形態では、抽出された特徴508は、手の特徴286間の規定された角度を表現する値のセットである。関節間の角度は、ユーザの手形状モデル280に関して規定され得、ユーザの手形状モデル280と手の位置とに対応する完全な高忠実度の手をレンダリングするために使用され得る。
いくつかの実施形態では、特徴508は、ユーザの手首または腕104の手120の手の位置の変化の低減された表現を含む。別の例では、特徴抽出回路548によって抽出された特徴508は、低減された表現を使用して符号化される。低減された表現は、ユーザの手首または腕104の手120の現在の手の位置と、ユーザの手首または腕104の手120の前の手の位置との間の差を規定する。低減された表現での圧縮を可能にするために、近隣する画像フレーム間の時間的冗長性が使用され得る。たとえば、センサー112によって送信されるデータは、時間サンプリングの場合N×8個の画像フレームに対応し得、ここで、センサー112の数はNであり、Nは、ユーザの腕104の電気インピーダンスを測定するセンサーペアの数である。
いくつかの実施形態では、手の位置の変化の低減された表現が使用される場合、センサー112によって送信されるデータは、画像フレームごとの変形を表す動きベクトルのみを含むことになる。8つの画像フレームについての低減された表現508は、したがって、各フレーム中の関節についての値を含まないが、連続フレーム間で変化する関節値のみを含むことになる。特に、手の位置に関係する情報のための処理および記憶要件は、フレーム間の変化のみがデータにおいて表現されるので低減される。さらに、機械学習モデル556は、圧縮されたトレーニングデータを使用してトレーニングされ得、圧縮されたトレーニングデータを出力することができる。
いくつかの実施形態では、慣性測定ユニット128は、図1を参照しながら上記で図示および説明されたように、ウェアラブルデバイス100の移動に対応する慣性信号504を生成する。位置算出回路448は、機械学習モデル556とともに、信号216からの特徴に加えて、慣性信号504から導出された特徴を使用して、ユーザの手首または腕の手120の手の位置を表す出力を算出する。
いくつかの実施形態では、カメラ452は、ユーザの手首または腕104の手120の指の間の関節および角度の画像信号520を生成する。位置算出回路448は、機械学習モデル556とともに、信号216からの特徴に加えて画像信号520から導出された情報を使用して、ユーザの手首または腕104の手120の手の位置を表す出力を算出する。カメラからの画像信号520は、手の位置特徴508を抽出するための拡張データセットを与え、抽出の精度を増加させることができる。
いくつかの実施形態では、ユーザの手に触れている物体上にユーザの手によって加えられる力を表すグランドトゥルースの予想される出力は、力センサーのアレイを使用して決定され得る。力データは、グランドトゥルースに対応する。機械学習モデル556は、トレーニング入力と手の運動(hand exertion)との間の連続相関を学習するようにトレーニングされる。トレーニングでは、ユーザは把持力(すなわち、手の運動)の様々な異なるレベルにおいて力センサーアレイを把持し得、ウェアラブルデバイス100からの電気データが集められる。電気信号216は、筋肉、腱、および他の内部構造が手の運動の異なるレベルの下で変化するにつれて変化し得る。力センサーデータ(「グランドトゥルース」)は、機械学習技法を使用して電気信号データ216に相関され、電気データ216から手の運動を推定するために連続モデルが作成される。
いくつかの実施形態では、ユーザの手によって加えられる力を表すグランドトゥルースの予想される出力は、力センサーを使用せずに決定され得る。たとえば、手の運動の主観的レベル(「グランドトゥルース」)が、電気信号216に直接相関され得る。トレーニングでは、ユーザは、「軽」、「中」、または「高」などの把持力(すなわち、手の運動)を用いて物体を把持し得る。電気信号216は、次いで、ウェアラブルデバイス100から測定される。電気信号216は、筋肉、腱などが手の運動の異なるレベルの下で変化するにつれて変化し得る。ユーザのラベル付けされた手の運動は、電気信号データ216に相関される。機械学習技法は、電気データ216から手の運動を推定するためのモデルを作成するために使用される。この手法の利点は、力センサーを必要としないことによって全体的なシステムの複雑さが低減されることである。さらに、この手法は、単一の力センサーが装備された物体のみの代わりに任意の物体/把持を使用してトレーニングすることを容易にする。
機械学習モデル556のトレーニング中に、特徴抽出回路548は、機械学習モデル556のパラメータを調整することを容易にするために特徴508を抽出する。抽出された特徴508は、機械学習モデル556への入力として使用され、機械学習モデル556の出力は、トレーニング出力データストア516に記憶されたグランドトゥルース出力と比較され得る。特に、電気信号216または電気信号216の抽出された情報は、トレーニング入力データストア512から取り出され、特徴508を生成するために特徴抽出回路548に入力される。
トレーニング入力データストア512は、リムーバブルまたは非リムーバブルメモリカード、コンピュータハードドライブなどのうちの1つまたは複数に記憶された、データベース、テーブル、ファイルなどとして編成され得る。いくつかの実施形態では、トレーニング入力データストア512は、トレーニング入力データの1つまたは複数の属性を各々が表す複数のデータフィールドを含む。たとえば、トレーニング入力データストア512は、特徴抽出回路548への入力として使用される、電気信号216、慣性信号504、画像信号520、またはそれらの抽出された値を含んでいることがある。トレーニング出力データストア516は、トレーニングデータ入力ストアに記憶された入力と対応するユーザの手120の予想される手の位置を記憶する。いくつかの実施形態では、トレーニング入力データストア512およびトレーニング出力データストア516は、複数のユーザからキャプチャされた情報を記憶する。
機械学習モデル556は、トレーニング入力データストア512とトレーニング出力データストア516とからの情報を含むトレーニングセットを使用してトレーニングされる。トレーニング出力データストア516は、リムーバブルまたは非リムーバブルメモリカード、コンピュータハードドライブなどのうちの1つまたは複数に記憶された、データベース、テーブル、ファイルなどとして編成され得る。トレーニング出力データストア516は、知られている特徴508と、特徴508に対応する知られている手の位置との間の関連付けを記憶し得る。トレーニング出力データストア516は、予想される出力、すなわち、慣性信号504またはカメラフレームからの情報から抽出された手の位置を記憶し得る。
いくつかの実施形態では、機械学習モデル556をトレーニングするために位置が追跡されるべきであるユーザの手120は、光学マーカーを装備している。光学マーカーは、光反射体(パッシブマーカー、たとえば、逆反射体)、または発光体(アクティブマーカー、たとえば、LED)であり得る。ユーザの手120の配向を決定するために、いくつかの光学マーカーは、知られているジオメトリにおいて配置され得る。光学マーカーから来る光を走査および検出するために追跡カメラが使用され得る。キャプチャされた画像は、(2D画像座標における)潜在的マーカー位置を識別および計算するように処理される。この2Dデータは、光学マーカーの3D位置を計算するために組み合わせられ得る。そのような測定の結果(光学マーカーの位置、ならびにしたがってマーカーを担持するユーザの手120の位置および配向を表す座標)は、トレーニング出力データストア516に記憶され、機械学習モデル556をトレーニングするために使用される。
いくつかの実施形態では、カメラ452は、ユーザの手120の移動に対応する画像信号520を生成する。別個のニューラルネットワークが、ユーザの手首または腕104の手120の手の位置を表す、画像信号520から導出された予想される出力を生成するようにトレーニングされ得る。このプロセスは、参照により本明細書にその全体が組み込まれる、2017年4月13日に出願された米国出願第15/487,355号、および2017年4月13日に出願された米国出願第15/487,361号に記載されている。これらの予想される出力は、トレーニング出力データストア516に記憶され得る。たとえば、位置算出回路448は、機械学習モデル556のトレーニングのために、図4を参照しながら上記で図示および説明されたように、カメラ452から画像信号520を受信し得る。インピーダンスの各N個のサンプルについて、予想される出力は、ユーザの手首または腕104の手120の位置のキャプチャされた変化を表現する8つのカメラフレームに対応する。位置算出回路448はまた、HMD上に取り付けられたカメラから画像信号520を受信することによって、トレーニング出力データストア516のためのトレーニングデータセットを作成し得る。
いくつかの実施形態では、慣性測定ユニット128は、ウェアラブルデバイス100の移動に対応する慣性信号504を生成する。機械学習モデル556は、ユーザの手首または腕104の手120の手の位置を表す、慣性信号504から導出された予想される出力を生成するようにトレーニングされる。これらの予想される出力は、トレーニング出力データストア516に記憶され得る。
機械学習モデル556をトレーニングする目的は、機械学習モデル556が、新しい、初見の入力を受けて、トレーニングデータセットの結果を予想した後に、それらの入力に対して正確に作用することを可能にすることである。決定ツリー学習、相関ルール学習、ニューラルネットワーク、深層学習、帰納論理プログラミング、サポートベクターマシン、クラスタリング、ベイジアンネットワーク、強化学習、および表現学習などを含む、トレーニングに対するいくつかの異なる手法が使用され得る。勾配ベース最適化手法では、(フォワードパスにおける)コスト関数の誤差、およびモデルのパラメータに関する勾配が算出され得、次いで、パラメータは、(バックワードパスにおける)負の勾配方向のほうへ移動され得る。ニューラルネットワークでは、コスト関数の複数の層があり得、トレーニングは、各層について実施される。線形回帰では、閉形式解が算出され、出力は、直接書かれ得る。
