JP2020527694A - Rotational vibration test bench for fiber reinforced composite discs and drum thin-walled members with loose bolts - Google Patents

Rotational vibration test bench for fiber reinforced composite discs and drum thin-walled members with loose bolts Download PDF

Info

Publication number
JP2020527694A
JP2020527694A JP2019565523A JP2019565523A JP2020527694A JP 2020527694 A JP2020527694 A JP 2020527694A JP 2019565523 A JP2019565523 A JP 2019565523A JP 2019565523 A JP2019565523 A JP 2019565523A JP 2020527694 A JP2020527694 A JP 2020527694A
Authority
JP
Japan
Prior art keywords
reinforced composite
fiber
drum
walled member
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019565523A
Other languages
Japanese (ja)
Other versions
JP6863627B2 (en
Inventor
輝 馬
輝 馬
忠 羅
忠 羅
清凱 韓
清凱 韓
偉 孫
偉 孫
暉 李
暉 李
朝峰 李
朝峰 李
世傑 姜
世傑 姜
鶴 李
鶴 李
朝暉 任
朝暉 任
邦椿 聞
邦椿 聞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Publication of JP2020527694A publication Critical patent/JP2020527694A/en
Application granted granted Critical
Publication of JP6863627B2 publication Critical patent/JP6863627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements

Abstract

【課題】 ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチを提供すること。【解決手段】 ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチであって、ディスク・ドラム薄肉部材装置と、動的ボルト弛緩装置と、リニア発停装置と、周回レーザースキャン装置と、を含み、動的ボルト弛緩装置はボルトの緩みをシミュレートするために用いられ、反射ミラー(16)をモータに接続して一緒に繊維強化複合ディスク・ドラム薄肉部材(3)の中空軸内に45度の傾斜角で固設し、モータをオンオフにすることにより、レーザー光路とディスク・ドラム胴の差動回転又は同期回転を実現し、反射ミラー(16)と組み合わせて光路の変更を実現し、繊維強化複合ディスク・ドラム薄肉部材(3)内側の特定周方向断面或いは特定測定点の振動の周波数、振幅及び位相を測定し、上述の振動状況を通じてディスク・ドラム部材の振動特性の変化とボルトの緩み具合との関係及び規則性を研究し、ボルト連結構造、連結方法、配置設計の改善についてより多くの根拠を提供できる。【選択図】 図1PROBLEM TO BE SOLVED: To provide a rotary vibration test bench for a fiber-reinforced composite disc / drum thin-walled member in a state where bolts are loosened. SOLUTION: This is a rotary vibration test bench for a fiber-reinforced composite disc / drum thin-walled member in a loosened state, and includes a disc / drum thin-walled member device, a dynamic bolt relaxation device, a linear start / stop device, and a circuit. A dynamic bolt loosening device, including a laser scanning device, is used to simulate bolt loosening, connecting a reflective mirror (16) to the motor and together with a fiber reinforced composite disc drum thin-walled member (3). By fixing it in the hollow shaft of the above at an inclination angle of 45 degrees and turning the motor on and off, differential rotation or synchronous rotation of the laser optical path and the disk drum body is realized, and the optical path is combined with the reflection mirror (16). (3) The frequency, amplitude, and phase of the vibration of the specific circumferential cross section or the specific measurement point inside the fiber-reinforced composite disc / drum thin-walled member are measured, and the vibration of the disc / drum member is measured through the above-mentioned vibration conditions. The relationship and regularity between changes in properties and looseness of bolts can be studied to provide more evidence for improvements in bolt connection structures, connection methods and placement designs. [Selection diagram] Fig. 1

Description

本発明は、レーザー振動計測技術分野に関し、特に、ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチに関する。 The present invention relates to the field of laser vibration measurement technology, and particularly to a rotary vibration test bench of a fiber-reinforced composite disc / drum thin-walled member in a loosened state.

航空用エンジンでは、静止ケーシングは一般に幾つかのセクションで構成され、各セクション間がボルトで連結された取り付け側を結合し、各セクション間において機械的な接触面が形成される。これら接触面の存在は、必然的に接触領域の接触剛性及び接触減衰に変化を生じさせ、システム全体の剛性及び減衰に変化を生じさせることで、連結システム全体の振動特性に影響を及ぼし、生じる危害及び損失を推定するのは困難である。ボルトの緩みという現象は、機械製品及び組立体においてよく見られ、特に航空宇宙分野の高回転速度及び高精度を特徴とする組立の組み合わせでは、ボルトの緩みという現象がコア部材の正常運転に悪影響を及ぼし、著しくなると事故を引き起こす。現代の航空用エンジンは、高性能及び高い推力重量比が追求されており、機構が益々複雑になり、動作条件が益々厳しくなることで、エンジン全体の振動を徐々に増大させる要因が徐々に増えている。エンジン全体の振動は、航空用エンジンの寿命及び飛行の安全性に影響を与える決定的な要因である。エンジンの回転子の異常な振動の非常に大きな要因は、ボルトの緩みによって引き起こされる回転子のずれである。 In an aircraft engine, the stationary casing is generally composed of several sections, each section joining a bolted attachment side to form a mechanical contact surface between the sections. The presence of these contact surfaces inevitably causes changes in the contact stiffness and contact damping of the contact area, which affects the vibration characteristics of the entire connected system by causing changes in the stiffness and damping of the entire system. It is difficult to estimate harm and loss. The phenomenon of bolt loosening is common in mechanical products and assemblies, and especially in the combination of assemblies characterized by high rotational speed and high precision in the aerospace field, the phenomenon of bolt loosening adversely affects the normal operation of core members. When it becomes significant, it causes an accident. In modern aero engines, high performance and high thrust-to-weight ratio are pursued, the mechanism becomes more complicated, the operating conditions become more severe, and the factors that gradually increase the vibration of the entire engine gradually increase. ing. The vibration of the entire engine is a decisive factor affecting the life and flight safety of an aircraft engine. A very large factor in the abnormal vibration of the rotor of the engine is the displacement of the rotor caused by the loosening of the bolts.

本発明は、無視できないという現象について、航空宇宙エンジンのディスク及びドラムの実際の動作状況をシミュレートできる試験ベンチを設計し、また設計を通じて、安全な範囲内で個々の対称的に配置される連結ボルトを選択的に緩ませてから、ドップラーレーザーセンサーを通じて、ボルトの緩みで生じるブリスク及びディスク・ドラム内壁の振動状況を測定する。 The present invention designs test benches that can simulate the actual operating conditions of aerospace engine disks and drums for the phenomenon that cannot be ignored, and through the design, individual symmetrically arranged connections within a safe range. After selectively loosening the bolt, the blisk caused by the loosening of the bolt and the vibration condition of the inner wall of the disc drum are measured through the Doppler laser sensor.

