JP2020523486A - Refractory metal or stainless steel having an electroplated layer on the surface, and electroplating process of refractory metal or stainless steel surface - Google Patents

Refractory metal or stainless steel having an electroplated layer on the surface, and electroplating process of refractory metal or stainless steel surface Download PDF

Info

Publication number
JP2020523486A
JP2020523486A JP2020513383A JP2020513383A JP2020523486A JP 2020523486 A JP2020523486 A JP 2020523486A JP 2020513383 A JP2020513383 A JP 2020513383A JP 2020513383 A JP2020513383 A JP 2020513383A JP 2020523486 A JP2020523486 A JP 2020523486A
Authority
JP
Japan
Prior art keywords
layer
stainless steel
refractory metal
substrate
electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020513383A
Other languages
Japanese (ja)
Other versions
JP7078232B2 (en
Inventor
郭振華
仇栄宗
郭嘉宝
黄国英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rambo Nanotechnology (shenzhen) Ltd
Rambo Nanotechnology Shenzhen Ltd
Rambo Technology Shenzhen Ltd
Original Assignee
Rambo Nanotechnology (shenzhen) Ltd
Rambo Nanotechnology Shenzhen Ltd
Rambo Technology Shenzhen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rambo Nanotechnology (shenzhen) Ltd, Rambo Nanotechnology Shenzhen Ltd, Rambo Technology Shenzhen Ltd filed Critical Rambo Nanotechnology (shenzhen) Ltd
Publication of JP2020523486A publication Critical patent/JP2020523486A/en
Application granted granted Critical
Publication of JP7078232B2 publication Critical patent/JP7078232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/567Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本発明は、表面に電気めっき層を有する難溶融金属またはステンレス鋼を提供し、それは、基材と基材の表面に形成された電気めっき層を含み、前記基材は難溶融金属基材またはステンレス鋼基材を含み、難溶融金属基材はチタン、タンタル、ニオブ、またはそれらの合金であり、前記電気めっき層はロジウムルテニウム合金層を含む。当該電気めっき層は、良好な接着力、耐食性、はんだ付け性を有し、難溶融金属製品の溶接力を改善することにより、産業用途に有利であり、本発明はさらに難溶融金属またはステンレス鋼表面の電気めっきプロセスを提供する。【選択図】なしThe present invention provides a refractory metal or stainless steel having an electroplated layer on its surface, which comprises a substrate and an electroplated layer formed on the surface of the substrate, wherein the substrate is a refractory metal substrate or Including a stainless steel substrate, the refractory metal substrate is titanium, tantalum, niobium, or an alloy thereof, and the electroplated layer includes a rhodium ruthenium alloy layer. The electroplated layer has good adhesive strength, corrosion resistance, solderability, and is advantageous for industrial applications by improving the welding strength of refractory metal products, and the present invention further provides refractory metal or stainless steel. Provide a surface electroplating process. [Selection diagram] None

Description

本発明は、金属表面電気めっき技術の分野に関し、特に、表面に電気めっき層を有する難溶融金属またはステンレス鋼、および難溶融金属またはステンレス鋼の表面のめっきプロセスに関する。 The present invention relates to the field of metal surface electroplating technology, and more particularly to refractory metal or stainless steel having an electroplated layer on the surface, and the plating process for refractory metal or stainless steel surfaces.

チタン、タンタル、ニオブなどの難溶融金属は、高温強度、耐食性、および加工可塑性に優れており、工業では重要な高温構造材料である。電子用途では、材料の特性は優れているが、そのような金属のはんだ付け性が悪いため、最終製品が高い強度、耐食性、軽量性、はんだ付け性などの利点を同時に発揮できるように、表面に他の金属の層をめっきする必要がある。 Refractory metals such as titanium, tantalum, and niobium are excellent high-temperature strength, corrosion resistance, and process plasticity, and are important high-temperature structural materials in industry. For electronic applications, the properties of the material are excellent, but the poor solderability of such metal makes it possible to achieve the advantages of high strength, corrosion resistance, light weight, solderability, etc. in the final product at the same time. It is necessary to plate another metal layer on.

しかし、難溶融金属の特性は非常に活発であり、表面は空気および水中で緻密なパッシベーション膜を容易に形成する。接着力の良いめっき層を得るためには、電気めっきする前にパッシベーション膜を破壊する必要があるが、そのような金属のパッシベーション速度が速すぎるため、パッシベーション膜は除去直後に新たに形成するため、その上で電気めっきを実行することは非常に困難である。 However, the characteristics of refractory metal are very active, and the surface easily forms a dense passivation film in air and water. In order to obtain a plating layer with good adhesion, it is necessary to destroy the passivation film before electroplating, but since the passivation speed of such metal is too fast, a passivation film is newly formed immediately after removal. , It is very difficult to perform electroplating on it.

上記の問題を解決するために、或る人はまず電気分解によってチタン材料を剥いて、次に電気めっきして金層を形成するが、効果はあまり満足のいくものではない。また、或る人はニオブ材料を真空状態で 1900℃まで加熱し、冷却後に金層を電気めっきするが、この技術に必要な設備とエネルギー消費は高く、実際の生産に適用するのは困難である。 To solve the above problems, some people first strip the titanium material by electrolysis and then electroplate to form a gold layer, but the effect is not very satisfactory. Also, some people heat the niobium material to 1900° C. in a vacuum and then electroplate the gold layer after cooling, but the equipment and energy consumption required for this technique is high, making it difficult to apply in actual production. is there.

総括しては、難溶融金属に効果的で安全な電気めっきを行い、良好な接着力、耐食性、溶接力を有するめっき層を得る電気めっきプロセスを見つけることは必要である。 In summary, it is necessary to find an electroplating process that is effective and safe for electroplating refractory metals and obtains a plating layer with good adhesion, corrosion resistance and welding strength.

それにより、本発明は、表面に電気めっき層を有する難溶融金属またはステンレス鋼、および難溶融金属またはステンレス鋼の表面のめっきプロセスを提供する。その電気めっき層は、良好な接着力、耐食性、はんだ付け性を有し、難溶融金属製品の溶接力を改善することにより、産業用途に有利である。 Thereby, the present invention provides a refractory metal or stainless steel having an electroplated layer on the surface, and a plating process on the refractory metal or stainless steel surface. The electroplated layer has good adhesive strength, corrosion resistance, and solderability, and is advantageous for industrial applications by improving the welding strength of refractory metal products.

第1の態様によれば、本発明は、表面に電気めっき層を有する難溶融金属またはステンレス鋼を提供し、それは、基材と前記基材の表面に形成された電気めっき層を含み、前記基材は難溶融金属基材またはステンレス鋼基材を含み、難溶融金属基材はチタン、タンタル、ニオブ、またはそれらの合金であり、前記電気めっき層はロジウムルテニウム合金層を含む。 According to a first aspect, the present invention provides a refractory metal or stainless steel having an electroplated layer on its surface, which comprises a substrate and an electroplated layer formed on the surface of said substrate, The base material includes a refractory metal base material or a stainless steel base material, the refractory metal base material is titanium, tantalum, niobium, or an alloy thereof, and the electroplating layer includes a rhodium ruthenium alloy layer.

本発明の実施形態では、前記ロジウムルテニウム合金層の厚さは、0.01−10μmであり、好ましくは0.1−2μmである。前記ロジウムルテニウム合金層において、ルテニウムの質量含有量は20%以下であり、好ましくはルテニウムの質量含有量は0.5%−10%であり、より好ましくはルテニウムの質量含有量は3%−5%である。本発明において、ロジウムルテニウム合金層は、良好な接着力および防食性能を有し、かつはんだ付け性を有し、これは、工業における難溶融金属の幅広い用途に有利である。合金中のルテニウムを少量に制御すると、めっき層の接着力と耐食性をさらに向上させる。 In an embodiment of the present invention, the rhodium ruthenium alloy layer has a thickness of 0.01-10 μm, preferably 0.1-2 μm. In the rhodium ruthenium alloy layer, the mass content of ruthenium is 20% or less, preferably the mass content of ruthenium is 0.5%-10%, more preferably the mass content of ruthenium is 3%-5. %. In the present invention, the rhodium ruthenium alloy layer has good adhesion and anticorrosion performance and solderability, which is advantageous for a wide range of industrial applications of refractory metals. Controlling the amount of ruthenium in the alloy to a small amount further improves the adhesion and corrosion resistance of the plating layer.