いくつかの実施形態では、機械学習モデル556のトレーニングは、2つのパスにおいて達成され得る。第1に、フォワードパスにおいて、トレーニング特徴508は、電気信号216から導出されたインピーダンスと慣性信号504とから抽出される。このようにして、電気信号216から導出された情報は、特徴抽出回路548中に入力される。特徴抽出回路548の出力は、特徴508のセットである。特徴508は、手の位置を規定する関節間の角度に対応する。いくつかの実施形態では、特徴は、ユーザの手首または腕104の手120の手の位置の変化の低減された表現に対応する。各特徴508は、したがって、入力216および504のセットから抽出された出力である。位置算出回路448は、各特徴508と、トレーニングデータ出力ストア516に記憶された(たとえば、カメラ452からの)予想される出力との間の誤差または損失関数を決定し得る。第2に、バックワードパスにおいて、機械学習モデル556のパラメータは、誤差または損失関数を最小限に抑えるように調整される。次のフォワードパスにおいて、この更新された機械学習モデル556が使用される。このようにして、複数のユーザにわたって、大量のトレーニングセットが集められ得る。
いくつかの実施形態では、機械学習モデル556はリカレントニューラルネットワーク(RNN)モデルであり得、RNNモデルは、ユニット間の結合が有向巡回を形成する人工ニューラルネットワークのクラスである。これは、機械学習モデル556が動的時間挙動を呈することを可能にする、機械学習モデル556の内部状態を作成する。この実施形態では、位置算出回路448は、電気信号216から抽出された特徴など、入力の任意のシーケンスを処理するために位置算出回路448の内部メモリを使用することができる。
いくつかの実施形態では、特徴508におけるデータの量を低減し、機械学習問題の複雑さを低減するために、完全な手形状モデルの次元を低減するために、(たとえば、線形判別分析(LDA)、主成分分析(PCA)などを介した)次元低減が使用され得る。PCAは、特徴ベクトル410におけるデータの量をデータのより小さく、より代表的なセットまで低減するために、(たとえば、線形判別分析(LDA)、主成分分析(PCA)などを介して)次元低減を適用し得る。PCAは、場合によっては相関変数の観測値のセットを、主成分(principal component)と呼ばれる線形的無相関変数の値のセットにコンバートするために、直交変換を使用する統計的手順である。主成分の数は、元の変数の数または観測値の数のうちのより小さいものよりも少数であるか、またはその数に等しい。
たとえば、完全な手形状モデルが22個の関節角度を有する場合、完全な手形状モデルに対応する予想される出力は、画像信号520としてカメラ452によって測定され得る。これらの予想される出力は、PCAを使用してより小さいモデル(たとえば、10個の特徴)まで低減され、トレーニング出力データストア516に記憶され得る。機械学習モデル556は、電気信号216、慣性信号504、画像信号520、またはトレーニング入力データストア512に記憶された低減されたモデル(10個の特徴)に対応するそれらの抽出された値のトレーニングセットを使用してトレーニングされ得る。オンライン予測または推論プロセスでは、入力データは、低減された手形状モデル(10個の特徴)に対応する出力を予測するために学習モデルによって使用される。低減された手形状モデル(10個の特徴)に対応する出力は、次いで、使用のために完全な手形状モデル(22個の関節角度)に投影され得る。
オンライン予測または推論プロセスでは、位置算出回路448は、(たとえば、ライブ環境において)センサー112および慣性測定ユニット128から入力216および/または504を受信し、トレーニングされた機械学習モデル556とともに、抽出された特徴508を使用して、出力を算出する。この方法の利益および利点は、入力データ(電気信号216)の小さいセットがユーザのために生成されることである。カメラまたは画像処理は必要とされないが、実施形態では、画像信号は、モデル556をトレーニングする際にモデル556への入力として使用されるか、またはモデル556によって算出された出力とライブ画像信号との間の誤差を決定するためのシステムの較正のために使用されるかのいずれかであり得る。
手の位置を追跡するための例示的なプロセス
図6は、一実施形態による、トレーニング電気信号に基づいてユーザの手の位置を追跡するように機械学習モデル556をトレーニングするためのプロセス650と、電気信号216に基づいてユーザの手の位置を推論するためのプロセス654とを示すフローチャートである。いくつかの実施形態では、プロセスは、図6に関して説明されるプロセスとは異なるおよび/または追加のステップを有し得る。プロセスのステップは、図6に関して説明される順序とは異なる順序において実施され得る。いくつかのステップは、並列に実行され得る。代替的に、ステップのうちのいくつかは、並列に実行され、いくつかのステップは、連続的に実行され得る。代替的に、いくつかのステップは、ステップの実行が前のステップの実行の前に開始されるようなパイプライン様式で実行し得る。
機械学習トレーニングプロセス650では、600において、回路400またはホストシステム428は、ユーザの手首または腕104の少なくとも一部分の周りに着用されたウェアラブル構造116上の異なるロケーションに配置されたセンサー112から電気信号216を受信する。各センサー112は、ユーザの手首または腕104内の構造の移動に対応する電気信号216を測定する。
608において、特徴抽出回路548は、電気信号216からトレーニング特徴508を抽出する。いくつかの実施形態では、センサー112の各ペア間で測定される電気インピーダンスのインピーダンスおよび位相が導出される。いくつかの実施形態では、測定された電気信号216から導出された情報は、センサーの各ペアについての時間によるインピーダンスの変化(インピーダンス/s)を含む。電気信号216から抽出された特徴508、または電気信号216から導出された情報から抽出された特徴508は、ユーザの手首または腕104の手120の位置を規定する関節間の角度と、ユーザの手首または腕104の手120の手の位置の変化の低減された表現とを含み得る。
プロセス650は、機械学習モデル556を実装するニューラルネットワーク層についてのパラメータを導出することなどによって、機械学習モデル556を生成するために使用されるトレーニングプロセスである。プロセス650では、612において、機械学習モデル556は、特徴508に基づいてユーザの手120の手の位置を決定するために、抽出された特徴508と、トレーニング入力データストア512からの知られている手の位置に対応する情報と、トレーニング出力データストア516からの予想される出力とを使用してトレーニングされる。トレーニングセットを作成するために、位置算出回路448は、図4または図5を参照しながら上記で図示および説明されたように、カメラ452から画像信号520を受信し得る。インピーダンスの各N個のサンプルについて、予想される出力は、ユーザの手首または腕104の手120のキャプチャされた位置を表現する8つのカメラフレームに対応し得る。トレーニングプロセス650の後に、推論プロセス654は、ユーザのためのリアルタイムのユーザの手の追跡のために実施され得る。
手の位置推論プロセス654では、616において、ウェアラブルデバイス100中のセンサー112は、図2Aに関して上記で図示および説明されたように、ユーザの腕104の内部構造204にプローブ信号212を送信する。620において、入力インターフェース回路432は、センサー112から電気信号216を受信する。電気信号216は、ユーザの手首または腕104内の構造の移動に対応する。
628において、特徴抽出回路548は、電気信号216から導出されたインピーダンス値などの情報から特徴508を抽出する。位置算出構成要素448は、632においてユーザの手120の手の位置を表す出力を生成するために、機械学習モデル556に推論のための特徴508を送信する。同様の特徴セットを使用してトレーニングされた機械学習モデル556は、推論中に抽出された特徴508に適用される。
いくつかの実施形態では、機械学習モデル556を使用して、新しい特徴に基づく分類、2進数または他のスコアが決定される。いくつかの実施形態では、トレーニング出力データストア516中の各ユーザの手の位置に関連するスコアが決定される。各ユーザの手の位置に関連するスコアは、電気信号216がそのユーザの手の位置に対応する尤度を示し得る。
いくつかの実施形態では、各ユーザの手の位置に関連するスコアは、特徴508に関連するスコアの重み付けされたアグリゲートを表現する式を評価することによって決定される。特徴に関連する重みは、あらかじめ決定され、たとえば、専門家ユーザによって設定され得る。特定のユーザについてのいくつかの手の位置の最も決定力のある特徴は、より多く重み付けされ得る。636において、出力インターフェース回路440は、ホストシステム428またはHMD424に算出された出力を送信する。
実施形態の上記の説明は、説明の目的で提示されており、網羅的であること、または実施形態を開示される正確な形態に限定することは意図されない。当業者は、上記の開示に照らして多くの修正および変形が可能であることを諒解することができる。
