JP2020527901A - 電力スペクトル密度(psd)パラメータに基づく波形設計 - Google Patents

電力スペクトル密度(psd)パラメータに基づく波形設計 Download PDF

Info

Publication number
JP2020527901A
JP2020527901A JP2020501832A JP2020501832A JP2020527901A JP 2020527901 A JP2020527901 A JP 2020527901A JP 2020501832 A JP2020501832 A JP 2020501832A JP 2020501832 A JP2020501832 A JP 2020501832A JP 2020527901 A JP2020527901 A JP 2020527901A
Authority
JP
Japan
Prior art keywords
wireless communication
frequency
communication device
random access
interlaced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020501832A
Other languages
English (en)
Other versions
JP7206254B2 (ja
JP2020527901A5 (ja
Inventor
シャオシア・ジャン
ジン・スン
テイマー・カドゥス
Original Assignee
クアルコム,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クアルコム,インコーポレイテッド filed Critical クアルコム,インコーポレイテッド
Publication of JP2020527901A publication Critical patent/JP2020527901A/ja
Publication of JP2020527901A5 publication Critical patent/JP2020527901A5/ja
Application granted granted Critical
Publication of JP7206254B2 publication Critical patent/JP7206254B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0066Requirements on out-of-channel emissions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

インターレース周波数チャネルおよびノンインターレース周波数チャネルを使用して周波数スペクトルにおいて通信することに関するワイヤレス通信システムおよび方法が提供される。第1のワイヤレス通信デバイスは、周波数スペクトルにおいて通信するために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択する。第1のワイヤレス通信デバイスは、選択された波形構造に基づく通信信号を周波数スペクトルにおいて第2のワイヤレス通信デバイスと通信する。インターレース周波数構造は、周波数スペクトルにおける少なくとも周波数帯域の第1のセットを含み、周波数帯域の第1のセットは、周波数スペクトルにおける周波数帯域の第2のセットとインターレースする。ノンインターレース周波数構造は、周波数スペクトルにおける1つまたは複数の連続した周波数帯域を含む。

