JP2020204723A - Visualization probe and endoscope - Google Patents

Visualization probe and endoscope Download PDF

Info

Publication number
JP2020204723A
JP2020204723A JP2019112674A JP2019112674A JP2020204723A JP 2020204723 A JP2020204723 A JP 2020204723A JP 2019112674 A JP2019112674 A JP 2019112674A JP 2019112674 A JP2019112674 A JP 2019112674A JP 2020204723 A JP2020204723 A JP 2020204723A
Authority
JP
Japan
Prior art keywords
rear end
joint surface
axis
end joint
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019112674A
Other languages
Japanese (ja)
Inventor
河野 治彦
Haruhiko Kono
治彦 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
iPro Co Ltd
Original Assignee
Panasonic iPro Sensing Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic iPro Sensing Solutions Co Ltd filed Critical Panasonic iPro Sensing Solutions Co Ltd
Priority to JP2019112674A priority Critical patent/JP2020204723A/en
Priority to CN202010556954.6A priority patent/CN112099224A/en
Publication of JP2020204723A publication Critical patent/JP2020204723A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports

Abstract

To provide a visualization probe capable of fixing the observation direction to the desired direction with a strong structure in a limited narrow space, and an endoscope.SOLUTION: A visualization probe 11 includes: a front end unit 13 accommodating an imaging unit that receives imaging light captured from a tip surface 19 orthogonal to the first axis 17, the opposite side of the tip surface 19 of which is a rear-end joint surface 23 formed being tilt at an arbitrary tilt angle θ1 with respect to the first axis; and a rear-end unit 15 in which one side along a second axis 25 is formed as a front end joint surface 27 which is joined to the rear end joint surface 23 tilt at an arbitrary tilt angle θ2 with respect to the second axis 25.SELECTED DRAWING: Figure 5

Description

本開示は、可視化プローブおよび内視鏡に関する。 The present disclosure relates to visualization probes and endoscopes.

特許文献1には、ジェットエンジン内の被検体であるタービンブレードの検査に用いられる内視鏡システムが開示されている。ジェットエンジン内では、複数のタービンブレードのそれぞれが、回転体の外周部に放射状に立設される。ジェットエンジンの外周部には、内視鏡を挿入するための複数のアクセスポートのそれぞれが設けられる。内視鏡は、アクセスポートから挿入される。タービンロータを回転させると、回転体は、周方向へ回転する。各タービンブレードは、回転体の回転とともに周方向へ移動し、順次内視鏡の視野に入る。これにより、アクセスポートから挿入された内視鏡は、回転体の外周部に放射状に立設されたそれぞれのタービンブレードが撮像可能となる。ブレードの撮像位置を変更するためには、画像処理でブレードを検知し、湾曲部を所定の湾曲角度に変更し、ブレードの画像を取得できる。 Patent Document 1 discloses an endoscopic system used for inspecting a turbine blade which is a subject in a jet engine. In the jet engine, each of the plurality of turbine blades is erected radially on the outer peripheral portion of the rotating body. Each of a plurality of access ports for inserting an endoscope is provided on the outer periphery of the jet engine. The endoscope is inserted through the access port. When the turbine rotor is rotated, the rotating body rotates in the circumferential direction. Each turbine blade moves in the circumferential direction as the rotating body rotates, and sequentially enters the field of view of the endoscope. As a result, the endoscope inserted from the access port can take an image of each turbine blade erected radially on the outer peripheral portion of the rotating body. In order to change the imaging position of the blade, the blade can be detected by image processing, the curved portion can be changed to a predetermined bending angle, and an image of the blade can be acquired.

特開2016−209460号公報Japanese Unexamined Patent Publication No. 2016-209460

しかしながら、特許文献1のような従来技術においては、内視鏡において機械内に固定された特定部品の摩耗等を観察する際に、振動その他の劣悪な外部環境に長時間晒されると、次のような課題が生じる。具体的には、限られた固定手段あるいは限られた設置空間内で、所望の方向に内視鏡の撮像部を確実かつ強固に保持し続けることができない。 However, in the prior art as in Patent Document 1, when observing the wear of a specific part fixed in a machine with an endoscope for a long time, if it is exposed to vibration or other poor external environment for a long time, the following Such a problem arises. Specifically, it is not possible to reliably and firmly hold the imaging unit of the endoscope in a desired direction within a limited fixing means or a limited installation space.

本開示は、上記従来の事情に鑑みて案出され、限られた狭小設置空間において強固な構造で観察方向を所望の方向に向けて固定できる可視化プローブおよび内視鏡を提供することを目的とする。 The present disclosure has been devised in view of the above-mentioned conventional circumstances, and an object of the present disclosure is to provide a visualization probe and an endoscope capable of fixing an observation direction in a desired direction with a strong structure in a limited narrow installation space. To do.

本開示は、第1の軸線に直交する先端面から取り込んだ撮像光を受光する撮像ユニットを収容し、前記先端面と反対側が前記第1の軸線に対して任意の傾斜角度で傾斜する後端接合面として形成された先端部と、第2の軸線に沿う一方が前記第2の軸線に対して任意の傾斜角度で傾斜して前記後端接合面と接合される前端接合面として形成された後端部と、を備える、可視化プローブを提供する。 The present disclosure accommodates an imaging unit that receives imaging light captured from a front end surface orthogonal to the first axis, and a rear end whose side opposite to the front end surface is inclined at an arbitrary inclination angle with respect to the first axis. The tip portion formed as a joint surface and one along the second axis are formed as a front end joint surface that is inclined at an arbitrary inclination angle with respect to the second axis and is joined to the rear end joint surface. A visualization probe comprising a rear end is provided.

また、本開示は、第1の軸線に直交する先端面から取り込んだ撮像光を受光する撮像ユニットを収容し、前記先端面と反対側が前記第1の軸線に対して任意の傾斜角度で傾斜する後端接合面として形成された先端部と、第2の軸線に沿う一方が前記第2の軸線に対して任意の傾斜角度で傾斜して前記後端接合面と接合される前端接合面として形成された後端部と、を備える、内視鏡を提供する。 Further, the present disclosure accommodates an imaging unit that receives imaging light captured from a tip surface orthogonal to the first axis, and the side opposite to the tip surface is tilted at an arbitrary inclination angle with respect to the first axis. Formed as a front end joint surface formed as a rear end joint surface and one along the second axis is inclined at an arbitrary inclination angle with respect to the second axis to be joined to the rear end joint surface. Provided is an endoscope comprising, with a rear end.

本開示によれば、可視化プローブあるいは内視鏡において、限られた狭小設置空間において強固な構造で観察方向を所望の方向に向けて固定できる。 According to the present disclosure, in a visualization probe or an endoscope, the observation direction can be fixed in a desired direction with a strong structure in a limited narrow installation space.