上記技術的課題を解決するため、本発明は、ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチを提供する。本発明は、ボルトの緩みをシミュレートするための動的ボルト弛緩装置を設計する。反射ミラーをモータに接続して一緒に繊維強化複合ディスク・ドラム薄肉部材の中空軸内に45度の傾斜角で固設し、モータのオンオフを通じて、レーザー光路とディスク・ドラム胴の差動回転或いは同期回転を実現し、反射ミラーと組み合わせて光路を変更させ、繊維強化複合ディスク・ドラム薄肉部材内側の特定周方向断面又は特定測定点の振動状況の測定を実現し、ディスク・ドラム部材の振動特性の変化とボルトの緩み具合との関係及び規則性を研究し、ボルト連結構造、連結方法、配置設計の改善についてより多くの根拠を提供する。 In order to solve the above technical problems, the present invention provides a rotary vibration test bench for a fiber-reinforced composite disc / drum thin-walled member in a loose bolt state. The present invention designs a dynamic bolt loosening device for simulating bolt loosening. A reflective mirror is connected to the motor and fixed together in the hollow shaft of the fiber-reinforced composite disc drum thin-walled member at an inclination angle of 45 degrees, and the laser optical path and the disc drum body are differentially rotated or rotated through the on / off of the motor. Achieves synchronous rotation, changes the optical path in combination with a reflective mirror, realizes measurement of the vibration status of a specific circumferential cross section or a specific measurement point inside a fiber-reinforced composite disc / drum thin-walled member, and vibration characteristics of the disc / drum member. We will study the relationship and regularity between changes in bolts and looseness of bolts, and provide more evidence for improving bolt connection structures, connection methods, and placement designs.

本発明では次のような技術的手段を講じた。ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチであって、ディスク・ドラム薄肉部材装置と、動的ボルト弛緩装置と、リニア発停装置と、周回レーザースキャン装置と、軸一体円板と、含み;前記リニア発停装置は、左スライド案内円板と、右スライド案内円板と、含み、前記動ボルト弛緩装置が非同期回転盤を含み、前記ディスク・ドラム薄肉部材装置及び動的ボルト弛緩装置が軸一体円板に取り付けられ、両端が各々軸受座に連結され、前記リニア発停装置の左スライド案内円板及び右スライド案内円板が両端の非同期回転盤を介して各々動的ボルト弛緩装置と連結して動的ボルト弛緩装置の動作を駆動し;前記周回レーザースキャン装置は、繊維強化複合ディスク・ドラム薄肉部材の対応する測定点又は周方向断面の振動状況を測定するために用いられる。 In the present invention, the following technical measures have been taken. A rotary vibration test bench for fiber-reinforced composite disc / drum thin-walled members with loose bolts, including a disc / drum thin-walled member device, a dynamic bolt loosening device, a linear start / stop device, and an orbiting laser scanning device. The linear starting and stopping device includes a left slide guide disk and a right slide guide disk, the moving bolt relaxation device includes an asynchronous rotating disk, and the disc drum thin-walled member. The device and the dynamic bolt relaxation device are attached to the shaft-integrated disc, both ends are connected to the bearing seats, and the left slide guide disc and the right slide guide disc of the linear start / stop device are connected to the asynchronous rotating discs at both ends. Each of them is connected to a dynamic bolt relaxation device to drive the operation of the dynamic bolt relaxation device; the orbital laser scanning device measures the vibration status of the corresponding measurement point or circumferential cross section of the fiber-reinforced composite disc drum thin-walled member. Used to measure.

前記動的ボルト弛緩装置は、内噛合ギアシリンダーと、駆動歯車と、伸縮軸と、を含み、前記駆動歯車及び内噛合ギアシリンダーがキーの結合によって軸一体円板に固結され、伸縮軸の左端部が締まりばめを通じて小歯車に連結され、右側スリーブが伸縮でき、かつ右側が正六角形のボルトスリーブを通じてディスク・ドラム薄肉部材のボルトと連結し;右側構造と左側構造は、ブリスクに関連付けて軸対称を呈する。 The dynamic bolt loosening device includes an internal meshing gear cylinder, a drive gear, and an expansion / contraction shaft, and the drive gear and the internal meshing gear cylinder are fixed to a shaft-integrated disk by key coupling to form a telescopic shaft. The left end is connected to the small gear through a clamp, the right sleeve can be expanded and contracted, and the right side is connected to the disc drum thin-walled bolt through a regular hexagonal bolt sleeve; the right and left structures are associated with the brisk. It exhibits axial symmetry.

前記ディスク・ドラム薄肉部材装置は、ブリスクと、繊維強化複合ディスク・ドラム薄肉部材と、を含み、前記ブリスクが左ブレード取付部及び右ブレード取付部に分かれ、ブリスク左側、左ブレード取付部が繊維強化複合ディスク・ドラム薄肉部材及び動的ボルト弛緩装置と順に連結され、軸一体円板に一緒に固定され、かつ軸受を通じて軸受座に固定され;ブリスクの右側構造と左側構造は、ブリスクに関連付けられて軸対称を呈し;前記軸一体円板の軸が軸継手を通じてモータに接続される。 The disc / drum thin-walled member device includes a brisk and a fiber-reinforced composite disc / drum thin-walled member. The brisk is divided into a left blade mounting portion and a right blade mounting portion, and the left and left blade mounting portions of the brisk are fiber-reinforced. Combined disc drum thin-walled members and dynamic bolt loosening devices are connected in sequence, fixed together to a shaft-integrated disc, and fixed to the bearing seat through bearings; the right and left structures of the brisk are associated with the brisk. It exhibits axial symmetry; the shaft of the shaft-integrated disc is connected to the motor through a shaft joint.

前記リニア発停装置は、アクチュエータと、左スライド案内円板と、右スライド案内円板と、非同期回転盤と、サーボモータと、を含み、サーボモータを起動させると、前記左スライド案内円板と右スライド案内円板が相寄り相離れる方向へ相対的に移動し、非同期回転盤を通じて駆動歯車の送りの噛み合い及び噛み合いから離脱を完了させ、リニア発停装置により動的ボルド弛緩プロセスを制御する。 The linear start / stop device includes an actuator, a left slide guide disk, a right slide guide disk, an asynchronous rotary disk, and a servomotor, and when the servomotor is started, the left slide guide disk and the left slide guide disk are formed. The right slide guide disk moves relative to each other in the direction of in-phase and out-of-phase, completes the meshing and disengagement of the feed of the drive gear through the asynchronous turntable, and controls the dynamic bould relaxation process by the linear start / stop device.

前記周回レーザースキャン装置は、レーザードップラ振動計と、反射ミラーと、ボールねじと、モータと、を含み、前記レーザードップラ振動計のレーザー発射口が反射ミラーの中心に合わせられ、光路が反射ミラーを経由してX軸方向からY軸方向に変えてディスク・ドラム薄肉部材の内面に当たり;反射ミラーは、ボールねじの頂端に連結され、かつモータと接続して一緒に繊維強化複合ディスク・ドラム薄肉部材の中空軸内に45度の傾斜角で固設され;ボールねじの後端のノブを回転させると、反射ミラーのZ軸方向の送りを実現させ、ディスク・ドラム胴の被測定横断面の位置を変更でき;モータがオフになり、レーザー光路とディスク・ドラム胴が同期回転することで、繊維強化複合ディスク・ドラム薄肉部材の特定測定点の振動状況を測定でき、モータが起動され、レーザー光路とディスク・ドラム胴が差動運動し、繊維強化複合ディスク・ドラム薄肉部材内側の特定周方向断面の振動状況を測定できる。 The orbiting laser scanning device includes a laser Doppler vibration meter, a reflection mirror, a ball screw, and a motor, the laser emission port of the laser Doppler vibration meter is aligned with the center of the reflection mirror, and the optical path is a reflection mirror. It hits the inner surface of the disc / drum thin-walled member by changing from the X-axis direction to the Y-axis direction; the reflection mirror is connected to the top end of the ball screw and connected to the motor together with the fiber-reinforced composite disc / drum thin-walled member. It is fixed in the hollow shaft of the disk with an inclination angle of 45 degrees; when the knob at the rear end of the ball screw is rotated, the feed of the reflection mirror in the Z-axis direction is realized, and the position of the cross section to be measured of the disc drum body. By turning off the motor and rotating the laser path and the disc / drum body synchronously, the vibration status of a specific measurement point of the fiber-reinforced composite disc / drum thin member can be measured, the motor is started, and the laser path can be changed. The disc / drum body moves differentially, and the vibration status of the cross section in the specific circumferential direction inside the fiber-reinforced composite disc / drum thin-walled member can be measured.

ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチの使用方法は、
必要な機能が確実に達成されることを保証するため、ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチを取り付けるステップ(1)と、
弛緩したい繊維強化複合ディスク・ドラム薄肉部材の一部或いは全てのボルトを決定し、それに応じて伸縮軸を調整するステップ(2)と、
予備実験を実施し、モータを起動させ、繊維強化複合ディスク・ドラム薄肉部材の空転実験を30分ほど実施させることで、モータ熱的誤差の実験に対する影響を排除するステップ(3)と、
リニア発停装置を通じて、動的ボルト弛緩装置を弛緩対象のボルト位置に送られ、同時に手動で伸縮軸を調整して、伸縮軸をボルトに確実に密着させるステップ(4)と、
動的ボルト弛緩装置を起動させ、繊維強化複合ディスク・ドラム薄肉部材の一部或いは全てのボルト弛緩をシミュレートするステップ(5)と、
発射したビームを繊維強化複合ディスク・ドラム薄肉部材のドラム胴の中心線に位置するようにレーザードップラ振動計を調整し、周回レーザースキャン装置を繊維強化複合ディスク・ドラム薄肉部材のドラム胴の中空軸の対応する位置に調整し、またレーザードップラ振動計を利用して、注目する繊維強化複合ディスク・ドラム薄肉部材のドラム胴の特定測定点の振動測定を実施するステップ(6)と、
反射ミラーの低回転モータを起動させて差動回転を実施し、レーザードップラ振動計を利用して繊維強化複合ディスク・ドラム薄肉部材のドラム胴の特定周方向断面上の全測定点の振動測定を実施するステップ(7)と、
周回レーザースキャン装置のモータを起動させ、反射ミラーの位置を変更し、ステップ(6)及びステップ(7)を繰り返すことで、繊維強化複合ディスク・ドラム薄肉部材のドラム胴の任意の周方向断面上の全測定点の振動測定を実施するステップ(8)と、
発射したレーザービームを繊維強化複合ディスク・ドラム薄肉部材外側の注目する特定測定点の位置に投射するようにレーザードップラ振動計の半径方向位置を調整し、また回転状態下で繊維強化複合ディスク・ドラム薄肉部材外側の特定測定点の振動測定も実施できるステップ(9)と、
を含む。
How to use the rotary vibration test bench of fiber reinforced composite disc drum thin-walled member with bolts loosened
In order to ensure that the required functions are achieved, the step (1) of installing the rotary vibration test bench of the fiber reinforced composite disc drum thin-walled member with the bolts loosened, and
Step (2) of determining some or all of the bolts of the fiber-reinforced composite disc / drum thin-walled member to be relaxed and adjusting the expansion / contraction axis accordingly.
A step (3) to eliminate the influence of the motor thermal error on the experiment by conducting a preliminary experiment, starting the motor, and conducting an idling experiment of the fiber-reinforced composite disc / drum thin-walled member for about 30 minutes.
The dynamic bolt relaxation device is sent to the bolt position to be relaxed through the linear start / stop device, and at the same time, the expansion / contraction shaft is manually adjusted to ensure that the expansion / contraction shaft is firmly attached to the bolt.
Step (5) of activating the dynamic bolt relaxation device to simulate the relaxation of some or all of the fiber-reinforced composite disc drum thin-walled members, and
Adjust the laser Doppler vibrometer so that the emitted beam is located at the center line of the drum body of the fiber-reinforced composite disc drum thin-walled member, and set the orbiting laser scanning device to the hollow shaft of the drum body of the fiber-reinforced composite disk drum thin-walled member. Step (6) to measure the vibration of a specific measurement point of the drum body of the fiber-reinforced composite disc / drum thin-walled member of interest by adjusting to the corresponding position of and using the laser Doppler vibrometer.
The low rotation motor of the reflection mirror is started to perform differential rotation, and the laser Doppler vibrometer is used to measure the vibration of all measurement points on the specific circumferential cross section of the drum body of the fiber-reinforced composite disc / drum thin-walled member. Step (7) to be carried out and
By starting the motor of the orbiting laser scanning device, changing the position of the reflection mirror, and repeating steps (6) and (7), on an arbitrary circumferential cross section of the drum body of the fiber-reinforced composite disc / drum thin-walled member. Step (8) to measure the vibration of all the measurement points of
Adjust the radial position of the laser Doppler vibrometer so that the emitted laser beam is projected to the position of the specific measurement point of interest on the outside of the fiber-reinforced composite disc drum thin-walled member, and the fiber-reinforced composite disc drum under rotation. Step (9), which can also measure the vibration of a specific measurement point on the outside of the thin-walled member,
including.

