JP2020528538A - Air condenser - Google Patents

Air condenser Download PDF

Info

Publication number
JP2020528538A
JP2020528538A JP2020526711A JP2020526711A JP2020528538A JP 2020528538 A JP2020528538 A JP 2020528538A JP 2020526711 A JP2020526711 A JP 2020526711A JP 2020526711 A JP2020526711 A JP 2020526711A JP 2020528538 A JP2020528538 A JP 2020528538A
Authority
JP
Japan
Prior art keywords
heat exchanger
conduits
air
air condenser
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020526711A
Other languages
Japanese (ja)
Inventor
パロディ、マルコ
バルベ、チェーザレ
ピザーニ、アルベルト コスタ
ピザーニ、アルベルト コスタ
Original Assignee
ユーロチラー エッセ.エッレ.エッレ.
ユーロチラー エッセ.エッレ.エッレ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユーロチラー エッセ.エッレ.エッレ., ユーロチラー エッセ.エッレ.エッレ. filed Critical ユーロチラー エッセ.エッレ.エッレ.
Publication of JP2020528538A publication Critical patent/JP2020528538A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/664Sound attenuation by means of sound absorbing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/082Grilles, registers or guards
    • F24F2013/088Air-flow straightener
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/242Sound-absorbing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/28Safety or protection arrangements; Arrangements for preventing malfunction for preventing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

本発明は、基台又は最下部から最上部まで垂直方向(Z)に展開する円筒形状又は多角形状を有する熱交換器(110)と、熱交換器(110)の最上部上に配置されたフレーム(122)内に収容されたモータ駆動されるファン(121)を具備した吸引器(120)とを備えた、円筒状空気凝縮器(100)に関する。円筒状凝縮器(100)は、さらに、熱交換器(110)の内側に熱交換器(110)に対して同軸に収容された分配器要素(130)を備え、分配器要素(130)は、同軸に配置された複数の導管(131a,131b,131c,131d,131e)を備え、導管(131a,131b,131c,131d,131e)は、熱交換器(110)の最上部から最下部に向けて次第に増加する高さと、次第に減少する横方向寸法とを有し、分配器要素(130)の構成は、熱交換器(110)の最上部を起点として最下部又は基台のほうへ、面積が名目上同一である複数の通孔部(A1〜A6)が熱交換器(110)内で垂直方向(Z)に画定されている。The present invention is arranged on a heat exchanger (110) having a cylindrical or polygonal shape extending vertically (Z) from the base or the bottom to the top, and on the top of the heat exchanger (110). It relates to a cylindrical air condenser (100) with an aspirator (120) with a motor driven fan (121) housed in a frame (122). The cylindrical condenser (100) further comprises a distributor element (130) housed coaxially with the heat exchanger (110) inside the heat exchanger (110), wherein the distributor element (130) , With a plurality of coaxially arranged conduits (131a, 131b, 131c, 131d, 131e), the conduits (131a, 131b, 131c, 131d, 131e) from the top to the bottom of the heat exchanger (110). With a gradually increasing height and a gradually decreasing lateral dimension, the configuration of the distributor element (130) starts at the top of the heat exchanger (110) and goes towards the bottom or base. A plurality of through holes (A1 to A6) having the same nominal area are defined in the heat exchanger (110) in the vertical direction (Z).

Description

本発明は、広く言えば、冷却システム及び空気調節装置の分野に関し、より詳細には、本発明は、このようなシステム及び装置の垂直吐出し空気凝縮器に係るものである。 The present invention relates broadly to the field of cooling systems and air conditioners, and more specifically to the vertical discharge air condensers of such systems and devices.

冷却及び空気調節システムは、特殊な管で接続された蒸発器と凝縮器との間の流体の循環に基づく冷却回路を使用する。蒸発器から出る流体は、圧縮機によって凝縮器へと送られ、凝縮器から出てくる流体は、ローリング弁を通過して蒸発器へと再循環する。 The cooling and air conditioning system uses a cooling circuit based on the circulation of fluid between the evaporator and the condenser connected by a special tube. The fluid coming out of the evaporator is sent by the compressor to the condenser, and the fluid coming out of the condenser passes through the rolling valve and recirculates to the evaporator.

冷却及び調節システムにおいて、凝縮器は、通常、冷却される部屋の外に配置されるユニットであり、周囲環境の空気を、冷却回路内で循環するガスを冷却する手段として利用する。凝縮器を通る空気流は、凝縮器の構造の構成に依存する。例えば、内部において空気流が実質的に水平である、すなわち、地面又は支持面に対して平行であるコンデンサと、内部において空気流が軸方向又は垂直である、すなわち、地面又は支持面に対して直交する凝縮器とが知られている。必要とされる冷却容量に応じて、いくつかの空気凝縮器が並べて配置されて互いに接続され得る。 In a cooling and conditioning system, a condenser is a unit that is usually located outside the room to be cooled and utilizes the air of the ambient environment as a means of cooling the gas circulating in the cooling circuit. The air flow through the condenser depends on the configuration of the structure of the condenser. For example, a capacitor in which the air flow is substantially horizontal, i.e. parallel to the ground or support surface, and inside, the air flow is axial or perpendicular, i.e. to the ground or support surface. Orthogonal condensers are known. Depending on the cooling capacity required, several air condensers may be arranged side by side and connected to each other.