本発明の実施形態では、基材の用途に応じて、電気めっき層の特定の厚さを確保し、基材のある特性を向上させるために、前記電気めっき層は、前記基材と前記ロジウムルテニウム合金層との間に配置された金層、または銅層、またはニッケル層、またはパラジウム層をさらに含む。ここで、前記金層またはパラジウム層の厚さは0.01−10μmであり、好ましくは0.1−2μmであり、前記銅層、前記ニッケル層の厚さは0.01−200μmであり、好ましくは1−100μmである。ここで、金層とパラジウム層の配置は、基材の耐食性をさらに向上させることができ、銅層とニッケル層の配置は、基材の導電性を向上させることができる。 In an embodiment of the present invention, the electroplating layer is formed from the base material and the rhodium in order to secure a specific thickness of the electroplating layer and improve certain properties of the base material, depending on the use of the base material. It further includes a gold layer, a copper layer, a nickel layer, or a palladium layer disposed between the ruthenium alloy layer and the ruthenium alloy layer. Here, the thickness of the gold layer or the palladium layer is 0.01-10 μm, preferably 0.1-2 μm, and the thickness of the copper layer and the nickel layer is 0.01-200 μm. It is preferably 1-100 μm. Here, the arrangement of the gold layer and the palladium layer can further improve the corrosion resistance of the base material, and the arrangement of the copper layer and the nickel layer can improve the conductivity of the base material.

本発明の実施形態では、前記電気めっき層はさらに、前記ロジウムルテニウム合金層の表面に配置された金層、または銅層、またはニッケル層、またはパラジウム層、および前記金層、または銅層、またはニッケル層、またはパラジウム層の表面に配置された第2のロジウムルテニウム合金層を含む。ここで、前記金層、パラジウム層、および第2のロジウムルテニウム合金層の厚さは0.01−10μmであり、好ましくは0.1−2μmであり、前記銅層、前記ニッケル層の厚さは0.01−200μmであり、好ましくは1−100μmであり、前記第2のロジウムルテニウム合金層において、ルテニウムの質量含有量は20%以下であり、好ましくはルテニウムの質量含有量は0.5%−10%であり、より好ましくはルテニウムの質量含有量は3%−5%である。 In an embodiment of the present invention, the electroplating layer further comprises a gold layer, or a copper layer, or a nickel layer, or a palladium layer, and the gold layer, or a copper layer, or a gold layer arranged on the surface of the rhodium ruthenium alloy layer. It includes a second rhodium ruthenium alloy layer disposed on the surface of the nickel layer or the palladium layer. Here, the thickness of the gold layer, the palladium layer, and the second rhodium ruthenium alloy layer is 0.01-10 μm, preferably 0.1-2 μm, and the thickness of the copper layer and the nickel layer. Is 0.01-200 μm, preferably 1-100 μm, and in the second rhodium ruthenium alloy layer, the mass content of ruthenium is 20% or less, preferably the mass content of ruthenium is 0.5. %-10%, more preferably the ruthenium mass content is 3%-5%.

本発明の実施形態では、実際の需要、例えば、導電性、耐摩耗性、耐指紋などの機能性需要、外観および色などの装飾的需要などに従って、前記電気めっき層はさらにPVDめっき層、装飾的金属めっき層または装飾的非金属めっき層を配置する。 According to an embodiment of the present invention, the electroplating layer may further be a PVD plating layer, a decoration, according to actual demand, for example, functional demand such as conductivity, abrasion resistance, fingerprint resistance, and decorative demand such as appearance and color. A decorative metal plating layer or a decorative non-metal plating layer.

本発明の第1の態様により提供された表面に電気めっき層を有する難溶融金属またはステンレス鋼は、その電気めっき層は良好な接着力、耐食性およびはんだ付け性を有し、従来の技術において、難溶融金属基材で安全で効果的な電気めっきを行い、良好な接着力、強力な耐食性、高いはんだ付け性を備えた電気めっき層を得ることが困難という問題を解決する。 The refractory metal or stainless steel having an electroplated layer on the surface provided by the first aspect of the present invention, the electroplated layer has good adhesion, corrosion resistance and solderability, and in the prior art, To solve the problem that it is difficult to obtain safe and effective electroplating on a refractory metal base material and to obtain an electroplating layer having good adhesive strength, strong corrosion resistance, and high solderability.

第2の態様によれば、本発明は、難溶融金属またはステンレス鋼表面の電気めっきプロセスを提供し、それは以下のステップを含む。 According to a second aspect, the present invention provides an electroplating process for refractory metal or stainless steel surfaces, which comprises the following steps.

難溶融金属基材またはステンレス鋼基材に対して前処理をし、前記難溶融金属基材はチタン、タンタル、ニオブ、またはそれらの合金である。 A refractory metal base material or a stainless steel base material is pretreated, and the refractory metal base material is titanium, tantalum, niobium, or an alloy thereof.

難溶融金属基材またはステンレス鋼基材の表面にロジウムルテニウム合金層を電気めっきして、その後に熱処理をして、表面に電気めっき層を有する難溶融金属またはステンレス鋼を得って、前記電気めっき層はロジウムルテニウム合金層を含む。 The surface of the refractory metal base material or stainless steel base material is electroplated with a rhodium ruthenium alloy layer, followed by heat treatment to obtain a refractory metal or stainless steel having an electroplated layer on the surface, The plating layer includes a rhodium ruthenium alloy layer.

本発明の実施形態では、基材の用途に従って、一定の電気めっき層の厚さを確保して基材のある性能を向上させるために、前記ロジウムルテニウム合金層の表面にさらに金層、または銅層、またはニッケル層、またはパラジウム層を電気めっきしてから、前記金層、銅層、ニッケル層、またはパラジウム層の表面に第2のロジウムルテニウム合金層を電気めっきし、表面に電気めっき層を有する難溶融金属またはステンレス鋼を得る。第2のロジウムルテニウム合金層を電気めっきした後、必要に応じて熱処理をしてもよいし、熱処理をしなくてもよい。 In an embodiment of the present invention, according to the application of the substrate, a gold layer, or a copper layer is further formed on the surface of the rhodium ruthenium alloy layer in order to secure a certain thickness of the electroplating layer and improve certain performance of the substrate. Electroplating a layer, a nickel layer, or a palladium layer, and then electroplating a second rhodium ruthenium alloy layer on the surface of the gold layer, the copper layer, the nickel layer, or the palladium layer, and forming the electroplating layer on the surface. Obtain a refractory metal or stainless steel having. After electroplating the second rhodium ruthenium alloy layer, heat treatment may or may not be performed as necessary.

また、本発明は、難溶融金属またはステンレス鋼表面の電気めっきプロセスを提供し、それは以下のステップを含む。 The present invention also provides an electroplating process for refractory metal or stainless steel surfaces, which comprises the following steps.

難溶融金属基材またはステンレス鋼基材に対して前処理をし、前記難溶融金属基材はチタン、タンタル、ニオブ、またはそれらの合金である。 A refractory metal base material or a stainless steel base material is pretreated, and the refractory metal base material is titanium, tantalum, niobium, or an alloy thereof.

まず、前記難溶融金属基材またはステンレス鋼基材の表面に金層、または銅層、またはニッケル層、またはパラジウム層を電気めっきし、その後に熱処理を行い、冷却後に、前記金層、または銅層、またはニッケル層、またはパラジウム層の表面にロジウムルテニウム合金層を電気めっきし、表面に電気めっき層を有する難溶融金属またはステンレス鋼を得る。 First, a gold layer, or a copper layer, or a nickel layer, or a palladium layer is electroplated on the surface of the refractory metal substrate or the stainless steel substrate, followed by heat treatment, and after cooling, the gold layer, or copper. A rhodium ruthenium alloy layer is electroplated on the surface of the layer, the nickel layer, or the palladium layer to obtain a refractory metal or stainless steel having an electroplated layer on the surface.

この場合には、つまり電気めっき層は前記2層構造である場合には、ロジウムルテニウム合金層を電気めっきした後、必要に応じて熱処理をしてもよいし、熱処理をしなくてもよい。 In this case, that is, when the electroplating layer has the two-layer structure, after the electroplating of the rhodium-ruthenium alloy layer, the heat treatment may or may not be performed as necessary.

