JP2020516427A - 腫瘍進行のrecist評価 - Google Patents
腫瘍進行のrecist評価 Download PDFInfo
- Publication number
- JP2020516427A JP2020516427A JP2020505539A JP2020505539A JP2020516427A JP 2020516427 A JP2020516427 A JP 2020516427A JP 2020505539 A JP2020505539 A JP 2020505539A JP 2020505539 A JP2020505539 A JP 2020505539A JP 2020516427 A JP2020516427 A JP 2020516427A
- Authority
- JP
- Japan
- Prior art keywords
- lesions
- determining
- image data
- lesion
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
- G06T7/0016—Biomedical image inspection using an image reference approach involving temporal comparison
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/0035—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
- A61B5/015—By temperature mapping of body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1073—Measuring volume, e.g. of limbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4842—Monitoring progression or stage of a disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4887—Locating particular structures in or on the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/211—Selection of the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/2431—Multiple classes
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Public Health (AREA)
- Artificial Intelligence (AREA)
- Pathology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Evolutionary Computation (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Quality & Reliability (AREA)
- Geometry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Optics & Photonics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Databases & Information Systems (AREA)
- Pulmonology (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB1705876.9 | 2017-04-11 | ||
| GBGB1705876.9A GB201705876D0 (en) | 2017-04-11 | 2017-04-11 | Recist |
| PCT/GB2018/050969 WO2018189541A1 (en) | 2017-04-11 | 2018-04-11 | Recist assessment of tumour progression |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2020516427A true JP2020516427A (ja) | 2020-06-11 |
| JP2020516427A5 JP2020516427A5 (enExample) | 2021-05-06 |
Family
ID=58744797
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020505539A Pending JP2020516427A (ja) | 2017-04-11 | 2018-04-11 | 腫瘍進行のrecist評価 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US11593943B2 (enExample) |
| EP (1) | EP3610456A1 (enExample) |
| JP (1) | JP2020516427A (enExample) |
| GB (1) | GB201705876D0 (enExample) |
| WO (1) | WO2018189541A1 (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2022096188A (ja) * | 2020-12-17 | 2022-06-29 | 株式会社クボタ | 検査装置及び検査方法 |
| KR20220105723A (ko) * | 2021-01-20 | 2022-07-28 | 재단법인 아산사회복지재단 | 인공 신경망 기반의 의료 영상 분석 장치, 방법 및 이의 학습 방법 |
| JPWO2023053364A1 (enExample) * | 2021-09-30 | 2023-04-06 | ||
| WO2025053296A1 (ko) * | 2023-09-04 | 2025-03-13 | 프로메디우스 주식회사 | 인공 신경망 기반의 의료 영상 분석 장치, 방법 및 이의 학습 방법 |
| WO2024242525A3 (ko) * | 2023-05-19 | 2025-08-21 | 주식회사 루닛 | 병리 슬라이드 이미지를 분석하는 방법 및 장치 |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2017348111B2 (en) | 2016-10-27 | 2023-04-06 | Progenics Pharmaceuticals, Inc. | Network for medical image analysis, decision support system, and related graphical user interface (GUI) applications |
| GB201705876D0 (en) | 2017-04-11 | 2017-05-24 | Kheiron Medical Tech Ltd | Recist |
| GB201705911D0 (en) | 2017-04-12 | 2017-05-24 | Kheiron Medical Tech Ltd | Abstracts |
| US11341631B2 (en) * | 2017-08-09 | 2022-05-24 | Shenzhen Keya Medical Technology Corporation | System and method for automatically detecting a physiological condition from a medical image of a patient |
| US10973486B2 (en) | 2018-01-08 | 2021-04-13 | Progenics Pharmaceuticals, Inc. | Systems and methods for rapid neural network-based image segmentation and radiopharmaceutical uptake determination |
| DK3806744T3 (da) | 2018-06-14 | 2022-05-23 | Kheiron Medical Tech Ltd | Øjeblikkelig undersøgelse |
| CN109124669A (zh) * | 2018-08-30 | 2019-01-04 | 沈阳柏敖生信生物科技有限公司 | 一种整形前ct数据测量方法 |
