JP2020202917A - Bone joint material - Google Patents

Bone joint material Download PDF

Info

Publication number
JP2020202917A
JP2020202917A JP2019111221A JP2019111221A JP2020202917A JP 2020202917 A JP2020202917 A JP 2020202917A JP 2019111221 A JP2019111221 A JP 2019111221A JP 2019111221 A JP2019111221 A JP 2019111221A JP 2020202917 A JP2020202917 A JP 2020202917A
Authority
JP
Japan
Prior art keywords
bone
osteosynthesis
lactide
average molecular
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019111221A
Other languages
Japanese (ja)
Other versions
JP7456733B2 (en
Inventor
麻衣 塚原
Mai Tsukahara
麻衣 塚原
智恵美 平岡
Chiemi Hiraoka
智恵美 平岡
智仁 柘植
Tomohito Tsuge
智仁 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2019111221A priority Critical patent/JP7456733B2/en
Publication of JP2020202917A publication Critical patent/JP2020202917A/en
Application granted granted Critical
Publication of JP7456733B2 publication Critical patent/JP7456733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Surgical Instruments (AREA)

Abstract

To provide a bone joint material that can fix bone with sufficient strength until the bone regenerates, and is quickly absorbed into the body after bone regeneration.SOLUTION: A bone joint material comprises a bioabsorbable material and has a weight average molecular weight of 140,000 or more and 320,000 or less.SELECTED DRAWING: None

Description

本発明は、骨が再生するまでの間充分な強度で骨を固定できるとともに骨の再生後は速やかに体内に吸収される骨接合材料に関する。 The present invention relates to an osteosynthesis material that can fix bone with sufficient strength until the bone is regenerated and is rapidly absorbed into the body after the bone is regenerated.

従来から、骨折が治癒するまで骨を固定する骨接合材料としてステンレス、セラミック等より成るワイヤー、プレート、ねじ、ピン、ビス、ステープル、クリップ、ロッド等が用いられている。しかし、金属やセラミックからなる骨接合材料は、人体に吸収されないことから治癒後も体内に残存し、また、これらの骨接合材料は、SUS−316のステンレス製のもので323N/mm程度、セラミック製のもので245〜490N/mm程度と、実用上充分な曲げ強度を有する一方で、人骨に比べて剛性が高すぎることから、適用部の骨が削られたり、持続刺激によって局部の骨の融解、新生骨の強度低下、再生骨の成長遅延等を生じたりする恐れがあるという問題点があった。 Conventionally, wires, plates, screws, pins, screws, staples, clips, rods and the like made of stainless steel, ceramics and the like have been used as osteosynthesis materials for fixing bones until the fracture is healed. However, since the osteosynthesis material made of metal or ceramic is not absorbed by the human body, it remains in the body even after healing, and these osteosynthesis materials are made of stainless steel of SUS-316 and are about 323 N / mm 2 . Although it is made of stainless steel and has a bending strength of about 245 to 490 N / mm 2 which is practically sufficient, it is too rigid compared to human bones, so that the bone of the applied part is scraped or local stimulation is performed. There is a problem that bone melting, decrease in strength of new bone, delay in growth of regenerated bone, etc. may occur.

これに対して、ポリ−L−乳酸等の生体吸収性材料からなる骨接合材料が開発されている。例えば、特許文献1には、生体吸収性材料の成形物を、該ポリマーのガラス転移点以上であって融点以下の温度で静水圧押出しして、生体吸収性材料の分子が長軸方向に配向した高密度成形体であって、浮沈法で測定した密度が1.260g/cm以上である骨接合材料が開示されている。 On the other hand, osteosynthesis materials made of bioabsorbable materials such as poly-L-lactic acid have been developed. For example, in Patent Document 1, a molded product of a bioabsorbable material is extruded hydrostatically at a temperature equal to or higher than the glass transition point of the polymer and lower than the melting point, and the molecules of the bioabsorbable material are oriented in the long axis direction. There is disclosed an osteosynthesis material which is a high-density molded product and has a density of 1.260 g / cm 3 or more measured by a floating-sink method.

特許第2619760号公報Japanese Patent No. 2619760

しかしながら、従来のポリ−L−乳酸からなる骨接合材料は、体内での分解速度が遅く、成長が早い小児の治療には適さない場合もあった。 However, the conventional osteosynthetic material composed of poly-L-lactic acid has a slow decomposition rate in the body and may not be suitable for the treatment of fast-growing children.