最終的に、本明細書において使用される言い回しは、主に読みやすさおよび教育目的で選択されており、本明細書において使用される言い回しは、本発明の主題を画定または制限するように選択されていないことがある。したがって、その範囲はこの詳細な説明によって限定されず、むしろ、本明細書に基づく適用例に関して生じる請求項によって限定されることが意図される。したがって、実施形態の開示は、以下の特許請求の範囲に記載される範囲を例示するものであり、限定するものではない。
追加の開示および請求可能な主題は、以下を含む。

Claims (64)

  1. ウェアラブルデバイスであって、前記ウェアラブルデバイス上の異なるロケーションに配置された複数のセンサーを備え、各センサーが、ユーザの手首または腕から送信される電気信号を測定するように設定された、ウェアラブルデバイスと、
    前記センサーに結合された位置算出回路であって、前記位置算出回路が、機械学習モデルとともに前記電気信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の手の手の位置を表す出力を算出するように設定された、位置算出回路と
    を備える、システム。
  2. 前記位置算出回路が前記ウェアラブルデバイス上に位置するか、または前記ウェアラブルデバイス内に位置する、請求項1に記載のシステム。
  3. 前記位置算出回路が前記ウェアラブルデバイスの外部のホストシステム上に位置するか、または前記ウェアラブルデバイスの外部の前記ホストシステム内に位置する、請求項1に記載のシステム。
  4. 各センサーが、電極、および前記電極と前記ユーザの前記手首または前記腕との間に位置する導電剤を備え、各センサーが、前記ユーザの前記手首または前記腕中に、交流(AC)信号、直流(DC)信号、または複数の周波数を含む広帯域幅AC信号を送信するようにさらに設定された、請求項1に記載のシステム。
  5. 各電気信号が、
    電圧および前記電圧の位相、
    電流および前記電流の位相、または
    DC信号の大きさ
    のうちの1つを含む、請求項1に記載のシステム。
  6. 前記センサーがグリッドアレイまたはチェッカーボードパターンにおいて配置された、請求項1に記載のシステム。
  7. 前記電気信号から導出された前記情報は、
    センサーの各ペア間で測定される電気インピーダンスに基づくアグリゲート値であって、前記電気インピーダンスが、センサーの前記ペアによって前記ユーザの前記手首または前記腕中に送信されるプローブ信号と前記電気信号とに基づいて決定される、アグリゲート値と、
    前記電気信号の波の形状と、
    前記電気信号の周波数領域表現と、
    前記電気信号の時間領域サンプルと
    のうちの1つまたは複数を含む、請求項1に記載のシステム。
  8. 前記位置算出回路が、前記電気信号から導出された前記情報から特徴を抽出するようにさらに設定され、前記特徴は、
    前記ユーザの前記手首または前記腕の手の前記手の位置を規定する関節間の角度と、
    前記ユーザの前記手首または前記腕の手の前記手の位置の変化の低減された表現であって、前記低減された表現が、前記ユーザの前記手首または前記腕の前記手の現在の手の位置と、前記ユーザの前記手首または前記腕の前記手の前の手の位置との間の差を規定する、低減された表現と
    のうちの1つまたは複数を含む、請求項1に記載のシステム。
  9. 各センサーが、
    プローブ信号の時間期間と、
    前記プローブ信号の振幅と、
    前記プローブ信号の位相と
    のうちの1つまたは複数を変動させることによって、前記ユーザの前記手首または前記腕中に前記プローブ信号を送信するようにさらに設定された、請求項1に記載のシステム。
  10. 第1のセンサーが、前記ユーザの前記手首または前記腕中にプローブ信号を送信することであって、他のセンサーによる他のプローブ信号の送信に対して前記プローブ信号の前記送信をスタッガすることによって、プローブ信号を送信することを行うように設定された、請求項1に記載のシステム。
  11. 前記ウェアラブルデバイスと前記ユーザの腕との移動に対応する慣性信号を生成するように設定された慣性測定ユニットであって、前記位置算出回路が、前記機械学習モデルとともに前記慣性信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を算出するようにさらに設定された、慣性測定ユニット
    をさらに備える、請求項1に記載のシステム。
  12. 前記慣性測定ユニットが、
    ジャイロスコープと、
    加速度計と、
    磁力計と
    のうちの1つまたは複数を備える、請求項11に記載のシステム。
  13. 1つまたは複数の角度から前記ユーザの前記手首または前記腕の前記手の画像信号を生成するように設定された1つまたは複数のカメラであって、前記位置算出回路が、前記機械学習モデルとともに前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を算出するようにさらに設定された、1つまたは複数のカメラ
    をさらに備える、請求項1に記載のシステム。
  14. 前記カメラが、深度カメラ、赤緑青(RGB)カメラ、赤外線カメラ、またはヘッドマウントディスプレイ(HMD)上に取り付けられたカメラである、請求項13に記載のシステム。
  15. 前記ウェアラブルデバイスの移動に対応する慣性信号を生成するように設定された慣性測定ユニットであって、前記位置算出回路が、前記慣性信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を生成するように、前記機械学習モデルをトレーニングするようにさらに設定された、慣性測定ユニット
    をさらに備える、請求項1に記載のシステム。
  16. 前記ユーザの前記手首または前記腕の前記手の画像信号を生成するように設定された1つまたは複数のカメラであって、前記位置算出回路が、前記機械学習モデルとともに前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を生成するように、前記機械学習モデルをトレーニングするようにさらに設定された、1つまたは複数のカメラ
    をさらに備える、請求項1に記載のシステム。
  17. 前記算出された出力が、前記ユーザの前記手首または前記腕の前記手に触れている物体上に前記ユーザの前記手首または前記腕の前記手によって加えられる力をさらに表す、請求項1に記載のシステム。
  18. 前記位置算出回路が、
    HMD上に取り付けられたカメラから画像信号を受信することと、
    前記画像信号を前記算出された出力と比較することによって比較信号を決定することと、
    前記比較信号をホストシステムに送信することと
    を行うようにさらに設定された、請求項1に記載のシステム。
  19. 前記算出された出力が手形状モデルのパラメータを備え、前記パラメータが、
    前記ユーザの前記手首または前記腕の前記手の複数の関節と、
    前記関節のペア間の複数のエッジと、
    前記エッジのペア間の複数の角度と、
    複数の頂点を備えるメッシュと、各頂点についての、前記頂点と1つまたは複数の関節との間の距離と
    に対応する、請求項1に記載のシステム。
  20. ウェアラブルデバイス上の異なるロケーションに配置された複数のセンサーに結合された位置算出回路であって、各センサーが、ユーザの手首または腕から送信される電気信号を測定するように設定され、前記位置算出回路が、機械学習モデルとともに前記電気信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の手の手の位置を表す出力を算出するように設定された、位置算出回路と、
    前記位置算出回路からの前記算出された出力を受信するように設定されたディスプレイパネルと
    を備える、HMD。
  21. 前記ユーザの前記手首または前記腕の前記手の画像信号を生成するように設定されたカメラであって、前記位置算出回路が、前記機械学習モデルとともに前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を算出するようにさらに設定された、カメラ
    をさらに備える、請求項20に記載のHMD。
  22. 前記カメラが、深度カメラ、赤緑青(RGB)カメラ、赤外線カメラ、または前記HMD上に取り付けられたカメラである、請求項21に記載のHMD。
  23. 前記ユーザの前記手首または前記腕の前記手の画像信号を生成するように設定されたカメラであって、前記位置算出回路が、前記機械学習モデルとともに前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を生成するように、前記機械学習モデルをトレーニングするようにさらに設定された、カメラ
    をさらに備える、請求項20に記載のHMD。
  24. 前記位置算出回路が、
    前記画像信号を前記算出された出力と比較することによって比較信号を決定することと、
    前記比較信号をホストシステムに送信することと
    を行うようにさらに設定された、請求項23に記載のHMD。
  25. ウェアラブルデバイス上の異なるロケーションに配置された複数のセンサーからトレーニング電気信号を受信することであって、前記トレーニング電気信号がユーザの手首または腕から送信される、トレーニング電気信号を受信することと、
    前記トレーニング電気信号からトレーニング特徴を抽出することと、
    前記ユーザの前記手首または前記腕の手の手の位置を決定するように、前記抽出されたトレーニング特徴を使用して機械学習モデルをトレーニングすることと、
    前記複数のセンサーから電気信号を受信することであって、前記電気信号がユーザの前記手首または前記腕から送信される、電気信号を受信することと、
    前記電気信号から特徴を抽出することと、