実施の形態1に係る可視化プローブの先端側の外観を表す要部斜視図Perspective view of a main part showing the appearance of the tip side of the visualization probe according to the first embodiment. 図1に示した先端部を前方斜め上から見た分解斜視図An exploded perspective view of the tip shown in FIG. 1 as viewed diagonally from above. 図1に示した先端部を後方斜め上から見た分解斜視図An exploded perspective view of the tip shown in FIG. 1 as viewed diagonally from above. 図1に示した先端部の側断面図Side sectional view of the tip portion shown in FIG. 充填剤が充填されて接合された先端部および後端部の側断面図Side sectional view of the front end and the rear end filled with the filler and joined. 第1の軸線と第2の軸線とが直交方向で接合された先端部および後端部の外観斜視図External perspective view of the front end and the rear end where the first axis and the second axis are joined in the orthogonal direction. 先端外殻部材が回転される前の先端部の斜視図Perspective view of the tip before the tip outer shell member is rotated 先端外殻部材が90°回転された先端部の斜視図Perspective view of the tip portion where the tip outer shell member is rotated by 90 ° 回転機構を備える変形例に係る可視化プローブの後端部を透視した分解斜視図An exploded perspective view of the rear end of the visualization probe according to a modified example equipped with a rotation mechanism. リング状部品と蟻臍の係合状況を表す斜視図Perspective view showing the engagement state between the ring-shaped part and the ant navel 回転機構を介して相対回転自在に先端部と後端部が接合された変形例に係る可視化プローブの先端側の外観を表す要部斜視図Perspective view of the main part showing the appearance of the tip side of the visualization probe according to the modified example in which the tip end and the rear end are joined relative to each other via a rotation mechanism.

以下、適宜図面を参照しながら、本開示に係る可視化プローブおよび内視鏡を具体的に開示した実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるものであり、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, embodiments in which the visualization probe and endoscope according to the present disclosure are specifically disclosed will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations for substantially the same configuration may be omitted. This is to avoid unnecessary redundancy of the following description and to facilitate the understanding of those skilled in the art. It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.

(構成等)
図1は、実施の形態1に係る可視化プローブ11の先端側の外観を表す要部斜視図である。以下の説明において、「上」、「下」、「右」、「左」、「前」、「後」は、図1に示す、対応するそれぞれの方向に従う。
(Composition, etc.)
FIG. 1 is a perspective view of a main part showing the appearance of the tip end side of the visualization probe 11 according to the first embodiment. In the following description, "top", "bottom", "right", "left", "front", and "rear" follow the corresponding directions shown in FIG.

実施の形態1に係る可視化プローブ11は、例えば工業用内視鏡として使用され、工場等の製造ラインにおける製造機械等の点検システムに好適に用いることができる。この場合、可視化プローブ11は、製造機械等の少なくとも一方の横側から差し込まれて、製造機械等が備える機構部品(つまり、被観察対象)の劣化の有無を早期に検出するために使用される。機構部品は、一般的に、複数の構造部材あるいはリンク部材等が隣接する限られた狭小設置空間に設けられることが多い。可視化プローブ11は、このような狭小設置空間において強固な構造で、点検者にとって所望の方向に観察方向を向けて固定できるように構成される。 The visualization probe 11 according to the first embodiment is used, for example, as an industrial endoscope, and can be suitably used for an inspection system of a manufacturing machine or the like in a manufacturing line such as a factory. In this case, the visualization probe 11 is inserted from at least one side of the manufacturing machine or the like and is used to detect at an early stage whether or not the mechanical parts (that is, the object to be observed) of the manufacturing machine or the like are deteriorated. .. In general, mechanical parts are often provided in a limited narrow installation space in which a plurality of structural members or link members are adjacent to each other. The visualization probe 11 has a strong structure in such a narrow installation space, and is configured so that the inspector can face the observation direction in a desired direction and fix the visualization probe 11.

可視化プローブ11は、先端部13と、後端部15とを接合して構成される。実施の形態1において、先端部13および後端部15のそれぞれは、軸線に直交する断面形状が略正方形(正方形も含む)の角柱形状で形成される。なお、先端部13および後端部15のそれぞれの形状は、略正方形(上述参照)の角柱形状に限定されない。 The visualization probe 11 is configured by joining the front end portion 13 and the rear end portion 15. In the first embodiment, each of the front end portion 13 and the rear end portion 15 is formed in a prismatic shape having a substantially square (including a square) cross-sectional shape orthogonal to the axis. The shapes of the front end portion 13 and the rear end portion 15 are not limited to the prismatic shape of a substantially square (see above).

先端部13は、第1の軸線17(図5参照)に直交する先端面19から取り込んだ撮像光を受光する撮像ユニット21(図4参照)を収容する。先端部13は、先端面19と反対側が、第1の軸線17に対して任意の傾斜角度θ1(図5参照)で傾斜する後端接合面23として形成される。 The tip portion 13 accommodates an imaging unit 21 (see FIG. 4) that receives imaging light captured from a tip surface 19 orthogonal to the first axis 17 (see FIG. 5). The tip portion 13 is formed as a rear end joint surface 23 whose side opposite to the front end surface 19 is inclined at an arbitrary inclination angle θ1 (see FIG. 5) with respect to the first axis 17.

実施の形態1において、軸線とは、角柱状部材あるいは角筒状部材の中心を軸方向に沿って通る線をいう。また、実施の形態1において、軸線は、回転対称の対称軸ともなる。任意の傾斜角度θ1は、例えば45°となる。なお、任意の傾斜角度θ1は、45°に限定されない。 In the first embodiment, the axis refers to a line that passes through the center of the prismatic member or the prismatic member along the axial direction. Further, in the first embodiment, the axis also serves as a rotationally symmetric axis of symmetry. The arbitrary tilt angle θ1 is, for example, 45 °. The arbitrary inclination angle θ1 is not limited to 45 °.

後端部15は、第2の軸線25(図5参照)に沿う一方が、第2の軸線25に対して任意の傾斜角度θ2で傾斜した前端接合面27となる。この前端接合面27は、先端部13の後端接合面23と接合される。任意の傾斜角度θ2は、例えば135°となる。なお、任意の傾斜角度θ2は、135°に限定されない。なお、図5に示されるように、任意の傾斜角度θ1と任意の傾斜角度θ2との和は180°となる。 One of the rear end portions 15 along the second axis 25 (see FIG. 5) is a front end joint surface 27 inclined at an arbitrary inclination angle θ2 with respect to the second axis 25. The front end joint surface 27 is joined to the rear end joint surface 23 of the tip portion 13. The arbitrary tilt angle θ2 is, for example, 135 °. The arbitrary inclination angle θ2 is not limited to 135 °. As shown in FIG. 5, the sum of the arbitrary tilt angle θ1 and the arbitrary tilt angle θ2 is 180 °.

可視化プローブ11は、その納まり方向が、第1の軸線17および第2の軸線25のそれぞれに直交し、かつ後端接合面23および前端接合面27のそれぞれに平行な方向となる蟻臍29と蟻穴31とが、後端接合面23と前端接合面27とに渡って設けられている。可視化プローブ11は、先端部13と後端部15とが、この蟻臍29と蟻穴31を係合することにより、例えば図1に示す直線状の角柱形状となって組み立てられる。つまり、この場合には、可視化プローブ11は、前方向の被写体を観察可能(つまり、直視可能)である。 The visualization probe 11 has an ant umbilicus 29 whose fitting direction is orthogonal to each of the first axis 17 and the second axis 25 and parallel to each of the rear end joint surface 23 and the front end joint surface 27. A dovetail hole 31 is provided across the rear end joint surface 23 and the front end joint surface 27. The visualization probe 11 is assembled into a linear prism shape shown in FIG. 1, for example, by engaging the dovetail portion 29 and the dovetail hole 31 with the front end portion 13 and the rear end portion 15. That is, in this case, the visualization probe 11 can observe the subject in the front direction (that is, can directly see the subject).