1、本発明は、繊維強化複合材料を使用して実際の航空用エンジンの薄壁ディスク・ドラム胴のシミュレーションを実現し;
2、本発明のリニア発停装置の駆動歯車が送り状態にあって噛合が完了した時、左スライド案内円板と右スライド案内円板は、相寄り方向へ相対的に移動し;駆動歯車が分離状態にあり、噛み合いから離脱すると、左スライド案内円板と右スライド案内円板は、相離れる方向へ相対的に移動する。したがって、ボールねじの設計は螺線を一つの回転方向に保持させることではなく、ボールねじの中央を境界線とし、両側で用異なる回転方向の設計を用いる。サーボモータが起動すると、左スライド案内円板と右スライド案内円板が相寄り相離れる方向へ相対的に移動し、非同期回転盤を通じて駆動歯車の送りの噛み合い及び噛み合いから離脱を完了させることで、リニア発停装置により試験ベンチの動的ボルド弛緩プロセスを制御し;
3、本発明は、ボルトの緩みをシミュレートするための動的ボルト弛緩装置を設計し、反射ミラーがモータに接続されて一緒に繊維強化複合ディスク・ドラム薄肉部材の中空軸内に45度の傾斜角で固設され、反射ミラー全体が繊維強化複合ディスク・ドラム薄肉部材のドラム胴に対して静止しており、モータがオフになり、レーザー光路とディスク・ドラム胴が同期回転すると、繊維強化複合ディスク・ドラム薄肉部材の特定測定点の振動状況を測定でき、モータが起動し、レーザー光路とディスク・ドラム胴が差動運動すると、繊維強化複合ディスク・ドラム薄肉部材内側の特定周方向断面の振動状況を測定できる。反射ミラーを利用して光路の変更を実現し、差動回転を利用して周方向断面の全測定点のレーザー振動計測を実現する。本発明は、モータをオンオフにすることにより、レーザー光路とディスク・ドラム胴の差動回転又は同期回転を実現し、反射ミラーと組み合わせて光路の変更を実現し、繊維強化複合ディスク・ドラム薄肉部材内側の特定周方向断面或いは特定測定点の振動の周波数、振幅及び位相を測定し、上述の振動状況を通じてディスク・ドラム部材の振動特性の変化とボルトの緩み具合との関係及び規則性を研究し、ボルト連結構造、連結方法、配置設計の改善についてより多くの根拠を提供でき;
4、本発明で使用されるレーザードップラ振動計は、ドップラ効果を利用して振動に対する光情報記録機能を実現し、表面に対し非接触振動試験を行うことができ、振動状況を通じてディスク・ドラム部材の振動特性の変化とボルトの緩み具合との関係及び規則性を研究し、ボルト連結構造、連結方法、配置設計の改善についてより多くの根拠を提供できる。
1. The present invention realizes a simulation of a thin-walled disc drum body of an actual aircraft engine using a fiber-reinforced composite material;
2. When the drive gear of the linear start / stop device of the present invention is in the feed state and meshing is completed, the left slide guide disk and the right slide guide disk move relative to each other; the drive gear moves. When they are separated and disengaged from meshing, the left slide guide disk and the right slide guide disk move relatively in the directions in which they are separated from each other. Therefore, the design of the ball screw does not hold the screw wire in one rotation direction, but uses a design in different rotation directions for both sides with the center of the ball screw as the boundary line. When the servomotor is activated, the left slide guide disk and the right slide guide disk move relative to each other in the direction in which they are close to each other, and the feed of the drive gear is completely disengaged and disengaged through the asynchronous rotating disk. A linear stop device controls the dynamic bould relaxation process of the test bench;
3. The present invention designs a dynamic bolt loosening device to simulate bolt loosening, with a reflective mirror connected to the motor and together at 45 degrees in the hollow shaft of the fiber reinforced composite disc drum thin-walled member. Fixed at an angle of inclination, the entire reflection mirror is stationary with respect to the drum body of the fiber-reinforced composite disc drum thin-walled member, the motor is turned off, and when the laser light path and the disc drum body rotate synchronously, the fiber is strengthened. The vibration status of a specific measurement point of the composite disc / drum thin-walled member can be measured, and when the motor is started and the laser light path and the disc / drum body move differentially, the fiber-reinforced composite disc / drum thin-walled member has a specific circumferential cross section. Vibration status can be measured. A reflection mirror is used to change the optical path, and differential rotation is used to measure laser vibration at all measurement points in the circumferential cross section. The present invention realizes differential rotation or synchronous rotation of the laser optical path and the disk / drum body by turning the motor on and off, realizes the change of the optical path in combination with the reflection mirror, and realizes the fiber-reinforced composite disk / drum thin-walled member. Measure the frequency, amplitude and phase of the vibration of the inner specific circumferential cross section or specific measurement point, and study the relationship and regularity between the change in vibration characteristics of the disc drum member and the looseness of the bolt through the above vibration conditions. Can provide more rationale for improvements in bolt connection structure, connection method, and placement design;
4. The laser Doppler vibrometer used in the present invention realizes an optical information recording function for vibration by utilizing the Doppler effect, can perform a non-contact vibration test on the surface, and is a disc drum member through the vibration condition. It is possible to study the relationship and regularity between the change in vibration characteristics of the bolt and the looseness of the bolt, and provide more evidence for improving the bolt connection structure, connection method, and arrangement design.

ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチの構造を示す模式図Schematic diagram showing the structure of a rotary vibration test bench for a fiber-reinforced composite disc / drum thin-walled member with loose bolts 動的ボルト弛緩装置を示す模式図Schematic diagram showing a dynamic bolt relaxation device 周回レーザースキャンコア装置を示す模式図Schematic diagram showing an orbiting laser scan core device

以下、添付図面を参照して本発明を詳細に説明するが、本発明の保護範囲は添付図面により限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, but the scope of protection of the present invention is not limited by the accompanying drawings.

図1は、ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチの構造を示す模式図であり;ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチは、ディスク・ドラム薄肉部材装置と、動的ボルト弛緩装置と、リニア発停装置と、周回レーザースキャン装置と、軸一体円板6と、含み;前記リニア発停装置は、左スライド案内円板4と、右スライド案内円板19と、含み、前記動ボルト弛緩装置が非同期回転盤9を含み、前記ディスク・ドラム薄肉部材装置及び動的ボルト弛緩装置が軸一体円板に取り付けられ、両端が各々軸受座8に連結され、前記リニア発停装置の左スライド案内円板4及び右スライド案内円板19が両端の非同期回転盤9を介して各々動的ボルト弛緩装置と連結して動的ボルト弛緩装置の動作を駆動し;前記周回レーザースキャン装置は、繊維強化複合ディスク・ドラム薄肉部材3の対応する測定点又は周方向断面の振動状況を測定するために用いられる。 FIG. 1 is a schematic diagram showing the structure of a rotational vibration test bench of a fiber-reinforced composite disc / drum thin-walled member with loose bolts; rotation of a fiber-reinforced composite disc / drum thin-walled member with loose bolts. The vibration test bench includes a disc / drum thin-walled member device, a dynamic bolt relaxation device, a linear start / stop device, a circumferential laser scan device, and a shaft-integrated disk 6. The linear start / stop device slides to the left. The guide disk 4 and the right slide guide disk 19 are included, the moving bolt relaxing device includes an asynchronous rotating disk 9, and the disk / drum thin-walled member device and the dynamic bolt relaxing device are attached to the shaft-integrated disk. Both ends are connected to the bearing seat 8, and the left slide guide disk 4 and the right slide guide disk 19 of the linear start / stop device are each connected to the dynamic bolt loosening device via the asynchronous rotating disk 9 at both ends. Driving the operation of the dynamic bolt relaxation device; the orbiting laser scanning device is used to measure the vibration state of the corresponding measurement point or circumferential cross section of the fiber reinforced composite disc drum thin-walled member 3.