    前記ユーザの前記手首または前記腕の前記手の手の位置を表す出力を算出するために、前記特徴を前記機械学習モデルに送信することと、
    前記出力をホストシステムに送信することと
    を含む、方法。
  26. 前記ユーザの前記手首または前記腕中に、AC信号、DC信号、または複数の周波数を含む広帯域幅AC信号を送信すること
    をさらに含む、請求項25に記載の方法。
  27. 前記電気信号から情報を導出することをさらに含み、前記情報は、
    センサーの各ペア間で測定される電気インピーダンスに基づくアグリゲート値であって、前記電気インピーダンスが、センサーの前記ペアによって前記ユーザの前記手首または前記腕中に送信されるプローブ信号と前記電気信号とに基づいて決定される、アグリゲート値と、
    前記電気信号の波の形状と、
    前記電気信号の周波数領域表現と、
    前記電気信号の時間領域サンプルと
    のうちの1つまたは複数を含む、請求項25に記載の方法。
  28. 前記電気信号から導出された前記情報から特徴を抽出することをさらに含み、前記特徴は、
    前記ユーザの前記手首または前記腕の前記手の前記手の位置を規定する関節間の角度と、
    前記ユーザの前記手首または前記腕の前記手の前記手の位置の変化の低減された表現であって、前記低減された表現が、前記ユーザの前記手首または前記腕の前記手の前の手の位置から、前記ユーザの前記手首または前記腕の前記手の現在の手の位置の間の差を規定する、低減された表現と
    のうちの1つまたは複数を含む、請求項27に記載の方法。
  29. プローブ信号の時間期間と、
    前記プローブ信号の振幅と、
    前記プローブ信号の位相と
    のうちの1つまたは複数を変動させることによって、前記ユーザの前記手首または前記腕中に前記プローブ信号を送信することをさらに含む、請求項25に記載の方法。
  30. 第1のセンサーによって、前記ユーザの前記手首または前記腕中にプローブ信号を送信することであって、他のセンサーによって送信される他のプローブ信号の送信に対して前記プローブ信号の前記送信をスタッガすることによって、プローブ信号を送信すること
    をさらに含む、請求項25に記載の方法。
  31. 慣性測定ユニットによって、前記ウェアラブルデバイスの移動に対応する慣性信号を生成することと、
    前記機械学習モデルとともに前記慣性信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を算出することと
    をさらに含む、請求項25に記載の方法。
  32. 1つまたは複数のカメラによって、前記ユーザの前記手首または前記腕の前記手の画像信号を生成することと、
    前記機械学習モデルとともに前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を算出することと
    をさらに含む、請求項25に記載の方法。
  33. 慣性測定ユニットによって、前記ウェアラブルデバイスの移動に対応する慣性信号を生成することと、
    前記慣性信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を生成するように、前記機械学習モデルをトレーニングすることと
    をさらに含む、請求項25に記載の方法。
  34. 1つまたは複数のカメラによって、前記ユーザの前記手首または前記腕の前記手の画像信号を生成することと、
    前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を生成するように、前記機械学習モデルをトレーニングすることと
    をさらに含む、請求項25に記載の方法。
  35. 1つまたは複数のカメラから、前記ユーザの前記手首または前記腕の前記手の画像信号を受信することと、
    前記画像信号を前記算出された出力と比較することによって比較信号を決定することと、
    前記比較信号をホストシステムに送信することと
    をさらに含む、請求項25に記載の方法。
  36. ウェアラブルデバイスであって、前記ウェアラブルデバイス上の異なるロケーションに配置された複数のセンサーを備え、各センサーが、ユーザの手首または腕から送信される電気信号を測定するように設定された、ウェアラブルデバイスと、
    前記センサーに結合された位置算出回路であって、前記位置算出回路が、機械学習モデルとともに前記電気信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の手の手の位置を表す出力を算出するように設定された、位置算出回路と
    を備える、システム。
  37. 前記位置算出回路が前記ウェアラブルデバイス上に位置するか、または前記ウェアラブルデバイス内に位置し、および/あるいは前記位置算出回路が前記ウェアラブルデバイスの外部のホストシステム上に位置するか、または前記ウェアラブルデバイスの外部の前記ホストシステム内に位置する、請求項36に記載のシステム。
  38. 各センサーが、電極、および前記電極と前記ユーザの前記手首または前記腕との間に位置する導電剤を備え、各センサーが、前記ユーザの前記手首または前記腕中に、交流(AC)信号、直流(DC)信号、または複数の周波数を含む広帯域幅AC信号を送信するようにさらに設定された、請求項36または37に記載のシステム。
  39. 各電気信号が、
    電圧および前記電圧の位相、
    電流および前記電流の位相、または
    DC信号の大きさ
    のうちの1つを含む、請求項36から38のいずれか一項に記載のシステム。
  40. 前記センサーがグリッドアレイまたはチェッカーボードパターンにおいて配置された、請求項36から39のいずれか一項に記載のシステム。
  41. 前記電気信号から導出された前記情報は、
    センサーの各ペア間で測定される電気インピーダンスに基づくアグリゲート値であって、前記電気インピーダンスが、センサーの前記ペアによって前記ユーザの前記手首または前記腕中に送信されるプローブ信号と前記電気信号とに基づいて決定される、アグリゲート値と、
    前記電気信号の波の形状と、
    前記電気信号の周波数領域表現と、
    前記電気信号の時間領域サンプルと
    のうちの1つまたは複数を含む、請求項36から40のいずれか一項に記載のシステム。
  42. 前記位置算出回路が、前記電気信号から導出された前記情報から特徴を抽出するようにさらに設定され、前記特徴は、
    前記ユーザの前記手首または前記腕の手の前記手の位置を規定する関節間の角度と、
    前記ユーザの前記手首または前記腕の手の前記手の位置の変化の低減された表現であって、前記低減された表現が、前記ユーザの前記手首または前記腕の前記手の現在の手の位置と、前記ユーザの前記手首または前記腕の前記手の前の手の位置との間の差を規定する、低減された表現と
    のうちの1つまたは複数を含む、請求項36から41のいずれか一項に記載のシステム。
  43. 各センサーが、
    プローブ信号の時間期間と、
    前記プローブ信号の振幅と、
    前記プローブ信号の位相と
    のうちの1つまたは複数を変動させることによって、前記ユーザの前記手首または前記腕中に前記プローブ信号を送信するようにさらに設定された、請求項36から42のいずれか一項に記載のシステム。
  44. 第1のセンサーが、前記ユーザの前記手首または前記腕中にプローブ信号を送信することであって、他のセンサーによる他のプローブ信号の送信に対して前記プローブ信号の前記送信をスタッガすることによって、プローブ信号を送信することを行うように設定された、請求項36から43のいずれか一項に記載のシステム。
  45. 前記ウェアラブルデバイスと前記ユーザの腕との移動に対応する慣性信号を生成するように設定された慣性測定ユニットであって、前記位置算出回路が、前記機械学習モデルとともに前記慣性信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を算出するようにさらに設定された、慣性測定ユニット
    をさらに備え、
    随意に、前記慣性測定ユニットが、
    ジャイロスコープと、
    加速度計と、
    磁力計と
    のうちの1つまたは複数を備える、請求項36から44のいずれか一項に記載のシステム。
  46. 1つまたは複数の角度から前記ユーザの前記手首または前記腕の前記手の画像信号を生成するように設定された1つまたは複数のカメラであって、前記位置算出回路が、前記機械学習モデルとともに前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を算出するようにさらに設定された、1つまたは複数のカメラ
    をさらに備え、
    随意に、前記カメラが、深度カメラ、赤緑青(RGB)カメラ、赤外線カメラ、またはヘッドマウントディスプレイ(HMD)上に取り付けられたカメラである、請求項36から45のいずれか一項に記載のシステム。
  47. 前記ウェアラブルデバイスの移動に対応する慣性信号を生成するように設定された慣性測定ユニットであって、前記位置算出回路が、前記慣性信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を生成するように、前記機械学習モデルをトレーニングするようにさらに設定された、慣性測定ユニット
    をさらに備える、請求項36から46のいずれか一項に記載のシステム。
  48. 前記ユーザの前記手首または前記腕の前記手の画像信号を生成するように設定された1つまたは複数のカメラであって、前記位置算出回路が、前記機械学習モデルとともに前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を生成するように、前記機械学習モデルをトレーニングするようにさらに設定された、1つまたは複数のカメラ