Description

関連出願の相互参照
本出願は、2018年6月27日に出願された米国非仮特許出願第16/020,400号、および2017年7月20日に出願された米国仮特許出願第62/535,098号の優先権および利益を主張し、これらは、以下で完全に記載されるかのように、かつあらゆる適用可能な目的のために、その全体が参照により本明細書に組み込まれる。
本出願は、ワイヤレス通信システムおよび方法に関し、より詳細には、電力スペクトル密度(PSD)パラメータに基づいてインターレース周波数チャネルおよびノンインターレース周波数チャネルを使用して周波数スペクトルにおいて通信することに関する。
ワイヤレス通信システムは、音声、ビデオ、パケットデータ、メッセージング、ブロードキャストなどの、様々なタイプの通信コンテンツを提供するために広く展開されている。これらのシステムは、利用可能なシステムリソース(たとえば、時間、周波数、および電力)を共有することによって複数のユーザとの通信をサポートすることが可能であることがある。ワイヤレス多元接続通信システムは、ユーザ機器(UE)としても知られていることがある、複数の通信デバイスのための通信を各々が同時にサポートする、いくつかの基地局(BS)を含むことがある。
拡張されたモバイルブロードバンド接続性に対する高まる需要を満たすために、ワイヤレス通信技術は、LTE技術から次世代ニューラジオ(NR:New Radio)技術に進歩しつつある。NRでは、認可スペクトル、共有スペクトル、および/または無認可スペクトルにおけるネットワークオペレータ間の動的媒体共有が可能である。たとえば、共有スペクトルおよび/または無認可スペクトルは、約3.5ギガヘルツ(GHz)、約6GHz、および約60GHzにおける周波数帯域を含んでもよい。
いくつかの共有スペクトルおよび/または無認可スペクトルは、いくつかのPSD要件を有することがある。たとえば、欧州電気通信標準化機構(ETSI)の文書EN301893V2.1.1では、サブ6GHz周波数帯域についての様々なPSD限界が指定され、ETSIの草案文書EN302567V2.0.22では、60GHz周波数帯域についての最大等価等方放射電力(EIRP)およびEIRP密度が指定されている。約3.5GHzにおける市民ブロードバンド無線サービス(CBRS)帯域などのいくつかの他の周波数帯域は、送信を特定のPSD限界に制限しないことがある。一般に、様々なスペクトルはそれぞれに異なるPSD要件および/またはそれぞれに異なる帯域幅占有率要件を有することがある。したがって、スペクトル共有の間、そのような共有スペクトルおよび/または無認可スペクトルにおける送信は、対応するスペクトルのPSD要件および/または周波数占有率要件を満たす必要がある。
欧州電気通信標準化機構(ETSI)の文書EN301893V2.1.1 欧州電気通信標準化機構(ETSI)の草案文書EN302567V2.0.22
以下では、説明する技術を基本的に理解するために本開示のいくつかの態様を要約する。本概要は、本開示のすべての企図される特徴の広範な概要ではなく、本開示のすべての態様の主要または重要な要素を識別することを意図するものでもなく、本開示のいずれかまたはすべての態様の範囲を定めることを意図するものでもない。その唯一の目的は、後で提示するより詳細な説明の前置きとして、本開示の1つまたは複数の態様のいくつかの概念を要約の形態で提示することである。
たとえば、本開示の一態様では、ワイヤレス通信の方法であって、第1のワイヤレス通信デバイスによって、周波数スペクトルにおける通信のために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択するステップと、第1のワイヤレス通信デバイスによって、選択された波形構造に基づく通信信号を、周波数スペクトルにおいて第2のワイヤレス通信デバイスと通信するステップとを含む方法。
本開示の追加の態様において、周波数スペクトルにおける通信のために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択するための手段と、選択された波形構造に基づく通信信号を、周波数スペクトルにおいて第2のワイヤレス通信デバイスと通信するための手段とを含む装置。
本開示の追加の態様において、プログラムコードが記録されたコンピュータ可読媒体であって、プログラムコードが、第1のワイヤレス通信デバイスに、周波数スペクトルにおける通信のために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択させるためのコードと、第1のワイヤレス通信デバイスに、選択された波形構造に基づく通信信号を、周波数スペクトルにおいて第2のワイヤレス通信デバイスと通信させるためのコードとを含むコンピュータ可読媒体。
本発明の他の態様、特徴、および実施形態は、添付の図とともに本発明の特定の例示的な実施形態の以下の説明を検討すれば、当業者に明らかとなろう。本発明の特徴について、以下のいくつかの実施形態および図に関して説明する場合があるが、本発明のすべての実施形態は、本明細書で説明する有利な特徴のうちの1つまたは複数を含むことができる。言い換えれば、1つまたは複数の実施形態についていくつかの有利な特徴を有するものとして説明することがあるが、そのような特徴のうちの1つまたは複数はまた、本明細書で説明する本発明の様々な実施形態に従って使用されてもよい。同様に、例示的な実施形態について、デバイス実施形態、システム実施形態、または方法実施形態として以下で説明することがあるが、そのような例示的な実施形態が、様々なデバイス、システム、および方法において実装されてもよいことを理解されたい。
本開示の実施形態によるワイヤレス通信ネットワークを示す図である。 本開示の実施形態による例示的なユーザ機器(UE)のブロック図である。 本開示の実施形態による例示的な基地局(BS)のブロック図である。 本開示の実施形態による周波数インターレーシング方式を示す図である。 本開示の実施形態による周波数インターレーシング方式を示す図である。 本開示の実施形態による帯域依存波形選択方式を示す図である。 本開示の実施形態によるネットワーク固有波形選択方法のシグナリング図である。 本開示の実施形態によるUE固有波形選択方法のシグナリング図である。 本開示の実施形態によるランダムアクセス送信方式を示す図である。 本開示の実施形態によるランダムアクセス送信方式を示す図である。 本開示の実施形態による、縮小したサブキャリア間隔(SCS)を有する周波数インターレーシング方式を示す図である。 本開示の実施形態による波形選択を含む通信方法の流れ図である。
添付の図面に関して以下に記載する発明を実施するための形態は、様々な構成の説明として意図され、本明細書で説明する概念が実践される場合がある唯一の構成を表すことを意図するものではない。発明を実施するための形態は、様々な概念を完全に理解するための具体的な詳細を含む。しかしながら、これらの具体的な詳細なしにこれらの概念が実践される場合があることが当業者には明らかであろう。いくつかの事例では、そのような概念を不明瞭にすることを避けるために、よく知られている構造および構成要素がブロック図の形態で示される。
本明細書で説明する技法は、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交周波数分割多元接続(OFDMA)、シングルキャリアFDMA(SC-FDMA)および他のネットワークなどの様々なワイヤレス通信ネットワークに使用されてもよい。「ネットワーク」および「システム」という用語は、しばしば互換的に使用される。CDMAネットワークは、ユニバーサル地上波無線アクセス(UTRA)、cdma2000などの無線技術を実装してもよい。UTRAは、広帯域CDMA(WCDMA(登録商標))およびCDMAの他の変形態を含む。cdma2000は、IS-2000規格、IS-95規格、およびIS-856規格を対象とする。TDMAネットワークは、モバイル通信用グローバルシステム(GSM(登録商標))などの無線技術を実装し得る。OFDMAネットワークは、発展型UTRA(E-UTRA:Evolved UTRA)、ウルトラモバイルブロードバンド(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDMAなどの無線技術を実装する場合がある。UTRAおよびE-UTRAはユニバーサルモバイルテレコミュニケーションシステム(UMTS)の一部である。3GPPロングタームエボリューション(LTE)およびLTEアドバンスト(LTE-A)は、E-UTRAを使用するUMTSの新しいリリースである。UTRA、E-UTRA、UMTS、LTE、LTE-AおよびGSM(登録商標)は、「第3世代パートナーシッププロジェクト」(3GPP)と称する組織からの文書に記載されている。CDMA2000およびUMBは、「第3世代パートナーシッププロジェクト2」(3GPP2)と称する組織からの文書に記載されている。本明細書で説明する技法は、上述のワイヤレスネットワークおよび無線技術、ならびに、次世代(たとえば、mmWave帯域で動作する第5世代(5G))ネットワークなどの他のワイヤレスネットワークおよび無線技術に使用されてもよい。
本出願では、電力スペクトル密度(PSD)パラメータに基づいてインターレース周波数構造およびノンインターレース周波数構造を使用して周波数スペクトルにおいて通信するための機構について説明する。PSDパラメータは、周波数スペクトルにおいて許容される最大PSDレベルまたは一連のPSDレベル、目標送信PSDレベル、および/またはトランスミッタの電力利用率因子(power utilization factor)に関連付けられてもよい。インターレース周波数構造は、インターレーシング周波数帯域の複数のセットを含んでもよい。たとえば、送信信号は、互いに離間され周波数帯域の別のセットがインターレースされた周波数帯域のセットにおいて送信されてもよい。周波数領域において送信信号を分散させると、信号の送信PSDを低減させることができる。たとえば、周波数占有率分散係数が約5である場合、トランスミッタは、同じPSDレベルを維持しつつ送信電力を約7デシベル(dB)だけ増大させることが可能になることがある。したがって、周波数領域における分散は電力利用率を向上させることができる。開示された実施形態は、時間領域反復(たとえば、送信持続時間を延ばすこと)を周波数インターレーシングとともに使用することによって電力利用率をさらに向上させる場合がある。開示された実施形態は、周波数インターレーシングに関連してSCSを縮小させて周波数分散を広げるのを可能にすることによって電力利用率をさらに向上させる場合がある。
一実施形態では、インターレース周波数構造とノンインターレース周波数構造からの選択は帯域に依存してもよい。たとえば、BSまたはUEは、PSD要件を有する周波数帯域において通信する際にはインターレース周波数構造を選択してもよい。代替として、BSまたはUEは、PSD要件を有しない周波数帯域において通信する際にはノンインターレース周波数構造を選択してもよい。BSおよびUEは、これらの周波数帯域において通信する前に様々な周波数帯域におけるPSD要件についての事前知識を有してもよい。
一実施形態では、インターレース周波数構造とノンインターレース周波数構造からの選択はネットワーク固有であってもよい。たとえば、BSは、PSD要件を有する周波数帯域ではインターレース周波数構造をシグナリングしてもよい。代替として、BSは、PSD要件を有しない周波数帯域ではノンインターレース周波数構造をシグナリングしてもよい。シグナリングは、ネットワークにおけるすべてのUEへのブロードキャスト信号であってもよい。
一実施形態では、インターレース周波数構造とノンインターレース周波数構造からの選択はUE固有であってもよい。たとえば、BSは、インターレース周波数構造を有する電力制限のあるUEを構成し、ノンインターレース周波数構造を有する電力制限のないUEを構成してもよい。この構成は、無線リソース構成(RRC)メッセージにおいて搬送されてもよい。
一実施形態では、BSは、インターレース周波数構造を有するいくつかのランダムアクセスリソースおよびノンインターレース周波数構造を有するいくつかの他のランダムアクセスリソースを構成してもよい。UEは、ダウンリンク経路損失測定に基づいてインターレースランダムアクセスリソースまたはノンインターレースランダムアクセスリソースによってランダムアクセスチャネル(RACH)プリアンブルを送ることを選択してもよい。さらに、UEは、ランダムアクセス手順においてインターレースRACHリソースとノンインターレースRACHリソースとの電力ランピングを実行してもよい。たとえば、UEはまず、ノンインターレース周波数リソースを初期送信電力とともに使用してランダムアクセス信号を送信してもよい。UEは、以後のランダムアクセス信号送信のために送信電力を増大させてもよい。UEは、送信電力がノンインターレース周波数リソースの周波数帯域において許容される最大PSDレベルを超えるレベルまで増大したときにインターレース周波数リソースを使用するように切り替えてもよい。
本出願の態様は、いくつかの利点をもたらすことができる。たとえば、周波数インターレーシングを使用すると、トランスミッタの電力利用率が向上する場合がある。帯域依存選択、ネットワーク固有の選択、および/またはUE固有の選択によって、PSD要件およびUEの電力利用率因子に基づいてインターレース周波数チャネルとノンインターレース周波数チャネルを動的に多重化することができる。TTIバンドリング、および/または縮小したSCSを使用すると、電力利用率を考慮したスケジューリングに融通性がもたらされる。開示された実施形態は、任意のワイヤレス通信プロトコルを用いる任意のワイヤレス通信ネットワークにおいて使用するのに好適である場合がある。
図1は、本開示の実施形態によるワイヤレス通信ネットワーク100を示す。ネットワーク100は、BS105、UE115、およびコアネットワーク130を含む。いくつかの実施形態では、ネットワーク100は、共有スペクトルにわたって動作する。共有スペクトルは、1つまたは複数のネットワーク事業者に認可されていないかまたは部分的に認可されていてよい。スペクトルへのアクセスは制限されることがあり、別個の協調エンティティによって制御されることがある。いくつかの実施形態では、ネットワーク100はLTEネットワークまたはLTE-Aネットワークであってよい。さらに他の実施形態では、ネットワーク100は、ミリメートル波(mmW)ネットワーク、ニューラジオ(NR)ネットワーク、5Gネットワーク、またはLTEに対する任意の他の後継ネットワークであってもよい。ネットワーク100は、2つ以上のネットワーク事業者によって運用されてもよい。ワイヤレスリソースは、ネットワーク100を介したネットワーク事業者間の協調通信のために異なるネットワーク事業者間で区分され調停されてもよい。
BS105は、1つまたは複数のBSアンテナを介して、UE115とワイヤレスに通信してもよい。各BS105は、それぞれの地理的カバレージエリア110向けの通信カバレージを提供してもよい。3GPPでは、「セル」という用語は、この用語が使用される文脈に応じて、カバレージエリアにサービスするBSおよび/またはBSサブシステムのこの特定の地理的カバレージエリアを指すことがある。この点について、BS105は、マクロセル、ピコセル、フェムトセル、および/または他のタイプのセルのための通信カバレージを提供してもよい。マクロセルは、一般に、比較的大きい地理的エリア(たとえば、半径数キロメートル)をカバーし、ネットワークプロバイダのサービスに加入しているUEによる無制限アクセスを可能にしてもよい。ピコセルは一般に、比較的小さい地理的エリアをカバーすることができ、ネットワークプロバイダのサービスに加入しているUEによる無制限アクセスを可能にしてもよい。フェムトセルも、一般に、比較的小さい地理的エリア(たとえば、自宅)をカバーすることができ、無制限アクセスに加えて、フェムトセルとの関連付けを有するUE(たとえば、限定加入者グループ(CSG)内のUE、自宅内のユーザのためのUEなど)による制限付きアクセスも提供してもよい。マクロセルのためのBSは、マクロBSと呼ばれることがある。ピコセルのためのBSは、ピコBSと呼ばれることがある。フェムトセルのためのBSは、フェムトBSまたはホームBSと呼ばれることがある。図1に示される例では、BS105a、105b、および105cは、それぞれカバレージエリア110a、110b、および110cのマクロBSの例である。BS105dは、カバレージエリア110d用のピコBSまたはフェムトBSの例である。認識されるように、BS105は、1つまたは複数(たとえば、2つ、3つ、4つなど)のセルをサポートしてもよい。
ネットワーク100に示された通信リンク125は、UE115からBS105へのアップリンク(UL)送信、またはBS105からUE115へのダウンリンク(DL)送信を含む場合がある。UE115は、ネットワーク100全体にわたって分散している場合があり、各UE115は固定またはモバイルである場合がある。UE115は、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、または何らかの他の適切な用語で呼ばれる場合もある。UE115はまた、携帯電話、携帯情報端末(PDA)、ワイヤレスモデム、ワイヤレス通信デバイス、ハンドヘルドデバイス、タブレットコンピュータ、ラップトップコンピュータ、コードレスフォン、パーソナル電子デバイス、ハンドヘルドデバイス、パーソナルコンピュータ、ワイヤレスローカルループ(WLL)局、モノのインターネット(IoT)デバイス、あらゆるモノのインターネット(IoE)デバイス、マシンタイプ通信(MTC)デバイス、電化製品、自動車などであってもよい。