図2は、図1に示した先端部13を前方斜め上から見た分解斜視図である。先端部13の先端面19には、撮像ユニット21を構成するレンズが配置される。レンズの上方には、例えば被写体を明るく照らす照明用のLED(Light Emission Diode)33が配置される。先端面19には、略正方形の前面板35が設けられる。前面板35には、レンズ,LED33をそれぞれ表出させるための観察用窓部37,照明用窓部39が形成されている。先端部13は、先端部上面41、先端部下面43、先端部左側面45、先端部右側面47に、雌ねじの形成された位置決め孔49が穿設されている。位置決め孔49は、雄ねじを有する治具を螺合することにより、内部の収容部品(例えば、撮像ユニット21を構成するセンサ保持部材51)を位置決め固定可能としている。 FIG. 2 is an exploded perspective view of the tip portion 13 shown in FIG. 1 as viewed from diagonally above. A lens constituting the image pickup unit 21 is arranged on the tip surface 19 of the tip portion 13. Above the lens, for example, an LED (Light Emission Diode) 33 for illumination that brightly illuminates the subject is arranged. A substantially square front plate 35 is provided on the tip surface 19. The front plate 35 is formed with an observation window portion 37 and an illumination window portion 39 for exposing the lens and the LED 33, respectively. The tip portion 13 is provided with positioning holes 49 in which female threads are formed in the tip portion upper surface 41, the tip portion lower surface 43, the tip portion left side surface 45, and the tip portion right side surface 47. The positioning hole 49 allows the internal housing component (for example, the sensor holding member 51 constituting the image pickup unit 21) to be positioned and fixed by screwing a jig having a male screw.

先端部13の後端接合面23からは、伝送ケーブル53が導出されている。可視化プローブ11は、伝送ケーブル53を介して、撮像ユニット21と基端側のビデオプロセッサ(図示略)との間で電力および撮像された撮像映像のデータの送受信が可能となる。伝送ケーブル53は、後端部15に挿通されてビデオプロセッサに接続される。なお、ビデオプロセッサは、伝送ケーブル53を介して伝送された撮像映像のデータに対して、所定の映像処理を施し、映像処理後の撮像映像のデータを表示データとして生成変換して、モニタ(図示略)に出力する。 A transmission cable 53 is led out from the rear end joint surface 23 of the tip portion 13. The visualization probe 11 can transmit and receive electric power and data of the captured image to be captured between the image pickup unit 21 and the video processor (not shown) on the proximal end side via the transmission cable 53. The transmission cable 53 is inserted through the rear end 15 and connected to the video processor. The video processor performs predetermined video processing on the captured video data transmitted via the transmission cable 53, generates and converts the captured video data after the video processing as display data, and monitors (illustrated). Output to).

図3は、図1に示した先端部13を後方斜め上から見た分解斜視図である。可視化プローブ11では、先端部13が先端外殻部材55を有し、後端部15が後端外殻部材57(図5参照)を有する。少なくとも先端外殻部材55は、硬質なステンレス製の角パイプ等からなる。角パイプは、軸線直交方向の断面が正方形となる。実施の形態1では、先端外殻部材55と後端外殻部材57との双方が正方形の角パイプとなる。ステンレス製の角パイプの肉厚は、例えば0.4mm程度となる。 FIG. 3 is an exploded perspective view of the tip portion 13 shown in FIG. 1 as viewed from diagonally above the rear. In the visualization probe 11, the tip portion 13 has a tip outer shell member 55, and the rear end portion 15 has a rear end outer shell member 57 (see FIG. 5). At least the tip outer shell member 55 is made of a hard stainless steel square pipe or the like. The square pipe has a square cross section in the direction orthogonal to the axis. In the first embodiment, both the front end outer shell member 55 and the rear end outer shell member 57 are square pipes. The wall thickness of the stainless steel square pipe is, for example, about 0.4 mm.

なお、先端外殻部材55および後端外殻部材57の材質は、それぞれステンレスに限定されず、その他の材質(例えば、硬質樹脂材である一般のエンジニアリングプラスチック等が使用されてもよい。 The material of the front end outer shell member 55 and the rear end outer shell member 57 is not limited to stainless steel, and other materials (for example, general engineering plastics which are hard resin materials) may be used.

図4は、図1に示した先端部13の側断面図である。先端部13の内方には、撮像ユニット21が収容される。撮像ユニット21は、観察対象側(つまり、対物側)から順に光軸59に沿って、第1レンズ61、絞り、第2レンズ63、スペーサ、第3レンズ65、センサカバーガラス67、イメージセンサ69の順に配置されている。これら第1レンズ61、絞り、第2レンズ63、スペーサ、第3レンズ65は、外周が鏡筒71の内周で強固に保持されてレンズユニット73を構成する。レンズユニット73は、イメージセンサ側の後端が、円筒状に形成されたセンサ保持部材51の前側内周に接着剤等により固定される。このセンサ保持部材51の後側内周には、センサカバーガラス67の外周が嵌合して接着剤等により固定される。これにより、撮像ユニット21は、レンズユニット73とイメージセンサ69とが、センサ保持部材51により同軸に位置決めされて固定される。 FIG. 4 is a side sectional view of the tip portion 13 shown in FIG. The imaging unit 21 is housed inside the tip portion 13. The image pickup unit 21 includes a first lens 61, an aperture, a second lens 63, a spacer, a third lens 65, a sensor cover glass 67, and an image sensor 69 in order from the observation target side (that is, the objective side) along the optical axis 59. They are arranged in the order of. The outer periphery of the first lens 61, the aperture, the second lens 63, the spacer, and the third lens 65 is firmly held by the inner circumference of the lens barrel 71 to form the lens unit 73. The rear end of the lens unit 73 on the image sensor side is fixed to the inner circumference of the front side of the sensor holding member 51 formed in a cylindrical shape with an adhesive or the like. The outer circumference of the sensor cover glass 67 is fitted to the inner circumference of the rear side of the sensor holding member 51 and fixed with an adhesive or the like. As a result, in the image pickup unit 21, the lens unit 73 and the image sensor 69 are coaxially positioned and fixed by the sensor holding member 51.

センサ保持部材51は、先端外殻部材55の上面に穿設された位置決め孔49に上記の治具(不図示)が螺合される。センサ保持部材51は、位置決め孔49に螺合した治具が締め付けられることにより、先端外殻部材55の底面に押しつけられる。底面には、予め接着剤を塗布しておく。これにより、撮像ユニット21は、先端外殻部材55に対して高精度に位置決めされて、強固に固定される。なお、治具は、撮像ユニット21が接着固定された後、位置決め孔49から取り外される。 In the sensor holding member 51, the above jig (not shown) is screwed into the positioning hole 49 formed in the upper surface of the tip outer shell member 55. The sensor holding member 51 is pressed against the bottom surface of the tip outer shell member 55 by tightening the jig screwed into the positioning hole 49. An adhesive is applied to the bottom surface in advance. As a result, the image pickup unit 21 is positioned with high accuracy with respect to the tip outer shell member 55 and is firmly fixed. The jig is removed from the positioning hole 49 after the imaging unit 21 is adhesively fixed.