    をさらに備える、請求項36から47のいずれか一項に記載のシステム。
  49. 前記算出された出力が、前記ユーザの前記手首または前記腕の前記手に触れている物体上に前記ユーザの前記手首または前記腕の前記手によって加えられる力をさらに表す、請求項36から48のいずれか一項に記載のシステム。
  50. 前記位置算出回路が、
    HMD上に取り付けられたカメラから画像信号を受信することと、
    前記画像信号を前記算出された出力と比較することによって比較信号を決定することと、
    前記比較信号をホストシステムに送信することと
    を行うようにさらに設定された、請求項36から49のいずれか一項に記載のシステム。
  51. 前記算出された出力が手形状モデルのパラメータを備え、前記パラメータが、
    前記ユーザの前記手首または前記腕の前記手の複数の関節と、
    前記関節のペア間の複数のエッジと、
    前記エッジのペア間の複数の角度と、
    複数の頂点を備えるメッシュと、各頂点についての、前記頂点と1つまたは複数の関節との間の距離と
    に対応する、請求項36から50のいずれか一項に記載のシステム。
  52. ウェアラブルデバイス上の異なるロケーションに配置された複数のセンサーに結合された位置算出回路であって、各センサーが、ユーザの手首または腕から送信される電気信号を測定するように設定され、前記位置算出回路が、機械学習モデルとともに前記電気信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の手の手の位置を表す出力を算出するように設定された、位置算出回路と、
    前記位置算出回路からの前記算出された出力を受信するように設定されたディスプレイパネルと
    を備える、HMD。
  53. 前記ユーザの前記手首または前記腕の前記手の画像信号を生成するように設定されたカメラであって、前記位置算出回路が、前記機械学習モデルとともに前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を算出するようにさらに設定された、カメラ
    をさらに備え、
    随意に、前記カメラが、深度カメラ、赤緑青(RGB)カメラ、赤外線カメラ、または前記HMD上に取り付けられたカメラである、請求項52に記載のHMD。
  54. 前記ユーザの前記手首または前記腕の前記手の画像信号を生成するように設定されたカメラであって、前記位置算出回路が、前記機械学習モデルとともに前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を生成するように、前記機械学習モデルをトレーニングするようにさらに設定された、カメラ
    をさらに備え、
    随意に、前記位置算出回路が、
    前記画像信号を前記算出された出力と比較することによって比較信号を決定することと、
    前記比較信号をホストシステムに送信することと
    を行うようにさらに設定された、請求項52または53に記載のHMD。
  55. ウェアラブルデバイス上の異なるロケーションに配置された複数のセンサーからトレーニング電気信号を受信することであって、前記トレーニング電気信号がユーザの手首または腕から送信される、トレーニング電気信号を受信することと、
    前記トレーニング電気信号からトレーニング特徴を抽出することと、
    前記ユーザの前記手首または前記腕の手の手の位置を決定するように、前記抽出されたトレーニング特徴を使用して機械学習モデルをトレーニングすることと、
    前記複数のセンサーから電気信号を受信することであって、前記電気信号がユーザの前記手首または前記腕から送信される、電気信号を受信することと、
    前記電気信号から特徴を抽出することと、
    前記ユーザの前記手首または前記腕の前記手の手の位置を表す出力を算出するために、前記特徴を前記機械学習モデルに送信することと、
    前記出力をホストシステムに送信することと
    を含む、方法。
  56. 前記ユーザの前記手首または前記腕中に、AC信号、DC信号、または複数の周波数を含む広帯域幅AC信号を送信すること
    をさらに含む、請求項55に記載の方法。
  57. 前記電気信号から情報を導出することをさらに含み、前記情報は、
    センサーの各ペア間で測定される電気インピーダンスに基づくアグリゲート値であって、前記電気インピーダンスが、センサーの前記ペアによって前記ユーザの前記手首または前記腕中に送信されるプローブ信号と前記電気信号とに基づいて決定される、アグリゲート値と、
    前記電気信号の波の形状と、
    前記電気信号の周波数領域表現と、
    前記電気信号の時間領域サンプルと
    のうちの1つまたは複数を含み、
    随意に、前記電気信号から導出された前記情報から特徴を抽出することをさらに含み、前記特徴は、
    前記ユーザの前記手首または前記腕の前記手の前記手の位置を規定する関節間の角度と、
    前記ユーザの前記手首または前記腕の前記手の前記手の位置の変化の低減された表現であって、前記低減された表現が、前記ユーザの前記手首または前記腕の前記手の前の手の位置から、前記ユーザの前記手首または前記腕の前記手の現在の手の位置の間の差を規定する、低減された表現と
    のうちの1つまたは複数を含む、請求項55または56に記載の方法。
  58. プローブ信号の時間期間と、
    前記プローブ信号の振幅と、
    前記プローブ信号の位相と
    のうちの1つまたは複数を変動させることによって、前記ユーザの前記手首または前記腕中に前記プローブ信号を送信することをさらに含む、請求項55から57のいずれか一項に記載の方法。
  59. 第1のセンサーによって、前記ユーザの前記手首または前記腕中にプローブ信号を送信することであって、他のセンサーによって送信される他のプローブ信号の送信に対して前記プローブ信号の前記送信をスタッガすることによって、プローブ信号を送信すること
    をさらに含む、請求項55から58のいずれか一項に記載の方法。
  60. 慣性測定ユニットによって、前記ウェアラブルデバイスの移動に対応する慣性信号を生成することと、
    前記機械学習モデルとともに前記慣性信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を算出することと
    をさらに含む、請求項55から59のいずれか一項に記載の方法。
  61. 1つまたは複数のカメラによって、前記ユーザの前記手首または前記腕の前記手の画像信号を生成することと、
    前記機械学習モデルとともに前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を算出することと
    をさらに含む、請求項55から60のいずれか一項に記載の方法。
  62. 慣性測定ユニットによって、前記ウェアラブルデバイスの移動に対応する慣性信号を生成することと、
    前記慣性信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を生成するように、前記機械学習モデルをトレーニングすることと
    をさらに含む、請求項55から61のいずれか一項に記載の方法。
  63. 1つまたは複数のカメラによって、前記ユーザの前記手首または前記腕の前記手の画像信号を生成することと、
    前記画像信号から導出された情報を使用して、前記ユーザの前記手首または前記腕の前記手の前記手の位置を表す前記出力を生成するように、前記機械学習モデルをトレーニングすることと
    をさらに含む、請求項55から62のいずれか一項に記載の方法。
  64. 1つまたは複数のカメラから、前記ユーザの前記手首または前記腕の前記手の画像信号を受信することと、
    前記画像信号を前記算出された出力と比較することによって比較信号を決定することと、
    前記比較信号をホストシステムに送信することと
    をさらに含む、請求項55から63のいずれか一項に記載の方法。
JP2020503308A 2017-07-27 2018-07-26 電気インピーダンス測定値を使用して手の動きを追跡するためのアームバンド Pending JP2020529067A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/661,317 US10481699B2 (en) 2017-07-27 2017-07-27 Armband for tracking hand motion using electrical impedance measurement
US15/661,317 2017-07-27
PCT/US2018/043943 WO2019023487A1 (en) 2017-07-27 2018-07-26 HAND MOTION TRACKING CUFF USING ELECTRIC IMPEDANCE MEASUREMENT

Publications (1)

Publication Number Publication Date
JP2020529067A true JP2020529067A (ja) 2020-10-01

Family

ID=65038644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020503308A Pending JP2020529067A (ja) 2017-07-27 2018-07-26 電気インピーダンス測定値を使用して手の動きを追跡するためのアームバンド

Country Status (6)

Country Link
US (1) US10481699B2 (ja)
EP (1) EP3659016B1 (ja)
JP (1) JP2020529067A (ja)