本発明は、上記現状に鑑み、骨が再生するまでの間充分な強度で骨を固定できるとともに骨の再生後は速やかに体内に吸収される骨接合材料を提供することを目的とする。 In view of the above situation, it is an object of the present invention to provide an osteosynthesis material capable of fixing bone with sufficient strength until bone regeneration and being rapidly absorbed into the body after bone regeneration.

本発明は、生体吸収性材料からなり、重量平均分子量が14万以上32万以下である骨接合材料である。
以下に本発明を詳述する。
The present invention is an osteosynthesis material made of a bioabsorbable material and having a weight average molecular weight of 140,000 or more and 320,000 or less.
The present invention will be described in detail below.

本発明者らは、鋭意検討の結果、驚くべきことに生体吸収性材料からなる骨接合材料において、重量平均分子量を特定の範囲とすることで、骨が再生するまでの間充分な強度を有する骨接合材料が得られることを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventors surprisingly have sufficient strength until the bone is regenerated by setting the weight average molecular weight in a specific range in the osteosynthesis material made of a bioabsorbable material. We have found that an osteosynthesis material can be obtained, and have completed the present invention.

本発明の骨接合材料は、生体吸収性材料からなる。
骨接合材料を生体吸収性材料によって構成することで、骨接合材料が時間の経過とともに体内へ徐々に吸収されることから、後に手術によって取り出す必要がない。
The osteosynthesis material of the present invention comprises a bioabsorbable material.
By constructing the osteosynthesis material with a bioabsorbable material, the osteosynthesis material is gradually absorbed into the body over time, so that it does not need to be removed by surgery later.

上記生体吸収性材料としては、例えば、ポリグリコリド、ポリラクチド、ポリ−ε−カプロラクトン、ラクチド−グリコール酸共重合体、グリコリド−ε−カプロラクトン共重合体、ラクチド−ε−カプロラクトン共重合体、ポリクエン酸、ポリリンゴ酸、ポリ−α−シアノアクリレート、ポリ−β−ヒドロキシ酸、ポリトリメチレンオキサレート、ポリテトラメチレンオキサレート、ポリオルソエステル、ポリオルソカーボネート、ポリエチレンカーボネート、ポリ−γ−ベンジル−L−グルタメート、ポリ−γ−メチル−L−グルタメート、ポリ−L−アラニン、ポリグリコールセバスチン酸等の合成高分子や、デンプン、アルギン酸、ヒアルロン酸、キチン、ペクチン酸及びその誘導体等の多糖類や、ゼラチン、コラーゲン、アルブミン、フィブリン等のタンパク質等の天然高分子等が挙げられる。なかでも、体内での分解速度が骨接合材料として用いるのに適していることからラクチド−グリコール酸共重合体であることが好ましい。なお、本明細書においてラクチドは、L−ラクチド、D−ラクチド、D,L−ラクチド(ラセミ体)のいずれをも含むが、好ましくはL−ラクチドである。これらの生体吸収性材料は単独で用いてもよく、2種以上を併用してもよい。 Examples of the bioabsorbable material include polyglycolide, polylactide, poly-ε-caprolactone, lactide-glycolic acid copolymer, glycolide-ε-caprolactone copolymer, lactide-ε-caprolactone copolymer, polycitrate, and the like. Polyapple acid, poly-α-cyanoacrylate, poly-β-hydroxy acid, polytrimethylene oxalate, polytetramethylene oxalate, polyorthoester, polyorthocarbonate, polyethylene carbonate, poly-γ-benzyl-L-glutamate, Synthetic polymers such as poly-γ-methyl-L-glutamate, poly-L-alanine, and polyglycol sebastic acid, polysaccharides such as starch, alginic acid, hyaluronic acid, chitin, pectinic acid and derivatives thereof, gelatin, Examples thereof include natural polymers such as proteins such as collagen, albumin and fibrin. Of these, a lactide-glycolic acid copolymer is preferable because its decomposition rate in the body is suitable for use as an osteosynthesis material. In the present specification, lactide includes any of L-lactide, D-lactide, and D, L-lactide (racemic), but L-lactide is preferable. These bioabsorbable materials may be used alone or in combination of two or more.