BS105は、コアネットワーク130と通信し、互いと通信してもよい。コアネットワーク130は、ユーザ認証、アクセス許可、トラッキング、インターネットプロトコル(IP)接続性、および他のアクセス機能、ルーティング機能、またはモビリティ機能を提供してもよい。(たとえば、発展型ノードB(eNB)、次世代ノードB(gNB)、またはアクセスノードコントローラ(ANC)の一例であり得る)BS105のうちの少なくともいくつかは、バックホールリンク132(たとえば、S1、S2など)を通じてコアネットワーク130とインターフェースし得、UE115との通信のための無線構成およびスケジューリングを実行してもよい。様々な例では、BS105は、有線通信リンクまたはワイヤレス通信リンクであってもよいバックホールリンク134(たとえば、X1、X2など)を介して、直接または間接的に(たとえば、コアネットワーク130を通じて)のいずれかで、互いと通信してもよい。
各BS105はまた、いくつかの他のBS105を通して、いくつかのUE115と通信してもよく、ここで、BS105はスマート無線ヘッドの例であってもよい。代替構成では、各BS105の様々な機能は、様々なBS105(たとえば、無線ヘッドおよびアクセスネットワークコントローラ)にわたって分散されるか、または単一のBS105に統合されることがある。
いくつかの実装形態では、ネットワーク100は、ダウンリンク上で直交周波数分割多重(OFDM)を利用し、UL上でシングルキャリア周波数分割多重(SC-FDM)を利用する。OFDMおよびSC-FDMは、システム帯域幅を、一般にトーン、ビンなどとも呼ばれる複数(K個)の直交サブキャリアに区分する。各サブキャリアは、データによって変調されてもよい。一般に、変調シンボルは、OFDMでは周波数領域において送られ、SC-FDMでは時間領域において送られる。隣接するサブキャリア間の間隔は固定されてもよく、サブキャリアの総数(K)はシステム帯域幅に依存してもよい。システム帯域幅はまた、サブバンドに区分されてもよい。
一実施形態では、BS105は、ネットワーク100におけるDL送信およびUL送信のための送信リソースを(たとえば、時間周波数リソースブロックの形で)割り当てるかまたはスケジュールすることができる。DLは、BS105からUE115への送信方向を指し、ULは、UE115からBS105への送信方向を指す。通信は、無線フレームの形とすることができる。無線フレームは、複数のサブフレーム、たとえば、約10個に分割されてもよい。各サブフレームは、スロット、たとえば、約2個に分割されてもよい。各スロットはさらに、ミニスロットとして分割されてもよい。周波数分割複信(FDD)モードでは、同時ULおよびDL送信が、それぞれに異なる周波数帯域内で生じる場合がある。たとえば、各サブフレームは、UL周波数帯域におけるULサブフレームと、DL周波数帯域におけるDLサブフレームとを含む。時間分割複信(TDD)モードでは、UL送信およびDL送信は、同じ周波数帯域を使用して異なる期間に行われる。たとえば、無線フレーム内のサブフレームのサブセット(たとえば、DLサブフレーム)は、DL送信に使用されてもよく、無線フレーム内のサブフレームの別のサブセット(たとえば、ULサブフレーム)は、UL送信に使用されてもよい。
DLサブフレームおよびULサブフレームは、いくつかの領域にさらに分割することができる。たとえば、各DLサブフレームまたはULサブフレームは、基準信号、制御情報、およびデータの送信のためのあらかじめ定義された領域を有してもよい。基準信号は、BS105とUE115との間の通信を容易にする所定の信号である。たとえば、基準信号は、特定のパイロットパターンまたは構造を有することができ、ここで、パイロットトーンは、動作帯域幅または周波数帯域にまたがる場合があり、各パイロットトーンは、あらかじめ定義された時間およびあらかじめ定義された周波数に配置される。たとえば、BS105は、UE115がDLチャネルを推定するのを可能にするために、セル固有基準信号(CRS)および/またはチャネル状態情報-基準信号(CSI-RS)を送信してもよい。同様に、UE115は、BS105がULチャネルを推定するのを可能にするために、サウンディング基準信号(SRS)を送信してもよい。制御情報は、リソース割り当ておよびプロトコル制御を含み得る。データは、プロトコルデータおよび/または動作データを含んでもよい。いくつかの実施形態では、BS105およびUE115は、自蔵式サブフレームを使って通信してもよい。自蔵式サブフレームは、DL通信用の部分およびUL通信用の部分を含んでもよい。自蔵式サブフレームは、DLセントリックまたはULセントリックとすることができる。DLセントリックサブフレームは、UL通信よりも長いDL通信用の持続時間を含んでもよい。ULセントリックサブフレームは、DL通信よりも長いUL通信用の持続時間を含んでもよい。
一実施形態では、ネットワーク100にアクセスすることを試みるUE115は、BS105からの1次同期信号(PSS)を検出することによって初期セル探索を実行してもよい。PSSは、期間タイミングの同期を可能にしてもよく、物理レイヤ識別情報値を示してもよい。次いで、UE115は、2次同期信号(SSS)を受信してもよい。SSSは、無線フレーム同期を可能にしてもよく、セルを識別するために物理レイヤ識別情報値と組み合わされ得るセル識別情報値を提供してもよい。SSSはまた、複信モードおよびサイクリックプレフィックス長の検出を可能にしてもよい。TDDシステムなどの一部のシステムは、SSSを送信するが、PSSを送信しないことがある。PSSとSSSの両方は、それぞれ、キャリアの中心部内に位置してもよい。
PSSおよびSSSを受信した後、UE115は、物理ブロードキャストチャネル(PBCH)内で送信される場合があるマスタ情報ブロック(MIB)を受信してもよい。MIBは、システム帯域幅情報、システムフレーム番号(SFN)、および物理ハイブリッドARQインジケータチャネル(PHICH)構成を含んでもよい。MIBを復号した後、UE115は、1つまたは複数のシステム情報ブロック(SIB)を受信してもよい。たとえば、SIB1は、セルアクセスパラメータと、他のSIBのためのスケジューリング情報とを含んでもよい。SIB1を復号することは、UE115がSIB2を受信することを可能にしてもよい。SIB2は、ランダムアクセスチャネル(RACH)手順、ページング、物理アップリンク制御チャネル(PUCCH)、物理アップリンク共有チャネル(PUSCH)、電力制御、SRS、およびセル禁止に関する無線リソース構成(RRC)構成情報を含んでもよい。MIBおよび/またはSIBを取得した後、UE115は、BS105との接続を確立するためにランダムアクセス手順を実行することができる。接続を確立した後、UE115およびBS105は通常動作段階に入ることができ、ここで動作データが交換されてもよい。
いくつかの実施形態では、UE115は、周波数領域における多重化、空間領域における多重化、および/または干渉管理を可能にするために全電力で送信するのではなく送信電力制御(TPC)を実行してもよい。たとえば、UE115は、送信電力を通信リンク125を一定の品質に維持するのに十分な最小電力に低減させてもよい。
一実施形態では、ネットワーク100は、共有チャネルを介して動作してもよく、共有チャネルは、認可スペクトル、共有スペクトル、および/または無認可スペクトルを含んでもよく、動的媒体共有をサポートしてもよい。BS105またはUE115は、送信機会(TXOP)においてデータを送信する前に予約信号を送信することによって共有チャネルにおけるTXOPを予約してもよい。他のBS105および/または他のUE115は、このチャネルをリッスンし、予約信号を検出したときにはTXOPの間このチャネルにアクセスするのを控えてもよい。いくつかの実施形態では、BS105および/またはUE115は互いに協働して、スペクトル利用率をさらに向上させるように干渉管理を実行してもよい。
一実施形態では、ネットワーク100は、たとえば約2GHzから約60GHzの間の周波数範囲における様々な周波数帯域にわたって動作してもよい。様々な周波数帯域は、それぞれに異なるPSD要件を有してもよい。上述のように、ETSI文書EN301893V2.1.1は、様々なサブ6GHz帯域についてのPSD要件を指定している。たとえば、約5150MHzから約5350MHzの間の周波数帯域は、TPCを行う場合の最大許容PSDレベルが約10dBm/MHzであってもよい。約5250MHzから約5350MHzの間の周波数帯域は、TPCを行わない場合の最大許容PSDレベルが約7dBm/MHzであってもよい。約5150MHzから約5250MHzの間の周波数帯域は、TPCを行わない場合の最大許容PSDレベルが約10dBm/MHzであってもよい。約5470MHzから約5725MHzの間の周波数帯域は、TPCを行う場合の最大許容PSDレベルが約17dBm/MHzであり、TPCを行わない場合の最大許容PSDレベルが約14dBm/MHzであってもよい。ETSI草案文書EN302567V2.0.22は、60GHz帯域についての最大EIRPおよびEIRP密度を指定している。たとえば、60GHz帯域では、EIRP密度を約13dBm/MHzとし、EIRPを約40dBmとしてもよい。
トランスミッタ(たとえば、BS105およびUE115)は、周波数スペクトルにおける一定のPSD限界を満たすために、周波数インターレーシングを使用してより広い帯域幅にわたって送信信号を拡散させてもよい。たとえば、トランスミッタは、信号を連続した周波数にわたって送信する場合よりも高い電力で、周波数帯域において互いに離間された複数の幅の狭い周波数帯域にわたって信号を送信してもよい。一実施形態では、BS105およびUE115は、周波数スペクトルにおけるPSD要件および/またはUE115の電力利用率因子に応じてインターレース周波数波形とノンインターレース周波数波形とから選択することによって様々な周波数帯域にわたって通信してもよい。インターレース周波数波形とノンインターレース周波数波形とから選択するための機構について、本明細書でより詳細に説明する。
図2は、本開示の実施形態による、例示的なUE200のブロック図である。UE200は、上記で説明したUE115であってもよい。図示のように、UE200は、プロセッサ202と、メモリ204と、波形選択モジュール208と、モデムサブシステム212および無線周波数(RF)ユニット214を含むトランシーバ210と、1つまたは複数のアンテナ216とを含んでもよい。これらの要素は、たとえば、1つまたは複数のバスを介して、互いと直接通信または間接通信していてもよい。
プロセッサ202は、中央処理ユニット(CPU)、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、コントローラ、フィールドプログラマブルゲートアレイ(FPGA)デバイス、別のハードウェアデバイス、ファームウェアデバイス、または、本明細書で説明する動作を実施するように構成されたそれらの任意の組合せを含んでもよい。プロセッサ202はまた、コンピューティングデバイスの組合せ、たとえばDSPとマイクロプロセッサの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つもしくは複数のマイクロプロセッサ、または任意の他のそのような構成として実装されてもよい。
メモリ204は、キャッシュメモリ(たとえば、プロセッサ202のキャッシュメモリ)、ランダムアクセスメモリ(RAM)、磁気抵抗RAM(MRAM)、読取専用メモリ(ROM)、プログラマブル読取専用メモリ(PROM)、消去可能プログラマブル読取専用メモリ(EPROM)、電気的消去可能プログラマブル読取専用メモリ(EEPROM)、フラッシュメモリ、ソリッドステートメモリデバイス、ハードディスクドライブ、他の形の揮発性および不揮発性のメモリ、または異なるタイプのメモリの組合せを含んでもよい。一実施形態では、メモリ204は、非一時的コンピュータ可読媒体を含む。メモリ204は、命令206を記憶してもよい。命令206は、プロセッサ202によって実行されると、本開示の実施形態に関してUE115を参照して本明細書で説明する動作をプロセッサ202に実行させる命令を含んでもよい。命令206は、コードと呼ばれることもある。「命令」および「コード」という用語は、任意のタイプのコンピュータ可読ステートメントを含むものと広く解釈されるべきである。たとえば、「命令」および「コード」という用語は、1つまたは複数のプログラム、ルーチン、サブルーチン、関数、プロシージャなどを指してもよい。「命令」および「コード」は、単一のコンピュータ可読ステートメントまたは多数のコンピュータ可読ステートメントを含んでもよい。
波形選択モジュール208は、ハードウェア、ソフトウェア、またはそれらの組合せを介して実装されてもよい。たとえば、波形選択モジュール208は、プロセッサ、回路、および/またはメモリ204に記憶されプロセッサ202によって実行される命令206として実装されてもよい。波形選択モジュール208は、本開示の様々な態様のために使用されてもよい。たとえば、波形選択モジュール208は、周波数スペクトルにおける通信のために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択し、BS105などのBSから波形構成を受信し、ならびに/または初期ネットワークアクセスのために周波数インターレーシングとともに電力ランピングを実行するかまたは周波数インターレーシングを行わずに電力ランピングを実行するように構成される。波形選択モジュール208は、本明細書でより詳しく説明するように、周波数スペクトルにおけるPSD要件(たとえば、PSD限界または一連の許容PSDレベル)、受信波形構成、および/またはUE200の電力ヘッドルーム(たとえば、電力利用率因子)の事前知識に基づく選択を実行してもよい。
図示のように、トランシーバ210は、モデムサブシステム212およびRFユニット214を含んでもよい。トランシーバ210は、BS105などの他のデバイスと双方向に通信するように構成することができる。モデムサブシステム212は、変調およびコーディング方式(MCS)、たとえば、低密度パリティチェック(LDPC)コーディング方式、ターボコーディング方式、畳み込みコーディング方式、デジタルビームフォーミング方式などに従って、メモリ204および/または波形選択モジュール208からのデータを変調および/または符号化するように構成することができる。RFユニット214は、(アウトバウンド送信において)モデムサブシステム212からの、またはUE115もしくはBS105などの別のソースから発信する送信の、変調/符号化されたデータを処理する(たとえば、アナログデジタル変換またはデジタルアナログ変換を実行するなど)ように構成されてもよい。RFユニット214は、デジタルビームフォーミングと連携してアナログビームフォーミングを実施するようにさらに構成されてもよい。トランシーバ210内に一緒に統合されるものとして図示されているが、モデムサブシステム212およびRFユニット214は、UE115が他のデバイスと通信することを可能にするためにUE115において一緒に結合された別々のデバイスであってもよい。
RFユニット214は、変調および/または処理されたデータ、たとえば、データパケット(または、より一般的には、1つもしくは複数のデータパケットおよび他の情報を含む場合があるデータメッセージ)を、1つまたは複数の他のデバイスへの送信のためにアンテナ216に提供してもよい。これは、たとえば、本開示の実施形態による、インターレース周波数構造および/またはノンインターレース周波数構造を使用する通信信号の送信を含んでもよい。アンテナ216は、他のデバイスから送信されたデータメッセージをさらに受信してもよい。アンテナ216は、トランシーバ210における処理および/または復調のために、受信されたデータメッセージを提供し得る。アンテナ216は、複数の送信リンクを維持するために、類似のまたは異なる設計の複数のアンテナを含んでもよい。RFユニット214は、アンテナ216を構成してもよい。
図3は、本開示の実施形態による、例示的なBS300のブロック図である。BS300は、上記で説明したBS105であってもよい。図示のように、BS300は、プロセッサ302と、メモリ304と、波形選択モジュール308と、モデムサブシステム312およびRFユニット314を含むトランシーバ310と、1つまたは複数のアンテナ316とを含んでもよい。これらの要素は、たとえば、1つまたは複数のバスを介して、互いと直接通信または間接通信していてもよい。
プロセッサ302は、特定のタイプのプロセッサとして様々な特徴を有してもよい。たとえば、これらは、CPU、DSP、ASIC、コントローラ、FPGAデバイス、別のハードウェアデバイス、ファームウェアデバイス、または本明細書で説明する動作を実行するように構成されたそれらの任意の組合せを含んでもよい。プロセッサ302はまた、コンピューティングデバイスの組合せ、たとえば、DSPとマイクロプロセッサの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つもしくは複数のマイクロプロセッサ、または任意の他のそのような構成として実装されてもよい。
メモリ304は、キャッシュメモリ(たとえば、プロセッサ302のキャッシュメモリ)、RAM、MRAM、ROM、PROM、EPROM、EEPROM、フラッシュメモリ、ソリッドステートメモリデバイス、1つもしくは複数のハードディスクドライブ、メモリスタベースアレイ、他の形態の揮発性および不揮発性メモリ、または異なるタイプのメモリの組合せを含んでもよい。いくつかの実施形態では、メモリ304は非一時的コンピュータ可読媒体を含んでもよい。メモリ304は、命令306を記憶してもよい。命令306は、プロセッサ302によって実行されると、プロセッサ302に、本明細書で説明する動作を実施させる命令を含んでもよい。命令306はコードと呼ばれることもあり、コードは、図3に関して上記で説明したように、任意のタイプのコンピュータ可読ステートメントを含むように広く解釈されてもよい。