本発明の上記電気めっきプロセスにおいて、前記前処理は、難溶融金属基材またはステンレス鋼基材は、まずリン含有洗浄剤を用いて超音波浸漬処理は行われ、その後にアルカリ電解脱脂が行われ、次に酸液またはアルカリ液における電解除去により基材の表面の緩い構造層が除去され、その後にフッ素含有酸液において浸漬されて活性化され、最後にフッ素含有アルカリ液において電解活性化されることを含む。ここで、浸漬処理は、基材の表面を洗浄するために用いられ、基材の表面がわずかに腐食された状態で、それにより電気めっき層の接着力が向上する。また、電気脱脂操作は、基材の表面のグリース/汚れを除去するためであり、当該操作プロセスにおいて、基材サンプルをカソードに置き、その後の酸液またはアルカリ液電解除去は、電気分解によって基材の表面の緩い部分を剥ぎ取り(すなわち、緩い構造層を除去する)、電気めっき層の接着力を向上させることに役立ち、当該操作プロセスにおいて、基材サンプルをアノードに置き、当該操作は基材の表面の金属を剥ぎ取る。また、酸液の活性化の操作は、基材の表面を活性化状態にするためであり、アルカリ液の活性化が基材の表面に非常に薄い保護層をして、それによって基材が再び酸化され、次の電気めっき層の接着力が低下することを防ぐ。 In the above-mentioned electroplating process of the present invention, the pretreatment is such that the refractory metal base material or the stainless steel base material is first subjected to ultrasonic immersion treatment using a phosphorus-containing detergent, and then subjected to alkaline electrolytic degreasing. , Next, the loose structural layer on the surface of the substrate is removed by electrolytic removal in an acid solution or an alkaline solution, followed by immersion in a fluorine-containing acid solution for activation, and finally electrolytic activation in a fluorine-containing alkaline solution. Including that. Here, the dipping treatment is used to wash the surface of the base material, and the surface of the base material is slightly corroded, whereby the adhesion of the electroplated layer is improved. Further, the electric degreasing operation is for removing grease/dirt on the surface of the base material, and in the operation process, the base material sample is placed on the cathode, and the subsequent electrolytic or alkaline solution electrolytic removal is performed by electrolysis. Helps to strip loose parts of the surface of the material (ie remove loose structural layers) and improve the adhesion of the electroplated layer, placing the substrate sample on the anode in the operating process and Peel off the metal on the surface of the material. Further, the operation of activating the acid solution is to bring the surface of the base material into an activated state, and the activation of the alkali solution forms a very thin protective layer on the surface of the base material. It is prevented from being oxidized again and the adhesive strength of the next electroplating layer is reduced.

本発明の実施形態では、前記浸漬処理温度は40−80℃、時間は1−10分間であり、前記電気脱脂温度は40−80℃、電流密度は5−20ASD(アンペア/平方デシメートル)、時間は1−10分間である。酸液電解除去の温度は20−35℃、電流密度は1−10ASD、時間は20秒−10分間であり、アルカリ液電解除去の温度は40−80℃、電流密度は0.5−10ASD、時間は20秒−10分間であり、酸液浸漬活性化温度は20−35℃、時間は30秒−5分間であり、アルカリ液電解活性化温度は20−35℃、電流密度は1−10ASD、時間は30秒−10分間である。 In an embodiment of the present invention, the immersion treatment temperature is 40-80° C., the time is 1-10 minutes, the electric degreasing temperature is 40-80° C., the current density is 5-20 ASD (ampere/square decimeter), The time is 1-10 minutes. The temperature of the acid solution electrolysis removal is 20-35° C., the current density is 1-10 ASD, the time is 20 seconds-10 minutes, the temperature of the alkaline solution electrolysis removal is 40-80° C., the current density is 0.5-10 ASD, The time is 20 seconds-10 minutes, the acid solution immersion activation temperature is 20-35°C, the time is 30 seconds-5 minutes, the alkaline solution electrolysis activation temperature is 20-35°C, and the current density is 1-10 ASD. , The time is 30 seconds-10 minutes.

上記の電気めっきプロセスに係る熱処理の具体的な操作は、50−300℃で1−60分間熱処理をし、続いて300−1300℃で1−60分間熱処理をする。さらに、前記熱処理は、具体的には、まず80−150℃で5−30分間熱処理をし、続いて300−900℃で5−30分間熱処理をする。熱処理操作により、めっき層の接着力をより良く向上させることができる。 The specific operation of the heat treatment relating to the electroplating process is as follows: heat treatment at 50-300° C. for 1-60 minutes, followed by heat treatment at 300-1300° C. for 1-60 minutes. Further, specifically, the heat treatment is first heat treatment at 80 to 150° C. for 5 to 30 minutes, and then at 300 to 900° C. for 5 to 30 minutes. By the heat treatment operation, the adhesive strength of the plating layer can be better improved.

ここで、電気めっき金層は酸性金めっきであり、その操作温度は30−50℃、電流密度は0.2−5ASDである。電気めっき銅層は酸性銅めっきであり、その操作温度は20−35℃、電流密度は0.2−5ASDである。前記パラジウム層は酸性パラジウムめっきであり、その操作温度は16−35℃、0.2−5ASDである。電気めっきニッケル層は酸性ニッケルめっきであり、その操作温度は50−70℃、0.2−5ASDである。電気めっきロジウムルテニウム合金層は酸性ロジウムルテニウムめっきであり、その操作温度は25−45℃、電流密度は0.2−5ASDである。 Here, the electroplating gold layer is acidic gold plating, the operating temperature is 30-50° C., and the current density is 0.2-5 ASD. The electroplated copper layer is acidic copper plating, the operating temperature is 20-35°C, and the current density is 0.2-5 ASD. The palladium layer is acidic palladium plating and the operating temperature is 16-35°C and 0.2-5 ASD. The electroplated nickel layer is acidic nickel plated and its operating temperature is 50-70°C and 0.2-5 ASD. The electroplated rhodium ruthenium alloy layer is acidic rhodium ruthenium plating, the operating temperature is 25-45° C., and the current density is 0.2-5 ASD.

上記の電気めっきプロセスが完了した後、実際の需要に従って、電気めっき層に新たなめっき層をさらに配置し、それはPVD(physical vapor deposition、物理蒸着)めっき層、装飾的金属めっき層または装飾的非金属めっき層等を含み、それにより、基材を導電性、耐摩耗性、耐指紋などの機能性需要、およびさまざまな色や外観効果などの装飾的需要を満たす。 After the above electroplating process is completed, according to the actual demand, a new plating layer is further disposed on the electroplating layer, which may be PVD (physical vapor deposition) layer, decorative metal plating layer or decorative non-plating layer. It includes a metal plating layer, etc., which allows the substrate to meet functional needs such as conductivity, abrasion resistance, fingerprint resistance, and decorative needs such as various color and appearance effects.

上記の発明によって提供された難溶融金属またはステンレス鋼表面の電気めっきプロセスは、簡単なプロセスであり、設備に対する要求が低いため、工業生産に優れ、良好な接着力、耐食性およびはんだ付け性を有する電気めっき層を得ることができる。 The electroplating process of refractory metal or stainless steel surface provided by the above invention is a simple process and has low requirement for equipment, so it has excellent industrial production, good adhesion, corrosion resistance and solderability. An electroplated layer can be obtained.

本発明の利点は、以下の明細書の部分で説明し、その一部は明細書によると明らかなことで、あるいは本発明の実施例の実施により分かることができる。 The advantages of the invention will be set forth in the description part that follows, some of which may be apparent from the specification or through practice of the embodiments of the invention.

以下の説明は、本発明の実施形態の好ましい実施形態であり、当業者には、本発明の実施形態の原理から逸脱することなく、いくつかの改善および改良を行うことができ、これらの改善および改良も本発明の実施形態の保護範囲であると見なされることは指摘されるべきである。 The following description is of preferred embodiments of the present invention, and those skilled in the art can make certain improvements and improvements without departing from the principles of the embodiments of the present invention. It should be pointed out that improvements and improvements are also considered to be within the protection scope of the embodiments of the present invention.

実施例1
難溶融金属チタンの表面の電気めっきプロセスは、以下のステップを含む。
(1)チタンシートを基材として、前記チタンシートに次の前処理を行い、まずリン含有洗浄剤を用いて超音波浸漬処理を行い、その温度は70℃、時間は5分間であり、その後、チタンシートをカソードに置き、アルカリ電解脱脂を行い、その温度は70℃、電流密度は10ASD、時間は1分間であり、その後、チタンシートをアノードに置き、アルカリ液における電解除去を行うことにより基材の表面の緩い構造層を除去し、その温度は70℃、電流密度は1ASD、時間は1分間であり、その後、フッ素含有酸液に1分間で浸漬して活性化し、その温度は25℃、最終的にフッ素含有アルカリ液において2分間でカソード電解して活性化し、その温度は25℃、電流密度は5ASDである。
Example 1
The process of electroplating the surface of refractory titanium metal comprises the following steps.
(1) Using a titanium sheet as a base material, the titanium sheet is subjected to the following pretreatment, and first, an ultrasonic immersion treatment is performed using a phosphorus-containing detergent, the temperature of which is 70° C., and the time is 5 minutes. By placing a titanium sheet on the cathode and performing alkaline electrolytic degreasing, the temperature is 70° C., the current density is 10 ASD, the time is 1 minute, and then the titanium sheet is placed on the anode to perform electrolytic removal in an alkaline solution. The loose structural layer on the surface of the base material was removed, the temperature was 70° C., the current density was 1 ASD, the time was 1 minute, and the substrate was then immersed in a fluorine-containing acid solution for 1 minute for activation, and the temperature was 25. C., and finally activated by cathodic electrolysis in a fluorine-containing alkaline solution for 2 minutes at a temperature of 25.degree. C. and a current density of 5 ASD.