図2は、動的ボルト弛緩装置を示す模式図である。前記動的ボルト弛緩装置は、内噛合ギアシリンダー12と、駆動歯車10と、伸縮軸13と、を含み、前記駆動歯車10及び内噛合ギアシリンダー12がキーの結合によって軸一体円板6に固結され、伸縮軸13の左端部が締まりばめを通じて小歯車11に連結され、右側スリーブ22が伸縮でき、かつ右側が正六角形のボルトスリーブを通じて繊維強化複合ディスク・ドラム薄肉部材3のボルトと連結し;右側構造と左側構造は、ブリスク7に関連付けて軸対称を呈し;
前記ディスク・ドラム薄肉部材装置は、ブリスク7と、繊維強化複合ディスク・ドラム薄肉部材3と、を含み、前記ブリスク7が左ブレード取付部20及び右ブレード取付部21に分かれ、ブリスク左側、左ブレード取付部20が繊維強化複合ディスク・ドラム薄肉部材3及び動的ボルト弛緩装置と順に連結され、軸一体円板6に一緒に固定され、かつ軸受を通じて軸受座8に固定され;ブリスクの右側構造と左側構造は、ブリスクに関連付けられて軸対称を呈し;前記軸一体円板6の軸が軸継手を通じてモータに接続され;
前記リニア発停装置は、アクチュエータ2と、左スライド案内円板4と、右スライド案内円板19と、非同期回転盤9と、サーボモータ5と、を含み、前記リニア発停装置の左スライド案内円板4及び右スライド案内円板19が両端の非同期回転盤9を介して各々動的ボルト弛緩装置と連結して動的ボルト弛緩装置の動作を駆動し、サーボモータ5を起動させると、前記左スライド案内円板4と右スライド案内円板19が相寄り相離れる方向へ相対的に移動し、非同期回転盤9を通じて駆動歯車10の送りの噛み合い及び噛み合いから離脱を完了させ、リニア発停装置により動的ボルド弛緩プロセスを制御し;
図3は、周回レーザースキャンコア装置を示す模式図である。前記周回レーザースキャン装置は、レーザードップラ振動計1と、反射ミラー16と、ボールねじ15と、モータと、を含み、前記レーザードップラ振動計1のレーザー発射口が反射ミラー16の中心に合わせられ、光路が反射ミラー16を経由してX軸方向からY軸方向に変えてディスク・ドラム薄肉部材3の内面に当たり;反射ミラー16は、ボールねじ15の頂端に連結され、かつモータと接続して一緒に繊維強化複合ディスク・ドラム薄肉部材3の中空軸内に45度の傾斜角で固設され;ボールねじ15の後端のノブ17を回転させると、反射ミラー16のZ軸方向の送りを実現させ、ディスク・ドラム胴の被測定横断面の位置を変更でき;モータがオフになり、レーザー光路とディスク・ドラム胴が同期回転することで、繊維強化複合ディスク・ドラム薄肉部材3の特定測定点の振動状況を測定でき、モータが起動され、レーザー光路とディスク・ドラム胴が差動運動し、繊維強化複合ディスク・ドラム薄肉部材3内側の特定周方向断面の振動状況を測定できる。
FIG. 2 is a schematic view showing a dynamic bolt relaxation device. The dynamic bolt relaxation device includes an internal meshing gear cylinder 12, a drive gear 10, and an expansion / contraction shaft 13, and the drive gear 10 and the internal meshing gear cylinder 12 are fixed to a shaft-integrated disk 6 by key coupling. The left end of the telescopic shaft 13 is connected to the small gear 11 through a tightening fit, the right sleeve 22 can be expanded and contracted, and the right side is connected to the bolt of the fiber reinforced composite disc drum thin-walled member 3 through a regular hexagonal bolt sleeve. The right and left structures exhibit axial symmetry in relation to brisk 7.
The disc / drum thin-walled member device includes a brisk 7 and a fiber-reinforced composite disc / drum thin-walled member 3, and the brisk 7 is divided into a left blade mounting portion 20 and a right blade mounting portion 21, and the left and left blades of the brisk are separated. The mounting portion 20 is sequentially connected to the fiber reinforced composite disc drum thin-walled member 3 and the dynamic bolt loosening device, fixed together to the shaft-integrated disc 6, and fixed to the bearing seat 8 through the bearing; with the right side structure of the brisk. The left side structure exhibits axial symmetry associated with the brisk; the shaft of the shaft-integrated disc 6 is connected to the motor through a bearing;
The linear start / stop device includes an actuator 2, a left slide guide disk 4, a right slide guide disk 19, an asynchronous rotary disk 9, and a servomotor 5, and the left slide guide of the linear start / stop device. When the disk 4 and the right slide guide disk 19 are connected to the dynamic bolt relaxation device via the asynchronous rotary disks 9 at both ends to drive the operation of the dynamic bolt relaxation device and start the servomotor 5, the above-mentioned The left slide guide disk 4 and the right slide guide disk 19 move relatively in the direction of being close to each other and separated from each other, and the drive gear 10 is completely disengaged from the meshing and meshing of the feed of the drive gear 10 through the asynchronous rotary disk 9, and the linear start / stop device is used. Controls the dynamic bould relaxation process;
FIG. 3 is a schematic view showing an orbiting laser scan core device. The orbiting laser scanning device includes a laser Doppler vibration meter 1, a reflection mirror 16, a ball screw 15, and a motor, and the laser emission port of the laser Doppler vibration meter 1 is aligned with the center of the reflection mirror 16. The light path changes from the X-axis direction to the Y-axis direction via the reflection mirror 16 and hits the inner surface of the disk / drum thin-walled member 3. The reflection mirror 16 is connected to the top end of the ball screw 15 and is connected to the motor together. It is fixed in the hollow shaft of the fiber-reinforced composite disc drum thin member 3 at an inclination angle of 45 degrees; when the knob 17 at the rear end of the ball screw 15 is rotated, the reflection mirror 16 is fed in the Z-axis direction. The position of the cross section to be measured of the disc / drum body can be changed; the motor is turned off, and the laser beam path and the disk / drum body rotate synchronously to specify the specific measurement point of the fiber-reinforced composite disc / drum thin-walled member 3. The vibration state can be measured, the motor is started, the laser light path and the disc / drum body move differentially, and the vibration state of the specific circumferential cross section inside the fiber-reinforced composite disc / drum thin-walled member 3 can be measured.

ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチの使用方法は、
必要な機能が確実に達成されることを保証するため、ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材3の回転振動試験ベンチを取り付けるステップ(1)と、
弛緩したい繊維強化複合ディスク・ドラム薄肉部材3の一部或いは全てのボルトを決定し、それに応じて伸縮軸13を調整するステップ(2)と、
予備実験を実施し、モータを起動させ、繊維強化複合ディスク・ドラム薄肉部材3の空転実験を30分ほど実施させることで、モータ熱的誤差の実験に対する影響を排除するステップ(3)と、
リニア発停装置を通じて、動的ボルト弛緩装置を弛緩対象のボルト位置に送られ、同時に手動で伸縮軸13を調整して、伸縮軸13をボルトに確実に密着させるステップ(4)と、
動的ボルト弛緩装置を起動させ、繊維強化複合ディスク・ドラム薄肉部材3の一部或いは全てのボルト弛緩をシミュレートするステップ(5)と、
発射したビームを繊維強化複合ディスク・ドラム薄肉部材3のドラム胴の中心線に位置するようにレーザードップラ振動計1を調整し、周回レーザースキャン装置を繊維強化複合ディスク・ドラム薄肉部材3のドラム胴の中空軸の対応する位置に調整し、またレーザードップラ振動計1を利用して、注目する繊維強化複合ディスク・ドラム薄肉部材3のドラム胴の特定測定点の振動測定を実施するステップ(6)と、
反射ミラー16の低回転モータを起動させて差動回転を実施し、レーザードップラ振動計1を利用して繊維強化複合ディスク・ドラム薄肉部材3のドラム胴の特定周方向断面上の全測定点の振動測定を実施するステップ(7)と、
周回レーザースキャン装置のモータを起動させ、反射ミラー16の位置を変更し、ステップ(6)及びステップ(7)を繰り返すことで、繊維強化複合ディスク・ドラム薄肉部材3のドラム胴の任意の周方向断面上の全測定点の振動測定を実施するステップ(8)と、
発射したレーザービームを繊維強化複合ディスク・ドラム薄肉部材3外側の注目する特定測定点の位置に投射するようにレーザードップラ振動計1の半径方向位置を調整し、また回転状態下で繊維強化複合ディスク・ドラム薄肉部材3外側の特定測定点の振動測定も実施できるステップ(9)と、を含む。
How to use the rotary vibration test bench of fiber reinforced composite disc drum thin-walled member with bolts loosened
In order to ensure that the required functions are achieved, the step (1) of installing the rotational vibration test bench of the fiber-reinforced composite disc / drum thin-walled member 3 with the bolts loosened, and
Step (2) of determining a part or all of the bolts of the fiber-reinforced composite disc / drum thin-walled member 3 to be relaxed and adjusting the expansion / contraction shaft 13 accordingly.
A step (3) of eliminating the influence of the motor thermal error on the experiment by conducting a preliminary experiment, starting the motor, and performing an idling experiment of the fiber-reinforced composite disc / drum thin-walled member 3 for about 30 minutes.
A step (4) in which the dynamic bolt loosening device is sent to the bolt position to be relaxed through the linear start / stop device, and at the same time, the telescopic shaft 13 is manually adjusted to ensure that the telescopic shaft 13 is in close contact with the bolt.
Step (5) of activating the dynamic bolt relaxation device and simulating the relaxation of a part or all of the fiber-reinforced composite disc drum thin-walled member 3.
The laser Doppler vibrometer 1 is adjusted so that the emitted beam is located at the center line of the drum body of the fiber-reinforced composite disk / drum thin-walled member 3, and the orbiting laser scanning device is used for the drum body of the fiber-reinforced composite disk / drum thin-walled member 3. Adjust to the corresponding position of the hollow shaft of the above, and use the laser Doppler vibrometer 1 to measure the vibration of the specific measurement point of the drum body of the fiber-reinforced composite disc / drum thin-walled member 3 of interest (6). When,
The low rotation motor of the reflection mirror 16 is started to perform differential rotation, and the laser Doppler vibrometer 1 is used to measure all the measurement points on the specific circumferential cross section of the drum body of the fiber-reinforced composite disc / drum thin-walled member 3. Step (7) to perform vibration measurement and
By starting the motor of the orbiting laser scanning device, changing the position of the reflection mirror 16, and repeating steps (6) and (7), the drum body of the fiber-reinforced composite disc / drum thin-walled member 3 is formed in an arbitrary circumferential direction. Step (8) to measure the vibration of all measurement points on the cross section,
The radial position of the laser Doppler vibrometer 1 is adjusted so that the emitted laser beam is projected to the position of the specific measurement point of interest on the outside of the fiber-reinforced composite disk / drum thin-walled member 3, and the fiber-reinforced composite disk is rotated. The step (9), in which vibration measurement at a specific measurement point on the outside of the thin-walled drum member 3 can also be performed, is included.