波形選択モジュール308は、ハードウェア、ソフトウェア、またはそれらの組合せを介して実装されてもよい。たとえば、波形選択モジュール308は、プロセッサ、回路、および/またはメモリ304に記憶されプロセッサ302によって実行される命令306として実装されてもよい。波形選択モジュール308は、本開示の様々な態様のために使用されてもよい。たとえば、波形選択モジュール308は、周波数スペクトルにおける通信のための波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択し、それぞれに異なる周波数スペクトルおよび/またはUE115などのそれぞれに異なるUE用の波形構成を判定し、初期ネットワークアクセスのためにそれぞれに異なる波形構成を有するリソースを構成し、ならびに/または波形構成をUEに送信するように構成される。波形選択モジュール308は、本明細書でより詳しく説明するように、周波数スペクトルにおけるPSD要件(たとえば、PSD限界または一連の許容PSDレベル)および/またはUEにおいて利用可能な電力ヘッドルームの事前知識に基づく選択および/または判定を実行してもよい。
図示のように、トランシーバ310は、モデムサブシステム312およびRFユニット314を含んでもよい。トランシーバ310は、UE115および/または別のコアネットワーク要素などの他のデバイスと双方向に通信するように構成されてもよい。モデムサブシステム312は、MCS、たとえば、LDPCコーディング方式、ターボコーディング方式、畳み込みコーディング方式、デジタルビームフォーミング方式などに従って、データを変調および/または符号化するように構成されてもよい。RFユニット314は、(アウトバウンド送信において)モデムサブシステム312からの、またはUE115もしくは200などの別のソースから発信する送信の、変調/符号化されたデータを処理する(たとえば、アナログデジタル変換またはデジタルアナログ変換を実行するなど)ように構成されてもよい。RFユニット314は、デジタルビームフォーミングと連携してアナログビームフォーミングを実施するようにさらに構成されてもよい。トランシーバ310内に一緒に統合されるものとして図示されているが、モデムサブシステム312およびRFユニット314は、BS105が他のデバイスと通信することを可能にするためにBS105において一緒に結合された別々のデバイスであってもよい。
RFユニット314は、変調および/または処理されたデータ、たとえば、データパケット(または、より一般的には、1つもしくは複数のデータパケットおよび他の情報を含む場合があるデータメッセージ)を、1つまたは複数の他のデバイスへの送信のためにアンテナ316に提供してもよい。このことは、たとえば、本開示の実施形態による、ネットワークへのアタッチメントを完了するための情報の送信と、キャンプしたUE115または200との通信とを含んでもよい。アンテナ316は、他のデバイスから送信されたデータメッセージをさらに受信し、トランシーバ310における処理および/または復調のために、受信されたデータメッセージを提供してもよい。アンテナ316は、複数の送信リンクを維持するために、類似のまたは異なる設計の複数のアンテナを含んでもよい。
図4および図5は、送信またはリソース割振りを周波数スペクトルにわたって分散させて電力利用率を向上させるための様々な周波数インターレーシング機構を示す。図4および図5では、x軸はある一定の単位の時間を表し、y軸はある一定の単位の周波数を表す。
図4は、本開示の実施形態による周波数インターレーシング方式400を示す。方式400は、BS105および300などのBSならびにUE115および200などのUEによって、周波数スペクトル402にわたって通信するために使用されてもよい。周波数スペクトル402は、帯域幅が約10メガヘルツ(MHz)または約20MHzであり、SCSが約15kHzまたは約30kHzであってもよい。周波数スペクトル402は、任意の適切な周波数に位置してもよい。いくつかの実施形態では、周波数スペクトル402は約3.5GHz、6GHz、または60GHzにおけるスペクトルであってもよい。方式400は、リソースをリソースブロック(RB)-粒度レベルにおいてインターレース408の単位で割り振る。
各インターレース408は、周波数スペクトル402にわたって均等に離間された10個のアイランド406を含んでもよい。インターレースは、408I(0)〜408(M-1)として示されており、この場合、Mは、本明細書でより詳しく説明するように様々な因子に応じた正の整数である。一実施形態では、インターレース408I(k)は、1つのUEに割り当てられてもよく、インターレース408I(k+1)は、別のUEに割り当てられてもよく、この場合、kは0からM-2の間であってもよい。
各インターレース408から1つのM個の局在化アイランド406のグループがクラスタ404を形成する。図示のように、インターレース408I(0)〜408(M-1)は10個のクラスタ404C(0)〜404C(9)を形成する。各アイランド406は、1つのRB410を含む。したがって、インターレース408は、RBレベルの粒度を有する。RB410は0から11までインデックス付けされる。各RB410は、周波数における約12個のサブキャリア412および期間414にわたってもよい。期間414は、任意の適切な数のOFDMシンボルにわたってもよい。いくつかの実施形態では、期間414は1つの送信時間間隔(TTI)を含んでもよく、送信時間間隔(TTI)は約14個のOFDMシンボルを含んでもよい。
方式400には10個のクラスタ404が示されているが、クラスタの数は、周波数スペクトル402の帯域幅、インターレース408の粒度、および/またはサブキャリア412のSCSに応じて異なってもよい。一実施形態では、周波数スペクトル402は帯域幅が約20メガヘルツ(MHz)であってもよく、各サブキャリア412は、周波数において約15kHzにわたってもよい。そのような実施形態では、周波数スペクトル402は、約10個のインターレース408(たとえば、M=10)を含んでもよい。たとえば、割振りは、10個の分散されたRB410を有する1つのインターレース408を含んでもよい。単一のRBまたは10個の局在化RBを含む割振りと比較して、10個の分散されたRB410を含むインターレース割振りによって、UEは同じPSDレベルを維持しつつより高い電力を送信することができる。
別の実施形態では、周波数スペクトル402は帯域幅が約10MHzであってもよく、各サブキャリア412は、周波数において約15kHzにわたってもよい。そのような実施形態では、周波数スペクトル402は、約5つのインターレース408(たとえば、M=5)を含んでもよい。同様に、割振りは、10個の分散されたRBを有する1つのインターレース408を含んでもよい。10個の分散されたRBを含むインターレース割振りによって、同じPSDレベルにおける単一のRBまたは10個の局在化RBを含む割振りよりも電力利用率が向上する場合がある。
別の実施形態では、周波数スペクトル402は帯域幅が約20MHzであってもよく、各サブキャリア412は、周波数において約30kHzにわたってもよい。そのような実施形態では、周波数スペクトル402は、約5つのインターレース408(たとえば、M=5)を含んでもよい。同様に、割振りは、10個の分散されたRBを有する1つのインターレース408を含んでもよい。10個の分散されたRBを含むインターレース割振りによって、同じPSDレベルにおける単一のRBまたは10個の局在化RBを含む割振りよりも電力利用率が向上する場合がある。
周波数スペクトル402における割振りに周波数インターレーシングを使用すると、トランスミッタは、割振りが連続した周波数を占有するときよりも高い電力レベルで送信することができる。一例として、周波数スペクトル402は、最大許容PSDレベルが1メガヘルツ当たり約13デシベル-ミリワット(dBm/MHz)であってもよく、トランスミッタ(たとえば、UE115および200)は、約23dBmにおいて送信を行うことができる電力増幅器(PA)を有してもよい。5つのクラスタ404を含む割振りの周波数占有率を分散させることによって、トランスミッタはPSDレベルを約13dBm/MHzに維持しつつ(たとえば、約7dBの電力ブーストによって)約20dBmで送信することができる場合がある。10個のクラスタ404を含む割振りの周波数占有率を分散させることによって、トランスミッタはPSDレベルを約13dBm/MHzに維持しつつ(たとえば、約10dBの電力ブーストによって)約23dBmの全電力で送信することができる場合がある。したがって、リソース割振りに周波数インターレーシングを使用すると、電力利用率を向上させることができる。
一実施形態では、方式400をPUCCH、PUSCH、および物理ランダムアクセスチャネル(PRACH)に適用してトランスミッタにおいて電力ブーストを実現してもよい。たとえば、UEは、1つのインターレース408を使用してPRACHを介して初期ネットワークアクセスの間にBSにランダムアクセスプリアンブルを送信し、1つのインターレース408を使用したPUCCHを介してBSにUL制御情報を送信し、ならびに/または1つのインターレース408を使用してPUSCHを介してULデータを送信してもよい。一実施形態では、方式400は、スペクトル共有に適用されてもよく、UEまたはBSは、インターレース周波数構造、たとえば、1つのインターレース408を使用して媒体予約信号を送信し、媒体検知性能を向上させてもよい。
図5は、本開示の実施形態による周波数インターレーシング方式500を示す。方式500は、BS105および300などのBSならびにUE115および200などのUEによって、周波数スペクトル402にわたって通信するために使用されてもよい。周波数スペクトル402は、帯域幅が約20MHzであり、SCSが約60kHzであってもよい。方式500は、方式400と実質的に同様であってもよい。たとえば、方式500は、508I(0)〜508(4)として示されたインターレース508の単位でリソースを割り振ってもよい。しかし、各インターレース508は、方式400とは異なり、周波数スペクトル402にわたって均等に離間された10個のアイランド406ではなく周波数スペクトル402にわたって均等に離間された5つのアイランド506を含んでもよい。各インターレース508から1つの5つの局在化アイランド506のグループがクラスタ504を形成する。図示のように、インターレース508I(0)〜508(4)は5つのクラスタ504C(0)〜504C(5)を形成する。各アイランド506は、1つのRB510を含む。各RB510は、周波数における12個のサブキャリア512および期間514にわたる。各サブキャリア512は、周波数において約60kHzにわたってもよい。期間514は、任意の適切な数のOFDMシンボルを含んでもよい。
5つのインターレース508は、トランスミッタの電力ブーストを約7dBにするのを可能にする場合がある。一例として、周波数スペクトル402は、最大許容PSDレベルが約10dBm/MHzであってもよい。インターレース割振りを5つのアイランド506または5つのクラスタ504に分散させると、トランスミッタは約17dBmで送信することができる。方式500は、電力利用率をさらに向上させるために、時間領域反復またはTTIバンドリングを適用してもよく、割振りは1つのTTIから別のTTIにホップしてもよい。たとえば、期間514は、方式400とは異なり1つのTTI(たとえば、約14個のOFDMシンボル)ではなく2つのTTI(たとえば、約28個のOFDMシンボル)を含んでもよい。そのようなTTIバンドリングは、トランスミッタが送信電力をさらに約20dBmに増大させる(たとえば、約3dBの増大)のを可能にする場合がある。
方式400および500は、リソース割振りをRB粒度レベルで示しているが、方式400および500は代替として、リソースをそれぞれに異なる粒度で割り振って同様の機能を実現するように構成されてもよい。たとえば、電力利用率を向上させるためにアイランド406または506を12個のサブキャリアではなく約4つのサブキャリアの周波数単位で定義することができる。
図6〜図8は、周波数スペクトル402などの周波数スペクトルにおける通信のためにインターレース周波数構造とノンインターレース周波数構造とから選択するための様々な機構を示す。
図6は、本開示の実施形態による帯域依存波形選択方式600を示す図である。x軸はある一定の単位での周波数を表す。方式600は、BS105および300などのBSならびにUE115および200などのUEによって、周波数スペクトルのPSDパラメータに基づいてこの周波数スペクトルにおける通信のためにインターレース周波数構造を使用すべきかそれともノンインターレース周波数構造を使用すべきかを判定するために使用されてもよい。方式600は、インターレース周波数構造を使用する際に、それぞれ図4および図5に関して方式400および500において説明したのと同様な機構を使用してもよい。方式600では、BSおよびUEは、様々な周波数帯域610および620におけるPSD要件の事前知識を有してもよい。周波数帯域610および620は、任意の適切な周波数に位置してもよい。
一例として、周波数帯域610はPSD限界を有してもよく、一方、周波数帯域620はPSD限界を有さなくてもよい。BSは、周波数帯域610におけるPSD限界を満たすために、インターレース周波数構造(たとえば、インターレース408I(k)または508I(k))を使用して周波数帯域610においてUEと通信してもよい。周波数帯域620はPSD限界を有しないので、BSは、(たとえば、連続した周波数を含む)ノンインターレース周波数構造を使用して周波数帯域620においてUEと通信してもよい。
図7は、本開示の実施形態によるネットワーク固有波形選択方法700のシグナリング図である。方法700は、BS、UE A、およびUE Bの間で実施される。BSは、BS105および300と同様であってもよい。UE AおよびUE Bは、UE115および200と同様であってもよい。方法700のステップは、BSならびにUE AおよびUE Bのコンピューティングデバイス(たとえば、プロセッサ、処理回路、および/または他の適切な構成要素)によって実行することができる。図示のように、方法700は、いくつかの列挙されるステップを含むが、方法700の実施形態は、列挙されるステップの前、後、およびステップ間に追加のステップを含んでもよい。いくつかの実施形態では、列挙されるステップのうちの1つまたは複数は、省略されるか、または異なる順序で実施されてよい。
ステップ710において、BSは、様々な周波数帯域(たとえば、周波数帯域610および620)についての波形構造を示す構成を送信する。たとえば、この構成は、PSD限界を有する周波数帯域についてのインターレース周波数構造(たとえば、インターレース408I(k)または508I(k))を示してもよく、PSD限界を有しない周波数帯域についての(たとえば、連続した周波数を含む)ノンインターレース周波数構造を示してもよい。一実施形態では、BSは、ネットワーク(たとえば、ネットワーク100)における(たとえば、UE AおよびUE Bを含む)すべてのUEへのSIBにおいてこの構成をブロードキャストしてもよい。
ステップ720において、BSは、この構成に応じてUE AおよびUE Bと通信してもよい。UE AまたはUE Bは、受信された構成に示された波形構造に基づいてBSと通信するためにインターレース周波数構造を使用すべきかそれともノンインターレース周波数構造を使用すべきかを判定してもよい。周波数帯域についての波形構造がインターレース周波数構造を示すとき、BSおよびUEは、方式400または500と同様の機構を使用して互いに通信してもよい。
図8は、本開示の実施形態によるUE固有波形選択方法800のシグナリング図である。方法800は、BS、UE A、およびUE Bの間で実施される。BSは、BS105および300と同様であってもよい。UE AおよびUE Bは、UE115および200と同様であってもよい。方法800のステップは、BSならびにUE AおよびUE Bのコンピューティングデバイス(たとえば、プロセッサ、処理回路、および/または他の適切な構成要素)によって実行することができる。図示のように、方法800は、いくつかの列挙されるステップを含むが、方法800の実施形態は、列挙されるステップの前、後、およびステップ間に追加のステップを含んでもよい。いくつかの実施形態では、列挙されるステップのうちの1つまたは複数は、省略されるか、または異なる順序で実施されてよい。
方法800は、UEから受信された電力ヘッドルームレポートに基づいてインターレース周波数構造またはノンインターレース周波数構造によってUEごとの送信を構成するかまたは割り当ててもよい。たとえば、UEが電力制限されるとき、BSは、UEについての送信(たとえば、PUSCH送信)をインターレース周波数構造によってスケジュールしてもよい。特定の通信チャネルまたはリンクにおけるUL送信用の必要な送信電力がUEの利用可能な送信電力を超えると、UEは電力が制限される。代替として、UEが電力制限されないとき、BSは、UEについての送信をノンインターレース周波数構造によってスケジュールしてもよい。
ステップ810において、BSは、UE Aについての波形構造を示す構成Aを送信する。たとえば、UE Aは、電力が制限され、したがって、波形構造は、インターレース周波数構造(たとえば、インターレース408I(k)または508I(k))を示すことがある。
ステップ820において、BSは、UE Bについての波形構造を示す構成Bを送信する。たとえば、UE Bは、電力が制限されず、したがって、波形構造は、(たとえば、連続した周波数を含む)ノンインターレース周波数構造を示すことがある。
ステップ830において、BSは、たとえば、インターレース周波数構造を使用して、構成Aに基づいてUE Aと通信してもよい。
ステップ840において、BSは、たとえば、ノンインターレース周波数構造を使用して、構成Bに基づいてUE Bと通信してもよい。
一実施形態では、BSは、UEの電力ヘッドルームおよび周波数帯域のPSDパラメータ(たとえば、PSD限界または一連の許容PSDレベル)に基づいてUEにインターレース周波数構造またはノンインターレース周波数構造を選択してもよい。たとえば、BSは、UE Aをある周波数帯域ではインターレース周波数構造によってスケジュールし、別の周波数帯域ではノンインターレース周波数構造によってスケジュールしてもよい。代替として、BSは、UE Aをある期間ではインターレース周波数構造によってスケジュールし、別の期間ではノンインターレース周波数構造によってスケジュールしてもよい。
図9および図10は、インターレース周波数構造およびノンインターレース周波数構造を有するランダムアクセスリソースを構成するための様々な機構を示す。