軸方向又は垂直フロー凝縮器は、通常、フィンが設けられた壁を有する円筒形又は多角形の熱交換器を備え、この熱交換器は基台上に載置され、この熱交換器上にはモータ駆動されるファンを具備した吸引器が載設されている。吸引器は、熱交換器内に、熱交換器のフィンが設けられた壁を横又は半径方向に抜けて入る空気のフローを軸方向に吸引するような負圧を生じる。空気は、熱交換器のフィンが設けられた壁からの対流によって熱を除去し、熱交換器に収容された冷却回路内に流れるガスを冷却して凝縮を可能にする。 Axial or vertical flow condensers typically include a cylindrical or polygonal heat exchanger with finned walls, which are mounted on a pedestal and on top of this heat exchanger. Is equipped with a suction device equipped with a motor-driven fan. The aspirator creates a negative pressure in the heat exchanger that axially sucks the flow of air that enters the heat exchanger through the wall provided with the fins of the heat exchanger in the lateral or radial direction. The air removes heat by convection from the wall provided with the fins of the heat exchanger and cools the gas flowing in the cooling circuit housed in the heat exchanger to allow condensation.

特許文献1は、この種の垂直吐出し空気凝縮器の例を開示しており、熱交換器の壁が、冷却流体が渡る、同じ平面にある微細管の束を備える。微細導管の束は、それら導管の端部において支柱として作用する導入/排出導管により接続されており、垂直方向に平行に配置されているとともに、離間配置されたフィンを有し、これらフィンを通して空気が吸引される。微細導管の使用により、大きな熱交換表面を得ると同時に、熱交換器、したがって凝縮器の、全体の重量及び全体の寸法を制限することができる。 Patent Document 1 discloses an example of this type of vertical discharge air condenser, wherein the wall of the heat exchanger comprises a bundle of microtubules in the same plane across which the cooling fluid passes. The bundles of microconduit are connected by inlet / outlet conduits that act as struts at the ends of those conduits, are vertically parallel and have isolated fins, and air through these fins. Is sucked. The use of fine conduits can result in a large heat exchange surface while at the same time limiting the overall weight and dimensions of the heat exchanger, and thus the condenser.

微細導管を利用する熱交換器は、通常、冷却剤ガスを供給する一対の導管からなるパネルを使用して構成されており、その一対の導管の間に、フィンと交互に配置された微細導管の束が横方向に延在し、微細導管の束は、好適に湾曲し、又は曲げられて、概して円筒形状又は多角形状を有するチャンバの周壁をなしている。熱交換器の構成、及び必要とされる冷却容量に応じて、パネルは、円周又は周囲方向に互いに隣接して配置され得るのみならず、垂直に重なり合って、吸引器が載設される塔構造を生じ、この塔構造の高さは、重なり合うパネルの数と、さらにはそれらパネルのそれぞれの高さとに依存する。 Heat exchangers that utilize microconduit are usually constructed using a panel consisting of a pair of conduits that supply coolant gas, and the microconduit that alternates with fins between the pair of conduits. The bundle of microconducts extends laterally and the bundle of microconducts is suitably curved or bent to form the perimeter of a chamber, generally having a cylindrical or polygonal shape. Depending on the configuration of the heat exchanger and the cooling capacity required, the panels can be placed adjacent to each other in the circumferential or peripheral direction, as well as vertically overlapping towers on which the aspirators are mounted. It gives rise to the structure, and the height of this tower structure depends on the number of overlapping panels and even the height of each of those panels.

熱交換器の断面積が与えられると、吸引器の動力は熱交換器自体の高さに応じて選択されなければならないことが知られている。熱交換器の高さ全体にわたって熱交換器の壁を横方向に抜ける空気流の通過を可能にするためには、同じ熱交換器の垂直方向に分布する圧力降下を補償するような負圧レベルを生成する必要があることが知られている。 Given the cross section of the heat exchanger, it is known that the power of the aspirator must be selected according to the height of the heat exchanger itself. Negative pressure levels that compensate for the vertically distributed pressure drop of the same heat exchanger in order to allow the passage of airflow laterally through the walls of the heat exchanger over the entire height of the heat exchanger. Is known to need to be generated.

モータ駆動されるファンの吸引容量に対して過度に高い構造では、分布する圧力降下に起因して、熱交換器の基台付近に、熱の形態での熱エネルギーの適切な交換を可能にするほどの空気流が存在しないか、又は空気流が全く存在しないことが起こり得る。したがって、熱交換器の表面が最適に、又は全く利用されず、熱交換の効率が損なわれることになる。 Structures that are excessively high relative to the suction capacity of the motorized fan allow for the proper exchange of thermal energy in the form of heat near the base of the heat exchanger due to the distributed pressure drop. It is possible that there is not enough airflow or no airflow at all. Therefore, the surface of the heat exchanger is not optimally or completely utilized, and the efficiency of heat exchange is impaired.

したがって、凝縮器の最大の高さは、凝縮器に設けられた吸引器のモータ駆動されるファンにより吸引され得る空気流によって、制限される。 Therefore, the maximum height of the condenser is limited by the air flow that can be sucked by the motor driven fan of the aspirator provided in the condenser.

吸引され得る空気流の流量を増加させるために、モータ駆動されるファンの回転速度を増加させることは、全体として凝縮器の、すなわち熱交換器、及び熱交換器上に設置された吸引器の、より大きい騒音レベルを伴い、そのことは、現在の規制によって許容可能でなく、一般にも許容されない。 Increasing the rotational speed of the motor-driven fan to increase the flow rate of air flow that can be aspirated is generally of the condenser, i.e. the heat exchanger, and of the aspirator installed on the heat exchanger. , With higher noise levels, which is not acceptable by current regulations and is not generally acceptable.

現在の規制は、また、吸引器に使用できる電気モータの最大電力を制限する。 Current regulations also limit the maximum power of electric motors that can be used in aspirators.