イメージセンサ69の背面には、イメージセンサ69からの電気信号を伝送するための伝送ケーブル53が電気的に接続される。伝送ケーブル53は、先端の可撓基板部分(例えばFPC:Flexible Printed Circuits)におけるケーブル導体が、センサ基板75に設けられた複数のバンプ77と半田付けなどにより導通接続される。先端部13の後端接合面23から導出された伝送ケーブル53は、後端部15の前端接合面27から後端部15の内方に通される。なお、伝送ケーブル53は、可撓基板部分に複数の電装部品79が実装されてもよい。 A transmission cable 53 for transmitting an electric signal from the image sensor 69 is electrically connected to the back surface of the image sensor 69. In the transmission cable 53, a cable conductor in a flexible substrate portion (for example, FPC: Flexible Printed Circuits) at the tip thereof is electrically connected to a plurality of bumps 77 provided on the sensor substrate 75 by soldering or the like. The transmission cable 53 led out from the rear end joint surface 23 of the front end portion 13 is passed from the front end joint surface 27 of the rear end portion 15 to the inside of the rear end portion 15. The transmission cable 53 may have a plurality of electrical components 79 mounted on the flexible substrate portion.

先端外殻部材55には、撮像ユニット21の上方に、照明用光源であるLED33が設けられる。LED33は、前面板35の照明用窓部39の背部に配置されて、透明なカバーガス等により覆われる。LED33は、例えば伝送ケーブル53に電気的に接続された可撓基板等に実装される。なお、LED33には、駆動時の熱を放熱するための伝熱部材81が接触して設けられていても良い。 The tip outer shell member 55 is provided with an LED 33, which is a light source for illumination, above the image pickup unit 21. The LED 33 is arranged on the back of the lighting window 39 of the front plate 35 and is covered with a transparent cover gas or the like. The LED 33 is mounted on, for example, a flexible substrate electrically connected to the transmission cable 53. The LED 33 may be provided with a heat transfer member 81 in contact with the LED 33 to dissipate heat during driving.

可視化プローブ11は、先端部13の内方に充填剤83が充填され、固化される。これにより、先端部13は、上記の撮像ユニット21、伝送ケーブル53およびLED33が、先端外殻部材55の内方で固化した充填剤83に埋入され、一体に固定される。充填剤83は、例えばLED33からの漏れ光がレンズユニット73を構成するレンズに入射しないように遮光性を有することが好ましい。 In the visualization probe 11, the filler 83 is filled inside the tip portion 13 and solidified. As a result, the tip portion 13 is integrally fixed with the image pickup unit 21, the transmission cable 53, and the LED 33 embedded in the filler 83 solidified inside the tip outer shell member 55. The filler 83 preferably has a light-shielding property so that, for example, the light leaking from the LED 33 does not enter the lens constituting the lens unit 73.

図5は、充填剤83が充填されて接合された先端部13および後端部15の側断面図である。可視化プローブ11は、少なくとも先端外殻部材55の後端接合面23と、後端外殻部材57の前端接合面27とに渡って充填剤83が充填されて固化される。従って、可視化プローブ11は、外殻の蟻臍29および蟻穴31による係合構造に加えて、接合面に渡って内部で固化した充填剤83により、先端部13と後端部15とが強固に固定される。 FIG. 5 is a side sectional view of the front end portion 13 and the rear end portion 15 to which the filler 83 is filled and joined. The visualization probe 11 is filled with the filler 83 and solidified at least over the rear end joint surface 23 of the tip outer shell member 55 and the front end joint surface 27 of the rear end outer shell member 57. Therefore, in the visualization probe 11, the tip portion 13 and the rear end portion 15 are strengthened by the filler 83 solidified inside over the joint surface in addition to the engagement structure by the dovetail navel 29 and the dovetail hole 31 of the outer shell. Is fixed to.

図6は、第1の軸線17と第2の軸線25とが直交方向で接合された先端部13および後端部15の外観斜視図である。可視化プローブ11は、充填剤83の充填前において、先端部13と後端部15とを180°相対回転させた向きでも、後端接合面23と前端接合面27とを接合することができる。つまり、可視化プローブ11は、前方向を観察可能な直視鏡として組み立てることができるとともに、側視鏡としても組み立てることが可能となる。直視鏡あるいは側視鏡としての機能の切り替えは、点検者のニーズに応じて、適宜使い分けられてよい。側視鏡として組み立てられた可視化プローブ11は、図6に示すように、後端部15の第2の軸線25に対して、第1の軸線17が直交する向きで先端部13が接合される。この場合においても、蟻臍29と蟻穴31とを係合させた後、後端接合面23と前端接合面27とに渡って充填剤83が充填される。これにより、可視化プローブ11は、後端部15に対して観察方向が垂直方向に向けられたL字形の側視鏡として強固に組み付けられる。 FIG. 6 is an external perspective view of a front end portion 13 and a rear end portion 15 in which the first axis 17 and the second axis 25 are joined in an orthogonal direction. The visualization probe 11 can join the rear end joint surface 23 and the front end joint surface 27 even in the direction in which the front end portion 13 and the rear end portion 15 are relatively rotated by 180 ° before filling the filler 83. That is, the visualization probe 11 can be assembled as a direct view mirror capable of observing the front direction, and can also be assembled as a side view mirror. The switching of the function as a direct view mirror or a side view mirror may be appropriately used according to the needs of the inspector. As shown in FIG. 6, in the visualization probe 11 assembled as a side endoscope, the tip portion 13 is joined in a direction in which the first axis line 17 is orthogonal to the second axis line 25 of the rear end portion 15. .. Also in this case, after engaging the dovetail navel 29 and the dovetail hole 31, the filler 83 is filled over the rear end joint surface 23 and the front end joint surface 27. As a result, the visualization probe 11 is firmly assembled as an L-shaped side endoscope whose observation direction is perpendicular to the rear end portion 15.

側視鏡としての可視化プローブ11は、先端部13における第1の軸線17に沿う方向の距離Lfが正方形の一辺の長さLsの2倍よりも小さく形成される(Lf<2Ls)。このため、側視鏡として組立てられた可視化プローブ11は、後端部15の側面から垂直に突出する先端部13の突出長Lpは、正方形の一辺の長さLsよりも小さい。これにより、側視鏡としての可視化プローブ11は、狭小設置空間に対しても差し入れしやすく形成される。 The visualization probe 11 as a side endoscope is formed so that the distance Lf in the direction along the first axis 17 at the tip portion 13 is smaller than twice the length Ls of one side of the square (Lf <2Ls). Therefore, in the visualization probe 11 assembled as a side endoscope, the protruding length Lp of the tip portion 13 projecting vertically from the side surface of the rear end portion 15 is smaller than the length Ls of one side of the square. As a result, the visualization probe 11 as a side endoscope is formed so as to be easily inserted into a narrow installation space.