図9は、本開示の実施形態によるランダムアクセス送信方式900を示す。x軸はある一定の単位での周波数を表す。方式900は、BS105および300などのBSならびにUE115および200などのUEによって使用されてもよい。方式900では、BSは、ランダムアクセスリソースの複数のセットをそれぞれに異なる周波数帯域において構成してもよい。たとえば、ランダムアクセスリソース910の1つのセットは、周波数帯域902に位置してもよく、インターレース周波数構造(たとえば、インターレース408I(k)または508I(k))を有してもよい。ランダムアクセスリソース920の別のセットは、周波数帯域904に位置してもよく、(たとえば、連続した周波数を含む)ノンインターレース周波数構造を有してもよい。UEは、ランダムアクセス信号を送信するためにリソースを周波数帯域902におけるリソース910または周波数帯域904におけるリソース920から自律的に選択してもよい。BSは、インターレース周波数構造に基づくリソース910およびノンインターレース周波数構造に基づくリソース920においてランダムアクセス信号を監視してもよい。
一実施形態では、選択はDL経路損失測定に基づいてもよい。UEが電力制限されるとき、UEは、電力利用率を向上させるためにリソースをインターレース周波数構造を有するリソース910から選択してもよい。たとえば、UEは、インターレース408および508と同様な周波数インターレースチャネルにおいてランダムアクセスプリアンブルを送信してもよい。逆に、UEが電力制限されないとき、UEは、ノンインターレース周波数構造を有するリソース920からリソースを選択してもよい。たとえば、UEは、連続した周波数においてランダムアクセスプリアンブルを送信してもよい。
一実施形態では、UEは、ランダムアクセス手順の間に電力ランピングを実行してもよい。たとえば、ランダムアクセス手順の開始時に、UEは、ノンインターレース周波数構造を有するリソース920からランダムアクセスプリアンブル送信のためのリソースを選択してもよい。ランダムアクセス応答が受信されないとき、UEは、後続のランダムアクセス送信のために送信電力を増大させてもよい。送信電力が周波数帯域904において許容される最大PSDレベルに到達すると、UEは、後続のランダムアクセスプリアンブル送信のためのリソースをインターレース周波数構造を有するリソース910から選択するように切り替えてもよい。
図10は、本開示の実施形態によるランダムアクセス送信方式1000を示す。x軸はある一定の単位での時間を表す。y軸はある一定の単位での周波数を表す。方式1000は、BS105および300などのBSならびにUE115および200などのUEによって使用されてもよい。方式1000は、方式900と実質的に同様であってもよい。しかし、BSは、方式900とは異なり、それぞれに異なる周波数帯域ではなくそれぞれに異なる期間においてランダムアクセスリソースの複数のセットを構成してもよい。たとえば、ランダムアクセスリソース1010の1つのセットは、期間1002に位置してもよく、インターレース周波数構造(たとえば、インターレース408I(k)または508I(k))を有してもよい。ランダムアクセスリソース1020の別のセットは、期間1004に位置してもよく、(たとえば、連続した周波数を含む)ノンインターレース周波数構造を有してもよい。一実施形態では、リソース1010および1020は、同じ周波数帯域1001に位置する。
UEは、方式900と同様に、ランダムアクセス信号を送信するためにリソースを期間1002におけるリソース1010または期間1004におけるリソース1020から自律的に選択してもよい。この選択は、方式900において説明したように、DL経路損失測定、UEの電力利用率因子(たとえば、電力ヘッドルーム)、および/またはランダムアクセスプリアンブル送信に使用される送信電力に基づいてもよい。BSは、インターレース周波数構造に基づくリソース1010およびノンインターレース周波数構造に基づくリソース1020においてランダムアクセス信号を監視してもよい。
図11は、本開示の実施形態による、縮小したSCSを有する周波数インターレーシング方式1100を示す。方式1100は、BS105および300などのBSならびにUE115および200などのUEによって、周波数スペクトル402にわたって通信するために使用されてもよい。方式1100は、方式400および500と実質的に同様であってもよいが、縮小したSCSにおいてリソースを割り振ってもよい。
周波数スペクトル402は、帯域幅が約20MHzであり、SCSが約60kHzであってもよい。したがって、周波数スペクトル402は、(たとえば、0〜24とインデックス付けされた)25個のRB510を含む。図5に関して上記で説明したように、方式500では、RB-粒度レベルのインターレース508の単位でリソースを割り振る際、TTIバンドリングなしで約7dBの電力ブーストを実現してもよい。方式1100では、TTIバンドリングを使用して電力利用率をさらに向上させるのではなく、縮小したSCSにおける周波数インターレーシングを適用する。
方式1100では、各サブキャリア512を約4つのサブキャリア1112に分割する。したがって、各サブキャリア1112は約15kHzにわたる。たとえば、0とインデックス付けされたサブキャリア512が、0〜3とインデックス付けされた4つのサブキャリア1112に分割され、1とインデックス付けされたサブキャリア512が、4〜7とインデックス付けされた4つのサブキャリア1112に分割され、2とインデックス付けされたサブキャリア512が、8〜11とインデックス付けされた4つのサブキャリア1112に分割される。12個のサブキャリア1112のグループはRB1110を形成する。
方式400および500と同様に、方式1100では、インターレース408および508と同様なインターレースの単位でリソースを割り振ってもよい。たとえば、各インターレースは、スペクトル402にわたって均等に離間された約10個のアイランド1106を含んでもよく、この場合、各アイランド1106は1つのRB1110を含む。したがって、周波数スペクトルは約10個のインターレースを含んでもよい。割振りの周波数占有率を10個のアイランド1106として分散させると、約10dBの電力ブーストを実現することができる。代替として、方式1100では、各サブキャリア512を、各々が約30kHzにわたる約2個のサブキャリアとして分割してもよい。縮小したSCSは、周波数領域における割振りを分散させてトランスミッタが、一定のPSDレベルを維持しつつより高い電力で送信するのを可能にすることができる。
一実施形態では、縮小したSCSによって計算の複雑さが増すことがある。たとえば、帯域幅が20MHzでありSCSが約60kHzである通常の動作の下では、512点高速フーリエ変換(FFT)が適用されてもよい。しかし、SCSを約15kHzに縮小すると、2048点FFTが必要になる場合がある。FFTのサイズが大きくなると、計算の複雑さが増すことがある。計算の複雑さを低減させる1つの手法は、20MHz帯域幅を約4つのセグメントに区分して、各セグメントに1つの4つの512点FFTを適用することである。
一実施形態では、約6GHzよりも低い周波数スペクトルにおける通信は、インターレース周波数波形構造を使用してもよく、約6GHzよりも高い周波数スペクトルにおける通信は、インターレース周波数波形構造とノンインターレース周波数波形構造を使用してもよい。たとえば、それぞれ図4、図5、および図11に関して説明した方式400、500、および1100は、インターレース周波数ベースの通信に使用されてもよい。それぞれ図6、図9、図10、図7、および図8に関して説明した方式600、900、および1000ならびに方法700および800は、6GHzを超える通信のためにインターレース周波数波形構造とノンインターレース周波数波形構造とから選択するために使用されてもよい。
図12は、本開示の実施形態による波形選択を含む通信方法1200の流れ図である。方法1200のステップは、BS105および300ならびにUE115および200などの、ワイヤレス通信デバイスのコンピューティングデバイス(たとえば、プロセッサ、処理回路、および/または他の適切な構成要素)によって実行することができる。方法1200は、図4、図5、図6、図9、図10、図7、および図8に関してそれぞれ説明した、方式400、500、600、900、および1000ならびに方法700および800におけるものと同様の機構を利用してもよい。図示のように、方法1200は、いくつかの列挙されるステップを含むが、方法1200の実施形態は、列挙されるステップの前、後、およびステップ間に追加のステップを含んでもよい。いくつかの実施形態では、列挙されるステップのうちの1つまたは複数は、省略されてもよく、または異なる順序で実行されてもよい。
ステップ1210において、方法1200は、第1のワイヤレス通信デバイスによって、周波数スペクトル(たとえば、周波数スペクトル402)において通信するために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択することを含む。インターレース周波数構造は、スペクトルにおける少なくとも周波数帯域の第1のセット(たとえば、インターレース408I(0)または508I(0))を含んでもよい。周波数帯域の第1のセットは、周波数スペクトルにおける周波数帯域の第2のセット(たとえば、インターレース408I(1)または508I(1))とインターレースする。ノンインターレース周波数構造は、周波数スペクトルにおける1つまたは複数の連続した周波数帯域またはRBを含んでもよい。この選択は、方式600において説明したように帯域依存の選択であっても、方法700において説明したようにネットワーク固有の選択であっても、または方法800において説明したようにUE固有の選択であってもよい。
ステップ1220において、方法1200は、第1のワイヤレス通信デバイスによって、選択された波形構造に基づく通信信号を周波数スペクトルにおいて第2のワイヤレス通信デバイスと通信することを含む。
情報および信号は、様々な異なる技術および技法のいずれかを使用して表されてもよい。たとえば、上記の説明全体にわたって言及されることがあるデータ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁場もしくは磁気粒子、光場もしくは光学粒子、またはそれらの任意の組合せによって表されてもよい。
本明細書の開示に関して説明された様々な例示的なブロックおよびモジュールは、汎用プロセッサ、DSP、ASIC、FPGAまたは他のプログラマブル論理デバイス、個別ゲートまたはトランジスタ論理、個別ハードウェア構成要素、あるいは本明細書で説明される機能を実行するように設計されたそれらの任意の組合せを用いて実装または実行されてもよい。汎用プロセッサはマイクロプロセッサであってもよいが、代替として、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、または状態機械であってもよい。プロセッサはまた、コンピューティングデバイスの組合せ(たとえば、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つまたは複数のマイクロプロセッサ、または任意の他のそのような構成)として実装されてもよい。
本明細書で説明した機能は、ハードウェア、プロセッサによって実行されるソフトウェア、ファームウェア、またはそれらの任意の組合せに実装されてもよい。プロセッサによって実行されるソフトウェアに実装される場合、機能は、1つまたは複数の命令またはコードとして、コンピュータ可読媒体上に記憶されるか、またはコンピュータ可読媒体を介して送信されてもよい。他の例および実装形態は、本開示および添付の特許請求の範囲の範囲内に入る。たとえば、ソフトウェアの性質に起因して、上述された機能は、プロセッサ、ハードウェア、ファームウェア、ハードワイヤリング、またはこれらのうちのいずれかの組合せによって実行されるソフトウェアを使用して実装されてもよい。機能を実装する特徴はまた、様々な物理的位置に機能の一部が実装されるように分散されることを含めて、様々な位置に物理的に配置されてもよい。また、特許請求の範囲内を含む本明細書で使用するとき、項目のリスト(たとえば、「のうちの少なくとも1つ」または「のうちの1つまたは複数」などの句で始まる項目のリスト)の中で使用されるような「または」は、たとえば、[A、B、またはCのうちの少なくとも1つ]のリストが、AまたはBまたはCまたはABまたはACまたはBCまたはABC(すなわち、AおよびBおよびC)を意味するような包括的リストを示す。
本開示のさらなる実施形態は、第1のワイヤレス通信デバイスによって、周波数スペクトルにおいて通信するためにインターレース周波数構造とノンインターレース周波数構造とから波形構造を選択することと、第1のワイヤレス通信デバイスによって、選択された波形構造に基づく通信信号をこの周波数スペクトルにおいて第2のワイヤレス通信デバイスと通信することとを含むワイヤレス通信の方法を含む。
いくつかの実施形態では、インターレース周波数構造は、周波数スペクトルにおける少なくとも周波数帯域の第1のセットを含み、周波数帯域の第1のセットが周波数スペクトルにおける周波数帯域の第2のセットとインターレースし、ノンインターレース周波数構造は、周波数スペクトルにおける1つまたは複数の連続した周波数帯域を含む。いくつかの実施形態では、選択することは、周波数スペクトルの電力スペクトル密度(PSD)パラメータに基づく。いくつかの実施形態では、PSDパラメータは、周波数スペクトルにおけるPSD要件と関連付けられ、選択することは、周波数スペクトルがPSD要件を有するかどうかを判定することと、周波数スペクトルがPSD要件を有すると判定したときに、インターレース周波数構造を波形構造として選択することとを含む。いくつかの実施形態では、PSDパラメータは、周波数スペクトルにおけるPSD要件と関連付けられ、選択することは、PSD要件を有する第1の周波数帯域とPSD要件を有しない第2の周波数帯域とに基づき、通信することは、第1の周波数帯域においてインターレース周波数構造を有する第1の通信信号を通信することと、第2の周波数帯域においてノンインターレース周波数構造を有する第2の通信信号を通信することとを含む。いくつかの実施形態では、この方法は、第1のワイヤレス通信デバイスによって、周波数スペクトルにおいて通信するための波形構造を示す構成を送信することをさらに含む。いくつかの実施形態では、選択することは、第2のワイヤレス通信デバイスの電力ヘッドルームに基づく。いくつかの実施形態では、この方法は、第1のワイヤレス通信デバイスによって、周波数スペクトルにおいて通信するための波形構造を示す構成を第2のワイヤレス通信デバイスから受信することをさらに含み、選択することはこの構成に基づく。いくつかの実施形態では、この方法は、第1のワイヤレス通信デバイスによって、インターレース周波数構造を有するランダムアクセスリソースの第1のセットとノンインターレース周波数構造を有するランダムアクセスリソースの第2のセットとを示す構成を第2のワイヤレス通信デバイスと通信することと、第1のワイヤレス通信デバイスによって、この構成に基づくランダムアクセス信号を第2のワイヤレス通信デバイスと通信することとをさらに含む。いくつかの実施形態では、ランダムアクセスリソースの第1のセットとランダムアクセスリソースの第2のセットは、周波数スペクトル内のそれぞれに異なる周波数帯域内に位置する。いくつかの実施形態では、ランダムアクセスリソースの第1のセットとランダムアクセスリソースの第2のセットは、それぞれに異なる期間内に位置する。いくつかの実施形態では、構成を通信することは、第1のワイヤレス通信デバイスによって、構成を第2のワイヤレス通信デバイスに送信することを含み、ランダムアクセス信号を通信することは、第1のワイヤレス通信デバイスによってランダムアクセス信号を監視することを含む。いくつかの実施形態では、構成を通信することは、第1のワイヤレス通信デバイスによって、第2のワイヤレス通信デバイスから構成を受信することを含む。いくつかの実施形態では、この方法は、第1のワイヤレス通信デバイスによって、構成、第2のワイヤレス通信デバイスの電力ヘッドルーム、または第2のワイヤレス通信デバイスの電力利用率因子のうちの少なくとも1つに基づいて、ランダムアクセスリソースの第1のセットを使用してランダムアクセス信号を第2のワイヤレス通信デバイスに送信すべきか、それともランダムアクセスリソースの第2のセットを使用してランダムアクセス信号を第2のワイヤレス通信デバイスに送信すべきかを判定することをさらに含む。いくつかの実施形態では、ランダムアクセス信号を通信することは、第1のワイヤレス通信デバイスによって、ランダムアクセスリソースの第2のセットを使用してノンインターレース周波数構造を有する第1のランダムアクセス信号を第1の送信電力で第2のワイヤレス通信デバイスに送信することと、第1のワイヤレス通信デバイスによって、ランダムアクセスリソースの第1のセットを使用してインターレース周波数構造を有する第2のランダムアクセス信号を第1の送信電力よりも高い第2の送信電力で第2のワイヤレス通信デバイスに送信することとを含む。いくつかの実施形態では、この方法は、第1のワイヤレス通信デバイスによって、第2の送信電力とランダムアクセスリソースの第2のセットの周波数帯域の電力スペクトル密度(PSD)パラメータとの比較に基づいて、ランダムアクセスリソースの第1のセットを使用してインターレース周波数構造を有する第2のランダムアクセス信号を送信することを決定することをさらに含む。いくつかの実施形態では、周波数スペクトルは、ノンインターレース周波数構造についての第1のサブキャリア間隔を含み、通信信号を通信することは、インターレース周波数構造についての第2のサブキャリア間隔を使用して通信信号を通信することを含み、第1のサブキャリア間隔は第2のサブキャリア間隔よりも大きい。