熱交換器の壁に沿った空気の流量を均等にする、特に、空気流の速度を実質的に一定にする試みでは、熱交換器の壁に沿って、複数の通孔部を備える穿孔されたパネルを配置することが提案されており、これら通孔部の通過断面積は、熱交換器自体の最上部から最下部又は基台に向けて、最小値から最大値まで次第に増大する。熱交換器の壁を抜けて横に吸引される空気流は、こうして、パネル内に得られた通孔部によって調整され、次いで、熱交換器の最上部に向けて垂直に運ばれる。 In an attempt to equalize the flow rate of air along the wall of the heat exchanger, especially to make the velocity of the air flow substantially constant, perforations along the wall of the heat exchanger are provided with multiple perforations. It has been proposed to arrange the panels, and the cross-sectional area of these through holes gradually increases from the minimum value to the maximum value from the top to the bottom or the base of the heat exchanger itself. The airflow that is drawn laterally through the walls of the heat exchanger is thus regulated by the holes obtained in the panel and then carried vertically towards the top of the heat exchanger.

しかしながら、これらのパネルの使用には、それらパネルの通孔部に合わせて集中する圧力降下を生じるという不都合があり、熱交換器の熱交換効率が損なわれる。 However, the use of these panels has the disadvantage of causing a concentrated pressure drop in line with the through holes in the panels, impairing the heat exchange efficiency of the heat exchanger.

さらには、熱交換器の壁に沿ってパネルが存在することにより、全体として空気凝縮器の騒音が不所望に増大する。 Furthermore, the presence of panels along the walls of the heat exchanger undesirably increases the noise of the air condenser as a whole.

米国特許第8627670号明細書U.S. Pat. No. 86277670

したがって、本発明によって提示及び解決される技術的課題は、先行技術を参照した前述の欠点を解消することを可能にする垂直吐出し空気凝縮器を提供することである。 Therefore, the technical problem presented and solved by the present invention is to provide a vertical discharge air condenser that makes it possible to eliminate the aforementioned drawbacks with reference to the prior art.

この課題は、請求項1による空気凝縮器によって解決される。 This problem is solved by the air condenser according to claim 1.

本発明の好ましい構成は、従属請求項に規定されている。 The preferred configuration of the present invention is set forth in the dependent claims.

本発明の基礎をなす解決案は、垂直吐出し空気凝縮器の一部である、熱交換器の内部に、吸引器によって吸引される空気流の調整部材又は分配器を挿入することであり、該調整器又は分配器要素は、垂直方向に互いに同軸に配置された、かつ熱交換器の最上部から最下部に向けて次第に増加する高さと、次第に減少する径とを有する、複数の導管を備える。導管の構成は、熱交換器の最上部から最下部又は基台へ向かって、名目上同一の面積を有する複数の通孔部が、熱交換器内で軸方向又は垂直方向に画定されている。 The solution underlying the present invention is to insert an air flow regulator or distributor sucked by the aspirator inside the heat exchanger, which is part of the vertical discharge air condenser. The regulator or distributor elements are vertically arranged coaxially with each other and have a plurality of conduits having an increasing height from the top to the bottom of the heat exchanger and a gradually decreasing diameter. Be prepared. The configuration of the conduit is such that from the top to the bottom or the base of the heat exchanger, a plurality of through holes having nominally the same area are defined axially or vertically in the heat exchanger. ..

分配器要素の構成と垂直方向に通る孔部の配置とは、熱交換器の基台から最上部までの流量を均等化して、集中した圧力降下を最小化するようになっている。実験的試験により、熱交換器の壁付近の空気速度が熱交換器の基台から熱交換器の最上部まで実質的に一定であり、それゆえ、熱交換器の全放熱表面を使用することが可能になり、したがって高い熱交換効率が得られることを確認することができた。それゆえ、空気凝縮器の垂直構成の利点を全て利用することと、熱交換効率が、この分野で知られた垂直フロー凝縮器の熱交換率より全体的に大きい、同じ断面積を有する熱交換器のより高い構造を生じることとが可能である。 The configuration of the distributor elements and the arrangement of the holes that pass vertically are designed to equalize the flow rate from the base to the top of the heat exchanger and minimize the concentrated pressure drop. Experimental tests have shown that the air velocity near the walls of the heat exchanger is substantially constant from the base of the heat exchanger to the top of the heat exchanger, and therefore the entire heat dissipation surface of the heat exchanger should be used. Therefore, it was confirmed that high heat exchange efficiency can be obtained. Therefore, taking advantage of all the advantages of the vertical configuration of the air condenser, heat exchange with the same cross section, where the heat exchange efficiency is generally greater than the heat exchange rate of the vertical flow condensers known in the art. It is possible to produce a higher structure of the vessel.

本発明の実施形態によれば、熱交換器の最下部又は基台のほうへ向けられた分配器要素の導管の端部において、流量調整器が、例えばラメラと関連付けられている。これにより、熱交換器の壁に沿った流量を最適化するために、空気通過面積の変化及び微調整を可能にするという利点が提供される。 According to embodiments of the present invention, a flow regulator is associated with, for example, a lamella at the bottom of the heat exchanger or at the end of the conduit of the distributor element towards the base. This provides the advantage of allowing changes and fine-tuning of the air passage area to optimize the flow rate along the walls of the heat exchanger.

他の利点及び特徴は、本発明の使用方法とともに、非限定的な例として提示される、本発明のいくつかの実施形態の以下の詳細な説明から、明らかになるであろう。 Other advantages and features will become apparent from the following detailed description of some embodiments of the invention, presented as non-limiting examples, along with the usage of the invention.

添付図面の図を参照する。 Refer to the figure in the attached drawing.

本発明による2つの空気凝縮器を含むセットを示す斜視図である。It is a perspective view which shows the set including two air condensers by this invention. 図1のセットの空気凝縮器の部分断面斜視図である。It is a partial cross-sectional perspective view of the air condenser of the set of FIG. 図2の空気凝縮器の上面図である。It is a top view of the air condenser of FIG. 図3の空気凝縮器の縦断面図を示す。The vertical sectional view of the air condenser of FIG. 3 is shown. 本発明による凝縮器の熱交換器に挿入された分配器要素を通して吸引される空気流の通過のための孔部を概略的に示す。The holes for the passage of air flow sucked through the distributor elements inserted into the heat exchanger of the condenser according to the present invention are schematically shown.