図7は、先端外殻部材55が回転される前の先端部13の斜視図である。可視化プローブ11は、少なくとも先端部13の第1の軸線17に直交する断面形状が、第1の軸線17を中心とした回転対称で形成される。ここで、回転対称とは、一つの図形を一定軸のまわりに一定の角度だけ回転移動しても変わらない性質をいう。この一定の軸を対称軸という。実施の形態1では、軸線が、対称軸となる。なお、回転の際の一定角度が180°、120°、90°等の場合をそれぞれ2回軸、3回軸、4回軸などと称す。実施の形態1では、先端部13と後端部15の軸線に直交する断面がともに正方形であるので、第1の軸線17および第2の軸線25は、ともに4回軸となる。これにより、可視化プローブ11は、先端外殻部材55の断面形状を略正方形としたことにより、撮像ユニット21の天地を、先端外殻部材55の4辺に対して、任意の4方向に設定できる。 FIG. 7 is a perspective view of the tip portion 13 before the tip outer shell member 55 is rotated. In the visualization probe 11, at least the cross-sectional shape of the tip portion 13 orthogonal to the first axis 17 is formed in rotational symmetry about the first axis 17. Here, rotational symmetry refers to a property that does not change even if one figure is rotated and moved by a certain angle around a certain axis. This constant axis is called the axis of symmetry. In the first embodiment, the axis is the axis of symmetry. The cases where the constant angle during rotation is 180 °, 120 °, 90 °, etc. are referred to as a 2-fold axis, a 3-fold axis, a 4-fold axis, and the like, respectively. In the first embodiment, since the cross sections of the front end portion 13 and the rear end portion 15 orthogonal to the axes are both square, the first axis 17 and the second axis 25 both have four axes. As a result, the visualization probe 11 has a substantially square cross-sectional shape of the tip outer shell member 55, so that the top and bottom of the imaging unit 21 can be set in any four directions with respect to the four sides of the tip outer shell member 55. ..

なお、先端部13と後端部15の軸線に直交する断面形状は、正方形には限定されない。先端部13と後端部15の軸線に直交する断面形状は、この他、正三角形、正五角形、正六角形、正八角形、円形等であってもよい。 The cross-sectional shape orthogonal to the axes of the front end portion 13 and the rear end portion 15 is not limited to a square. The cross-sectional shape orthogonal to the axes of the front end portion 13 and the rear end portion 15 may be an equilateral triangle, a regular pentagon, a regular hexagon, a regular octagon, a circle, or the like.

図8は、先端外殻部材55が90°回転された先端部13の斜視図である。例えば、可視化プローブ11は、図7に示した撮像ユニット21が下側となる向きを正立姿勢とした場合、図8に示すように、先端外殻部材55を時計回りに90°回転させた配置で組み立てることができる。これにより、撮像ユニット21の天地を、例えば先端外殻部材55の右左に対応させて配置することができる。 FIG. 8 is a perspective view of the tip portion 13 in which the tip outer shell member 55 is rotated by 90 °. For example, in the visualization probe 11, when the imaging unit 21 shown in FIG. 7 is in an upright posture, the tip outer shell member 55 is rotated 90 ° clockwise as shown in FIG. Can be assembled in an arrangement. Thereby, the top and bottom of the image pickup unit 21 can be arranged so as to correspond to the right and left of the tip outer shell member 55, for example.

次に、実施の形態1に係る可視化プローブ11の構成の変形例を説明する。 Next, a modified example of the configuration of the visualization probe 11 according to the first embodiment will be described.

図9は、回転機構85を備える変形例に係る可視化プローブ87の後端部89を透視した分解斜視図である。変形例に係る可視化プローブ87は、先端部13と後端部89とが、後端接合面23と前端接合面27とに渡って設けられた回転機構85により回転自在に連結される。回転機構85は、第1の軸線17および第2の軸線25のそれぞれの交点を通り、かつ後端接合面23および前端接合面27に垂直な回転中心で先端部13と後端部89とを回転自在に連結する。 FIG. 9 is an exploded perspective view of the rear end portion 89 of the visualization probe 87 according to the modified example provided with the rotation mechanism 85. In the visualization probe 87 according to the modified example, the front end portion 13 and the rear end portion 89 are rotatably connected by a rotation mechanism 85 provided across the rear end joint surface 23 and the front end joint surface 27. The rotation mechanism 85 passes through the intersection of the first axis 17 and the second axis 25, and connects the tip portion 13 and the rear end portion 89 at a rotation center perpendicular to the rear end joint surface 23 and the front end joint surface 27. Connect rotatably.

可視化プローブ87は、後端部89が可視化プローブ11の後端部15と異なる。後端部89は、前端接合面27に、リング状部品91を固定している。リング状部品91は、例えば弾性を有するOリング(オーリング)等を用いることができる。なお、リング状部品91は、Oリングに限定されない。 The rear end 89 of the visualization probe 87 is different from the rear end 15 of the visualization probe 11. The rear end portion 89 fixes the ring-shaped component 91 to the front end joint surface 27. As the ring-shaped component 91, for example, an elastic O-ring (O-ring) or the like can be used. The ring-shaped component 91 is not limited to the O-ring.

図10は、リング状部品91と蟻臍29の係合状況を表す斜視図である。リング状部品91の内周には、先端部13の後端接合面23から突出する一対の蟻臍29が回転自在に係合している。これにより、先端部13は、リング状部品91を介して後端部89に、第1の軸線17および第2の軸線25のそれぞれの交点を通る接合面に垂直な回転中心回りに任意の角度に回転自在となる。 FIG. 10 is a perspective view showing the engagement state between the ring-shaped part 91 and the ant navel 29. A pair of ant navels 29 protruding from the rear end joint surface 23 of the tip portion 13 are rotatably engaged with the inner circumference of the ring-shaped component 91. As a result, the tip portion 13 has an arbitrary angle around the center of rotation perpendicular to the joint surface passing through the intersection of the first axis 17 and the second axis 25 with respect to the rear end portion 89 via the ring-shaped component 91. It becomes rotatable.

図11は、回転機構85を介して相対回転自在に先端部13と後端部89が接合された変形例に係る可視化プローブ87の先端側の外観を表す要部斜視図である。可視化プローブ87は、回転機構85を介して相対回転自在となった先端部13と後端部89とが、所定の相対角度に回転移動された後、上記の可視化プローブ11と同様に、例えば後端部89の後端開口から充填剤83が充填される。これにより、可視化プローブ87は、後端部89に対して、点検者にとって任意の所望の回転方向に観察方向を向けた先端部13の強固な固定が可能となる。 FIG. 11 is a perspective view of a main part showing the appearance of the front end side of the visualization probe 87 according to a modified example in which the front end portion 13 and the rear end portion 89 are joined so as to be relatively rotatable via a rotation mechanism 85. In the visualization probe 87, after the front end portion 13 and the rear end portion 89 that are relatively rotatable via the rotation mechanism 85 are rotationally moved to a predetermined relative angle, for example, the visualization probe 87 is rearward, as in the visualization probe 11 described above. The filler 83 is filled from the rear end opening of the end 89. As a result, the visualization probe 87 can be firmly fixed to the rear end portion 89 at the tip portion 13 in which the observation direction is directed to any desired rotation direction for the inspector.

(作用等)
次に、実施の形態1に係る可視化プローブ11の作用をより具体的に説明する。
(Action, etc.)
Next, the operation of the visualization probe 11 according to the first embodiment will be described more specifically.

実施の形態1に係る可視化プローブ11(例えば工業用内視鏡)は、第1の軸線17に直交する先端面19から取り込んだ撮像光を受光する撮像ユニット21を収容し、先端面19と反対側が第1の軸線17に対して任意の傾斜角度で傾斜する後端接合面23として形成された先端部13を有する。可視化プローブ11は、第2の軸線25に沿う一方が第2の軸線25に対して任意の傾斜角度で傾斜して後端接合面23と接合される前端接合面27として形成された後端部15を有する。 The visualization probe 11 (for example, an industrial endoscope) according to the first embodiment accommodates an imaging unit 21 that receives imaging light captured from a tip surface 19 orthogonal to the first axis 17, and is opposite to the tip surface 19. It has a tip portion 13 formed as a rear end joint surface 23 whose side is inclined at an arbitrary inclination angle with respect to the first axis 17. The visualization probe 11 has a rear end portion formed as a front end joint surface 27 in which one side along the second axis 25 is inclined at an arbitrary inclination angle with respect to the second axis 25 and is joined to the rear end joint surface 23. Has 15.