(2)前処理が完了した後、前記チタンシートの表面に厚さ0.8μmの金層を電気めっきし、金層を電気めっきする操作は酸性金めっきであり、その操作温度は40℃、電流密度は0.5ASDである。その後、サンプルをオーブンに入れて熱処理をし、その条件は、まず100℃で10分間焼成し、その後、400℃で20分間焼成し、サンプルが冷却された後、前記金層の表面に厚さ0.8μmのロジウムルテニウム合金層(合金の比率はロジウム:ルテニウムが95%:5%とする)を電気めっきし、電気めっきした後、サンプルをオーブンに入れて熱処理をし、その条件は、まず100℃で10分間焼成し、その後、300℃で10分間焼成し、表面に電気めっき層を有するチタンシートを得って、前記電気めっき層は前記チタンシートの表面に順に形成されている金層およびロジウムルテニウム合金層を含み、前記電気めっきロジウムルテニウム合金層は酸性ロジウムルテニウムめっきであり、その操作温度は35℃、電流密度は1ASDである。 (2) After the pretreatment is completed, the operation of electroplating a gold layer having a thickness of 0.8 μm on the surface of the titanium sheet and electroplating the gold layer is acidic gold plating, and the operation temperature is 40° C. The current density is 0.5 ASD. Then, the sample is placed in an oven to be heat-treated under the conditions of first baking at 100° C. for 10 minutes, then baking at 400° C. for 20 minutes, and cooling the sample to a thickness on the surface of the gold layer. A 0.8 μm rhodium ruthenium alloy layer (ratio of the alloy is rhodium:ruthenium is 95%:5%) is electroplated, and after electroplating, the sample is placed in an oven and heat-treated under the following conditions: Baking at 100° C. for 10 minutes and then at 300° C. for 10 minutes to obtain a titanium sheet having an electroplating layer on the surface, the electroplating layer being a gold layer sequentially formed on the surface of the titanium sheet. And a rhodium ruthenium alloy layer, the electroplating rhodium ruthenium alloy layer is acidic rhodium ruthenium plating, the operating temperature is 35° C., and the current density is 1 ASD.

実施例2
難溶融金属タンタルの表面の電気めっきプロセスは、以下のステップを含む。
(1)タンタルシートを基材として、前記タンタルシートに次の前処理を行い、まずリン含有洗浄剤を用いて超音波浸漬処理を行い、その温度は70℃、時間は10分間であり、その後、タンタルシートをカソードに置き、アルカリ電解脱脂を行い、その温度は70℃、電流密度は10ASD、時間は5分間であり、その後、タンタルシートをアノードに置き、アルカリ液における電解除去を行うことにより基材の表面の緩い構造層を除去し、その温度は70℃、電流密度は5ASD、時間は5分間であり、その後、フッ素含有酸液に1分間において浸漬して活性化し、その温度は25℃、最終的にフッ素含有アルカリ液において2分間でカソード電解して活性化し、その温度は25℃、電流密度は5ASDである。
Example 2
The electroplating process of the surface of refractory metal tantalum includes the following steps.
(1) Using the tantalum sheet as a base material, the tantalum sheet is subjected to the following pretreatment, and is first subjected to ultrasonic immersion treatment using a phosphorus-containing cleaning agent, the temperature of which is 70° C., and the time is 10 minutes. By placing the tantalum sheet on the cathode and performing alkaline electrolytic degreasing, the temperature is 70° C., the current density is 10 ASD, the time is 5 minutes, and then the tantalum sheet is placed on the anode to perform electrolytic removal in the alkaline solution. The loose structural layer on the surface of the substrate was removed, the temperature was 70° C., the current density was 5 ASD, the time was 5 minutes, and then the substrate was immersed in a fluorine-containing acid solution for 1 minute for activation, and the temperature was 25. C., and finally activated by cathodic electrolysis in a fluorine-containing alkaline solution for 2 minutes at a temperature of 25.degree. C. and a current density of 5 ASD.

(2)前処理が完了した後、前記タンタルシートの表面に厚さ0.8μmのロジウムルテニウム合金層を電気めっきし、ロジウムルテニウム合金(Rh:Ru)の比率は95%:5%とし、その後、タンタルシートサンプルをオーブンに入れて熱処理をし、まず100℃で10分間焼成し、その後、300℃で20分間焼成し、サンプルが冷却された後、ロジウムルテニウム合金層の表面に厚さ0.5μmの金層を電気めっきし、最終的に金層に厚さ0.2μmの第2のロジウムルテニウム合金層(合金の比率はロジウム:ルテニウムが95%:5%とする)を電気めっきし、表面に電気めっき層を有するタンタルシートを得って、前記電気めっき層は前記タンタルシートの表面に順に形成されているロジウムルテニウム合金層、金層および第2のロジウムルテニウム合金層を含み、ここで、電気めっき金層の操作は酸性金めっきであり、その操作温度は40℃、電流密度は0.5ASDであり、電気めっきロジウムルテニウム合金層は酸性ロジウムルテニウムめっきであり、その操作温度は35℃、電流密度は1ASDである。 (2) After completion of the pretreatment, a rhodium ruthenium alloy layer having a thickness of 0.8 μm is electroplated on the surface of the tantalum sheet, and the ratio of the rhodium ruthenium alloy (Rh:Ru) is set to 95%:5%. The tantalum sheet sample was put in an oven to be heat-treated, firstly baked at 100° C. for 10 minutes and then at 300° C. for 20 minutes, and after the sample was cooled, the surface of the rhodium ruthenium alloy layer had a thickness of 0. Electroplating a 5 μm gold layer and finally electroplating a 0.2 μm thick second rhodium ruthenium alloy layer (rhodium:ruthenium is 95%:5% alloy ratio) on the gold layer, A tantalum sheet having an electroplated layer on a surface thereof is obtained, the electroplated layer including a rhodium ruthenium alloy layer, a gold layer and a second rhodium ruthenium alloy layer sequentially formed on the surface of the tantalum sheet, wherein: The operation of the electroplated gold layer is acid gold plating, the operation temperature is 40° C., the current density is 0.5 ASD, the electroplated rhodium ruthenium alloy layer is acid rhodium ruthenium plating, and the operation temperature is 35° C. , The current density is 1 ASD.

実施例3
難溶融金属ニオブの表面の電気めっきプロセスは、以下のステップを含む。
(1)ニオブシートを基材として、前記ニオブシートに次の前処理を行い、まずリン含有洗浄剤を用いて超音波浸漬処理を行い、その温度は70℃、時間は10分間であり、その後、ニオブシートをカソードに置き、アルカリ電解脱脂を行い、その温度は70℃、電流密度は10ASD、時間は5分間であり、その後、ニオブシートをアノードに置き、アルカリ液における電解除去を行うことにより基材の表面の緩い構造層を除去し、その温度は70℃、電流密度は1ASD、時間は1分間であり、その後、フッ素含有酸液に1分間で浸漬して活性化し、その温度は25℃、最終的にフッ素含有アルカリ液において2分間でカソード電解して活性化し、その温度は25℃、電流密度は5ASDである。
Example 3
The electroplating process on the surface of refractory niobium metal includes the following steps.
(1) Using the niobium sheet as a base material, the niobium sheet is subjected to the following pretreatment, and is first subjected to ultrasonic immersion treatment using a phosphorus-containing detergent, and the temperature is 70° C. and the time is 10 minutes, and then, By placing the niobium sheet on the cathode and performing alkaline electrolytic degreasing, the temperature is 70° C., the current density is 10 ASD, the time is 5 minutes, and then the niobium sheet is placed on the anode to perform electrolytic removal in the alkaline solution. The loose structural layer on the surface of the base material was removed, the temperature was 70° C., the current density was 1 ASD, the time was 1 minute, and the substrate was then immersed in a fluorine-containing acid solution for 1 minute for activation, and the temperature was 25. C., and finally activated by cathodic electrolysis in a fluorine-containing alkaline solution for 2 minutes at a temperature of 25.degree. C. and a current density of 5 ASD.

(2)前処理が完了した後、前記ニオブシートの表面に厚さ0.5μmのロジウムルテニウム合金層を電気めっきし、ロジウムルテニウム合金(Rh:Ru)の比率は97%:3%とし、その後、ニオブシートサンプルをオーブンに入れて熱処理をし、まず100℃で10分間焼成し、その後、500℃で10分間焼成し、サンプルが冷却された後、表面に電気めっき層を有するニオブシートを得って、前記電気めっき層は前記ニオブシートの表面に形成されているロジウムルテニウム合金層を含み、ここで、電気めっきロジウムルテニウム合金層は酸性ロジウムルテニウムめっきであり、その操作温度は35℃、電流密度は1ASDである。 (2) After the pretreatment is completed, a rhodium ruthenium alloy layer having a thickness of 0.5 μm is electroplated on the surface of the niobium sheet so that the ratio of rhodium ruthenium alloy (Rh:Ru) is 97%:3%. The niobium sheet sample was placed in an oven to be heat-treated, firstly baked at 100° C. for 10 minutes, and then at 500° C. for 10 minutes to obtain a niobium sheet having an electroplated layer on the surface after the sample was cooled. Thus, the electroplating layer includes a rhodium ruthenium alloy layer formed on the surface of the niobium sheet, wherein the electroplating rhodium ruthenium alloy layer is acidic rhodium ruthenium plating, and its operating temperature is 35° C. The density is 1 ASD.