図1及び図2を参照すると、本発明による垂直吐出し空気凝縮器は、全体が符号100によって示され、3次元座標系で示されており、この座標系では、互いに直交するX方向及びY方向が、地面に対する平行な水平面を規定し、X方向及びY方向に直交するZ方向は、重力の作用する垂直(鉛直)方向を表す。 With reference to FIGS. 1 and 2, the vertical discharge air condenser according to the present invention is shown entirely by reference numeral 100 and is shown in a three-dimensional coordinate system, in which the X and Y directions orthogonal to each other. The direction defines a horizontal plane parallel to the ground, and the Z direction orthogonal to the X and Y directions represents the vertical (vertical) direction on which gravity acts.

図1は、特に、基台210と垂直方向Zに延在する複数の支柱220とを備えて並置されるとともにフレーム200上に配置された2つの空気凝縮器100を含むセットを示す。 FIG. 1 shows, in particular, a set including two air condensers 100 arranged side by side with a base 210 and a plurality of columns 220 extending in the vertical direction Z and arranged on a frame 200.

本発明による空気凝縮器100は、垂直方向Zに延伸する円筒形状又は角柱形状を有する熱交換器110を備える。 The air condenser 100 according to the present invention includes a heat exchanger 110 having a cylindrical shape or a prismatic shape extending in the vertical direction Z.

示された実施形態において、熱交換器110は、例えば、それぞれ、垂直方向Zに延在するとともに支柱として作用する、冷却流体に対する一対の導入/排出導管112、113を備える成形パネル111によって構成された2つの壁と、垂直方向Zに沿ってフィンと交互に配置された微細管の複数の束又はターン(不図示)とを含む、八角柱形状を有する。壁111を形成するパネルは、八角形の周囲の4つの側面を形成するように折り曲げられている。熱交換器110は、2つの壁111を周方向に当接させることによって形成されている。 In the embodiments shown, the heat exchanger 110 is composed of, for example, a molded panel 111 with a pair of inlet / outlet conduits 112, 113 for the cooling fluid, each extending vertically Z and acting as a strut. It has an octagonal column shape that includes two walls and a plurality of bundles or turns (not shown) of microtubules that are alternately arranged with fins along the vertical direction Z. The panels forming the wall 111 are bent to form the four sides around the octagon. The heat exchanger 110 is formed by bringing the two walls 111 into contact with each other in the circumferential direction.

熱交換器110のこの構成は、本発明を拘束しないが、知られているように、微細管の使用により、熱交換器の寸法を大きくすることなく大きな熱交換表面を得ることが可能になるため、有利であることが分かるであろう。 This configuration of the heat exchanger 110 does not constrain the present invention, but as is known, the use of microtubules makes it possible to obtain a large heat exchange surface without increasing the dimensions of the heat exchanger. Therefore, it will be found to be advantageous.

示された実施形態において、熱交換器110は、垂直方向Zに二対の重ねられたパネルを備えたモジュール式構造を有する。熱交換器110のこの構成が本発明を拘束しないことは分かるであろう。 In the embodiments shown, the heat exchanger 110 has a modular structure with two pairs of stacked panels in the vertical direction Z. It will be seen that this configuration of the heat exchanger 110 does not constrain the present invention.

凝縮器100は、さらに、概ね円筒形状を有するフレーム122内に収容されたモータ駆動されるファン121を具備する吸引器120を備える。この吸引器120は、熱交換器110の最上部上に設けられている。フレーム122は、熱交換器110上に載設されており、熱交換器110との流体連通を可能にするために、最下部において開口している。フレーム122と熱交換器110との間に安全格子123が配置されている。 The condenser 100 further comprises an aspirator 120 including a motor driven fan 121 housed in a frame 122 having a generally cylindrical shape. The suction device 120 is provided on the uppermost portion of the heat exchanger 110. The frame 122 is mounted on the heat exchanger 110 and is open at the bottom to allow fluid communication with the heat exchanger 110. A safety grid 123 is arranged between the frame 122 and the heat exchanger 110.

本発明によれば、空気凝縮器100は、さらに、吸引器120により熱交換器110の壁を横方向に抜けてから垂直方向Zに吸引される空気流のコントローラ機能Fを有する分配器要素130を備える。吸引器要素130は、熱交換器110の内部に熱交換器110と同軸に収容されている。 According to the present invention, the air condenser 100 further has a distributor element 130 having a controller function F for an air flow that is laterally passed through the wall of the heat exchanger 110 by the aspirator 120 and then sucked in the vertical direction Z. To be equipped. The aspirator element 130 is housed inside the heat exchanger 110 coaxially with the heat exchanger 110.

分配器要素130は、同軸に配置された複数の導管によって構成されている。これらの導管は、示された実施形態では例えば5つであってそれぞれ符号131a〜131eによって示される円筒形状を有し、凝縮器100の最上部から最下部に向けて次第に高さが増加し横方向寸法が次第に減少する。 The distributor element 130 is composed of a plurality of coaxially arranged conduits. These conduits have, for example, five in the embodiments shown and each have a cylindrical shape indicated by reference numerals 131a to 131e, and gradually increase in height from the top to the bottom of the condenser 100 and laterally. The directional dimension gradually decreases.

図3及び図4を参照すると、分配器要素130の構成は、熱交換器110の最上部を起点として最下部又は基台に向かうことによって、複数の通孔部が分配器要素130内で垂直方向Zに画定され、より詳細に後述するように、これら通孔部の面積は名目上同一であるようになっている。示された実施形態において、通孔部は、例えば、円冠状のものである。 Referring to FIGS. 3 and 4, the configuration of the distributor element 130 is such that a plurality of through holes are vertical in the distributor element 130 by starting from the uppermost portion of the heat exchanger 110 and heading toward the lowermost portion or the base. It is defined in the direction Z, and the areas of these through holes are nominally the same, as will be described in more detail later. In the embodiments shown, the perforations are, for example, crown-shaped.