| CN109528230B (zh) * | 2018-11-21 | 2021-08-17 | 山东浪潮科学研究院有限公司 | 一种基于多级变换网络的乳腺肿瘤分割方法及装置 |
| CN111292289B (zh) * | 2018-12-07 | 2023-09-26 | 中国科学院深圳先进技术研究院 | 基于分割网络的ct肺肿瘤分割方法、装置、设备及介质 |
| US11657508B2 (en) | 2019-01-07 | 2023-05-23 | Exini Diagnostics Ab | Systems and methods for platform agnostic whole body image segmentation |
| TWI872062B (zh) | 2019-04-24 | 2025-02-11 | 美商普吉尼製藥公司 | 用於偵測轉移之骨掃描影像之自動及互動式分析系統、裝置及方法 |
| US11948283B2 (en) | 2019-04-24 | 2024-04-02 | Progenics Pharmaceuticals, Inc. | Systems and methods for interactive adjustment of intensity windowing in nuclear medicine images |
| US12417533B2 (en) | 2019-09-27 | 2025-09-16 | Progenics Pharmaceuticals, Inc. | Systems and methods for artificial intelligence-based image analysis for cancer assessment |
| US11564621B2 (en) | 2019-09-27 | 2023-01-31 | Progenies Pharmacenticals, Inc. | Systems and methods for artificial intelligence-based image analysis for cancer assessment |
| US11900597B2 (en) | 2019-09-27 | 2024-02-13 | Progenics Pharmaceuticals, Inc. | Systems and methods for artificial intelligence-based image analysis for cancer assessment |
| US11321844B2 (en) | 2020-04-23 | 2022-05-03 | Exini Diagnostics Ab | Systems and methods for deep-learning-based segmentation of composite images |
| US11386988B2 (en) | 2020-04-23 | 2022-07-12 | Exini Diagnostics Ab | Systems and methods for deep-learning-based segmentation of composite images |
| US11721428B2 (en) | 2020-07-06 | 2023-08-08 | Exini Diagnostics Ab | Systems and methods for artificial intelligence-based image analysis for detection and characterization of lesions |
| CN111870279B (zh) * | 2020-07-31 | 2022-01-28 | 西安电子科技大学 | 超声图像左室心肌的分割方法、系统及应用 |
| US11610306B2 (en) | 2020-12-16 | 2023-03-21 | Industrial Technology Research Institute | Medical image analysis method and device |
| US12198038B2 (en) * | 2020-12-31 | 2025-01-14 | Deepx Co., Ltd. | Method for artificial neural network and neural processing unit |
| CN113658106B (zh) * | 2021-07-21 | 2025-03-07 | 杭州深睿博联科技有限公司 | 一种基于腹部增强ct的肝脏病灶自动诊断系统 |
| CN113781390B (zh) * | 2021-07-28 | 2025-06-03 | 杭州深睿博联科技有限公司 | 一种基于半监督学习的胰腺囊肿鉴别方法和系统 |
| CO2022000507A1 (es) * | 2022-01-21 | 2022-01-28 | Indigo Tech S A S | Sistema y método para caracterizar tumores pulmonares (sólidos, subsólidos y vidrio esmerilado) basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo |
| US20240428401A1 (en) * | 2023-06-22 | 2024-12-26 | Siemens Healthineers Ag | Ai-based workflow for the assessment of tumors from medical images |
| WO2025223980A1 (en) | 2024-04-22 | 2025-10-30 | Sycai Technologies, Sl | Method, system and computer program for identification and temporal tracking of equivalent lesions in medical images |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006255412A (ja) * | 2005-03-14 | 2006-09-28 | General Electric Co <Ge> | 腫瘍量を監視する方法及びシステム |
| JP2016534709A (ja) * | 2013-10-28 | 2016-11-10 | モレキュラー デバイシーズ, エルエルシー | 顕微鏡画像内の個々の細胞を分類および識別するための方法およびシステム |
Family Cites Families (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6075879A (en) | 1993-09-29 | 2000-06-13 | R2 Technology, Inc. | Method and system for computer-aided lesion detection using information from multiple images |
| EP0850405A2 (en) | 1995-09-19 | 1998-07-01 | Morphometrix Technologies Inc. | A neural network assisted multi-spectral segmentation system |
| US6324532B1 (en) | 1997-02-07 | 2001-11-27 | Sarnoff Corporation | Method and apparatus for training a neural network to detect objects in an image |
| US20050113651A1 (en) * | 2003-11-26 | 2005-05-26 | Confirma, Inc. | Apparatus and method for surgical planning and treatment monitoring |
| US7430321B2 (en) * | 2004-09-09 | 2008-09-30 | Siemens Medical Solutions Usa, Inc. | System and method for volumetric tumor segmentation using joint space-intensity likelihood ratio test |
| US7783094B2 (en) | 2005-06-02 | 2010-08-24 | The Medipattern Corporation | System and method of computer-aided detection |