上記生体吸収性材料がラクチド―グリコール酸共重合体である場合、ラクチドとグリコール酸のモル比が70:30〜95:5であることが好ましい。このような比率でラクチドとグリコール酸を含むラクチド―グリコール酸共重合体を用いることで、骨の再生まで充分な強度を有する骨接合材料とすることができる。上記ラクチド―グリコール酸共重合体におけるラクチドとグリコール酸のモル比は、75:25〜90:10であることがより好ましく、79:21〜85:15であることが更に好ましい。 When the bioabsorbable material is a lactide-glycolic acid copolymer, the molar ratio of lactide to glycolic acid is preferably 70:30 to 95: 5. By using a lactide-glycolic acid copolymer containing lactide and glycolic acid in such a ratio, an osteosynthesis material having sufficient strength until bone regeneration can be obtained. The molar ratio of lactide to glycolic acid in the lactide-glycolic acid copolymer is more preferably 75:25 to 90:10, and even more preferably 79:21 to 85:15.

本発明の骨接合材料は、重量平均分子量が14万以上32万以下である。
従来の生分解性材料を用いた骨接合材料は、体内での吸収速度が速く、骨の再生が完了するまで充分な強度維持することが難しかった。本発明の骨接合材料は、驚くべきことに骨接合材料の重量平均分子量を上記範囲とすることで、骨が再生するまでの間充分な強度で骨を固定することができる。また、骨の再生後は早期に体内へ吸収されるため、体内での異物反応を抑えることもできる。骨の再生が完了するまでの強度をより向上させるとともに、骨の再生後には骨接合材料を早く生体内へ吸収させる観点から、上記骨接合材料の重量平均分子量は18万以上が好ましく、20万以上がより好ましく、30万以下であることが好ましく、28万以下であることが更に好ましい。上記重量平均分子量を上記範囲に調節する方法としては、原料である生体吸収性材料の重量平均分子量を調節する方法が挙げられるが、骨接合材料の重量平均分子量は原料の重量平均分子量のみによって決定されるものではなく、骨接合材料の製造工程の条件や処理等によっても影響される。
なお、ここで重量平均分子量とは、GPC(Gel Permeation Chromatography:ゲルパーミエーションクロマトグラフィ)による標準ポリスチレン換算の重量平均分子量である。具体的には、カラム温度40℃において溶出液としてクロロホルム、カラムとして細孔多分散型有機溶媒系カラム(例えば、SHODEX GPCカラム LF−80、昭和電工社製)、GPC装置として日立ハイテクノロジーズ社製LaChrom Eliteシステムを用いて、ポリスチレン標準により決定することができる。
The osteosynthetic material of the present invention has a weight average molecular weight of 140,000 or more and 320,000 or less.
Conventional osteosynthetic materials using biodegradable materials have a high absorption rate in the body, and it is difficult to maintain sufficient strength until bone regeneration is completed. Surprisingly, the osteosynthesis material of the present invention can fix the bone with sufficient strength until the bone is regenerated by setting the weight average molecular weight of the osteosynthesis material in the above range. In addition, since bone is absorbed into the body at an early stage after bone regeneration, foreign body reaction in the body can be suppressed. The weight average molecular weight of the osteosynthesis material is preferably 180,000 or more, preferably 200,000, from the viewpoint of further improving the strength until the bone regeneration is completed and allowing the osteosynthesis material to be quickly absorbed into the living body after the bone regeneration. The above is more preferable, it is preferably 300,000 or less, and further preferably 280,000 or less. Examples of the method for adjusting the weight average molecular weight within the above range include a method for adjusting the weight average molecular weight of the bioabsorbable material as a raw material, but the weight average molecular weight of the osteosynthesis material is determined only by the weight average molecular weight of the raw material. It is not affected by the conditions and treatment of the manufacturing process of the osteosynthesis material.
Here, the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight by GPC (Gel Permeation Chromatography: Gel Permeation Chromatography). Specifically, at a column temperature of 40 ° C., chloroform is used as the eluate, the pore-polydispersed organic solvent-based column (for example, SHODEX GPC column LF-80, manufactured by Showa Denko Co., Ltd.) is used as the column, and Hitachi High Technologies America Co., Ltd. is used as the GPC device. It can be determined by polystyrene standards using a LaChrom Elute system.