実施例4
ステンレス鋼の表面の電気めっきプロセスは、以下のステップを含む。
(1)ステンレス鋼を基材として、前記ステンレス鋼に次の前処理を行い、まずリン含有洗浄剤を用いて超音波浸漬処理を行い、その温度は70℃、時間は2分間であり、その後、ステンレス鋼をカソードに置き、アルカリ電解脱脂を行い、その温度は70℃、電流密度は5ASD、時間は2分間であり、その後、ステンレス鋼をアノードに置き、アルカリ液における電解除去を行うことにより基材の表面の緩い構造層を除去し、その温度は70℃、電流密度は1ASD、時間は1分間であり、その後、フッ素含有酸液に1分間で浸漬して活性化し、その温度は25℃、最終的にフッ素含有アルカリ液において2分間でカソード電解して活性化し、その温度は25℃、電流密度は5ASDである。
Example 4
The electroplating process on the surface of stainless steel includes the following steps.
(1) Using stainless steel as a base material, the following pretreatment is performed on the stainless steel, and then ultrasonic immersion treatment is first performed using a phosphorus-containing cleaning agent at a temperature of 70° C. for a time of 2 minutes, and thereafter. By placing stainless steel on the cathode and performing alkaline electrolytic degreasing, the temperature is 70° C., the current density is 5 ASD, the time is 2 minutes, and then the stainless steel is placed on the anode to perform electrolytic removal in the alkaline solution. The loose structural layer on the surface of the base material was removed, the temperature was 70° C., the current density was 1 ASD, the time was 1 minute, and the substrate was then immersed in a fluorine-containing acid solution for 1 minute for activation, and the temperature was 25. C., and finally activated by cathodic electrolysis in a fluorine-containing alkaline solution for 2 minutes at a temperature of 25.degree. C. and a current density of 5 ASD.

(2)前処理が完了した後、前記ステンレス鋼の表面に厚さ0.8μmのロジウムルテニウム合金層を電気めっきし、ロジウムルテニウム合金(Rh:Ru)の比率は95%:5%とし、その後、ステンレス鋼サンプルをオーブンに入れて熱処理をし、まず100℃で10分間焼成し、その後、300℃で20分間焼成し、サンプルが冷却された後、ロジウムルテニウム合金層の表面に厚さ0.8μmの金層を電気めっきし、最終的に金層に厚さ1μmの第2のロジウムルテニウム合金層(合金の比率はロジウム:ルテニウムが97%:3%とする)を電気めっきし、表面に電気めっき層を有するステンレス鋼を得って、前記電気めっき層は前記ステンレス鋼の表面に順に形成されているロジウムルテニウム合金層、金層および第2のロジウムルテニウム合金層を含み、ここで、電気めっき金層の操作は酸性金めっきであり、その操作温度は40℃、電流密度は0.5ASDであり、電気めっきロジウムルテニウム合金層は酸性ロジウムルテニウムめっきであり、その操作温度は35℃、電流密度は1ASDである。 (2) After the pretreatment is completed, a rhodium ruthenium alloy layer having a thickness of 0.8 μm is electroplated on the surface of the stainless steel, and the ratio of the rhodium ruthenium alloy (Rh:Ru) is set to 95%:5%. , The stainless steel sample was placed in an oven to be heat treated, firstly baked at 100° C. for 10 minutes, then at 300° C. for 20 minutes, and after the sample was cooled, the surface of the rhodium ruthenium alloy layer had a thickness of 0. An 8 μm gold layer is electroplated, and finally a 1 μm thick second rhodium ruthenium alloy layer (alloy ratio is rhodium:ruthenium 97%:3%) is electroplated on the gold layer. Obtaining a stainless steel having an electroplated layer, the electroplated layer comprising a rhodium ruthenium alloy layer, a gold layer and a second rhodium ruthenium alloy layer sequentially formed on the surface of the stainless steel, wherein The operation of the plated gold layer is acidic gold plating, the operating temperature is 40° C., the current density is 0.5 ASD, the electroplating rhodium ruthenium alloy layer is acidic rhodium ruthenium plating, the operating temperature is 35° C., current The density is 1 ASD.

実施例5
難溶融金属タンタルの表面の電気めっきプロセスは、以下のステップを含む。
(1)タンタルシートを基材として、前記タンタルシートに次の前処理を行い、まずリン含有洗浄剤を用いて超音波浸漬処理を行い、その温度は70℃、時間は10分間であり、その後、タンタルシートをカソードに置き、アルカリ電解脱脂を行い、その温度は70℃、電流密度は10ASD、時間は5分間であり、その後、タンタルシートをアノードに置き、アルカリ液における電解除去を行うことにより基材の表面の緩い構造層を除去し、その温度は70℃、電流密度は5ASD、時間は5分間であり、その後、フッ素含有酸液に1分間で浸漬して活性化し、その温度は25℃、最終的にフッ素含有アルカリ液において2分間でカソード電解して活性化し、その温度は25℃、電流密度は5ASDである。
Example 5
The electroplating process of the surface of refractory metal tantalum includes the following steps.
(1) Using the tantalum sheet as a base material, the tantalum sheet is subjected to the following pretreatment, and is first subjected to ultrasonic immersion treatment using a phosphorus-containing cleaning agent, the temperature of which is 70° C., and the time is 10 minutes. By placing the tantalum sheet on the cathode and performing alkaline electrolytic degreasing, the temperature is 70° C., the current density is 10 ASD, the time is 5 minutes, and then the tantalum sheet is placed on the anode to perform electrolytic removal in the alkaline solution. The loose structural layer on the surface of the substrate was removed, the temperature was 70° C., the current density was 5 ASD, the time was 5 minutes, and then the substrate was immersed in a fluorine-containing acid solution for 1 minute for activation, and the temperature was 25. C., and finally activated by cathodic electrolysis in a fluorine-containing alkaline solution for 2 minutes at a temperature of 25.degree. C. and a current density of 5 ASD.

(2)前処理が完了した後、前記タンタルシートの表面に厚さ1μmのニッケル層を電気めっきし、ニッケル層を電気めっきする操作は酸性ニッケルめっきであり、その操作温度は60℃、電流密度は0.5ASDである。その後、サンプルをオーブンに入れて熱処理をし、その条件は、まず100℃で10分間焼成し、その後、300℃で20分間焼成し、サンプルが冷却された後、前記ニッケル層の表面に厚さ1μmのロジウムルテニウム合金層(合金の比率はロジウム:ルテニウムが95%:5%とする)を電気めっきし、表面に電気めっき層を有するタンタルシートを得って、前記電気めっき層は前記タンタルシートの表面に順に形成されているニッケル層およびロジウムルテニウム合金層を含み、前記電気めっきロジウムルテニウム合金層は酸性ロジウムルテニウムめっきであり、その操作温度は35℃、電流密度は1ASDである。 (2) After the pretreatment is completed, the operation of electroplating a nickel layer having a thickness of 1 μm on the surface of the tantalum sheet and electroplating the nickel layer is acidic nickel plating, the operating temperature is 60° C., current density Is 0.5 ASD. After that, the sample is placed in an oven to be heat-treated under the conditions of first baking at 100° C. for 10 minutes, then baking at 300° C. for 20 minutes, and then cooling the sample to a thickness on the surface of the nickel layer. A 1 μm rhodium ruthenium alloy layer (ratio of alloy is rhodium:ruthenium is 95%:5%) is electroplated to obtain a tantalum sheet having an electroplating layer on the surface, the electroplating layer being the tantalum sheet. Including a nickel layer and a rhodium ruthenium alloy layer, which are sequentially formed on the surface of, the electroplating rhodium ruthenium alloy layer is acidic rhodium ruthenium plating, the operating temperature is 35° C., and the current density is 1 ASD.

実施例6
難溶融金属ニオブの表面の電気めっきプロセスは、以下のステップを含む。
(1)ニオブシートを基材として、前記ニオブシートに次の前処理を行い、まずリン含有洗浄剤を用いて超音波浸漬処理を行い、その温度は70℃、時間は5分間であり、その後、ニオブシートをカソードに置き、アルカリ電解脱脂を行い、その温度は70℃、電流密度は10ASD、時間は1分間であり、その後、ニオブシートをアノードに置き、アルカリ液における電解除去を行うことにより基材の表面の緩い構造層を除去し、その温度は70℃、電流密度は1ASD、時間は1分間であり、その後、フッ素含有酸液に1分間において浸漬して活性化し、その温度は25℃、最終的にフッ素含有アルカリ液において2分間でカソード電解して活性化し、その温度は25℃、電流密度は5ASDである。
Example 6
The electroplating process on the surface of refractory niobium metal includes the following steps.
(1) Using the niobium sheet as a base material, the niobium sheet is subjected to the following pretreatment, and is first subjected to ultrasonic immersion treatment using a phosphorus-containing detergent, and the temperature is 70° C. and the time is 5 minutes. By placing the niobium sheet on the cathode and performing alkaline electrolytic degreasing, the temperature is 70° C., the current density is 10 ASD, the time is 1 minute, and then the niobium sheet is placed on the anode to perform electrolytic removal in an alkaline solution. The loose structural layer on the surface of the substrate was removed, the temperature was 70° C., the current density was 1 ASD, the time was 1 minute, and then the substrate was immersed in a fluorine-containing acid solution for 1 minute for activation, and the temperature was 25. C., and finally activated by cathodic electrolysis in a fluorine-containing alkaline solution for 2 minutes at a temperature of 25.degree. C. and a current density of 5 ASD.