| US7809175B2 (en) | 2005-07-01 | 2010-10-05 | Hologic, Inc. | Displaying and navigating computer-aided detection results on a review workstation |
| US8238637B2 (en) | 2006-10-25 | 2012-08-07 | Siemens Computer Aided Diagnosis Ltd. | Computer-aided diagnosis of malignancies of suspect regions and false positives in images |
| US7903861B2 (en) | 2006-12-28 | 2011-03-08 | Carestream Health, Inc. | Method for classifying breast tissue density using computed image features |
| US20100158332A1 (en) | 2008-12-22 | 2010-06-24 | Dan Rico | Method and system of automated detection of lesions in medical images |
| US8064677B2 (en) * | 2009-11-25 | 2011-11-22 | Fujifilm Corporation | Systems and methods for measurement of objects of interest in medical images |
| US8582858B2 (en) | 2009-12-17 | 2013-11-12 | The Regents Of The University Of California | Method and apparatus for quantitative analysis of breast density morphology based on MRI |
| US9047664B2 (en) | 2013-05-31 | 2015-06-02 | Kathryn Pearson Peyton | Apparatus and method for utilizing mammogram images for verification |
| US9741116B2 (en) | 2013-08-29 | 2017-08-22 | Mayo Foundation For Medical Education And Research | System and method for boundary classification and automatic polyp detection |
| US8879813B1 (en) * | 2013-10-22 | 2014-11-04 | Eyenuk, Inc. | Systems and methods for automated interest region detection in retinal images |
| US10376230B2 (en) | 2013-11-19 | 2019-08-13 | Icad, Inc. | Obtaining breast density measurements and classifications |
| US9922433B2 (en) | 2015-05-29 | 2018-03-20 | Moira F. Schieke | Method and system for identifying biomarkers using a probability map |
| CN106096491B (zh) | 2016-02-04 | 2022-04-12 | 上海市第一人民医院 | 一种眼底彩色照相图像中微动脉瘤自动化识别方法 |
| CN105931226A (zh) | 2016-04-14 | 2016-09-07 | 南京信息工程大学 | 基于深度学习的自适应椭圆拟合细胞自动检测分割方法 |
| CN106204587B (zh) | 2016-05-27 | 2019-01-08 | 浙江德尚韵兴图像科技有限公司 | 基于深度卷积神经网络和区域竞争模型的多器官分割方法 |
| WO2017210690A1 (en) | 2016-06-03 | 2017-12-07 | Lu Le | Spatial aggregation of holistically-nested convolutional neural networks for automated organ localization and segmentation in 3d medical scans |
| US9589374B1 (en) | 2016-08-01 | 2017-03-07 | 12 Sigma Technologies | Computer-aided diagnosis system for medical images using deep convolutional neural networks |
| US10049457B2 (en) | 2016-08-29 | 2018-08-14 | CephX Technologies Ltd. | Automated cephalometric analysis using machine learning |
| US20180129900A1 (en) | 2016-11-04 | 2018-05-10 | Siemens Healthcare Gmbh | Anonymous and Secure Classification Using a Deep Learning Network |
| US10127659B2 (en) | 2016-11-23 | 2018-11-13 | General Electric Company | Deep learning medical systems and methods for image acquisition |
| US11449985B2 (en) | 2016-12-02 | 2022-09-20 | Regents Of The University Of Minnesota | Computer vision for cancerous tissue recognition |
| JP2020510463A (ja) | 2017-01-27 | 2020-04-09 | アーテリーズ インコーポレイテッド | 全層畳み込みネットワークを利用する自動化されたセグメンテーション |
| US10037601B1 (en) | 2017-02-02 | 2018-07-31 | International Business Machines Corporation | Systems and methods for automatic detection of architectural distortion in two dimensional mammographic images |
| GB201705876D0 (en) | 2017-04-11 | 2017-05-24 | Kheiron Medical Tech Ltd | Recist |
| GB201705911D0 (en) | 2017-04-12 | 2017-05-24 | Kheiron Medical Tech Ltd | Abstracts |
-
2017
- 2017-04-11 GB GBGB1705876.9A patent/GB201705876D0/en not_active Ceased
-
2018
- 2018-04-11 EP EP18719631.6A patent/EP3610456A1/en active Pending
- 2018-04-11 US US16/604,656 patent/US11593943B2/en active Active
- 2018-04-11 WO PCT/GB2018/050969 patent/WO2018189541A1/en not_active Ceased
- 2018-04-11 JP JP2020505539A patent/JP2020516427A/ja active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006255412A (ja) * | 2005-03-14 | 2006-09-28 | General Electric Co <Ge> | 腫瘍量を監視する方法及びシステム |
| JP2016534709A (ja) * | 2013-10-28 | 2016-11-10 | モレキュラー デバイシーズ, エルエルシー | 顕微鏡画像内の個々の細胞を分類および識別するための方法およびシステム |
Non-Patent Citations (1)
| Title |
|---|