KR (1) KR20200024324A (ja)
CN (1) CN111095167A (ja)
WO (1) WO2019023487A1 (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
US10188309B2 (en) 2013-11-27 2019-01-29 North Inc. Systems, articles, and methods for electromyography sensors
US10042422B2 (en) 2013-11-12 2018-08-07 Thalmic Labs Inc. Systems, articles, and methods for capacitive electromyography sensors
CN110312471B (zh) 2016-07-25 2022-04-29 脸谱科技有限责任公司 从神经肌肉活动测量中导出控制信号的自适应系统
WO2020112986A1 (en) 2018-11-27 2020-06-04 Facebook Technologies, Inc. Methods and apparatus for autocalibration of a wearable electrode sensor system
WO2018022602A1 (en) 2016-07-25 2018-02-01 Ctrl-Labs Corporation Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors
WO2018022597A1 (en) 2016-07-25 2018-02-01 Ctrl-Labs Corporation Methods and apparatus for inferring user intent based on neuromuscular signals
WO2018022657A1 (en) 2016-07-25 2018-02-01 Ctrl-Labs Corporation System and method for measuring the movements of articulated rigid bodies
US11216069B2 (en) 2018-05-08 2022-01-04 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
WO2019028650A1 (zh) * 2017-08-08 2019-02-14 方超 手势采集系统
WO2019079757A1 (en) 2017-10-19 2019-04-25 Ctrl-Labs Corporation SYSTEMS AND METHODS FOR IDENTIFYING BIOLOGICAL STRUCTURES ASSOCIATED WITH NEUROMUSCULAR SOURCE SIGNALS
US11147459B2 (en) * 2018-01-05 2021-10-19 CareBand Inc. Wearable electronic device and system for tracking location and identifying changes in salient indicators of patient health
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
EP3743892A4 (en) * 2018-01-25 2021-03-24 Facebook Technologies, Inc. VISUALIZATION OF INFORMATION ON THE STATE OF A RECONSTRUCTED HAND
EP3743790A4 (en) * 2018-01-25 2021-03-17 Facebook Technologies, Inc. RECONSTRUCTION OF HAND STATE ON THE BASIS OF MULTIPLE ENTRIES
US10937414B2 (en) 2018-05-08 2021-03-02 Facebook Technologies, Llc Systems and methods for text input using neuromuscular information
US11150730B1 (en) 2019-04-30 2021-10-19 Facebook Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
WO2019165972A1 (en) * 2018-02-28 2019-09-06 Chan Russell Wade Wearable gesture recognition device and associated operation method and system
WO2019200295A1 (en) * 2018-04-13 2019-10-17 Tactual Labs Co. Interior sensing
US10592001B2 (en) 2018-05-08 2020-03-17 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
WO2019231911A1 (en) 2018-05-29 2019-12-05 Ctrl-Labs Corporation Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
EP3807795A4 (en) 2018-06-14 2021-08-11 Facebook Technologies, LLC. USER IDENTIFICATION AND AUTHENTICATION BY MEANS OF NEUROMUSCULAR SIGNATURES
WO2020018892A1 (en) 2018-07-19 2020-01-23 Ctrl-Labs Corporation Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device
EP3836836B1 (en) 2018-08-13 2024-03-20 Meta Platforms Technologies, LLC Real-time spike detection and identification
WO2020047429A1 (en) 2018-08-31 2020-03-05 Ctrl-Labs Corporation Camera-guided interpretation of neuromuscular signals
EP3853698A4 (en) 2018-09-20 2021-11-17 Facebook Technologies, LLC NEUROMUSCULAR TEXT ENTRY, WRITING AND DRAWING IN SYSTEMS WITH EXTENDED REALITY
WO2020069181A1 (en) 2018-09-26 2020-04-02 Ctrl-Labs Corporation Neuromuscular control of physical objects in an environment
WO2020072915A1 (en) 2018-10-05 2020-04-09 Ctrl-Labs Corporation Use of neuromuscular signals to provide enhanced interactions with physical objects in an augmented reality environment
US11830274B2 (en) * 2019-01-11 2023-11-28 Infrared Integrated Systems Limited Detection and identification systems for humans or objects
US10905383B2 (en) 2019-02-28 2021-02-02 Facebook Technologies, Llc Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces
US10786729B1 (en) * 2019-03-08 2020-09-29 Sony Interactive Entertainment Inc. Thermopile array fusion tracking
JP7107264B2 (ja) * 2019-03-20 2022-07-27 トヨタ自動車株式会社 人等の身体動作推定システム
EP3716001A1 (en) * 2019-03-28 2020-09-30 GN Hearing A/S Power and data hub, communication system, and related method
CN113874742A (zh) 2019-05-31 2021-12-31 旭化成株式会社 测量装置、测量方法以及程序
US12089953B1 (en) 2019-12-04 2024-09-17 Meta Platforms Technologies, Llc Systems and methods for utilizing intrinsic current noise to measure interface impedances
KR102196962B1 (ko) * 2020-03-05 2020-12-31 강윤 매트릭스 압력 센서를 이용한 인체의 움직임 인식 및 이를 통한 인체 동작 예측 시스템
GB202004601D0 (en) * 2020-03-30 2020-05-13 Ind Tomography Systems Plc Apparatus and method for determining a characteristic of a material