実施の形態1に係る可視化プローブ11では、撮像ユニット21を収容する先端部13と、この先端部13に接合される後端部15とを有する。先端部13は、先端面19と反対側が後端接合面23となる。後端部15は、先端部13の後端接合面23に対面する側が、前端接合面27となる。先端部13と後端部15とは、これら後端接合面23と前端接合面27とを接合して一体に組み付けられる。この際、先端部13と後端部15とは、後端接合面23と前端接合面27とを接合して直線状に組み付けられる。つまり、可視化プローブ11は、後端部15の先端側に、直線状に接合した先端部13の先端面19から取り込んだ撮像光を撮像ユニット21で受光する直視鏡となる。 The visualization probe 11 according to the first embodiment has a tip portion 13 that accommodates the imaging unit 21 and a rear end portion 15 that is joined to the tip portion 13. The front end portion 13 has a rear end joint surface 23 on the side opposite to the front end surface 19. The side of the rear end portion 15 facing the rear end joint surface 23 of the front end portion 13 is the front end joint surface 27. The front end portion 13 and the rear end portion 15 are integrally assembled by joining the rear end joint surface 23 and the front end joint surface 27. At this time, the front end portion 13 and the rear end portion 15 are assembled in a straight line by joining the rear end joint surface 23 and the front end joint surface 27. That is, the visualization probe 11 is a direct view mirror that receives the imaging light captured from the distal end surface 19 of the distal end portion 13 linearly joined to the distal end side of the rear end portion 15 by the imaging unit 21.

一方、可視化プローブ11は、先端部13の後端接合面23に対して、後端部15を第2の軸線25まわりに例えば180°回転させた向きで、前端接合面27を接合することができる。 On the other hand, the visualization probe 11 may join the front end joint surface 27 to the rear end joint surface 23 of the front end portion 13 in a direction in which the rear end portion 15 is rotated by, for example, 180 ° around the second axis 25. it can.

例えば、先端部13の後端接合面23が、第1の軸線17に対して45°の傾斜角度で傾斜し、後端部15の前端接合面27が第2の軸線25に対して135°の傾斜角度で傾斜して直線状に組み付けられているとする。ここで、先端部13の後端接合面23に対して、後端部15を第2の軸線25まわりに例えば180°回転させる。後端接合面23と前端接合面27との間には、V字状の間隙が形成される。この際の対向する傾斜面の角度は、135°となる。従って、先端部13に対して直線状に配置された後端部15を、この状態で垂直に起立し、前端接合面27を後端接合面23に接合すれば、先端部13と後端部15とは、直交方向で接合される。つまり、可視化プローブ11は、後端部15に、直交方向で接合した先端部13の先端面19から取り込んだ撮像光を受光する側視鏡となる。 For example, the rear end joint surface 23 of the tip portion 13 is inclined at an inclination angle of 45 ° with respect to the first axis 17, and the front end joint surface 27 of the rear end portion 15 is 135 ° with respect to the second axis 25. It is assumed that it is tilted at the tilt angle of and assembled in a straight line. Here, the rear end portion 15 is rotated by, for example, 180 ° around the second axis 25 with respect to the rear end joint surface 23 of the front end portion 13. A V-shaped gap is formed between the rear end joint surface 23 and the front end joint surface 27. At this time, the angle of the facing inclined surfaces is 135 °. Therefore, if the rear end portion 15 arranged linearly with respect to the tip portion 13 stands upright in this state and the front end joint surface 27 is joined to the rear end joint surface 23, the front end portion 13 and the rear end portion are joined. 15 is joined in the orthogonal direction. That is, the visualization probe 11 is a side endoscope that receives the imaging light captured from the front end surface 19 of the tip end portion 13 that is joined to the rear end portion 15 in the orthogonal direction.

このように、可視化プローブ11は、先端部13と後端部15とを、軸線に対して所望の角度で傾斜する後端接合面23および先端外殻部材55で接合するので、限られた狭小設置空間においても観察方向を所望の方向に変更して組み立てることができる。 In this way, the visualization probe 11 joins the tip portion 13 and the rear end portion 15 at the rear end joint surface 23 and the tip outer shell member 55 that are inclined at a desired angle with respect to the axis line, and thus is narrow. Even in the installation space, the observation direction can be changed to a desired direction for assembly.

これにより、可視化プローブ11は、同一の部材を用いて複数の仕様(方向)のものを製造できる。その結果、生産性を向上させることができ、部品管理も容易にすることができる。 As a result, the visualization probe 11 can be manufactured with a plurality of specifications (directions) using the same member. As a result, productivity can be improved and parts management can be facilitated.

また、可視化プローブ11は、先端部13に形成した後端接合面23と、後端部15に形成した前端接合面27とを接合するので、大きな面積の接合構造とすることができる。この結果、先端部13と後端部15とを高い接合強度で固定することができる。 Further, since the visualization probe 11 joins the rear end joint surface 23 formed on the tip portion 13 and the front end joint surface 27 formed on the rear end portion 15, a large area joining structure can be obtained. As a result, the front end portion 13 and the rear end portion 15 can be fixed with high joint strength.

更に、可視化プローブ11は、先端部13と後端部15とを相対回転して後端接合面23と前端接合面27とを接合することにより、限られた狭小設置空間においても直視鏡から、所望の角度の側方を観察する側視鏡へと自在に組み立てることができる。 Further, the visualization probe 11 rotates the front end portion 13 and the rear end portion 15 relative to each other to join the rear end joint surface 23 and the front end joint surface 27, so that the visualization probe 11 can be viewed from a direct endoscope even in a limited narrow installation space. It can be freely assembled into a side speculum that observes the sides at a desired angle.

従って、実施の形態1に係る可視化プローブ11によれば、限られた狭小設置空間において強固な構造で観察方向を所望の方向に向けて固定できる。 Therefore, according to the visualization probe 11 according to the first embodiment, the observation direction can be fixed in a desired direction with a strong structure in a limited narrow installation space.

また、可視化プローブ11は、納まり方向が、第1の軸線17および第2の軸線25に直交し、かつ後端接合面23および前端接合面27に平行な方向となる蟻臍29と蟻穴31とが、後端接合面23と前端接合面27とに渡って設けられている。 Further, in the visualization probe 11, the dovetail umbilicus 29 and the dovetail hole 31 whose fitting direction is orthogonal to the first axis 17 and the second axis 25 and parallel to the rear end joint surface 23 and the front end joint surface 27. Is provided over the rear end joint surface 23 and the front end joint surface 27.