より詳細には、示された実施形態を参照すると、吸引器のフレーム122と導管131aからなる第1の導管との間と、第1の導管と分配器要素130の後続の導管131b〜131eとの間とに、熱交換器110の壁を通過する空気流Fが軸方向に吸引される通孔部A1〜A5が、垂直方向Zに画定される。分配器要素130は、熱交換器の最下部から離間配置されており、これにより、さらなる通孔部A6が、導管131の断面積と、より小さい横方向寸法とに適合する。 More specifically, referring to the embodiments shown, between the frame 122 of the aspirator and the first conduit consisting of the conduit 131a, and the subsequent conduits 131b-131e of the first conduit and the distributor element 130. The through holes A1 to A5 through which the air flow F passing through the wall of the heat exchanger 110 is attracted in the axial direction are defined in the vertical direction Z. The distributor element 130 is spaced away from the bottom of the heat exchanger, which allows the additional through hole A6 to fit the cross section of the conduit 131 and the smaller lateral dimensions.

図2及び図4の矢印は、熱交換器110の壁111を横方向に抜けてから分配器要素130の通孔部A1〜A6を軸方向又は垂直に抜ける空気流Fの経路を概略的に示す。 The arrows in FIGS. 2 and 4 schematically indicate the path of the air flow F passing through the wall 111 of the heat exchanger 110 in the lateral direction and then through the through holes A1 to A6 of the distributor element 130 in the axial direction or vertically. Shown.

特に図4及び図5を参照すると、熱交換器110は、理想的には複数のセクタに分割されており、これらセクタ内で空気流Fの吸引が、それぞれ通孔部A1〜A6によって管理される。 In particular, referring to FIGS. 4 and 5, the heat exchanger 110 is ideally divided into a plurality of sectors, and the suction of the air flow F in these sectors is controlled by the through holes A1 to A6, respectively. To.

以上の内容に照らして、熱交換器110の最上部から最下部のほうへ垂直に進むと、熱交換器110の壁を横方向に抜けて吸引される空気流Fに対する総計の通過断面積は、離散的に増加し、熱交換器110自体の最上部から特定の距離において熱交換器110の最下部のほうを向く通孔部の面積の合計から得られる。 In light of the above, when traveling vertically from the top to the bottom of the heat exchanger 110, the total passage cross-sectional area with respect to the air flow F sucked through the wall of the heat exchanger 110 in the lateral direction is , Which increases discretely and is obtained from the sum of the areas of the through holes facing the bottom of the heat exchanger 110 at a particular distance from the top of the heat exchanger 110 itself.

セクタの数に「n」が選択されると、熱交換器110の全高さ「H」は、名目上同じ高さを有するn個のセクタHc1〜Hcnに下位分割される。示された実施形態では、例えば、6つのセクタHc1〜Hc6が存在する。 When "n" is selected for the number of sectors, the total height "H" of the heat exchanger 110 is subdivided into n sectors Hc1 to Hcn having nominally the same height. In the indicated embodiment, for example, there are six sectors Hc1 to Hc6.

熱交換器110の最上部を起点にして最下部へ向かって進むと、導管131a〜131eは、それぞれ、セクタHc(i)と後続のセクタHc(i+1)との間の境界まで延在する。導管の数は、セクタの数より1だけ小さい数に等しく、セクタの数に対する最後のセクタHcnは、分配器要素130から完全に解放されている。 Starting from the top of the heat exchanger 110 and proceeding toward the bottom, the conduits 131a to 131e extend to the boundary between the sector Hc (i) and the subsequent sector Hc (i + 1), respectively. The number of sectors is equal to one less than the number of sectors, and the last sector Hcn relative to the number of sectors is completely free from the distributor element 130.

導管131a〜131eの面積の計算は、通孔部の面積に基づいて実行される。吸引器120と熱交換器110との間の境界面を通過する孔部の面積を「Apt」とすると、Aptは、吸引器120によって吸引される空気流の総計又は全体の通過面積を表し、包括的な通孔部の面積「Ax」は、次の式によって計算される。
Ax=Apt/(セクタの数−1)
The calculation of the area of the conduits 131a to 131e is performed based on the area of the through hole. Assuming that the area of the hole passing through the interface between the aspirator 120 and the heat exchanger 110 is "Apt", Apt represents the total or total passage area of the air flow sucked by the aspirator 120. The comprehensive perforated area "Ax" is calculated by the following equation.
Ax = Apt / (number of sectors-1)

したがって、通孔部は、互いに名目上同一である。 Therefore, the through holes are nominally the same as each other.

示された実施形態において6つである通孔部A1〜A6の名目面積が分かると、導管131a〜131eの横方向寸法、例えば示された実施形態ではそれら導管131a〜131eの径、を決定することが可能である。 Knowing the nominal area of the six through holes A1 to A6 in the indicated embodiments determines the lateral dimensions of the conduits 131a to 131e, eg, the diameters of the conduits 131a to 131e in the indicated embodiments. It is possible.

分配器要素130の実際の寸法が、分配器要素130の部品の製造及び組立て交差に依存することは分かるであろう。 It will be seen that the actual dimensions of the distributor element 130 depend on the manufacturing and assembly intersection of the parts of the distributor element 130.