WO2021236170A1 (en) * 2020-05-18 2021-11-25 Google Llc Low-power semi-passive relative six-degree-of-freedom tracking
KR102363822B1 (ko) * 2020-05-20 2022-02-16 한국기계연구원 센서 조립체 및 이를 이용한 측정장치
US20230280835A1 (en) * 2020-07-10 2023-09-07 Arizona Board Of Regents On Behalf Of Arizona State University System including a device for personalized hand gesture monitoring
CN112170781B (zh) * 2020-09-25 2022-02-22 泰州鑫宇精工股份有限公司 一种提升淋砂机环保性能的方法和装置
CN114515146B (zh) * 2020-11-17 2024-03-22 北京机械设备研究所 基于电学测量的智能手势识别方法及系统
US20220265168A1 (en) * 2021-02-23 2022-08-25 Samsung Electronics Co., Ltd. Real-time limb motion tracking
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof
US11635823B1 (en) * 2022-03-15 2023-04-25 Port 6 Oy Detecting user input from multi-modal hand bio-metrics
WO2022204614A1 (en) * 2022-05-02 2022-09-29 Innopeak Technology, Inc. Wrist-wearable controller for head-mounted device (hmd) or other user device with camera input
WO2022226429A1 (en) * 2022-05-03 2022-10-27 Innopeak Technology, Inc. Smart watch -based control of user interface (ui) of other device(s)
US20240061514A1 (en) * 2022-08-18 2024-02-22 Meta Platforms Technologies, Llc Navigating a user interface using in-air gestures detected via neuromuscular-signal sensors of a wearable device, and systems and methods of use thereof
US20240069651A1 (en) * 2022-08-30 2024-02-29 Htc Corporation Virtual reality tracker and tracker correction position method
KR102595257B1 (ko) * 2023-03-17 2023-11-01 강윤 제스처 인식에 기반한 모바일 로봇의 인간추종 및 상호작용 시스템 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054507A (ja) * 1999-08-17 2001-02-27 Sony Corp 筋電位情報を利用したモーションキャプチャー装置とその制御方法、並びにこれを用いた電気刺激装置、力触覚呈示装置とこれらの制御方法
JP2004157994A (ja) * 2002-10-07 2004-06-03 Sony France Sa 自由空間に作られるジェスチャを解析する方法及び装置
JP2016507851A (ja) * 2013-02-22 2016-03-10 サルミック ラブス インコーポレイテッド ジェスチャに基づいて制御するための筋活動センサ信号と慣性センサ信号とを結合する方法および装置
US20160067136A1 (en) * 2013-05-16 2016-03-10 New York University Game-based sensorimotor rehabilitator
JP2016508241A (ja) * 2012-11-01 2016-03-17 アイカム エルエルシー 3d撮像し、マッピングし、ネットワーク化しおよびインタフェースするための無線手首コンピューティングおよびコントロールするデバイスおよび方法
JP2016540276A (ja) * 2013-09-30 2016-12-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated 既知の、まだ着用されていないセンサの使用によるジェスチャ検出システムの分類

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835077A (en) * 1995-01-13 1998-11-10 Remec, Inc., Computer control device
US6244873B1 (en) * 1998-10-16 2001-06-12 At&T Corp. Wireless myoelectric control apparatus and methods
US8170656B2 (en) 2008-06-26 2012-05-01 Microsoft Corporation Wearable electromyography-based controllers for human-computer interface
US9037530B2 (en) * 2008-06-26 2015-05-19 Microsoft Technology Licensing, Llc Wearable electromyography-based human-computer interface
US8447704B2 (en) * 2008-06-26 2013-05-21 Microsoft Corporation Recognizing gestures from forearm EMG signals
WO2011007569A1 (ja) * 2009-07-15 2011-01-20 国立大学法人筑波大学 分類推定システムおよび分類推定プログラム
US20110304541A1 (en) 2010-06-11 2011-12-15 Navneet Dalal Method and system for detecting gestures
US20130077820A1 (en) 2011-09-26 2013-03-28 Microsoft Corporation Machine learning gesture detection
US8988373B2 (en) 2012-04-09 2015-03-24 Sony Corporation Skin input via tactile tags
US9278453B2 (en) * 2012-05-25 2016-03-08 California Institute Of Technology Biosleeve human-machine interface
JP5996371B2 (ja) * 2012-10-29 2016-09-21 株式会社東芝 電子機器
US20140196131A1 (en) * 2013-01-07 2014-07-10 Salutron, Inc. User authentication based on a wrist vein pattern
US20140198034A1 (en) 2013-01-14 2014-07-17 Thalmic Labs Inc. Muscle interface device and method for interacting with content displayed on wearable head mounted displays
US9367139B2 (en) 2013-12-12 2016-06-14 Thalmic Labs Inc. Systems, articles, and methods for gesture identification in wearable electromyography devices
EP3111303A4 (en) * 2014-02-28 2017-08-23 Vikas Gupta Gesture operated wrist mounted camera system
US9649558B2 (en) 2014-03-14 2017-05-16 Sony Interactive Entertainment Inc. Gaming device with rotatably placed cameras
KR102244856B1 (ko) 2014-04-22 2021-04-27 삼성전자 주식회사 웨어러블 장치와의 사용자 인터랙션을 제공하는 방법 및 이를 수행하는 웨어러블 장치
US9389733B2 (en) 2014-08-18 2016-07-12 Sony Corporation Modal body touch using ultrasound
US10488936B2 (en) * 2014-09-30 2019-11-26 Apple Inc. Motion and gesture input from a wearable device