本開示のさらなる実施形態は、周波数スペクトルにおいて通信するために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択するように構成されたプロセッサと、選択された波形構造に基づく通信信号を周波数スペクトルにおいて第2のワイヤレス通信デバイスと通信するように構成されたトランシーバとを備える装置を含む。
いくつかの実施形態では、インターレース周波数構造は、周波数スペクトルにおける少なくとも周波数帯域の第1のセットを含み、周波数帯域の第1のセットが周波数スペクトルにおける周波数帯域の第2のセットとインターレースし、ノンインターレース周波数構造は、周波数スペクトルにおける1つまたは複数の連続した周波数帯域を含む。いくつかの実施形態では、プロセッサは、周波数スペクトルの電力スペクトル密度(PSD)パラメータに基づいて波形構造を選択するようにさらに構成される。いくつかの実施形態では、PSDパラメータは、周波数スペクトルにおけるPSD要件と関連付けられ、プロセッサは、周波数スペクトルがPSD要件を有するかどうかを判定し、周波数スペクトルがPSD要件を有すると判定したときに、インターレース周波数構造を波形構造として選択することによって波形構造を選択するようにさらに構成される。いくつかの実施形態では、PSDパラメータは、周波数スペクトルにおけるPSD要件と関連付けられ、プロセッサは、PSD要件を有する第1の周波数帯域とPSD要件を有しない第2の周波数帯域とに基づいて波形構造を選択するようにさらに構成され、トランシーバは、第1の周波数帯域においてインターレース周波数構造を有する第1の通信信号を通信し、第2の周波数帯域においてノンインターレース周波数構造を有する第2の通信信号を通信するようにさらに構成される。いくつかの実施形態では、トランシーバは、周波数スペクトルにおいて通信するための波形構造を示す構成を送信するようにさらに構成される。いくつかの実施形態では、プロセッサは、第2のワイヤレス通信デバイスの電力ヘッドルームに基づいて波形構造を選択するようにさらに構成される。いくつかの実施形態では、トランシーバは、周波数スペクトルにおいて通信するための波形構造を示す構成を第2のワイヤレス通信デバイスから受信するようにさらに構成され、プロセッサは、構成に基づいて波形構造を選択するようにさらに構成される。いくつかの実施形態では、トランシーバは、インターレース周波数構造を有するランダムアクセスリソースの第1のセットとノンインターレース周波数構造を有するランダムアクセスリソースの第2のセットとを示す構成を第2のワイヤレス通信デバイスと通信し、この構成に基づくランダムアクセス信号を第2のワイヤレス通信デバイスと通信するようにさらに構成される。いくつかの実施形態では、ランダムアクセスリソースの第1のセットとランダムアクセスリソースの第2のセットは、周波数スペクトル内のそれぞれに異なる周波数帯域内に位置する。いくつかの実施形態では、ランダムアクセスリソースの第1のセットとランダムアクセスリソースの第2のセットは、それぞれに異なる期間内に位置する。いくつかの実施形態では、トランシーバは、第2のワイヤレス通信デバイスに構成を送信することによって構成を通信し、ランダムアクセス信号を監視することによってランダムアクセス信号を通信するようにさらに構成される。いくつかの実施形態では、トランシーバは、第2のワイヤレス通信デバイスから構成を受信することによって構成を通信するようにさらに構成される。いくつかの実施形態では、プロセッサは、構成、第2のワイヤレス通信デバイスの電力ヘッドルーム、または第2のワイヤレス通信デバイスの電力利用率因子のうちの少なくとも1つに基づいて、ランダムアクセスリソースの第1のセットを使用してランダムアクセス信号を第2のワイヤレス通信デバイスに送信すべきか、それともランダムアクセスリソースの第2のセットを使用してランダムアクセス信号を第2のワイヤレス通信デバイスに送信すべきかを判定するようにさらに構成される。いくつかの実施形態では、トランシーバは、ランダムアクセスリソースの第2のセットを使用してノンインターレース周波数構造を有する第1のランダムアクセス信号を第1の送信電力で第2のワイヤレス通信デバイスに送信し、ランダムアクセスリソースの第1のセットを使用してインターレース周波数構造を有する第2のランダムアクセス信号を第1の送信電力よりも高い第2の送信電力で第2のワイヤレス通信デバイスに送信することによってランダムアクセス信号を通信するようにさらに構成される。いくつかの実施形態では、プロセッサは、第2の送信電力とランダムアクセスリソースの第2のセットの周波数帯域の電力スペクトル密度(PSD)パラメータとの比較に基づいて、ランダムアクセスリソースの第1のセットを使用してインターレース周波数構造を有する第2のランダムアクセス信号を送信することを決定するようにさらに構成される。いくつかの実施形態では、周波数スペクトルは、ノンインターレース周波数構造についての第1のSCSを含み、トランシーバは、インターレース周波数構造についての第2のSCSを使用して通信信号を通信することによって通信信号を通信するようにさらに構成され、第1のSCSは第2のSCSよりも大きい。
本開示のさらなる実施形態は、プログラムコードが記録されたコンピュータ可読媒体であって、プログラムコードが、第1のワイヤレス通信デバイスに、周波数スペクトルにおける通信のために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択させるためのコードと、第1のワイヤレス通信デバイスに、選択された波形構造に基づく通信信号を、周波数スペクトルにおいて第2のワイヤレス通信デバイスと通信させるためのコードとを含むコンピュータ可読媒体を含む。
いくつかの実施形態では、インターレース周波数構造は、周波数スペクトルにおける少なくとも周波数帯域の第1のセットを含み、周波数帯域の第1のセットが周波数スペクトルにおける周波数帯域の第2のセットとインターレースし、ノンインターレース周波数構造は、周波数スペクトルにおける1つまたは複数の連続した周波数帯域を含む。いくつかの実施形態では、第1のワイヤレス通信デバイスに波形構造を選択させるためのコードは、周波数スペクトルの電力スペクトル密度(PSD)パラメータに基づいて波形構造を選択するようにさらに構成される。いくつかの実施形態では、PSDパラメータは、周波数スペクトルにおけるPSD要件と関連付けられ、第1のワイヤレス通信デバイスに波形構造を選択させるためのコードは、周波数スペクトルがPSD要件を有するかどうかを判定し、周波数スペクトルがPSD要件を有すると判定したときに、インターレース周波数構造を波形構造として選択することによって波形構造を選択するようにさらに構成される。いくつかの実施形態では、PSDパラメータは、周波数スペクトルにおけるPSD要件と関連付けられ、第1のワイヤレス通信デバイスに波形構造を選択させるためのコードは、PSD要件を有する第1の周波数帯域とPSD要件を有しない第2の周波数帯域とに基づいて波形構造を選択するようにさらに構成され、第1のワイヤレス通信デバイスに通信信号を通信させるためのコードは、第1の周波数帯域においてインターレース周波数構造を有する第1の通信信号を通信し、第2の周波数帯域においてノンインターレース周波数構造を有する第2の通信信号を通信することによって通信信号を通信するようにさらに構成される。いくつかの実施形態では、コンピュータ可読媒体は、第1のワイヤレス通信デバイスに、周波数スペクトルにおいて通信するための波形構造を示す構成を送信させるためのコードをさらに備える。いくつかの実施形態では、第1のワイヤレス通信デバイスに波形構造を選択させるためのコードは、第2のワイヤレス通信デバイスの電力ヘッドルームに基づいて波形構造を選択するようにさらに構成される。いくつかの実施形態では、コンピュータ可読媒体は、第1のワイヤレス通信デバイスに、周波数スペクトルにおいて通信するための波形構造を示す構成を第2のワイヤレス通信デバイスから受信させるためのコードをさらに備え、第1のワイヤレス通信デバイスに波形構造を選択させるためのコードは、構成に基づいて波形構造を選択するようにさらに構成される。いくつかの実施形態では、コンピュータ可読媒体は、第1のワイヤレス通信デバイスに、インターレース周波数構造を有するランダムアクセスリソースの第1のセットとノンインターレース周波数構造を有するランダムアクセスリソースの第2のセットとを示す構成を第2のワイヤレス通信デバイスと通信させるためのコードと、第1のワイヤレス通信デバイスに、この構成に基づくランダムアクセス信号を第2のワイヤレス通信デバイスと通信させるためのコードとをさらに備える。いくつかの実施形態では、ランダムアクセスリソースの第1のセットとランダムアクセスリソースの第2のセットは、周波数スペクトル内のそれぞれに異なる周波数帯域内に位置する。いくつかの実施形態では、ランダムアクセスリソースの第1のセットとランダムアクセスリソースの第2のセットは、それぞれに異なる期間内に位置する。いくつかの実施形態では、第1のワイヤレス通信デバイスに構成を通信させるためのコードは、第2のワイヤレス通信デバイスに構成を送信するようにさらに構成され、第1のワイヤレス通信デバイスにランダムアクセス信号を通信させるためのコードは、ランダムアクセス信号を監視するようにさらに構成される。いくつかの実施形態では、第1のワイヤレス通信デバイスに構成を通信させるためのコードは、第2のワイヤレス通信デバイスから構成を受信するようにさらに構成される。いくつかの実施形態では、コンピュータ可読媒体は、第1のワイヤレス通信デバイスに、構成、第2のワイヤレス通信デバイスの電力ヘッドルーム、または第2のワイヤレス通信デバイスの電力利用率因子のうちの少なくとも1つに基づいて、ランダムアクセスリソースの第1のセットを使用してランダムアクセス信号を第2のワイヤレス通信デバイスに送信すべきか、それともランダムアクセスリソースの第2のセットを使用してランダムアクセス信号を第2のワイヤレス通信デバイスに送信すべきかを判定させるためのコードをさらに備える。いくつかの実施形態では、第1のワイヤレス通信デバイスにランダムアクセス信号を通信させるためのコードは、ランダムアクセスリソースの第2のセットを使用してノンインターレース周波数構造を有する第1のランダムアクセス信号を第1の送信電力で第2のワイヤレス通信デバイスに送信し、ランダムアクセスリソースの第1のセットを使用してインターレース周波数構造を有する第2のランダムアクセス信号を第1の送信電力よりも高い第2の送信電力で第2のワイヤレス通信デバイスに送信するようにさらに構成される。いくつかの実施形態では、コンピュータ可読媒体は、第1のワイヤレス通信デバイスに、第2の送信電力とランダムアクセスリソースの第2のセットの周波数帯域の電力スペクトル密度(PSD)パラメータとの比較に基づいて、ランダムアクセスリソースの第1のセットを使用してインターレース周波数構造を有する第2のランダムアクセス信号を送信することを決定させるためのコードをさらに備える。いくつかの実施形態では、周波数スペクトルは、ノンインターレース周波数構造についての第1のSCSを含み、第1のワイヤレス通信デバイスに通信信号を通信させるためのコードは、インターレース周波数構造についての第2のSCSを使用して通信信号を通信するようにさらに構成され、第1のSCSは第2のSCSよりも大きい。
本開示のさらなる実施形態は、周波数スペクトルにおいて通信するために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択するための手段と、選択された波形構造に基づく通信信号を周波数スペクトルにおいて第2のワイヤレス通信デバイスと通信するための手段とを備える装置を含む。
いくつかの実施形態では、インターレース周波数構造は、周波数スペクトルにおける少なくとも周波数帯域の第1のセットを含み、周波数帯域の第1のセットが周波数スペクトルにおける周波数帯域の第2のセットとインターレースし、ノンインターレース周波数構造は、周波数スペクトルにおける1つまたは複数の連続した周波数帯域を含む。いくつかの実施形態では、波形構造を選択するための手段は、周波数スペクトルの電力スペクトル密度(PSD)パラメータに基づいて波形構造を選択するようにさらに構成される。いくつかの実施形態では、PSDパラメータは、周波数スペクトルにおけるPSD要件と関連付けられ、波形構造を選択するための手段は、周波数スペクトルがPSD要件を有するかどうかを判定し、周波数スペクトルがPSD要件を有すると判定したときに、インターレース周波数構造を波形構造として選択することによって波形構造を選択するようにさらに構成される。いくつかの実施形態では、PSDパラメータは、周波数スペクトルにおけるPSD要件と関連付けられ、波形構造を選択するための手段は、PSD要件を有する第1の周波数帯域とPSD要件を有しない第2の周波数帯域とに基づいて波形構造を選択するようにさらに構成され、通信信号を通信するための手段は、第1の周波数帯域においてインターレース周波数構造を有する第1の通信信号を通信し、第2の周波数帯域においてノンインターレース周波数構造を有する第2の通信信号を通信するようにさらに構成される。いくつかの実施形態では、装置は、周波数スペクトルにおいて通信するための波形構造を示す構成を送信するための手段をさらに備える。いくつかの実施形態では、波形構造を選択するための手段は、第2のワイヤレス通信デバイスの電力ヘッドルームに基づいて波形構造を選択するようにさらに構成される。いくつかの実施形態では、装置は、周波数スペクトルにおいて通信するための波形構造を示す構成を第2のワイヤレス通信デバイスから受信するための手段をさらに備え、波形構造を選択するための手段は、構成に基づいて波形構造を選択するようにさらに構成される。いくつかの実施形態では、装置は、インターレース周波数構造を有するランダムアクセスリソースの第1のセットとノンインターレース周波数構造を有するランダムアクセスリソースの第2のセットとを示す構成を第2のワイヤレス通信デバイスと通信するための手段と、この構成に基づくランダムアクセス信号を第2のワイヤレス通信デバイスと通信するための手段とをさらに備える。いくつかの実施形態では、ランダムアクセスリソースの第1のセットとランダムアクセスリソースの第2のセットは、周波数スペクトル内のそれぞれに異なる周波数帯域内に位置する。いくつかの実施形態では、ランダムアクセスリソースの第1のセットとランダムアクセスリソースの第2のセットは、それぞれに異なる期間内に位置する。いくつかの実施形態では、構成を通信するための手段は、第2のワイヤレス通信デバイスに構成を送信するようにさらに構成され、ランダムアクセス信号を通信するための手段は、ランダムアクセス信号を監視するようにさらに構成される。いくつかの実施形態では、構成を通信するための手段は、第2のワイヤレス通信デバイスから構成を受信するようにさらに構成される。いくつかの実施形態では、装置は、構成、第2のワイヤレス通信デバイスの電力ヘッドルーム、または第2のワイヤレス通信デバイスの電力利用率因子のうちの少なくとも1つに基づいて、ランダムアクセスリソースの第1のセットを使用してランダムアクセス信号を第2のワイヤレス通信デバイスに送信すべきか、それともランダムアクセスリソースの第2のセットを使用してランダムアクセス信号を第2のワイヤレス通信デバイスに送信すべきかを判定するための手段をさらに備える。いくつかの実施形態では、ランダムアクセス信号を通信するための手段は、ランダムアクセスリソースの第2のセットを使用してノンインターレース周波数構造を有する第1のランダムアクセス信号を第1の送信電力で第2のワイヤレス通信デバイスに送信し、ランダムアクセスリソースの第1のセットを使用してインターレース周波数構造を有する第2のランダムアクセス信号を第1の送信電力よりも高い第2の送信電力で第2のワイヤレス通信デバイスに送信するようにさらに構成される。いくつかの実施形態では、装置は、第2の送信電力とランダムアクセスリソースの第2のセットの周波数帯域の電力スペクトル密度(PSD)パラメータとの比較に基づいて、ランダムアクセスリソースの第1のセットを使用してインターレース周波数構造を有する第2のランダムアクセス信号を送信することを決定するための手段をさらに備える。いくつかの実施形態では、周波数スペクトルは、ノンインターレース周波数構造についての第1のSCSを含み、通信信号を通信するための手段は、インターレース周波数構造についての第2のSCSを使用して通信信号を通信するようにさらに構成され、第1のSCSは第2のSCSよりも大きい。
当業者には今や諒解されるように、また当面の特定の適用例に応じて、本開示の趣旨および範囲から逸脱することなく、本開示のデバイスの材料、装置、構成および使用方法において、かつそれらに対して、多くの修正、置換および変形が行われてもよい。このことに照らして、本明細書で図示および説明する特定の実施形態は、それらのいくつかの例によるものにすぎないので、本開示の範囲はそのような特定の実施形態の範囲に限定されるべきではなく、むしろ、以下に添付される特許請求の範囲およびそれらの機能的等価物の範囲と完全に同じであるべきである。
100 ワイヤレス通信ネットワーク
105、105a、105b、105c、105d、300 BS
110、110a、110b、110c、110d 地理的カバレージエリア
115、200 UE
130 コアネットワーク
132、134 バックホールリンク
202、302 プロセッサ
204、304 メモリ
206、306 命令
208、308 波形選択モジュール
210、310 トランシーバ
212、312 モデムサブシステム
214、314 無線周波数(RF)ユニット
216、316 アンテナ
400、500 周波数インターレーシング方式
402 周波数スペクトル
404、504 クラスタ
406、506 アイランド
408、508 インターレース
410、510 RB
412、512 サブキャリア
414、514 期間
600 帯域依存波形選択方式
610、620 周波数帯域
700 ネットワーク固有波形選択方法
800 UE固有波形選択方法
900 ランダムアクセス送信方式
902、904 周波数帯域
910、920 ランダムアクセスリソース
1000 ランダムアクセス送信方式
1002、1004 期間
1010、1020 ランダムアクセスリソース
1100 周波数インターレーシング方式
1106 アイランド
1110 RB
1112 サブキャリア
1200 通信方法