本発明の一実施形態によれば、導管131a〜131eは、垂直方向Zに互いにずれるように配置されており、このことは、吸引器120のファンによる空気渦の形成に好都合である。より詳細には、より大きい横方向寸法とより低い高さとを有する導管131aは、吸引器120のフレーム122の直下の、熱交換器110の最上部の近傍に配置されている。その他の導管131b〜131eは、第1の導管131aとその他のうちの1つとから垂直方向Zに次第に離間して配置されている。 According to one embodiment of the present invention, the conduits 131a-131e are arranged so as to be offset from each other in the vertical direction Z, which is convenient for the formation of an air vortex by the fan of the aspirator 120. More specifically, the conduit 131a, which has a larger lateral dimension and a lower height, is located just below the frame 122 of the aspirator 120, near the top of the heat exchanger 110. The other conduits 131b to 131e are arranged so as to be gradually separated from the first conduit 131a and one of the others in the vertical direction Z.

図4の縦断面図を特に参照すると、示された実施形態において、吸引器120のフレーム122を起点として、導管131a〜131eの最上端に接触する仮想線(s)が、30°〜60°の角度、例えば示された実施形態におけるように45°で、熱交換器110の最下部のほうへ傾斜している。この構成により、分配器要素130を垂直方向Zに過度にかさばらせることなく、吸引器120のファンによる空気渦の形成に適切な容積を与えることが可能になる。 With particular reference to the vertical sectional view of FIG. 4, in the illustrated embodiment, the virtual line (s) in contact with the uppermost end of the conduits 131a to 131e, starting from the frame 122 of the aspirator 120, is 30 ° to 60 °. At an angle of, eg, 45 °, as in the embodiment shown, it is tilted towards the bottom of the heat exchanger 110. This configuration makes it possible to provide an appropriate volume for the formation of an air vortex by the fan of the aspirator 120 without making the distributor element 130 excessively bulky in the vertical direction Z.

知られているように、吸引器120は、熱交換器110の内側に、フィンが設けられた壁を通して外側から空気流Fを吸引するような負圧を生成する。分配器要素130の構成と、導管131a〜131e及び導管131a〜131eの孔部A1〜A6の垂直方向Zの配置とは、熱交換器110の最下部から最上部までの流量Fを均等化して、集中した圧力降下を最小化するようになっている。 As is known, the suction device 120 generates a negative pressure inside the heat exchanger 110 so as to suck the air flow F from the outside through a wall provided with fins. The configuration of the distributor element 130 and the vertical arrangement of the holes A1 to A6 of the conduits 131a to 131e and the conduits 131a to 131e equalize the flow rate F from the bottom to the top of the heat exchanger 110. , It is designed to minimize the concentrated pressure drop.

実験的試験により、熱交換器110の壁付近の空気速度が熱交換器の最下部から熱交換器の最上部まで実質的に一定であり、それゆえ、熱交換器の全放熱表面を利用することが可能になり、したがって高い熱交換効率が得られることを確認することができた。 Experimental tests have shown that the air velocity near the walls of the heat exchanger 110 is substantially constant from the bottom of the heat exchanger to the top of the heat exchanger, thus utilizing the entire heat dissipation surface of the heat exchanger. It was possible to confirm that high heat exchange efficiency was obtained.

比較の実験的試験により、熱交換器110の壁付近の空気速度が、分配器要素130に代えて、熱交換器110の壁に沿って配置されたパネルであって、同じ熱交換器110の最上部から最下部のほうへ向かってフロー断面積が最小値から最大値まで次第に増加する複数の通孔部を有する穿孔されたパネルを使用することにより測定可能な速度の、約2倍であることを確認することができた。 According to a comparative experimental test, the air velocity near the wall of the heat exchanger 110 is a panel arranged along the wall of the heat exchanger 110 instead of the distributor element 130, of the same heat exchanger 110. Approximately twice the speed measurable by using a perforated panel with multiple perforations where the flow cross-sectional area gradually increases from top to bottom from minimum to maximum. I was able to confirm that.

本発明の実施形態によれば、熱交換器110の最下部のほうを向く導管131a〜131eの端部において、有利には、例えば空気調節導管に通常使用されるラメラを有する抑制器などの、流量抑制器が適用されてもよく、この流量抑制器は、通孔部A1〜A6の面積の変化及び微調整を可能にするという利点を提供する。それゆえ、熱交換器110を通る空気流Fを最適化し、それゆえ熱交換効率にプラスに寄与することが可能である。 According to embodiments of the present invention, at the ends of conduits 131a-131e facing the bottom of the heat exchanger 110, advantageously, for example, a suppressor with a lamella commonly used for air conditioning conduits. A flow suppressor may be applied, which provides the advantage of allowing changes and fine adjustments in the area of the through holes A1 to A6. Therefore, it is possible to optimize the airflow F through the heat exchanger 110 and therefore contribute positively to the heat exchange efficiency.

圧力降下の最小化が可能であることは、さらに、空気凝縮器100の騒音を、関連規制により設定された制限内に維持するという利点を提供する。 The ability to minimize the pressure drop further provides the advantage of keeping the noise of the air condenser 100 within the limits set by the relevant regulations.

本発明の一実施形態によれば、有利には、導管131a〜131eの壁上に、空気凝縮器100の全体の騒音の低減を可能にするために、音吸収材料からなるコーティングを被着させてもよい。 According to one embodiment of the present invention, advantageously, a coating made of a sound absorbing material is applied onto the walls of the conduits 131a-131e in order to enable reduction of the overall noise of the air condenser 100. You may.

本発明を、本発明の好ましい実施形態を参照して開示した。以下の特許請求の範囲によって規定される保護の範囲内に含まれる同じ解決案に基づくさらなる実施形態が存在し得ることは分かるであろう。 The present invention has been disclosed with reference to preferred embodiments of the present invention. It will be seen that there may be additional embodiments based on the same solution that fall within the scope of protection set forth by the claims below.