この可視化プローブ11では、蟻臍29と蟻穴31との納まり方向が、第1の軸線17および第2の軸線25に直交し、かつ後端接合面23および前端接合面27に平行な方向となる。例えば先端部13の後端接合面23が後端に向かって下り勾配の斜面である場合、蟻臍29は、この斜面を左右両側から挟む一対の突起片形状で形成することができる。この蟻臍29は、先端が広い臍となる。一方、蟻穴31は、蟻臍29が収まる底が広い溝とすることができる。蟻臍29と蟻穴31とは、斜面を左右両側から挟む方向のみで相互に係合が可能となる。係合した蟻臍29と蟻穴31とは、係合方向(図5の紙面垂直方向参照)以外の相対移動が不能となる。従って、蟻臍29と蟻穴31とで係合した後端接合面23と前端接合面27とは、係合方向のみを位置決めすることにより、高強度かつ高精度に位置あわせした接合が可能となる。 In this visualization probe 11, the fitting direction of the dovetail navel 29 and the dovetail hole 31 is orthogonal to the first axis 17 and the second axis 25, and is parallel to the rear end joint surface 23 and the front end joint surface 27. Become. For example, when the rear end joint surface 23 of the tip portion 13 is a slope having a downward slope toward the rear end, the ant navel 29 can be formed in the shape of a pair of protrusion pieces sandwiching this slope from both the left and right sides. The ant navel 29 has a wide tip. On the other hand, the dovetail hole 31 can be a groove having a wide bottom in which the dovetail navel 29 can be accommodated. The ant navel 29 and the ant hole 31 can be engaged with each other only in the direction of sandwiching the slope from both the left and right sides. The engaged dovetail navel 29 and the dovetail hole 31 cannot move relative to each other except in the engagement direction (see the vertical direction on the paper in FIG. 5). Therefore, the rear end joint surface 23 and the front end joint surface 27 that are engaged with the dovetail navel 29 and the dovetail hole 31 can be joined with high strength and high accuracy by positioning only in the engagement direction. Become.

また、可視化プローブ87は、第1の軸線17および第2の軸線25のそれぞれの交点を通り、かつ後端接合面23および前端接合面27のそれぞれに垂直な回転中心で先端部13と後端部89とを回転自在に連結する回転機構85が、後端接合面23と前端接合面27とに渡って設けられている。 Further, the visualization probe 87 passes through the intersection of the first axis 17 and the second axis 25, and has a tip portion 13 and a rear end at a rotation center perpendicular to each of the rear end joint surface 23 and the front end joint surface 27. A rotation mechanism 85 that rotatably connects the portion 89 is provided across the rear end joint surface 23 and the front end joint surface 27.

この可視化プローブ87では、後端接合面23と前端接合面27との間に、回転機構85が設けられる。回転機構85は、先端部13と後端部89とを、第1の軸線17および第2の軸線25の交点を通り、かつ後端接合面23および前端接合面27に垂直な回転中心で、先端部13と後端部89とを相対回転自在に接合する。これにより、可視化プローブ87は、後端部89に対して先端部13が直線方向の前方を観察方向とした直視鏡から、後端部89に対して先端部13の観察方向が例えば直交する側視鏡までの間の任意な傾斜角度で、撮像ユニット21を固定することができる。その結果、可視化プローブ87は、設置現場で状況に応じた支持方向の設定が容易に可能となる。 In the visualization probe 87, a rotation mechanism 85 is provided between the rear end joint surface 23 and the front end joint surface 27. The rotation mechanism 85 allows the front end portion 13 and the rear end portion 89 to pass through the intersection of the first axis 17 and the second axis 25 and at the center of rotation perpendicular to the rear end joint surface 23 and the front end joint surface 27. The front end portion 13 and the rear end portion 89 are joined so as to be relatively rotatable. As a result, the visualization probe 87 is located on the side where the observation direction of the tip portion 13 is orthogonal to the rear end portion 89, for example, from the direct microscope whose front end portion 13 is in the linear direction of the observation direction. The imaging unit 21 can be fixed at an arbitrary tilt angle to the endoscope. As a result, the visualization probe 87 can be easily set in the support direction according to the situation at the installation site.

また、可視化プローブ11は、先端部13が先端外殻部材55を有し、後端部15が後端外殻部材57を有し、先端外殻部材55および後端外殻部材57には、少なくとも後端接合面23と前端接合面27とに渡って充填された充填剤83が固化されている。 Further, in the visualization probe 11, the tip portion 13 has a tip outer shell member 55, the rear end portion 15 has a rear end outer shell member 57, and the tip outer shell member 55 and the rear end outer shell member 57 have The filler 83 filled at least over the rear end joint surface 23 and the front end joint surface 27 is solidified.

また、この可視化プローブ11では、先端部13が先端外殻部材55を有し、後端部15が後端外殻部材57を有する。先端部13および後端部15は、硬質の外殻により内部の機能部品が保護される。また、先端部13および後端部15は、硬質の外殻同士を相互結合可能な係合構造(例えば蟻臍29と蟻穴31)により、強固な接合構造を実現することができる。また、先端部13および後端部15は、上記の係合構造による係合に加え、先端外殻部材55と後端外殻部材57の内方に注入した充填剤83が、後端接合面23と前端接合面27とに渡って固化することで、更に高い結合強度で確実な固定が可能となる。 Further, in the visualization probe 11, the tip portion 13 has a tip outer shell member 55, and the rear end portion 15 has a rear end outer shell member 57. The front end portion 13 and the rear end portion 15 have internal functional parts protected by a hard outer shell. Further, the front end portion 13 and the rear end portion 15 can realize a strong joint structure by an engaging structure (for example, dovetail navel 29 and dovetail hole 31) capable of interconnecting hard outer shells. Further, in the front end portion 13 and the rear end portion 15, in addition to the engagement by the above-mentioned engagement structure, the filler 83 injected inward of the front end outer shell member 55 and the rear end outer shell member 57 is applied to the rear end joint surface. By solidifying over 23 and the front end joint surface 27, it is possible to securely fix with a higher bonding strength.

また、可視化プローブ11は、少なくとも先端部13の第1の軸線17に直交する断面形状が、第1の軸線17を中心とした回転対称の形状を有する。 Further, the visualization probe 11 has a cross-sectional shape at least orthogonal to the first axis 17 of the tip portion 13 and has a rotationally symmetric shape centered on the first axis 17.

更に、可視化プローブ11では、少なくとも先端部13の第1の軸線17に直交する断面形状が、第1の軸線17を中心とした回転対称となる。つまり、先端部13は、第1の軸線17が、対称軸となる。この対称軸は、先端部13の断面形状が、例えば正方形なので、4回軸となる。その結果、先端外殻部材55に対して内方に収容した撮像ユニット21は、45°ごとに回転配置できる。これにより、撮像ユニット21の天地も製造時に容易に変更することができる。 Further, in the visualization probe 11, at least the cross-sectional shape of the tip portion 13 orthogonal to the first axis 17 is rotationally symmetric with respect to the first axis 17. That is, the first axis 17 of the tip portion 13 is the axis of symmetry. This axis of symmetry is a four-fold axis because the cross-sectional shape of the tip portion 13 is, for example, a square. As a result, the image pickup unit 21 housed inward with respect to the tip outer shell member 55 can be rotationally arranged every 45 °. As a result, the top and bottom of the imaging unit 21 can be easily changed at the time of manufacturing.

以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことはいうまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present disclosure is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications, modifications, substitutions, additions, deletions, and equality examples within the scope of the claims. It is understood that it naturally belongs to the technical scope of the present disclosure. In addition, each component in the various embodiments described above may be arbitrarily combined as long as the gist of the invention is not deviated.