US9720515B2 (en) 2015-01-02 2017-08-01 Wearable Devices Ltd. Method and apparatus for a gesture controlled interface for wearable devices
US9734779B2 (en) * 2015-02-12 2017-08-15 Qualcomm Incorporated Efficient operation of wearable displays
US20160282947A1 (en) 2015-03-26 2016-09-29 Lenovo (Singapore) Pte. Ltd. Controlling a wearable device using gestures
US9507974B1 (en) * 2015-06-10 2016-11-29 Hand Held Products, Inc. Indicia-reading systems having an interface with a user's nervous system
US10113913B2 (en) * 2015-10-03 2018-10-30 Facense Ltd. Systems for collecting thermal measurements of the face
US10067564B2 (en) 2015-08-11 2018-09-04 Disney Enterprises, Inc. Identifying hand gestures based on muscle movement in the arm
US10488937B2 (en) 2015-08-27 2019-11-26 Verily Life Sciences, LLC Doppler ultrasound probe for noninvasive tracking of tendon motion
US10445547B2 (en) 2016-05-04 2019-10-15 Invensense, Inc. Device mountable packaging of ultrasonic transducers
EP3807795A4 (en) * 2018-06-14 2021-08-11 Facebook Technologies, LLC. USER IDENTIFICATION AND AUTHENTICATION BY MEANS OF NEUROMUSCULAR SIGNATURES

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054507A (ja) * 1999-08-17 2001-02-27 Sony Corp 筋電位情報を利用したモーションキャプチャー装置とその制御方法、並びにこれを用いた電気刺激装置、力触覚呈示装置とこれらの制御方法
JP2004157994A (ja) * 2002-10-07 2004-06-03 Sony France Sa 自由空間に作られるジェスチャを解析する方法及び装置
JP2016508241A (ja) * 2012-11-01 2016-03-17 アイカム エルエルシー 3d撮像し、マッピングし、ネットワーク化しおよびインタフェースするための無線手首コンピューティングおよびコントロールするデバイスおよび方法
JP2016507851A (ja) * 2013-02-22 2016-03-10 サルミック ラブス インコーポレイテッド ジェスチャに基づいて制御するための筋活動センサ信号と慣性センサ信号とを結合する方法および装置
US20160067136A1 (en) * 2013-05-16 2016-03-10 New York University Game-based sensorimotor rehabilitator
JP2016540276A (ja) * 2013-09-30 2016-12-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated 既知の、まだ着用されていないセンサの使用によるジェスチャ検出システムの分類

Also Published As

Publication number Publication date
EP3659016A4 (en) 2020-08-05
EP3659016A1 (en) 2020-06-03
CN111095167A (zh) 2020-05-01
US20190033974A1 (en) 2019-01-31
WO2019023487A1 (en) 2019-01-31
US10481699B2 (en) 2019-11-19
KR20200024324A (ko) 2020-03-06
EP3659016B1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
US10481699B2 (en) Armband for tracking hand motion using electrical impedance measurement
JP7091531B2 (ja) 身体上ジェスチャ・インターフェース及び投影表示のための方法
US10817795B2 (en) Handstate reconstruction based on multiple inputs
Liu et al. NeuroPose: 3D hand pose tracking using EMG wearables
CN111902077B (zh) 利用神经肌肉信号进行手部状态表示建模的校准技术
Shanmuganathan et al. R-CNN and wavelet feature extraction for hand gesture recognition with EMG signals
CN112074870A (zh) 重构的手部状态信息的可视化
US11327566B2 (en) Methods and apparatuses for low latency body state prediction based on neuromuscular data
Dong et al. Wearable sensing devices for upper limbs: A systematic review
Štrbac et al. Microsoft Kinect‐Based Artificial Perception System for Control of Functional Electrical Stimulation Assisted Grasping
Bao et al. Surface-EMG based wrist kinematics estimation using convolutional neural network
Liu et al. A new IMMU-based data glove for hand motion capture with optimized sensor layout
Yue et al. How to achieve human–machine interaction by foot gesture recognition: a review
Liu et al. A practical system for 3-D hand pose tracking using EMG wearables with applications to prosthetics and user interfaces
Bimbraw et al. Prediction of metacarpophalangeal joint angles and classification of hand configurations based on ultrasound imaging of the forearm
Zheng et al. Wrist angle estimation with a musculoskeletal model driven by electrical impedance tomography signals
Schütz et al. Motor primitives of pointing movements in a three-dimensional workspace
Dobrea et al. A neuronal model of the 3D head position based on a wearable system
Abraham et al. Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds
Kim et al. Preliminary study of virtual semg signal-assisted classification
Akumalla Evaluating appropriateness of EMG and flex sensors for classifying hand gestures
Olczak Concept of Brain-Controlled Exoskeleton Based on Motion Tracking and EEG Signals Analysis
Zhang et al. Tactile sensing and feedback in SEMG hand
Pan Analysis and Improvement of Three Kinds of Exoskeleton Sensors
Kolsanov et al. Hand motion capturing and simulation in medical rehabilitation applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230110