Claims (8)

垂直吐出し空気凝縮器(100)であって、
垂直方向(Z)に延伸する円筒形状又は多角形状を有する熱交換器(110)と、
前記熱交換器(110)の最上部上に配置されたフレーム(122)内に収容されたモータ駆動されるファン(121)を具備する空気吸引器(120)とを備える、前記空気凝縮器(100)において、
前記空気凝縮器(100)は、さらに、前記熱交換器(110)の内側に前記熱交換器(110)に対して同軸に収容された分配器要素(130)を備え、該分配器要素(130)は、同軸に配置された複数の導管(131a,131b,131c,131d,131e)を備え、該導管(131a,131b,131c,131d,131e)は、前記熱交換器(110)の最上部から最下部に向けて次第に増加する高さと、次第に減少する断面積とを有し、前記分配器要素(130)の構成は、複数の通孔部(A1〜A6)が前記熱交換器(110)の最上部から最下部に向けて前記垂直方向(Z)に画定されており、前記通孔部の断面積は同じ名目表面積を有することを特徴とする、空気凝縮器(100)。
Vertical discharge air condenser (100)
A heat exchanger (110) having a cylindrical or polygonal shape extending in the vertical direction (Z), and
The air condenser (120) comprising an air aspirator (120) including a motor driven fan (121) housed in a frame (122) located on top of the heat exchanger (110). In 100),
The air condenser (100) further comprises a distributor element (130) housed coaxially with the heat exchanger (110) inside the heat exchanger (110). The 130) includes a plurality of coaxially arranged conduits (131a, 131b, 131c, 131d, 131e), and the conduits (131a, 131b, 131c, 131d, 131e) are the most of the heat exchanger (110). It has a height that gradually increases from the top to the bottom and a cross-sectional area that gradually decreases, and the configuration of the distributor element (130) is such that a plurality of through holes (A1 to A6) are the heat exchanger (A1 to A6). The air exchanger (100) is defined in the vertical direction (Z) from the uppermost portion to the lowermost portion of 110), and the cross-sectional area of the through hole portion has the same nominal surface area.
最大の横方向寸法及びより小さな高さを有する前記分配器要素(130)の第1の導管(131a)が、前記空気吸引器(120)の前記フレーム(122)の下の前記熱交換器(110)の最上部に近接して配置され、
前記分配器要素(130)のその他の前記導管(131b〜131e)は、前記第1の導管(131a)から前記垂直方向(Z)に次第に離間して、およびそれぞれが離間して配置されている、請求項1記載の空気凝縮器(100)。
The first conduit (131a) of the distributor element (130) having the maximum lateral dimension and smaller height is the heat exchanger (132) under the frame (122) of the air aspirator (120). Located close to the top of 110),
The other conduits (131b-131e) of the distributor element (130) are gradually spaced apart from the first conduit (131a) in the vertical direction (Z), and are spaced apart from each other. , The air condenser (100) according to claim 1.
前記導管(131a,131b,131c,131d,131e)の配置は、前記空気吸引器(120)の前記フレーム(122)を起点として、前記導管(131a,131b,131c,131d,131e)の最上端に接触する仮想線(s)が、30°〜60°からなる角度で前記熱交換器(110)の最下部へ傾斜している、請求項2記載の空気凝縮器(100)。 The arrangement of the conduits (131a, 131b, 131c, 131d, 131e) starts from the frame (122) of the air aspirator (120) and is the uppermost end of the conduits (131a, 131b, 131c, 131d, 131e). The air condenser (100) according to claim 2, wherein the virtual line (s) in contact with the heat exchanger (s) is inclined toward the lowermost portion of the heat exchanger (110) at an angle of 30 ° to 60 °. 前記導管(131a,131b,131c,131d,131e)の端部に、前記熱交換器(110)の最下部を向く流量調整器が配置されている、請求項1乃至3のいずれか一項記載の空気凝縮器(100)。 The invention according to any one of claims 1 to 3, wherein a flow rate regulator facing the lowermost part of the heat exchanger (110) is arranged at an end of the conduit (131a, 131b, 131c, 131d, 131e). Air condenser (100). 前記流量調整器は、複数のフラップを備えるタイプである、請求項4記載の空気凝縮器(400)。 The air condenser (400) according to claim 4, wherein the flow rate regulator is a type including a plurality of flaps. 前記導管(131a,131b,131c,131d,131e)の壁に、音吸収材料からなるコーティングが被着されている、請求項1乃至5のいずれか一項記載の空気凝縮器(100)。 The air condenser (100) according to any one of claims 1 to 5, wherein a coating made of a sound absorbing material is adhered to the wall of the conduit (131a, 131b, 131c, 131d, 131e). 前記分配器要素(130)は、前記熱交換器(110)の最下部から前記垂直方向(Z)に離間して配置されている、請求項1乃至6のいずれか一項記載の空気凝縮器(100)。 The air condenser according to any one of claims 1 to 6, wherein the distributor element (130) is arranged so as to be separated from the lowermost portion of the heat exchanger (110) in the vertical direction (Z). (100). 前記熱交換器(110)は、複数の壁(111)を備え、各壁(111)が、前記垂直方向(Z)に延在する冷却流体に対する一対の導入/排出導管(112,113)を備える成形パネルからなり、さらには、前記導管(112,113)間に横方向に延伸するとともにフィンによって前記垂直方向(Z)に離間配置された複数の微細導管を備え、前記パネルは、前記熱交換器(110)の外縁の一部を形成するように曲げられ、又は湾曲している、請求項1乃至7のいずれか一項記載の空気凝縮器(100)。 The heat exchanger (110) comprises a plurality of walls (111), each wall (111) providing a pair of introduction / discharge conduits (112, 113) to the cooling fluid extending in the vertical direction (Z). It comprises a molded panel comprising a plurality of microconduit extending laterally between the conduits (112,113) and spaced apart in the vertical direction (Z) by fins, wherein the panel comprises the heat. The air condenser (100) according to any one of claims 1 to 7, which is bent or curved so as to form a part of the outer edge of the exchanger (110).
JP2020526711A 2017-07-28 2018-07-27 Air condenser Pending JP2020528538A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT102017000087168 2017-07-28
IT102017000087168A IT201700087168A1 (en) 2017-07-28 2017-07-28 Air condenser
PCT/IB2018/055623 WO2019021248A1 (en) 2017-07-28 2018-07-27 Air condenser