(2)前処理が完了した後、前記ニオブシートの表面に厚さ2μmの銅層を電気めっきし、金層を電気めっきする操作は酸性金めっきであり、その操作温度は25℃、電流密度は0.5ASDである。その後、サンプルをオーブンに入れて熱処理をし、その条件は、まず100℃で10分間焼成し、その後、300℃で20分間焼成し、サンプルが冷却された後、前記銅層の表面に厚さ1μmのロジウムルテニウム合金層(合金の比率はロジウム:ルテニウムが95%:5%とする)を電気めっきし、表面に電気めっき層を有するニオブシートを得って、前記電気めっき層は前記ニオブシートの表面に順に形成されている銅層およびロジウムルテニウム合金層を含み、前記電気めっきロジウムルテニウム合金層は酸性ロジウムルテニウムめっきであり、その操作温度は35℃、電流密度は1ASDである。 (2) After the pretreatment is completed, the operation of electroplating a copper layer having a thickness of 2 μm on the surface of the niobium sheet and electroplating the gold layer is acidic gold plating, the operating temperature is 25° C., and the current density is Is 0.5 ASD. After that, the sample is placed in an oven to be heat-treated under the conditions of first baking at 100° C. for 10 minutes, then baking at 300° C. for 20 minutes, and then cooling the sample to a thickness on the surface of the copper layer. A 1 μm rhodium ruthenium alloy layer (ratio of the alloy is rhodium:ruthenium is 95%:5%) is electroplated to obtain a niobium sheet having an electroplating layer on the surface, and the electroplating layer is the niobium sheet. Including a copper layer and a rhodium ruthenium alloy layer which are sequentially formed on the surface thereof, the electroplating rhodium ruthenium alloy layer is acidic rhodium ruthenium plating, the operating temperature is 35° C., and the current density is 1 ASD.

実施例7
ステンレス鋼の表面の電気めっきプロセスは、以下のステップを含む。
(1)ステンレス鋼を基材として、前記ステンレス鋼に次の前処理を行い、まずリン含有洗浄剤を用いて超音波浸漬処理を行い、その温度は70℃、時間は2分間であり、その後、ステンレス鋼をカソードに置き、アルカリ電解脱脂を行い、その温度は70℃、電流密度は5ASD、時間は2分間であり、その後、ステンレス鋼をアノードに置き、アルカリ液における電解除去を行うことにより基材の表面の緩い構造層を除去し、その温度は70℃、電流密度は1ASD、時間は1分間であり、その後、フッ素含有酸液に1分間で浸漬して活性化し、その温度は25℃、最終的にフッ素含有アルカリ液において2分間でカソード電解して活性化し、その温度は25℃、電流密度は5ASDである。
Example 7
The electroplating process on the surface of stainless steel includes the following steps.
(1) Using stainless steel as a base material, the following pretreatment is performed on the stainless steel, and then ultrasonic immersion treatment is first performed using a phosphorus-containing cleaning agent at a temperature of 70° C. for a time of 2 minutes, and thereafter. By placing stainless steel on the cathode and performing alkaline electrolytic degreasing, the temperature is 70° C., the current density is 5 ASD, the time is 2 minutes, and then the stainless steel is placed on the anode to perform electrolytic removal in the alkaline solution. The loose structural layer on the surface of the base material was removed, the temperature was 70° C., the current density was 1 ASD, the time was 1 minute, and the substrate was then immersed in a fluorine-containing acid solution for 1 minute for activation, and the temperature was 25. C., and finally activated by cathodic electrolysis in a fluorine-containing alkaline solution for 2 minutes at a temperature of 25.degree. C. and a current density of 5 ASD.

(2)前処理が完了した後、前記ステンレス鋼の表面に厚さ0.5μmのパラジウム層を電気めっきし、パラジウム層を電気めっきする操作は酸性パラジウムめっきであり、その操作温度は25℃、電流密度は0.5ASDである。その後、サンプルをオーブンに入れて熱処理をし、その条件は、まず100℃で10分間焼成し、その後、300℃で20分間焼成し、サンプルが冷却された後、前記パラジウム層の表面に厚さ2μmのロジウムルテニウム合金層(合金の比率はロジウム:ルテニウムが95%:5%とする)を電気めっきし、表面に電気めっき層を有するステンレス鋼を得って、前記電気めっき層は前記ステンレス鋼の表面に順に形成されているパラジウム層およびロジウムルテニウム合金層を含み、前記電気めっきロジウムルテニウム合金層は酸性ロジウムルテニウムめっきであり、その操作温度は35℃、電流密度は1ASDである。 (2) After the pretreatment is completed, the operation of electroplating a 0.5 μm-thick palladium layer on the surface of the stainless steel and electroplating the palladium layer is acidic palladium plating, and the operation temperature is 25° C. The current density is 0.5 ASD. Then, the sample is placed in an oven to be heat-treated under the conditions of first baking at 100° C. for 10 minutes, then baking at 300° C. for 20 minutes, and then cooling the sample to a thickness on the surface of the palladium layer. A 2 μm rhodium ruthenium alloy layer (ratio of the alloy is rhodium:ruthenium is 95%:5%) is electroplated to obtain a stainless steel having an electroplated layer on the surface, and the electroplated layer is the stainless steel. Including a palladium layer and a rhodium ruthenium alloy layer which are sequentially formed on the surface thereof, the electroplating rhodium ruthenium alloy layer is acidic rhodium ruthenium plating, the operating temperature is 35° C., and the current density is 1 ASD.

効果実施例
本発明の実施例の技術案によってもたらされる有益な効果を強く裏付けるために、特に以下の性能試験が提供される。
Effects Examples In order to strongly support the beneficial effects provided by the technical solutions of the embodiments of the present invention, the following performance tests are provided in particular.

(1)グリッド試験:実施例1−7により得られたサンプルに対してグリッド試験を行い、具体的には、グリッドナイフによって10×10(1mm×1mm)グリッドを刻んで、ブラシで試験領域の砕片を掃き、3M社(3M Company)製No.600テープをしっかりグリッドに接着し、テープの一端を手で握り、垂直方向から迅速に引き出し、同じ位置で同様の試験を2回行う。スリットの端が完全に滑らかで、格子の端が何も剥がれない場合は、それは合格である。結果は、本発明の実施例1−7のサンプルがグリッド試験に合格したことを示している。 (1) Grid test: A grid test was performed on the samples obtained in Examples 1-7, and specifically, a 10×10 (1 mm×1 mm) grid was carved with a grid knife and a brush was used to test the test area. The debris was swept, and No. 3 manufactured by 3M Company was used. The 600 tape is firmly glued to the grid, one end of the tape is grasped by hand and quickly pulled out of the vertical direction and two similar tests are done in the same position. If the edges of the slit are perfectly smooth and no edges of the grid are peeled off, then it passes. The results show that the samples of Examples 1-7 of the invention passed the grid test.

(2)180°曲げ試験:実施例1−7により得られたサンプルに対して180°曲げ試験を行い、具体的には、3M社(3M Company)製No.600テープをしっかりサンプルに接着し、サンプルを時計回りに90°曲げ、次にサンプルを反対方向に180°曲げてから、垂直方向からテープを迅速に引き出す。 (2) 180° bending test: A 180° bending test was performed on the samples obtained in Examples 1-7. Specifically, No. 3 manufactured by 3M Company was used. The 600 tape is firmly adhered to the sample, the sample is bent 90° clockwise, then the sample is bent 180° in the opposite direction, and then the tape is quickly pulled out from the vertical direction.

テープにめっき層が残っていない場合は、合格である。結果は、本発明の実施例1−7のサンプルが180°曲げ試験に合格したことを示している。 The tape passes if no plating layer remains on the tape. The results show that the samples of Examples 1-7 of the invention passed the 180° bend test.