Claims (51)

  1. ワイヤレス通信の方法であって、
    第1のワイヤレス通信デバイスによって、周波数スペクトルにおいて通信するために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択するステップと、
    前記第1のワイヤレス通信デバイスによって、前記選択された波形構造に基づく通信信号を前記周波数スペクトルにおいて第2のワイヤレス通信デバイスと通信するステップとを含む方法。
  2. 前記インターレース周波数構造は、前記周波数スペクトルにおける少なくとも周波数帯域の第1のセットを含み、周波数帯域の前記第1のセットが前記周波数スペクトルにおける周波数帯域の第2のセットとインターレースし、前記ノンインターレース周波数構造は、前記周波数スペクトルにおける1つまたは複数の連続した周波数帯域を含む、請求項1に記載の方法。
  3. 前記選択するステップは、前記周波数スペクトルの電力スペクトル密度(PSD)パラメータに基づく、請求項1に記載の方法。
  4. 前記PSDパラメータは、前記周波数スペクトルにおけるPSD要件と関連付けられ、前記選択するステップは、
    前記周波数スペクトルが前記PSD要件を有するかどうかを判定することと、
    前記周波数スペクトルが前記PSD要件を有すると判定したときに前記インターレース周波数構造を前記波形構造として選択することとを含む、請求項3に記載の方法。
  5. 前記PSDパラメータは、前記周波数スペクトルにおけるPSD要件に関連付けられ、前記選択するステップは、前記PSD要件を有する第1の周波数帯域と前記PSD要件を有しない第2の周波数帯域とに基づき、前記通信するステップは、
    前記第1の周波数帯域において前記インターレース周波数構造を有する第1の通信信号を通信することと、
    前記第2の周波数帯域において前記ノンインターレース周波数構造を有する第2の通信信号を通信することとを含む、請求項3に記載の方法。
  6. 前記第1のワイヤレス通信デバイスによって、前記周波数スペクトルにおいて通信するための前記波形構造を示す構成を送信するステップをさらに含む、請求項1に記載の方法。
  7. 前記選択するステップは、前記第2のワイヤレス通信デバイスの電力ヘッドルームに基づく、請求項6に記載の方法。
  8. 前記第1のワイヤレス通信デバイスによって、前記周波数スペクトルにおいて通信するための前記波形構造を示す構成を前記第2のワイヤレス通信デバイスから受信するステップをさらに含み、前記選択するステップは前記構成に基づく、請求項1に記載の方法。
  9. 前記第1のワイヤレス通信デバイスによって、インターレース周波数構造を有するランダムアクセスリソースの第1のセットとノンインターレース周波数構造を有するランダムアクセスリソースの第2のセットとを示す構成を前記第2のワイヤレス通信デバイスと通信するステップと、
    前記第1のワイヤレス通信デバイスによって、前記構成に基づくランダムアクセス信号を前記第2のワイヤレス通信デバイスと通信するステップとをさらに含む、請求項1に記載の方法。
  10. ランダムアクセスリソースの前記第1のセットとランダムアクセスリソースの前記第2のセットは、前記周波数スペクトル内のそれぞれに異なる周波数帯域内に位置する、請求項9に記載の方法。
  11. ランダムアクセスリソースの前記第1のセットとランダムアクセスリソースの前記第2のセットは、それぞれに異なる期間内に位置する、請求項9に記載の方法。
  12. 前記構成を通信する前記ステップは、前記第1のワイヤレス通信デバイスによって前記構成を前記第2のワイヤレス通信デバイスに送信することを含み、前記ランダムアクセス信号を通信する前記ステップは、前記第1のワイヤレス通信デバイスによって前記ランダムアクセス信号を監視することを含む、請求項9に記載の方法。
  13. 前記構成を通信する前記ステップは、前記第1のワイヤレス通信デバイスによって、前記第2のワイヤレス通信デバイスから前記構成を受信することを含む、請求項9に記載の方法。
  14. 前記第1のワイヤレス通信デバイスによって、前記構成、前記第2のワイヤレス通信デバイスの電力ヘッドルーム、または前記第2のワイヤレス通信デバイスの電力利用率因子のうちの少なくとも1つに基づいて、ランダムアクセスリソースの前記第1のセットを使用して前記ランダムアクセス信号を前記第2のワイヤレス通信デバイスに送信すべきか、それともランダムアクセスリソースの前記第2のセットを使用して前記ランダムアクセス信号を前記第2のワイヤレス通信デバイスに送信すべきかを判定するステップをさらに含む、請求項13に記載の方法。
  15. 前記ランダムアクセス信号を通信する前記ステップは、
    前記第1のワイヤレス通信デバイスによって、ランダムアクセスリソースの前記第2のセットを使用して、前記ノンインターレース周波数構造を有する第1のランダムアクセス信号を第1の送信電力で前記第2のワイヤレス通信デバイスに送信することと、
    前記第1のワイヤレス通信デバイスによって、ランダムアクセスリソースの前記第1のセットを使用して、前記インターレース周波数構造を有する第2のランダムアクセス信号を前記第1の送信電力よりも高い第2の送信電力で前記第2のワイヤレス通信デバイスに送信することとを含む、請求項13に記載の方法。
  16. 前記第1のワイヤレス通信デバイスによって、前記第2の送信電力とランダムアクセスリソースの前記第2のセットの周波数帯域の電力スペクトル密度(PSD)パラメータとの比較に基づいて、ランダムアクセスリソースの前記第1のセットを使用して、前記インターレース周波数構造を有する前記第2のランダムアクセス信号を送信することを決定するステップをさらに含む、請求項15に記載の方法。
  17. 前記周波数スペクトルは、前記ノンインターレース周波数構造についての第1のサブキャリア間隔を含み、前記通信信号を通信する前記ステップは、前記インターレース周波数構造についての第2のサブキャリア間隔を使用して前記通信信号を通信することを含み、前記第1のサブキャリア間隔は前記第2のサブキャリア間隔よりも大きい、請求項1に記載の方法。
  18. 周波数スペクトルにおいて通信するために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択するための手段と、
    前記選択された波形構造に基づく通信信号を前記周波数スペクトルにおいて第2のワイヤレス通信デバイスと通信するための手段とを備える装置。
  19. 前記インターレース周波数構造は、前記周波数スペクトルにおける少なくとも周波数帯域の第1のセットを含み、周波数帯域の前記第1のセットが前記周波数スペクトルにおける周波数帯域の第2のセットとインターレースし、前記ノンインターレース周波数構造は、前記周波数スペクトルにおける1つまたは複数の連続した周波数帯域を含む、請求項18に記載の装置。
  20. 前記波形構造を選択するための前記手段は、前記周波数スペクトルの電力スペクトル密度(PSD)パラメータに基づいて前記波形構造を選択するようにさらに構成される、請求項18に記載の装置。
  21. 前記PSDパラメータは、前記周波数スペクトルにおけるPSD要件に関連付けられ、前記波形構造を選択するための前記手段は、
    前記周波数スペクトルが、前記PSD要件を有するかどうかを判定し、
    前記周波数スペクトルが前記PSD要件を有すると判定したときに前記インターレース周波数構造を前記波形構造として選択することによって前記波形構造を選択するようにさらに構成される、請求項20に記載の装置。
  22. 前記PSDパラメータは、前記周波数スペクトルにおけるPSD要件に関連付けられ、前記波形構造を選択するための前記手段は、前記PSD要件を有する第1の周波数帯域と前記PSD要件を有しない第2の周波数帯域とに基づいて前記波形構造を選択するようにさらに構成され、前記通信信号を通信するための前記手段は、
    前記第1の周波数帯域において前記インターレース周波数構造を有する第1の通信信号を通信し、
    前記第2の周波数帯域において前記ノンインターレース周波数構造を有する第2の通信信号を通信するようにさらに構成される、請求項20に記載の装置。
  23. 前記周波数スペクトルにおいて通信するための前記波形構造を示す構成を送信するための手段をさらに備える、請求項18に記載の装置。
  24. 前記波形構造を選択するための前記手段は、前記第2のワイヤレス通信デバイスの電力ヘッドルームに基づいて前記波形構造を選択するようにさらに構成される、請求項23に記載の装置。
  25. 前記周波数スペクトルにおいて通信するための前記波形構造を示す構成を前記第2のワイヤレス通信デバイスから受信するための手段をさらに備え、前記波形構造を選択するための前記手段は、前記構成に基づいて前記波形構造を選択するようにさらに構成される、請求項18に記載の装置。
  26. インターレース周波数構造を有するランダムアクセスリソースの第1のセットとノンインターレース周波数構造を有するランダムアクセスリソースの第2のセットとを示す構成を前記第2のワイヤレス通信デバイスと通信するための手段と、
    前記構成に基づくランダムアクセス信号を前記第2のワイヤレス通信デバイスと通信するための手段とをさらに備える、請求項18に記載の装置。
  27. ランダムアクセスリソースの前記第1のセットとランダムアクセスリソースの前記第2のセットは、前記周波数スペクトル内のそれぞれに異なる周波数帯域内に位置する、請求項26に記載の装置。
  28. ランダムアクセスリソースの前記第1のセットとランダムアクセスリソースの前記第2のセットは、それぞれに異なる期間内に位置する、請求項26に記載の装置。
  29. 前記構成を通信するための前記手段は、前記構成を前記第2のワイヤレス通信デバイスに送信するようにさらに構成され、前記ランダムアクセス信号を通信するための前記手段は、前記ランダムアクセス信号を監視するようにさらに構成される、請求項26に記載の装置。
  30. 前記構成を通信するための前記手段は、前記第2のワイヤレス通信デバイスから前記構成を受信するようにさらに構成される、請求項26に記載の装置。
  31. 前記構成、前記第2のワイヤレス通信デバイスの電力ヘッドルーム、または前記第2のワイヤレス通信デバイスの電力利用率因子のうちの少なくとも1つに基づいて、ランダムアクセスリソースの前記第1のセットを使用して前記ランダムアクセス信号を前記第2のワイヤレス通信デバイスに送信すべきか、それともランダムアクセスリソースの前記第2のセットを使用して前記ランダムアクセス信号を前記第2のワイヤレス通信デバイスに送信すべきかを判定するための手段をさらに備える、請求項30に記載の装置。
  32. 前記ランダムアクセス信号を通信するための前記手段は、
    ランダムアクセスリソースの前記第2のセットを使用して、前記ノンインターレース周波数構造を有する第1のランダムアクセス信号を第1の送信電力で前記第2のワイヤレス通信デバイスに送信し、
    ランダムアクセスリソースの前記第1のセットを使用して、前記インターレース周波数構造を有する第2のランダムアクセス信号を前記第1の送信電力よりも高い第2の送信電力で前記第2のワイヤレス通信デバイスに送信するようにさらに構成される、請求項30に記載の装置。
  33. 前記第2の送信電力とランダムアクセスリソースの前記第2のセットの周波数帯域の電力スペクトル密度(PSD)パラメータとの比較に基づいて、ランダムアクセスリソースの前記第1のセットを使用して前記インターレース周波数構造を有する前記第2のランダムアクセス信号を送信することを決定するための手段をさらに備える、請求項32に記載の装置。
  34. 前記周波数スペクトルは、前記ノンインターレース周波数構造についての第1のSCSを含み、前記通信信号を通信するための前記手段は、前記インターレース周波数構造についての第2のSCSを使用して前記通信信号を通信するようにさらに構成され、前記第1のSCSは前記第2のSCSよりも大きい、請求項18に記載の装置。
  35. プログラムコードを記録したコンピュータ可読記憶媒体であって、前記プログラムコードは、
    第1のワイヤレス通信デバイスに、周波数スペクトルにおいて通信するために波形構造をインターレース周波数構造とノンインターレース周波数構造とから選択させるためのコードと、
    前記第1のワイヤレス通信デバイスに、前記選択された波形構造に基づく通信信号を前記周波数スペクトルにおいて第2のワイヤレス通信デバイスに通信させるためのコードとを備えるコンピュータ可読記憶媒体。
  36. 前記インターレース周波数構造は、前記周波数スペクトルにおける少なくとも周波数帯域の第1のセットを含み、周波数帯域の前記第1のセットが前記周波数スペクトルにおける周波数帯域の第2のセットとインターレースし、前記ノンインターレース周波数構造は、前記周波数スペクトルにおける1つまたは複数の連続した周波数帯域を含む、請求項35に記載のコンピュータ可読記憶媒体。
  37. 前記第1のワイヤレス通信デバイスに前記波形構造を選択させるための前記コードは、前記周波数スペクトルの電力スペクトル密度(PSD)パラメータに基づいて前記波形構造を選択するようにさらに構成される、請求項35に記載のコンピュータ可読記憶媒体。
  38. 前記PSDパラメータは、前記周波数スペクトルにおけるPSD要件に関連付けられ、前記第1のワイヤレス通信デバイスに前記波形構造を選択させるための前記コードは、
    前記周波数スペクトルが前記PSD要件を有するかどうかを判定し、
    前記周波数スペクトルが前記PSD要件を有すると判定したときに前記インターレース周波数構造を前記波形構造として選択することによって前記波形構造を選択するようにさらに構成される、請求項37に記載のコンピュータ可読記憶媒体。
  39. 前記PSDパラメータは、前記周波数スペクトルにおけるPSD要件に関連付けられ、前記第1のワイヤレス通信デバイスに前記波形構造を選択させるための前記コードは、前記PSD要件を有する第1の周波数帯域と前記PSD要件を有しない第2の周波数帯域とに基づいて前記波形構造を選択するようにさらに構成され、前記第1のワイヤレス通信デバイスに前記通信信号を通信させるための前記コードは、
    前記第1の周波数帯域において前記インターレース周波数構造を有する第1の通信信号を通信し、
    前記第2の周波数帯域において前記ノンインターレース周波数構造を有する第2の通信信号を通信することによって前記通信信号を通信するようにさらに構成される、請求項37に記載のコンピュータ可読記憶媒体。
  40. 前記第1のワイヤレス通信デバイスに、前記周波数スペクトルにおいて通信するための前記波形構造を示す構成を送信させるためのコードをさらに備える、請求項35に記載のコンピュータ可読記憶媒体。
  41. 前記第1のワイヤレス通信デバイスに前記波形構造を選択させるための前記コードは、前記第2のワイヤレス通信デバイスの電力ヘッドルームに基づいて前記波形構造を選択するようにさらに構成される、請求項40に記載のコンピュータ可読記憶媒体。
  42. 前記第1のワイヤレス通信デバイスに、前記周波数スペクトルにおいて通信するための前記波形構造を示す構成を前記第2のワイヤレス通信デバイスから受信させるためのコードをさらに備え、前記第1のワイヤレス通信デバイスに前記波形構造を選択させるための前記コードは、前記構成に基づいて前記波形構造を選択するようにさらに構成される、請求項35に記載のコンピュータ可読記憶媒体。
  43. 前記第1のワイヤレス通信デバイスに、インターレース周波数構造を有するランダムアクセスリソースの第1のセットとノンインターレース周波数構造を有するランダムアクセスリソースの第2のセットとを示す構成を前記第2のワイヤレス通信デバイスと通信させるためのコードと、
    前記第1のワイヤレス通信デバイスに、前記構成に基づくランダムアクセス信号を前記第2のワイヤレス通信デバイスと通信させるためのコードとをさらに備える、請求項35に記載のコンピュータ可読記憶媒体。
  44. ランダムアクセスリソースの前記第1のセットとランダムアクセスリソースの前記第2のセットは、前記周波数スペクトル内のそれぞれに異なる周波数帯域内に位置する、請求項43に記載のコンピュータ可読記憶媒体。
  45. ランダムアクセスリソースの前記第1のセットとランダムアクセスリソースの前記第2のセットは、それぞれに異なる期間内に位置する、請求項43に記載のコンピュータ可読記憶媒体。
  46. 前記第1のワイヤレス通信デバイスに前記構成を通信させるための前記コードは、前記第2のワイヤレス通信デバイスに前記構成を送信するようにさらに構成され、前記第1のワイヤレス通信デバイスに前記ランダムアクセス信号を通信させるための前記コードは、前記ランダムアクセス信号を監視するようにさらに構成される、請求項43に記載のコンピュータ可読記憶媒体。
  47. 前記第1のワイヤレス通信デバイスに前記構成を通信させるための前記コードは、前記第2のワイヤレス通信デバイスから前記構成を受信するようにさらに構成される、請求項43に記載のコンピュータ可読記憶媒体。
  48. 前記第1のワイヤレス通信デバイスに、前記構成、前記第2のワイヤレス通信デバイスの電力ヘッドルーム、または前記第2のワイヤレス通信デバイスの電力利用率因子のうちの少なくとも1つに基づいて、ランダムアクセスリソースの前記第1のセットを使用して前記ランダムアクセス信号を前記第2のワイヤレス通信デバイスに送信すべきか、それともランダムアクセスリソースの前記第2のセットを使用して前記ランダムアクセス信号を前記第2のワイヤレス通信デバイスに送信すべきかを判定させるためのコードをさらに備える、請求項47に記載のコンピュータ可読記憶媒体。
  49. 前記第1のワイヤレス通信デバイスに前記ランダムアクセス信号を通信させるための前記コードは、
    ランダムアクセスリソースの前記第2のセットを使用して前記ノンインターレース周波数構造を有する第1のランダムアクセス信号を第1の送信電力で前記第2のワイヤレス通信デバイスに送信し、
    ランダムアクセスリソースの前記第1のセットを使用して前記インターレース周波数構造を有する第2のランダムアクセス信号を前記第1の送信電力よりも高い第2の送信電力で前記第2のワイヤレス通信デバイスに送信するようにさらに構成される、請求項47に記載のコンピュータ可読記憶媒体。
  50. 前記第1のワイヤレス通信デバイスに、前記第2の送信電力とランダムアクセスリソースの前記第2のセットの周波数帯域の電力スペクトル密度(PSD)パラメータとの比較に基づいて、ランダムアクセスリソースの前記第1のセットを使用して前記インターレース周波数構造を有する前記第2のランダムアクセス信号を送信することを決定させるためのコードをさらに備える、請求項49に記載のコンピュータ可読記憶媒体。
  51. 前記周波数スペクトルは、前記ノンインターレース周波数構造についての第1のSCSを含み、前記第1のワイヤレス通信デバイスに前記通信信号を通信させるための前記コードは、前記インターレース周波数構造についての第2のSCSを使用して前記通信信号を通信するようにさらに構成され、前記第1のSCSは前記第2のSCSよりも大きい、請求項35に記載のコンピュータ可読記憶媒体。
JP2020501832A 2017-07-20 2018-06-28 電力スペクトル密度(psd)パラメータに基づく波形設計 Active JP7206254B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762535098P 2017-07-20 2017-07-20
US62/535,098 2017-07-20
US16/020,400 US11122566B2 (en) 2017-07-20 2018-06-27 Waveform design based on power spectral density (PSD) parameters
US16/020,400 2018-06-27
PCT/US2018/039992 WO2019018112A1 (en) 2017-07-20 2018-06-28 WAVEFORM DESIGN BASED ON PARAMETERS OF SPECTRAL POWER DENSITY (PSD)