Publications (1)

Publication Number Publication Date
JP2020528538A true JP2020528538A (en) 2020-09-24

Family

ID=60451113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020526711A Pending JP2020528538A (en) 2017-07-28 2018-07-27 Air condenser

Country Status (8)

Country Link
US (1) US20200208924A1 (en)
EP (1) EP3658826A1 (en)
JP (1) JP2020528538A (en)
KR (1) KR20200035434A (en)
CN (1) CN111263871A (en)
BR (1) BR112020001766A2 (en)
IT (1) IT201700087168A1 (en)
WO (1) WO2019021248A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112343865B (en) * 2019-08-09 2022-03-01 广东美的环境电器制造有限公司 Air duct structure and air treatment device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248042Y2 (en) * 1973-05-16 1977-11-01
JPS5329241Y2 (en) * 1973-07-17 1978-07-22
JP2003004388A (en) * 2001-06-19 2003-01-08 Shuzo Nomura Heat pump type air conditioner and method for generating cold and hot air
US6705105B2 (en) * 2002-05-24 2004-03-16 American Standard International Inc. Base pan and cabinet for an air conditioner
WO2010037186A1 (en) * 2008-09-30 2010-04-08 Carrier Corporation Cylindrical condenser
CN201569079U (en) * 2009-10-23 2010-09-01 陈永华 Multifunctional ceiling air conditioning circulator
CN201964556U (en) * 2011-02-25 2011-09-07 刘正祥 Groundwater air-conditioner
WO2013160954A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger, and refrigerating cycle device equipped with heat exchanger
US9114354B2 (en) * 2012-06-04 2015-08-25 Z124 Heat transfer device for water recovery system
US20140000841A1 (en) * 2012-06-29 2014-01-02 Robert L. Baker Compressed gas cooling apparatus
JP6240969B2 (en) * 2013-04-16 2017-12-06 オリオン機械株式会社 Portable temperature controller
CN103453632B (en) * 2013-06-03 2016-04-27 海尔集团公司 Air-conditioner air supply device
WO2014194767A1 (en) * 2013-06-03 2014-12-11 海尔集团公司 Air-conditioner air supply apparatus in vertical air-conditioner
CN203442973U (en) * 2013-08-30 2014-02-19 Tcl空调器(中山)有限公司 Air conditioning indoor unit
CN204187760U (en) * 2014-10-08 2015-03-04 西安工程大学 Cylindrical shape list blower fan standpipe indirect evaporating-cooling handpiece Water Chilling Units
CN204773206U (en) * 2015-06-25 2015-11-18 江苏震展泡塑科技有限公司 Pipe formula water separating device of make -up machine condenser air bleeding valve
CN205641174U (en) * 2016-03-28 2016-10-12 广东美的制冷设备有限公司 Air -conditioning indoor unit
KR101681870B1 (en) * 2016-06-13 2016-12-01 (주) 쏘노 Ventilation Device
CN106382695B (en) * 2016-08-30 2019-03-19 湖南中大经纬地热开发科技有限公司 A kind of air-conditioning system based on screw rod water resource heat pump
CN106247594B (en) * 2016-09-30 2019-09-13 芜湖美智空调设备有限公司 The air-out control method of cabinet air-conditioner, air conditioner and cabinet air-conditioner
CN106765680B (en) * 2017-02-27 2022-05-17 广东美的制冷设备有限公司 Outdoor unit air outlet cover and air conditioner outdoor unit

Also Published As

Publication number Publication date
EP3658826A1 (en) 2020-06-03
WO2019021248A1 (en) 2019-01-31
CN111263871A (en) 2020-06-09
BR112020001766A2 (en) 2020-07-21
KR20200035434A (en) 2020-04-03
IT201700087168A1 (en) 2019-01-28
US20200208924A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
US20180112678A1 (en) Air purifier and wind tunnel thereof
JP6578907B2 (en) Embedded ceiling air conditioner
JP6304441B1 (en) Cross flow type blower and indoor unit of air conditioner equipped with the blower
US11175066B2 (en) Method and system for reducing moisture carryover in air handlers
EP3315785A1 (en) Air conditioner
JP2020528538A (en) Air condenser
CN1590856A (en) Air conditioner
ES2666297T3 (en) Ventilation component
JP2018084232A (en) Air blower and outdoor machine for air conditioner using the same
JP2018025356A (en) Indoor unit and air conditioner
JP5860752B2 (en) Air conditioner
JP5891408B2 (en) Air conditioner outdoor unit
JP5287549B2 (en) Air conditioner indoor unit
JP2010151399A (en) Fan device supporting structure for air conditioner
JP4645244B2 (en) Fan filter unit
JP6611997B2 (en) Heat exchange unit and air conditioner equipped with the same
JP2014005975A (en) Outdoor equipment for air conditioner
KR101340172B1 (en) Cooling tower
JP2010196945A (en) Outdoor unit
WO2013118464A1 (en) Indoor unit for air conditioner
JP6219508B2 (en) Air conditioning outdoor unit
JP2015114089A (en) Ceiling recessed indoor unit and air conditioner using same
JP2008267637A (en) Refrigerating air-conditioning device
JP5885626B2 (en) Outdoor unit of air conditioner and air conditioner provided with the same
JP2013130330A (en) Air conditioning device, and heat exchanger