(3)人工汗電解試験:実施例1−7により得られたサンプルは人工汗電解試験を行い、まず以下の配方で人工汗溶液を調製する:塩化ナトリウム0.5重量%、乳酸0.1質量%、尿素0.1重量%、およびバランスは純水である。溶液を反転方式で電気分解して、電気分解の前後のサンプルの差を観察する。人工汗溶液では、サンプルをアノード位置に配置し、白金チタンメッシュをカソード位置に配置し、アノード面積:カソード面積比は約2:1であり、アノードとカソードの距離は約5mmである。5Vの定電圧で試験を行い、10分間で電解後のサンプルの外観の差を観察する。その結果、10分間の電解後、実施例1−7のサンプルの外観は、有意な差はなく、したがって、電解試験の結果は合格であることが分かった。 (3) Artificial perspiration electrolysis test: The samples obtained in Examples 1-7 are subjected to an artificial perspiration electrolysis test, and an artificial perspiration solution is first prepared in the following manner: sodium chloride 0.5% by weight, lactic acid 0.1. Mass%, urea 0.1% by weight, and balance are pure water. The solution is electrolyzed in an inverted fashion and the difference between the samples before and after electrolysis is observed. In the artificial sweat solution, the sample is placed in the anode position, the platinum titanium mesh is placed in the cathode position, the anode area:cathode area ratio is about 2:1 and the distance between the anode and the cathode is about 5 mm. The test is performed at a constant voltage of 5 V, and the difference in the appearance of the sample after electrolysis is observed for 10 minutes. As a result, after 10 minutes of electrolysis, there was no significant difference in the appearance of the samples of Examples 1-7, therefore it was found that the result of the electrolysis test was acceptable.

上記の試験結果は、本発明の実施例のサンプルの表面が、ルロジウムルテニウム合金を含む電気めっき層を配置することにより、良好な接着力および耐食性を有することを示している。 The above test results show that the surfaces of the samples of the examples of the present invention have good adhesion and corrosion resistance by disposing the electroplating layer containing the rhodium ruthenium alloy.

Claims (12)

基材と前記基材の表面に形成された電気めっき層とを含み、前記基材は難溶融金属基材またはステンレス鋼基材を含み、前記難溶融金属基材はチタン、タンタル、ニオブ、またはそれらの合金であり、前記電気めっき層はロジウムルテニウム合金層を含むことを特徴とする表面に電気めっき層を有する難溶融金属またはステンレス鋼。 A substrate and an electroplating layer formed on the surface of the substrate, the substrate comprises a refractory metal substrate or a stainless steel substrate, the refractory metal substrate is titanium, tantalum, niobium, or A refractory metal or stainless steel having an electroplated layer on the surface thereof, which is an alloy thereof, wherein the electroplated layer includes a rhodium ruthenium alloy layer. 前記電気めっき層は、前記基材と前記ロジウムルテニウム合金層との間に配置された金層、または銅層、またはニッケル層、またはパラジウム層をさらに含み、前記金層または前記パラジウム層の厚さは0.01−10μmであり、前記銅層または前記ニッケル層の厚さは0.01−200μmであることを特徴とする請求項1に記載の表面に電気めっき層を有する難溶融金属またはステンレス鋼。 The electroplating layer further includes a gold layer, a copper layer, a nickel layer, or a palladium layer arranged between the base material and the rhodium ruthenium alloy layer, and the thickness of the gold layer or the palladium layer. Is 0.01-10 μm, and the thickness of the copper layer or the nickel layer is 0.01-200 μm. The refractory metal or stainless steel having an electroplated layer on the surface according to claim 1, wherein steel. 前記電気めっき層はさらに、前記ロジウムルテニウム合金層の表面に配置された金層、または銅層、またはニッケル層、またはパラジウム層、および前記金層、または銅層、またはニッケル層、またはパラジウム層の表面に配置された第2のロジウムルテニウム合金層を含み、前記金層、前記パラジウム層、前記第2のロジウムルテニウム合金層の厚さは0.01−10μmであり、前記銅層、前記ニッケル層の厚さは0.01−200μmであり、前記第2のロジウムルテニウム合金層において、ルテニウムの質量含有量は20%以下であることを特徴とする請求項1に記載の表面に電気めっき層を有する難溶融金属またはステンレス鋼。 The electroplating layer further comprises a gold layer, or a copper layer, or a nickel layer, or a palladium layer, which is disposed on the surface of the rhodium ruthenium alloy layer, and a gold layer, a copper layer, a nickel layer, or a palladium layer. A second rhodium ruthenium alloy layer disposed on the surface, wherein the gold layer, the palladium layer, and the second rhodium ruthenium alloy layer have a thickness of 0.01-10 μm, and the copper layer and the nickel layer. Has a thickness of 0.01-200 μm, and the mass content of ruthenium in the second rhodium ruthenium alloy layer is 20% or less. Having refractory metal or stainless steel. 前記ロジウムルテニウム合金層の厚さは、0.01−10μmであり、前記ロジウムルテニウム合金層において、ルテニウムの質量含有量は20%以下であることを特徴とする請求項1に記載の表面に電気めっき層を有する難溶融金属またはステンレス鋼。 The thickness of the rhodium ruthenium alloy layer is 0.01-10 μm, and the mass content of ruthenium in the rhodium ruthenium alloy layer is 20% or less. Refractory metal or stainless steel with plating layer. 前記電気めっき層にはさらにPVDめっき層、装飾的金属めっき層または装飾的非金属めっき層を配置することを特徴とする請求項1−4のいずれかに記載の表面に電気めっき層を有する難溶融金属またはステンレス鋼。 A PVD plating layer, a decorative metal plating layer, or a decorative non-metal plating layer is further arranged on the electroplating layer, wherein the surface has an electroplating layer. Molten metal or stainless steel. 難溶融金属またはステンレス鋼の表面の電気めっきプロセスであって、
チタン、タンタル、ニオブ、またはそれらの合金である前記難溶融金属基材またはステンレス鋼基材に対して前処理をするステップと、
前記難溶融金属基材またはステンレス鋼基材の表面にロジウムルテニウム合金層を電気めっきして、その後に熱処理をして、表面にロジウムルテニウム合金層を含む電気めっき層を有する難溶融金属またはステンレス鋼を得るステップとを含むことを特徴とする難溶融金属またはステンレス鋼の表面の電気めっきプロセス。
An electroplating process for refractory metal or stainless steel surfaces, comprising:
Pretreating the refractory metal substrate or stainless steel substrate, which is titanium, tantalum, niobium, or an alloy thereof,
Electroless plating of a rhodium ruthenium alloy layer on the surface of the refractory metal base material or stainless steel base material, followed by heat treatment, and a refractory metal or stainless steel having an electroplating layer containing a rhodium ruthenium alloy layer on the surface. And a step of obtaining a refractory metal or stainless steel surface electroplating process.
前記ロジウムルテニウム合金層の表面に金層、または銅層、またはニッケル層、またはパラジウム層をさらに電気めっきしてから、前記金層、銅層、ニッケル層、またはパラジウム層の表面に第2のロジウムルテニウム合金層を電気めっきし、表面に電気めっき層を有する難溶融金属またはステンレス鋼を得ることを特徴とする請求項6に記載の難溶融金属またはステンレス鋼の表面の電気めっきプロセス。 A gold layer, a copper layer, a nickel layer, or a palladium layer is further electroplated on the surface of the rhodium ruthenium alloy layer, and then a second rhodium layer is formed on the surface of the gold layer, the copper layer, the nickel layer, or the palladium layer. The electroplating process for a surface of a refractory metal or stainless steel according to claim 6, wherein the ruthenium alloy layer is electroplated to obtain a refractory metal or stainless steel having an electroplated layer on the surface. 前記前処理は、前記難溶融金属基材またはステンレス鋼基材に対して、まずリン含有洗浄剤を用いて超音波浸漬処理を行い、その後にアルカリ電解脱脂を行い、次に酸液またはアルカリ液における電解除去により基材の表面の緩い構造層を除去し、その後にフッ素含有酸液に浸漬して活性化し、最後にフッ素含有アルカリ液において電解活性化することを含むことを特徴とする請求項6または7に記載の難溶融金属またはステンレス鋼の表面の電気めっきプロセス。 In the pretreatment, the refractory metal base material or the stainless steel base material is first subjected to ultrasonic immersion treatment using a phosphorus-containing detergent, and then subjected to alkaline electrolytic degreasing, and then an acid solution or an alkali solution. And removing the loose structural layer on the surface of the substrate by electrolytic removal in step 1, then immersing in a fluorine-containing acid solution for activation, and finally performing electrolytic activation in a fluorine-containing alkaline solution. The electroplating process for the surface of the refractory metal or stainless steel according to 6 or 7. 前記熱処理の具体的な操作は、50−300℃で1−60分間熱処理をし、続いて300−1300℃で1−60分間熱処理をすることであることを特徴とする請求項6−8のいずれかに記載の難溶融金属またはステンレス鋼の表面の電気めっきプロセス。 The specific operation of the heat treatment is to perform heat treatment at 50-300°C for 1-60 minutes, and then heat treatment at 300-1300°C for 1-60 minutes. An electroplating process for the surface of refractory metal or stainless steel according to any of the above. 難溶融金属またはステンレス鋼の表面の電気めっきプロセスであって、
チタン、タンタル、ニオブ、またはそれらの合金である前記難溶融金属基材またはステンレス鋼基材に対して前処理をするステップと、
まず前記難溶融金属基材またはステンレス鋼基材の表面に金層、または銅層、またはニッケル層、またはパラジウム層を電気めっきし、その後に熱処理をし、冷却後に、前記金層、または銅層、またはニッケル層、またはパラジウム層の表面にロジウムルテニウム合金層を電気めっきし、表面に電気めっき層を有する難溶融金属またはステンレス鋼を得ることであることを特徴とする難溶融金属またはステンレス鋼の表面の電気めっきプロセス。
An electroplating process for refractory metal or stainless steel surfaces, comprising:
Pretreating the refractory metal substrate or stainless steel substrate, which is titanium, tantalum, niobium, or an alloy thereof,
First, a gold layer, or a copper layer, or a nickel layer, or a palladium layer is electroplated on the surface of the refractory metal substrate or the stainless steel substrate, followed by heat treatment, and after cooling, the gold layer or the copper layer. , Or a nickel layer, or a palladium layer is electroplated with a rhodium-ruthenium alloy layer on the surface to obtain a refractory metal or stainless steel having an electroplated layer on the surface. Surface electroplating process.
前記前処理は、難溶融金属基材またはステンレス鋼基材に対して、まずリン含有洗浄剤を用いて超音波浸漬処理を行い、その後にアルカリ電解脱脂を行い、次に酸液またはアルカリ液における電解除去により基材の表面の緩い構造層を除去し、その後にフッ素含有酸液に浸漬して活性化し、最後にフッ素含有アルカリ液において電解活性化することを含むことを特徴とする請求項10に記載の難溶融金属またはステンレス鋼の表面の電気めっきプロセス。 The pretreatment is performed on the refractory metal base material or the stainless steel base material by ultrasonic immersion treatment using a phosphorus-containing detergent, followed by alkaline electrolytic degreasing, and then using an acid solution or an alkaline solution. 11. The method comprises removing the loose structural layer on the surface of the substrate by electrolytic removal, subsequently immersing the substrate in a fluorine-containing acid solution for activation, and finally performing electrolytic activation in a fluorine-containing alkaline solution. Electroplating process of refractory metal or stainless steel surface as described in. 前記熱処理の具体的な操作は、50−300℃で1−60分間熱処理をし、続いて300−1300℃で1−60分間熱処理をすることであることを特徴とする請求項10または11に記載の難溶融金属またはステンレス鋼の表面の電気めっきプロセス。 The specific operation of the heat treatment is to perform heat treatment at 50-300° C. for 1-60 minutes, and subsequently heat treatment at 300-1300° C. for 1-60 minutes, according to claim 10 or 11. Electroplating process for surfaces of refractory metals or stainless steels described.
JP2020513383A 2017-05-08 2017-05-24 Electroplating process on the surface of refractory metal or stainless steel with an electroplating layer on the surface, and refractory metal or stainless steel Active JP7078232B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710318166.1A CN108866585B (en) 2017-05-08 2017-05-08 Refractory metal or stainless steel with electroplated layer on surface and electroplating process for surface of refractory metal or stainless steel
CN201710318166.1 2017-05-08
PCT/CN2017/085647 WO2018205307A1 (en) 2017-05-08 2017-05-24 Refractory metal or stainless steel having electroplated layer on surface thereof, and electroplating process for surface of refractory metal or stainless steel