1. レーザードップラ振動計
2. アクチュエータ
3. 繊維強化複合ディスク・ドラム薄肉部材
4. 左スライド案内円板
5. サーボモータ
6. 軸一体円板
7. ブリスク
8. 軸受座
9. 非同期回転盤
10. 駆動歯車
11. 小歯車
12. 内噛合ギアシリンダー
13. 伸縮軸
14. 左ホイールディスク
15. ボールねじ
16. 反射ミラー
17. ノブ
18. 右ホイールディスク
19. 右スライド案内円板
20. 左ブレード取付部
21. 右ブレード取付部
22. スリーブ
1. 1. Laser Doppler vibrometer 2. Actuator 3. Fiber reinforced composite disc / drum thin wall member 4. Left slide guide disk 5. Servo motor 6. Shaft-integrated disk 7. Blisk 8. Bearing seat 9. Asynchronous turntable 10. Drive gear 11. Small gear 12. Internal meshing gear cylinder 13. Telescopic shaft 14. Left wheel disc 15. Ball screw 16. Reflective mirror 17. Knob 18. Right wheel disc 19. Right slide guide disk 20. Left blade mounting part 21. Right blade mounting part 22. sleeve

Claims (6)

ディスク・ドラム薄肉部材装置と、動的ボルト弛緩装置と、リニア発停装置と、周回レーザースキャン装置と、軸一体円板と、含み;前記リニア発停装置は、左スライド案内円板と、右スライド案内円板と、含み、前記動ボルト弛緩装置が非同期回転盤を含み、前記ディスク・ドラム薄肉部材装置及び前記動的ボルト弛緩装置が前記軸一体円板に取り付けられ、両端が各々軸受座に連結され、前記リニア発停装置の前記左スライド案内円板及び前記右スライド案内円板が両端の前記非同期回転盤を介して各々前記動的ボルト弛緩装置と連結して前記動的ボルト弛緩装置の動作を駆動し;前記周回レーザースキャン装置は、繊維強化複合ディスク・ドラム薄肉部材の対応する測定点又は周方向断面の振動状況を測定するために用いられる
ことを特徴とするボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチ。
Includes disc / drum thin-walled member device, dynamic bolt relaxation device, linear start / stop device, orbiting laser scan device, and shaft-integrated disk; the linear start / stop device includes a left slide guide disk and a right. The slide guide disk and the dynamic bolt relaxation device include an asynchronous turntable, the disk / drum thin-walled member device and the dynamic bolt relaxation device are attached to the shaft-integrated disk, and both ends are on bearing seats, respectively. The left slide guide disk and the right slide guide disk of the linear start / stop device are connected to the dynamic bolt relaxation device via the asynchronous rotary disks at both ends, respectively, and the dynamic bolt relaxation device is connected. Driven operation; said orbital laser scanning device is used to measure the vibration status of the corresponding measurement point or circumferential cross section of a fiber reinforced composite disc drum thin-walled member in a loosened state. Fiber reinforced composite disc drum Rotational vibration test bench for thin-walled members.
前記動的ボルト弛緩装置は、内噛合ギアシリンダーと、駆動歯車と、伸縮軸と、を含み、前記駆動歯車及び前記内噛合ギアシリンダーがキーの結合によって前記軸一体円板に固結され、前記伸縮軸の左端部が締まりばめを通じて小歯車に連結され、右側スリーブが伸縮でき、かつ右側が正六角形のボルトスリーブを通じて前記繊維強化複合ディスク・ドラム薄肉部材のボルトと連結し;右側構造と左側構造は、ブリスクに関連付けて軸対称を呈する
請求項1に記載のボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチ。
The dynamic bolt loosening device includes an internal meshing gear cylinder, a drive gear, and a telescopic shaft, and the drive gear and the internal meshing gear cylinder are fixed to the shaft integrated disk by key coupling. The left end of the telescopic shaft is connected to the small gear through a tightening fit, the right sleeve can be expanded and contracted, and the right side is connected to the bolt of the fiber reinforced composite disc drum thin-walled member through a regular hexagonal bolt sleeve; right structure and left side The rotary vibration test bench of a fiber-reinforced composite disc / drum thin-walled member in a loosened state according to claim 1, wherein the structure exhibits axial symmetry in relation to brisk.
前記ディスク・ドラム薄肉部材装置は、ブリスクと、繊維強化複合ディスク・ドラム薄肉部材と、を含み、前記ブリスクが左ブレード取付部及び右ブレード取付部に分かれ、前記ブリスク左側、前記左ブレード取付部が前記繊維強化複合ディスク・ドラム薄肉部材及び前記動的ボルト弛緩装置と順に連結され、前記軸一体円板に一緒に固定され、かつ軸受を通じて前記軸受座に固定され;前記ブリスクの右側構造と左側構造は、前記ブリスクに関連付けられて軸対称を呈し;前記軸一体円板の軸が軸継手を通じてモータに接続される
請求項1に記載のボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチ。
The disc / drum thin-walled member device includes a brisk and a fiber-reinforced composite disc / drum thin-walled member, and the brisk is divided into a left blade mounting portion and a right blade mounting portion, and the left side of the brisk and the left blade mounting portion are The fiber-reinforced composite disc drum thin-walled member and the dynamic bolt loosening device are sequentially connected, fixed together to the shaft-integrated disc, and fixed to the bearing seat through a bearing; right and left structures of the brisk. Is associated with the brisk and exhibits axial symmetry; the fiber-reinforced composite disc drum thin-walled member of claim 1 in which the shaft of the shaft-integrated disc is connected to the motor through a shaft joint. Rotational vibration test bench.
前記リニア発停装置は、アクチュエータと、左スライド案内円板と、右スライド案内円板と、非同期回転盤と、サーボモータと、を含み、前記サーボモータを起動させると、前記左スライド案内円板と前記右スライド案内円板が相寄り相離れる方向へ相対的に移動し、前記非同期回転盤を通じて前記駆動歯車の送りの噛み合い及び噛み合いから離脱を完了させ、前記リニア発停装置により前記動的ボルド弛緩プロセスを制御する
請求項1に記載のボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチ。
The linear start / stop device includes an actuator, a left slide guide disk, a right slide guide disk, an asynchronous rotary disk, and a servomotor, and when the servomotor is activated, the left slide guide disk And the right slide guide disk move relatively in the direction of approaching and separating from each other, and through the asynchronous rotary disk, the meshing of the feed of the driving gear and the disengagement from the meshing are completed, and the dynamic boulder is operated by the linear start / stop device. A rotary vibration test bench for a fiber-reinforced composite disc / drum thin-walled member in a state where the bolt according to claim 1 for controlling the relaxation process is loosened.
前記周回レーザースキャン装置は、レーザードップラ振動計と、反射ミラーと、ボールねじと、モータと、を含み、前記レーザードップラ振動計のレーザー発射口が前記反射ミラーの中心に合わせられ、光路が前記反射ミラーを経由してX軸方向からY軸方向に変えて前記ディスク・ドラム薄肉部材の内面に当たり;前記反射ミラーは、ボールねじの頂端に連結され、かつモータと接続して一緒に前記繊維強化複合ディスク・ドラム薄肉部材の中空軸内に45度の傾斜角で固設され;前記ボールねじの後端のノブを回転させると、前記反射ミラーのZ軸方向の送りを実現させ、ディスク・ドラム胴の被測定横断面の位置を変更でき;前記モータがオフになり、レーザー光路と前記ディスク・ドラム胴が同期回転することで、前記繊維強化複合ディスク・ドラム薄肉部材の特定測定点の振動状況を測定でき、前記モータが起動され、前記レーザー光路と前記ディスク・ドラム胴が差動運動し、前記繊維強化複合ディスク・ドラム薄肉部材内側の特定周方向断面の振動状況を測定できる