Publications (3)

Publication Number Publication Date
JP2020527901A true JP2020527901A (ja) 2020-09-10
JP2020527901A5 JP2020527901A5 (ja) 2021-07-29
JP7206254B2 JP7206254B2 (ja) 2023-01-17

Family

ID=65016025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020501832A Active JP7206254B2 (ja) 2017-07-20 2018-06-28 電力スペクトル密度(psd)パラメータに基づく波形設計

Country Status (9)

Country Link
US (1) US11122566B2 (ja)
EP (1) EP3656074A1 (ja)
JP (1) JP7206254B2 (ja)
KR (1) KR20200033847A (ja)
CN (1) CN110892670B (ja)
BR (1) BR112020000785A2 (ja)
CA (1) CA3067149A1 (ja)
TW (1) TWI758506B (ja)
WO (1) WO2019018112A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190396A1 (ja) * 2021-03-12 2022-09-15 株式会社Nttドコモ 通信装置及び通信方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061850A1 (zh) * 2018-09-26 2020-04-02 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
KR20210087089A (ko) 2018-11-27 2021-07-09 엑스콤 랩스 인코퍼레이티드 넌-코히어런트 협력 다중 입출력 통신
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
CN111278156B (zh) * 2019-03-29 2022-02-15 维沃移动通信有限公司 随机接入过程的信息传输方法及终端
US11032841B2 (en) 2019-04-26 2021-06-08 XCOM Labs, Inc. Downlink active set management for multiple-input multiple-output communications
US10756782B1 (en) 2019-04-26 2020-08-25 XCOM Labs, Inc. Uplink active set management for multiple-input multiple-output communications
US10686502B1 (en) 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
US10735057B1 (en) 2019-04-29 2020-08-04 XCOM Labs, Inc. Uplink user equipment selection
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
EP4158795A4 (en) 2020-05-26 2024-06-19 Xcom Labs, Inc. BEAMFORMING ACCOUNTING FOR INTERFERENCE
CA3195885A1 (en) 2020-10-19 2022-04-28 XCOM Labs, Inc. Reference signal for wireless communication systems
WO2022093988A1 (en) 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems
WO2024012724A1 (en) 2022-07-15 2024-01-18 Nokia Technologies Oy Waveform management

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080247375A1 (en) * 2007-04-03 2008-10-09 Tarik Muharemovic Network-Based Inter-Cell Power Control For Multi-Channel Wireless Networks
JP2015523004A (ja) * 2013-04-25 2015-08-06 インテル コーポレイション 伝送電力及び電力密度のインテリジェント制御のためのミリメートル波通信の装置及び方法
WO2016073838A1 (en) * 2014-11-06 2016-05-12 Qualcomm Incorporated Band occupancy techniques for transmissions in unlicensed spectrum
WO2017118687A1 (en) * 2016-01-06 2017-07-13 Nokia Solutions And Networks Oy B-ifdma configuration for unlicensed band operation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8494572B2 (en) * 2008-06-24 2013-07-23 Qualcomm Incorporated Method and apparatus for power control of first data transmission in random access procedure of FDMA communication system
US8913672B2 (en) * 2008-09-12 2014-12-16 Qualcomm Incorporated Efficiently identifying system waveform in uplink transmission
CN103733560B (zh) * 2011-08-12 2017-08-11 交互数字专利控股公司 用于无线系统中灵活的带宽操作的下行链路资源分配
US9042287B2 (en) * 2011-11-14 2015-05-26 Qualcomm Incorporated Methods and apparatus for improving network loading
US9473981B2 (en) * 2013-05-20 2016-10-18 Qualcomm Incorporated Concurrent wireless communications over licensed and unlicensed spectrum
US11096028B2 (en) * 2015-08-26 2021-08-17 Huawei Technologies Co., Ltd. Frame structure for machine-type communications with adjustable pulse bandwidth
WO2017196387A1 (en) 2016-05-12 2017-11-16 Intel IP Corporation Physical random access channel (prach) design
US10506596B2 (en) 2016-10-28 2019-12-10 Qualcomm Incorporated Coexistence of interleaved and contiguous uplink transmissions
US10362574B2 (en) 2016-11-18 2019-07-23 Qualcomm Incorporated Uplink resource allocation techniques for shared radio frequency spectrum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080247375A1 (en) * 2007-04-03 2008-10-09 Tarik Muharemovic Network-Based Inter-Cell Power Control For Multi-Channel Wireless Networks
JP2015523004A (ja) * 2013-04-25 2015-08-06 インテル コーポレイション 伝送電力及び電力密度のインテリジェント制御のためのミリメートル波通信の装置及び方法
WO2016073838A1 (en) * 2014-11-06 2016-05-12 Qualcomm Incorporated Band occupancy techniques for transmissions in unlicensed spectrum
US20160135172A1 (en) * 2014-11-06 2016-05-12 Qualcomm Incorporated Band occupancy techniques for transmissions in unlicensed spectrum
WO2017118687A1 (en) * 2016-01-06 2017-07-13 Nokia Solutions And Networks Oy B-ifdma configuration for unlicensed band operation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "PUSCH transmission for eLAA", 3GPP TSG-RAN WG1#84 R1-160300, JPN6022026228, 19 February 2016 (2016-02-19), ISSN: 0004807859 *
HUAWEI: "Consideration on channel arrangement for LAA[online]", 3GPP TSG-RAN WG4#76 R4-154695, JPN6022050672, 17 August 2015 (2015-08-17), ISSN: 0004935610 *
INTEL CORPORATION: "Interference randomization for B-IFDMA[online]", 3GPP TSG-RAN WG1#84 R1-160420, JPN6022026232, 6 February 2016 (2016-02-06), ISSN: 0004807860 *
LG ELECTRONICS: "NR operation in unlicensed spectrum[online]", 3GPP TSG-RAN WG1#86 R1-166868, JPN6022050671, 13 August 2016 (2016-08-13), ISSN: 0004935609 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190396A1 (ja) * 2021-03-12 2022-09-15 株式会社Nttドコモ 通信装置及び通信方法

Also Published As

Publication number Publication date
CN110892670A (zh) 2020-03-17
KR20200033847A (ko) 2020-03-30
JP7206254B2 (ja) 2023-01-17
CA3067149A1 (en) 2019-01-24
TW201909600A (zh) 2019-03-01
WO2019018112A1 (en) 2019-01-24
TWI758506B (zh) 2022-03-21
EP3656074A1 (en) 2020-05-27
US11122566B2 (en) 2021-09-14
CN110892670B (zh) 2022-08-26
BR112020000785A2 (pt) 2020-07-14
US20190029019A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP7206254B2 (ja) 電力スペクトル密度(psd)パラメータに基づく波形設計
US11678367B2 (en) Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
US11552750B2 (en) Subband-based random access and scheduling request for new-radio-spectrum sharing (NR-SS)
US20200205101A1 (en) Coordinated synchronization channel transmission and restricted measurement
US10897764B2 (en) Radio-unlicensed (NR-U) interlace-based resource allocations
US10575336B2 (en) Sequence-based short-physical uplink control channel (PUCCH) and physical random access channel (PRACH) design
US20220116940A1 (en) Physical uplink shared channel (pusch) design with power spectral density (psd) parameters in new radio-spectrum sharing (nr-ss)
US11632786B2 (en) Channel access contention management for ultra-reliable low-latency communication (URLLC)
US11696315B2 (en) Uplink cancellation indication configuration for wireless communications network
US11678379B2 (en) Physical random access channel (PRACH) transmission in new radio (NR)
US10904801B2 (en) Multicarrier access for spectrum pooling
CN109937601B (zh) 针对功率等级的传输时间间隔的适配
US20230105787A1 (en) Dynamic sounding reference signal (srs) resource allocation
US20230135581A1 (en) Multiplexing sidelink synchronization signal blocks and channel state information reference signals
US20230300867A1 (en) Radio frequency emission reduction with interference cancellation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230104

R150 Certificate of patent or registration of utility model

Ref document number: 7206254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150