Publications (2)

Publication Number Publication Date
JP2020523486A true JP2020523486A (en) 2020-08-06
JP7078232B2 JP7078232B2 (en) 2022-05-31

Family

ID=64104227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020513383A Active JP7078232B2 (en) 2017-05-08 2017-05-24 Electroplating process on the surface of refractory metal or stainless steel with an electroplating layer on the surface, and refractory metal or stainless steel

Country Status (3)

Country Link
JP (1) JP7078232B2 (en)
CN (1) CN108866585B (en)
WO (1) WO2018205307A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416782A (en) * 2019-08-27 2019-11-05 问问智能信息科技有限公司 A kind of charging contact composite structure and preparation method thereof
CN110829080B (en) * 2019-10-30 2021-06-18 富士康(昆山)电脑接插件有限公司 Conductive terminal
CN111466687A (en) * 2020-05-20 2020-07-31 东莞美景实业有限公司 Manufacturing process of mobile phone ornament
CN113897648A (en) * 2021-11-22 2022-01-07 东莞中探探针有限公司 Connector terminal electroplating process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480523A (en) * 1964-03-04 1969-11-25 Int Nickel Co Deposition of platinum-group metals
GB1356701A (en) * 1971-01-07 1974-06-12 Oxy Metal Finishing Europ Sa Method for depositing a metal coating on a titanium or titanium- alloy component and titanium or titanium-alloy components obtained by the carrying out of this method
US3892638A (en) * 1973-06-21 1975-07-01 Oxy Metal Industries Corp Electrolyte and method for electrodepositing rhodium-ruthenium alloys
JPS543825B1 (en) * 1970-12-26 1979-02-27
JPS63310993A (en) * 1987-06-10 1988-12-19 Bikutoria:Kk Plating method of noble metal on titanium-base stock
JPH10237691A (en) * 1997-02-20 1998-09-08 Samsung Aerospace Ind Ltd Multilayer plated lead frame
US20090202862A1 (en) * 2006-06-26 2009-08-13 Liang Chen Electroplated device and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL241456A (en) * 1958-07-22 1900-01-01
US3309292A (en) * 1964-02-28 1967-03-14 Richard L Andrews Method for obtaining thick adherent coatings of platinum metals on refractory metals
US4203810A (en) * 1970-03-25 1980-05-20 Imi Marston Limited Electrolytic process employing electrodes having coatings which comprise platinum
CN103614752B (en) * 2013-12-10 2016-03-30 西部新锆核材料科技有限公司 A kind of zirconium material copper coating method
US10441943B2 (en) * 2014-12-11 2019-10-15 Tanaka Kikinzoku Kogyo K.K. Catalyst for hydrogen peroxide decomposition, process for producing the same, and method for decomposing hydrogen peroxide using the catalyst
CN106245084A (en) * 2016-07-29 2016-12-21 成都立威讯科技有限公司 A kind of quasiconductor molybdenum sheet rhodanizing technique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480523A (en) * 1964-03-04 1969-11-25 Int Nickel Co Deposition of platinum-group metals
JPS543825B1 (en) * 1970-12-26 1979-02-27
GB1356701A (en) * 1971-01-07 1974-06-12 Oxy Metal Finishing Europ Sa Method for depositing a metal coating on a titanium or titanium- alloy component and titanium or titanium-alloy components obtained by the carrying out of this method
US3892638A (en) * 1973-06-21 1975-07-01 Oxy Metal Industries Corp Electrolyte and method for electrodepositing rhodium-ruthenium alloys
JPS63310993A (en) * 1987-06-10 1988-12-19 Bikutoria:Kk Plating method of noble metal on titanium-base stock
JPH10237691A (en) * 1997-02-20 1998-09-08 Samsung Aerospace Ind Ltd Multilayer plated lead frame
US20090202862A1 (en) * 2006-06-26 2009-08-13 Liang Chen Electroplated device and preparation method thereof

Also Published As

Publication number Publication date
WO2018205307A1 (en) 2018-11-15
CN108866585B (en) 2021-01-05
JP7078232B2 (en) 2022-05-31
CN108866585A (en) 2018-11-23

Similar Documents

Publication Publication Date Title
JP7078232B2 (en) Electroplating process on the surface of refractory metal or stainless steel with an electroplating layer on the surface, and refractory metal or stainless steel
JPH03501502A (en) How to plate on titanium
CN109797412A (en) A method of utilizing silver-plated improvement copper aluminum composite material interface
CN103484905B (en) A kind of method of electroplating rhodium layer
JP2009099548A (en) Silver-clad composite material for movable contact and its manufacturing method
CN110846697B (en) Method for repairing nickel-plated layer of metal plated part
JP6086531B2 (en) Silver plating material
JPS591666A (en) Continuous plating method with tin or tin alloy
US2195231A (en) Art of coating metals
US2092130A (en) Anodic cleaning process
JP4558823B2 (en) Silver-coated composite material for movable contact and method for producing the same
WO2018166047A1 (en) Method for electroplating contact strip
TWI806422B (en) Highly anti-corrosion layered structure and manufacturing method thereof
JP2009099549A5 (en)
JP2018053315A (en) Silver plated material and production method thereof
US2330608A (en) Preparing stock for coating and electroplating
JP2009084590A (en) Method for producing metal plated stainless steel sheet material
RU2651801C1 (en) Method of a thin heat-resistant electric conductor manufacturing
JPS60131996A (en) Plated stainless steel and its production
JPH02255285A (en) Production of lead composite steel sheet
JPH0741985A (en) Production of nickel-phosphorus alloy plating
CN102451941A (en) Pretreating method for improving brazing performance of stainless steel
JP5536533B2 (en) Method for producing carbon thin film-attached copper material
JP2018028119A (en) Plated structure
WO2015122301A1 (en) Porous metal foil and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220308

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R150 Certificate of patent or registration of utility model

Ref document number: 7078232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150