請求項1に記載のボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチ。
The orbiting laser scanning device includes a laser Doppler vibration meter, a reflection mirror, a ball screw, and a motor, the laser emission port of the laser Doppler vibration meter is aligned with the center of the reflection mirror, and the optical path is the reflection. It hits the inner surface of the disc drum thin-walled member by changing from the X-axis direction to the Y-axis direction via the mirror; the reflection mirror is connected to the top end of the ball screw and is connected to the motor together with the fiber-reinforced composite. The disc drum is fixed in the hollow shaft of the thin-walled member at an inclination angle of 45 degrees; when the knob at the rear end of the ball screw is rotated, the feed of the reflection mirror in the Z-axis direction is realized, and the disc drum body is realized. The position of the cross section to be measured can be changed; the motor is turned off, and the laser beam path and the disc / drum body rotate synchronously, so that the vibration status of a specific measurement point of the fiber-reinforced composite disc / drum thin-walled member can be changed. The first aspect of claim 1, wherein the motor can be measured, the laser optical path and the disc / drum body move differentially, and the vibration state of the specific circumferential cross section inside the fiber-reinforced composite disc / drum thin-walled member can be measured. Rotational vibration test bench for fiber-reinforced composite disc drum thin-walled members with loose bolts.
請求項1に記載のボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチの使用方法であって、
必要な機能が確実に達成されることを保証するため、ボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチを取り付けるステップ(1)と、
弛緩したい前記繊維強化複合ディスク・ドラム薄肉部材の一部或いは全てのボルトを決定し、それに応じて伸縮軸を調整するステップ(2)と、
予備実験を実施し、モータを起動させ、前記繊維強化複合ディスク・ドラム薄肉部材の空転実験を30分ほど実施させることで、前記モータ熱的誤差の実験に対する影響を排除するステップ(3)と、
リニア発停装置を通じて、動的ボルト弛緩装置を弛緩対象のボルト位置に送られ、同時に手動で前記伸縮軸を調整して、前記伸縮軸をボルトに確実に密着させるステップ(4)と、
前記動的ボルト弛緩装置を起動させ、前記繊維強化複合ディスク・ドラム薄肉部材の一部或いは全てのボルト弛緩をシミュレートするステップ(5)と、
発射したビームを前記繊維強化複合ディスク・ドラム薄肉部材のドラム胴の中心線に位置するようにレーザードップラ振動計を調整し、周回レーザースキャン装置を前記繊維強化複合ディスク・ドラム薄肉部材のドラム胴の中空軸の対応する位置に調整し、また前記レーザードップラ振動計を利用して、注目する前記繊維強化複合ディスク・ドラム薄肉部材のドラム胴の特定測定点の振動測定を実施するステップ(6)と、
反射ミラーの低回転モータを起動させて差動回転を実施し、前記レーザードップラ振動計を利用して前記繊維強化複合ディスク・ドラム薄肉部材のドラム胴の特定周方向断面上の全測定点の振動測定を実施するステップ(7)と、
前記周回レーザースキャン装置のモータを起動させ、前記反射ミラーの位置を変更し、前記ステップ(6)及び前記ステップ(7)を繰り返すことで、前記繊維強化複合ディスク・ドラム薄肉部材のドラム胴の任意の周方向断面上の全測定点の振動測定を実施するステップ(8)と、
発射したレーザービームを前記繊維強化複合ディスク・ドラム薄肉部材外側の注目する特定測定点の位置に投射するように前記レーザードップラ振動計の半径方向位置を調整し、また回転状態下で前記繊維強化複合ディスク・ドラム薄肉部材外側の特定測定点の振動測定も実施できるステップ(9)と、を含む
ことを特徴とするボルトが緩んだ状態での繊維強化複合ディスク・ドラム薄肉部材の回転振動試験ベンチの使用方法。

The method for using a rotary vibration test bench of a fiber-reinforced composite disc / drum thin-walled member in a loosened state according to claim 1.
In order to ensure that the required functions are achieved, the step (1) of installing the rotary vibration test bench of the fiber reinforced composite disc drum thin-walled member with the bolts loosened, and
Step (2) of determining a part or all of the bolts of the fiber-reinforced composite disc / drum thin-walled member to be relaxed and adjusting the expansion / contraction axis accordingly.
A step (3) of eliminating the influence of the motor thermal error on the experiment by carrying out a preliminary experiment, starting the motor, and carrying out an idling experiment of the fiber-reinforced composite disc / drum thin-walled member for about 30 minutes.
A step (4) in which the dynamic bolt relaxation device is sent to the bolt position to be relaxed through the linear start / stop device, and at the same time, the expansion / contraction shaft is manually adjusted to ensure that the expansion / contraction shaft is brought into close contact with the bolt.
Step (5) of activating the dynamic bolt relaxation device and simulating the relaxation of a part or all of the fiber-reinforced composite disc drum thin-walled member, and
The laser Doppler vibrometer is adjusted so that the emitted beam is located at the center line of the drum body of the fiber-reinforced composite disk / drum thin-walled member, and the orbiting laser scanning device is applied to the drum body of the fiber-reinforced composite disk / drum thin-walled member. With the step (6) of adjusting to the corresponding position of the hollow shaft and using the laser Doppler vibrometer to measure the vibration at a specific measurement point of the drum body of the fiber-reinforced composite disc / drum thin-walled member of interest. ,
The low rotation motor of the reflection mirror is started to perform differential rotation, and the laser Doppler vibrometer is used to vibrate all measurement points on the specific circumferential cross section of the drum body of the fiber-reinforced composite disc / drum thin-walled member. Step (7) to carry out the measurement and
By starting the motor of the orbiting laser scanning device, changing the position of the reflection mirror, and repeating the steps (6) and (7), the drum body of the fiber-reinforced composite disc / drum thin-walled member can be arbitrarily used. Step (8) to measure the vibration of all measurement points on the circumferential cross section of
The radial position of the laser Doppler vibrometer is adjusted so that the emitted laser beam is projected to the position of a specific measurement point of interest on the outside of the fiber-reinforced composite disc / drum thin-walled member, and the fiber-reinforced composite is rotated. A rotary vibration test bench for a fiber-reinforced composite disc / drum thin-walled member with a loose bolt, including step (9), which can also perform vibration measurement at a specific measurement point on the outside of the disc / drum thin-walled member. how to use.