本開示は、限られた狭小設置空間において強固な構造で観察方向を所望の方向に向けて固定できる可視化プローブおよび内視鏡として有用である。 The present disclosure is useful as a visualization probe and an endoscope capable of fixing the observation direction in a desired direction with a strong structure in a limited narrow installation space.

11 可視化プローブ
13 先端部
15 後端部
17 第1の軸線
19 先端面
21 撮像ユニット
23 後端接合面
25 第2の軸線
27 前端接合面
29 蟻臍
31 蟻穴
55 先端外殻部材
57 後端外殻部材
83 充填剤
85 回転機構
θ1、θ2 傾斜角度
11 Visualization probe 13 Tip part 15 Rear end 17 First axis 19 Tip surface 21 Imaging unit 23 Rear end joint surface 25 Second axis 27 Front end joint surface 29 Dovetail 31 Dovetail hole 55 Tip outer shell member 57 Rear end outside Shell member 83 Filler 85 Rotation mechanism θ1, θ2 Tilt angle

Claims (6)

第1の軸線に直交する先端面から取り込んだ撮像光を受光する撮像ユニットを収容し、前記先端面と反対側が前記第1の軸線に対して任意の傾斜角度で傾斜する後端接合面として形成された先端部と、
第2の軸線に沿う一方が前記第2の軸線に対して任意の傾斜角度で傾斜して前記後端接合面と接合される前端接合面として形成された後端部と、を備える、
可視化プローブ。
It accommodates an imaging unit that receives imaging light captured from the front end surface orthogonal to the first axis, and is formed as a rear end joint surface whose side opposite to the front end surface is inclined at an arbitrary inclination angle with respect to the first axis. With the tip
It includes a rear end portion formed as a front end joint surface in which one along the second axis is inclined at an arbitrary inclination angle with respect to the second axis and is joined to the rear end joint surface.
Visualization probe.
納まり方向が、前記第1の軸線および前記第2の軸線に直交し、かつ前記後端接合面および前記前端接合面に平行な方向となる蟻臍と蟻穴とが、前記後端接合面と前記前端接合面とに渡って設けられる、
請求項1に記載の可視化プローブ。
The dovetail and the dovetail hole whose fitting direction is orthogonal to the first axis and the second axis and parallel to the rear end joint surface and the front end joint surface are the rear end joint surface. Provided over the front end joint surface,
The visualization probe according to claim 1.
前記第1の軸線および前記第2の軸線の交点を通り、かつ前記後端接合面および前記前端接合面のそれぞれに垂直な回転中心で前記先端部と前記後端部とを回転自在に連結する回転機構が、前記後端接合面と前記前端接合面とに渡って設けられる、
請求項1に記載の可視化プローブ。
The front end portion and the rear end portion are rotatably connected at a rotation center that passes through the intersection of the first axis and the second axis and is perpendicular to each of the rear end joint surface and the front end joint surface. A rotation mechanism is provided across the rear end joint surface and the front end joint surface.
The visualization probe according to claim 1.
前記先端部が先端外殻部材を有し、
前記後端部が後端外殻部材を有し、
前記先端外殻部材および前記後端外殻部材には、少なくとも前記後端接合面と前記前端接合面とに渡って充填された充填剤が固化される、
請求項1〜3のうちいずれか一項に記載の可視化プローブ。
The tip portion has a tip outer shell member,
The rear end portion has a rear end outer shell member,
In the tip outer shell member and the rear end outer shell member, a filler filled at least over the rear end joint surface and the front end joint surface is solidified.
The visualization probe according to any one of claims 1 to 3.
少なくとも前記先端部の前記第1の軸線に直交する断面形状が、前記第1の軸線を中心とした回転対称の形状を有する、
請求項1〜4のうちいずれか一項に記載の可視化プローブ。
The cross-sectional shape of at least the tip portion orthogonal to the first axis has a rotationally symmetric shape centered on the first axis.
The visualization probe according to any one of claims 1 to 4.
第1の軸線に直交する先端面から取り込んだ撮像光を受光する撮像ユニットを収容し、前記先端面と反対側が前記第1の軸線に対して任意の傾斜角度で傾斜する後端接合面として形成された先端部と、
第2の軸線に沿う一方が前記第2の軸線に対して任意の傾斜角度で傾斜して前記後端接合面と接合される前端接合面として形成された後端部と、を備える、
内視鏡。
It accommodates an imaging unit that receives imaging light captured from the front end surface orthogonal to the first axis, and is formed as a rear end joint surface whose side opposite to the front end surface is inclined at an arbitrary inclination angle with respect to the first axis. With the tip
It includes a rear end portion formed as a front end joint surface in which one along the second axis is inclined at an arbitrary inclination angle with respect to the second axis and is joined to the rear end joint surface.
Endoscope.
JP2019112674A 2019-06-18 2019-06-18 Visualization probe and endoscope Pending JP2020204723A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019112674A JP2020204723A (en) 2019-06-18 2019-06-18 Visualization probe and endoscope
CN202010556954.6A CN112099224A (en) 2019-06-18 2020-06-17 Visualization probe and endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019112674A JP2020204723A (en) 2019-06-18 2019-06-18 Visualization probe and endoscope

Publications (1)

Publication Number Publication Date
JP2020204723A true JP2020204723A (en) 2020-12-24

Family

ID=73749717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019112674A Pending JP2020204723A (en) 2019-06-18 2019-06-18 Visualization probe and endoscope

Country Status (2)

Country Link
JP (1) JP2020204723A (en)
CN (1) CN112099224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305202B2 (en) 2021-02-19 2023-07-10 倉敷レーザー株式会社 Square pipe orthogonal connection structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305202B2 (en) 2021-02-19 2023-07-10 倉敷レーザー株式会社 Square pipe orthogonal connection structure

Also Published As

Publication number Publication date
CN112099224A (en) 2020-12-18

Similar Documents

Publication Publication Date Title
JP6238180B2 (en) Endoscope camera and endoscope apparatus
EP2031430B1 (en) Image pickup unit
JP5166274B2 (en) Parallel optical system
JPWO2006001377A1 (en) Endoscope device
EP2638845B1 (en) Endoscope camera
WO2017067491A1 (en) Endoscope, and camera assembly thereof
JP2002136477A (en) Imaging unit for endoscope
JP2020204723A (en) Visualization probe and endoscope
JP3001035B2 (en) Optical adapter for endoscope
JP7122476B2 (en) Electronic endoscope and electronic endoscope system
US20210251477A1 (en) Camera head
JP6590934B2 (en) Surgical instrument eyepiece
JP2837680B2 (en) Endoscope device and tip optical adapter
JP5006125B2 (en) Endoscope and endoscope optical adapter
JP2931415B2 (en) Endoscope device
JP7463522B2 (en) Imaging device and endoscope
JPH11109257A (en) Image pickup optical system of endoscope
JPH11216102A (en) Image-pickup device for endoscope
WO2022045071A1 (en) Endoscope
JPH02100013A (en) Optical adapter for endoscope
WO2023017598A1 (en) Imaging unit and endoscope applying said imaging unit
JP2016142956A (en) Optical adapter and endoscope
JP2004240202A (en) Handle pipe type endoscope in which direction of visual range is bent and fixed
JP2006136671A (en) Electronic endoscope
JPH01131511A (en) Endoscope device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20191205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201224