| J. LONG ET AL.: "Fully Convolutional Networks for Semantic Segmentation", PROC. OF IEEE COMPUTER VISION AND PATTERN RECOGNITION, JPN6022008723, 2015, pages 3431 - 3440, ISSN: 0004893108 * |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2022096188A (ja) * | 2020-12-17 | 2022-06-29 | 株式会社クボタ | 検査装置及び検査方法 |
| JP7101236B2 (ja) | 2020-12-17 | 2022-07-14 | 株式会社クボタ | 検査装置及び検査方法 |
| KR20220105723A (ko) * | 2021-01-20 | 2022-07-28 | 재단법인 아산사회복지재단 | 인공 신경망 기반의 의료 영상 분석 장치, 방법 및 이의 학습 방법 |
| KR102548203B1 (ko) * | 2021-01-20 | 2023-06-29 | 프로메디우스 주식회사 | 인공 신경망 기반의 의료 영상 분석 장치, 방법 및 이의 학습 방법 |
| JPWO2023053364A1 (enExample) * | 2021-09-30 | 2023-04-06 | ||
| JP7395767B2 (ja) | 2021-09-30 | 2023-12-11 | 楽天グループ株式会社 | 情報処理装置、情報処理方法及び情報処理プログラム |
| WO2024242525A3 (ko) * | 2023-05-19 | 2025-08-21 | 주식회사 루닛 | 병리 슬라이드 이미지를 분석하는 방법 및 장치 |
| WO2025053296A1 (ko) * | 2023-09-04 | 2025-03-13 | 프로메디우스 주식회사 | 인공 신경망 기반의 의료 영상 분석 장치, 방법 및 이의 학습 방법 |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2018189541A1 (en) | 2018-10-18 |
| US11593943B2 (en) | 2023-02-28 |
| EP3610456A1 (en) | 2020-02-19 |
| GB201705876D0 (en) | 2017-05-24 |
| US20200074634A1 (en) | 2020-03-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2020516427A (ja) | 腫瘍進行のrecist評価 | |
| Hu et al. | Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions | |
| EP3399501B1 (en) | Multi-scale deep reinforcement machine learning for n-dimensional segmentation in medical imaging | |
| AU2019285393B2 (en) | Second reader | |
| Ashreetha et al. | Soft optimization techniques for automatic liver cancer detection in abdominal liver images | |
| US10664979B2 (en) | Method and system for deep motion model learning in medical images | |
| EP3576020A1 (en) | Methods for generating synthetic training data and for training deep learning algorithms for tumor lesion characterization, method and system for tumor lesion characterization, computer program and electronically readable storage medium | |
| JP2020516428A (ja) | マンモグラフィにおける密度の評価 | |
| US10706534B2 (en) | Method and apparatus for classifying a data point in imaging data | |
| Rani et al. | Superpixel with nanoscale imaging and boosted deep convolutional neural network concept for lung tumor classification | |
| US20220076829A1 (en) | Method and apparatus for analyzing medical image data in a latent space representation | |
| CN107688815A (zh) | 医学图像的分析方法和分析系统以及存储介质 | |
| CN118968186A (zh) | 医疗图像数据集的自适应图像分类方法、系统及存储介质 | |
| Das et al. | Particle swarm optimizer variants for multi-level thresholding: Theory, performance enhancement and evaluation | |
| US12211204B2 (en) | AI driven longitudinal liver focal lesion analysis | |
| CN113160199A (zh) | 影像识别方法、装置、计算机设备和存储介质 | |
| EP4445329B1 (en) | Selecting training data for annotation | |
| CN119948534A (zh) | 专家指导改进的图像分割 | |
| WO2023017438A1 (en) | System and method for medical image translation | |
| US20250054151A1 (en) | Method and system for processing an image | |
| KR102851345B1 (ko) | 의료영상의 영역분할방법 및 그 장치 | |
| Aranguren et al. | Segmentation of magnetic resonance brain images through the self-adaptive differential evolution algorithm and the minimum cross-entropy criterion | |
| Alon | Reinforcement Learning for Cell Segmentation in Histopathological and Fluorescent Microscopy | |
| Allaoui et al. | MixLVMM: A Mixture of Lightweight Vision Mamba Model for Enhancing Skin Lesion Segmentation Across High Tone Variability | |
| Jafari et al. | EL-IGrowCut: MRI Brain Tissue Segmentation Based on Ensemble Learning and Improve GrowCut Techniques |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200318 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210329 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210329 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220222 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220308 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220606 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20221011 |