JP2019565523A 2017-10-10 2017-12-27 Rotational vibration test bench for fiber reinforced composite discs and drum thin-walled members with loose bolts Active JP6863627B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710933083.3A CN107727346B (en) 2017-10-10 2017-10-10 Fiber-reinforced composite disk rouses thin-wall member rotating vibration test platform under bolt looseness
CN201710933083.3 2017-10-10
PCT/CN2017/118855 WO2019071843A1 (en) 2017-10-10 2017-12-27 Rotary vibration test stand for fiber-reinforced composite disk-and-drum thin-wall member in bolt loosened condition

Publications (2)

Publication Number Publication Date
JP2020527694A true JP2020527694A (en) 2020-09-10
JP6863627B2 JP6863627B2 (en) 2021-04-21

Family

ID=61208601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019565523A Active JP6863627B2 (en) 2017-10-10 2017-12-27 Rotational vibration test bench for fiber reinforced composite discs and drum thin-walled members with loose bolts

Country Status (3)

Country Link
JP (1) JP6863627B2 (en)
CN (1) CN107727346B (en)
WO (1) WO2019071843A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918065B (en) * 2018-06-19 2019-08-23 东北大学 A kind of experimental provision and test method of drum barrel-wheel disc bolt fastening structure
CN109029890B (en) * 2018-08-28 2020-04-17 东北大学 Fiber reinforced composite thin shell rotary vibration test stand considering uniformity and temperature gradient
CN110296823A (en) * 2019-07-23 2019-10-01 安徽宁国晨光精工股份有限公司 A kind of handle loosening device for fast detecting
CN114526894A (en) * 2020-11-02 2022-05-24 余姚舜宇智能光学技术有限公司 Method, device and system for detecting matching state of mechanical matching structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080074674A1 (en) * 2006-09-25 2008-03-27 Massachusetts Institute Of Technology Sensor for Measuring a Vibrating Surface Obscured from View
CN103884483A (en) * 2014-03-26 2014-06-25 东北大学 Vibration testing system and method for thin-wall cylindrical shell component
CN106017895A (en) * 2016-07-01 2016-10-12 苏州东菱振动试验仪器有限公司 Early warning mechanism and early warning method for wind generation set
CN107132049A (en) * 2017-06-24 2017-09-05 东北大学 Aero-engine blisk rotating vibration test platform and application based on laser vibration measurer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1017577B1 (en) * 1997-09-04 2002-11-27 L.B. Foster Company Railway wheel detector
JP3950238B2 (en) * 1998-09-24 2007-07-25 三菱重工業株式会社 Vibration mode excitation device for rotational vibration test
CN203515972U (en) * 2013-09-24 2014-04-02 南车株洲电力机车研究所有限公司 Clamping force monitoring system for bolt connection of wind generating set
CN203542016U (en) * 2013-11-28 2014-04-16 宁波中旺工具有限公司 Automatic screw assembly mechanism
CN103712797B (en) * 2013-12-12 2016-02-10 清华大学 A kind of experimental provision of simulating aeroplane engine machine bolt terminal pad drum type rotor
CN204041143U (en) * 2014-08-06 2014-12-24 温州市骐邦环保科技有限公司 A kind of electric cam axle phase regulator stator bolts tightening device
CN204330336U (en) * 2014-12-12 2015-05-13 浙江吉利汽车研究院有限公司 A kind of engine test plant
CN105986963B (en) * 2015-02-11 2019-08-20 赤峰华源新力科技有限公司 The connection bolt looseness of Wind turbines monitors system
CN105115652A (en) * 2015-07-09 2015-12-02 西北工业大学 Method for quantified monitoring bolt pre-tightening torque through active ultrasonic guided wave
CN105382528A (en) * 2015-12-16 2016-03-09 芜湖杰诺科技有限公司 Bolt screwing device for ball valve assembly machine
CN205200981U (en) * 2015-12-24 2016-05-04 济宁技术学院实习厂 Freedom adjustment screws up industrial robot working head of nut quantity simultaneously
CN106054263A (en) * 2016-08-22 2016-10-26 杨志强 Screw loosening monitoring device and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080074674A1 (en) * 2006-09-25 2008-03-27 Massachusetts Institute Of Technology Sensor for Measuring a Vibrating Surface Obscured from View
CN103884483A (en) * 2014-03-26 2014-06-25 东北大学 Vibration testing system and method for thin-wall cylindrical shell component
CN106017895A (en) * 2016-07-01 2016-10-12 苏州东菱振动试验仪器有限公司 Early warning mechanism and early warning method for wind generation set
CN107132049A (en) * 2017-06-24 2017-09-05 东北大学 Aero-engine blisk rotating vibration test platform and application based on laser vibration measurer

Also Published As

Publication number Publication date
WO2019071843A1 (en) 2019-04-18
JP6863627B2 (en) 2021-04-21
CN107727346B (en) 2019-06-18
CN107727346A (en) 2018-02-23

Similar Documents

Publication Publication Date Title
JP6863627B2 (en) Rotational vibration test bench for fiber reinforced composite discs and drum thin-walled members with loose bolts
JP6849251B2 (en) Rotational vibration test bench for aircraft engine blisk based on laser vibrometer and its utilization
CN101458061B (en) Constant velocity universal joint drive spindle assembly clearance test stand
KR101781730B1 (en) Precise Load Applying type High Temperature and High Velocity Actual Load Bearing Tester
CN103528824A (en) Elastic foundation based internal and external dual-rotor fault simulation experiment table
CN102788698B (en) Ground rotation testing device for solid rocket engine
KR20110069721A (en) A vibration damper mechanism, and a flying machine including a carrier structure and a rotor provided with such a mechanism
JPWO2014128927A1 (en) Compressor assembly and unbalance detection device for compressor assembly
JPH0686820B2 (en) Link mechanism for circumferentially displacing the stator vane integrated ring
CN108709748A (en) Small aero multiple spot impact-rub malfunction analogue experiment installation
CN203534824U (en) An inner and outer double-rotor fault simulation experiment table based on elastic foundation
JP2018511737A (en) Guide vane adjusting device and turbomachine
JP2006194243A (en) Stator vane stage actuated by rotary actuator ring moved by electric motor means
EP2927502B1 (en) Test bench for investigating a gas turbine variable stator vanes (VSV) actuation system
JP5337871B2 (en) A simple system for controlling propeller blade pitch in aircraft turboshaft engines
BRPI0907533B1 (en) PROCESS TO TEST A SHOULDER COATING
CN112378671A (en) Sliding pair friction wear test bed and method for stator blade adjusting mechanism of gas compressor
JP6785785B2 (en) Tooling for machining grooves in turbine engine casing
JP2005503554A (en) Method and apparatus for maintaining dynamic balance of rotating structures
JP6783176B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
FR2975122A1 (en) ROTOR WITH ASYMMETRIC SPACING OF BLADES
KR101936310B1 (en) Durability test device for ball bearing liner
CN217237200U (en) Aero-engine rotor and stator rub-impact test device
JP2007192225A (en) Method and apparatus for manufacturing component
CA3185156A1 (en) Rotor imbalance simulator and test bed for this simulator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210325

R150 Certificate of patent or registration of utility model

Ref document number: 6863627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150