本発明の骨接合材料の形状は特に限定されないが、プレート状やダンベル状等が挙げられる。また、骨接合材料を骨に固定するために、骨接合材料と同じ材料をねじ状としたものも本発明に含まれる。更に、本発明の骨接合材料のねじを通す穴の大きさや配置は適用する骨の部位に応じて適宜調節することができる。 The shape of the osteosynthesis material of the present invention is not particularly limited, and examples thereof include a plate shape and a dumbbell shape. Further, in order to fix the osteosynthesis material to the bone, the same material as the osteosynthesis material is screw-shaped is also included in the present invention. Further, the size and arrangement of the holes through which the screws of the osteosynthesis material of the present invention are passed can be appropriately adjusted according to the part of the bone to be applied.

本発明の骨接合材料は、厚みが0.5mm以上2.0mm以下であることが好ましい。骨接合材料の厚みが上記範囲であることで、骨が再生するまでの間充分な強度を維持できるとともに、骨の再生後はより早く体内へ吸収されるようにすることができる。上記厚みは、0.9mm以上であることがより好ましく、1.5mm以下であることがより好ましい。 The osteosynthesis material of the present invention preferably has a thickness of 0.5 mm or more and 2.0 mm or less. When the thickness of the osteosynthesis material is within the above range, sufficient strength can be maintained until the bone is regenerated, and after the bone is regenerated, it can be absorbed into the body sooner. The thickness is more preferably 0.9 mm or more, and more preferably 1.5 mm or less.

本発明の骨接合材料の製造方法は特に限定されず、例えば、射出成形や切削をすることで製造することができる。 The method for producing the osteosynthesis material of the present invention is not particularly limited, and for example, it can be produced by injection molding or cutting.

本発明によれば、骨が再生するまでの間充分な強度で骨を固定できるとともに骨の再生後は速やかに体内に吸収される骨接合材料を提供することができる。 According to the present invention, it is possible to provide an osteosynthesis material that can fix the bone with sufficient strength until the bone is regenerated and is rapidly absorbed into the body after the bone is regenerated.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(実施例1)
骨接合材料の原料としてラクチド(L体)−グリコール酸共重合体(ラクチドに由来する構成単位:ε−カプロラクトンに由来する構成単位のモル比=82:18、重量平均分子量:28万)を準備した。
上記原料を射出成形し、切削加工によりネジ挿入孔を形成することにより、4mm間隔に直径1.9mmの穴を有する、幅5.75mm、長さ26mm、厚み0.95mmの板状の骨接合材料を得た。得られた骨接合材料について、日立ハイテクノロジーズ社製LaChrom Eliteシステム及び細孔多分散型有機溶媒系カラム(SHODEX GPCカラム LF−80)を用いて、カラム温度40℃、溶出液クロロホルムの条件でGPC測定を行ったところ、重量平均分子量は26万であった。
(Example 1)
A lactide (L-form) -glycolic acid copolymer (constituent unit derived from lactide: molar ratio of structural unit derived from ε-caprolactone = 82:18, weight average molecular weight: 280,000) is prepared as a raw material for the osteosynthesis material. did.
By injection molding the above raw material and forming screw insertion holes by cutting, plate-shaped osteosynthesis with a width of 5.75 mm, a length of 26 mm, and a thickness of 0.95 mm having holes with a diameter of 1.9 mm at 4 mm intervals. Obtained the material. The obtained osteosynthetic material was subjected to GPC under the conditions of a column temperature of 40 ° C. and an eluate chloroform using a LaChrom Elite system manufactured by Hitachi High-Technologies Corporation and a pore-multidisperse organic solvent-based column (SHODEX GPC column LF-80). As a result of measurement, the weight average molecular weight was 260,000.

(実施例2)
形状を3.7mm間隔に直径2.3mmの穴を有する、幅6.5mm、長さ24.5mm、厚み1.4mmの板状とした以外は実施例1と同様にして骨接合材料を得た。
(Example 2)
An osteosynthesis material was obtained in the same manner as in Example 1 except that the shape was a plate having a width of 6.5 mm, a length of 24.5 mm, and a thickness of 1.4 mm having holes having a diameter of 2.3 mm at intervals of 3.7 mm. It was.

(実施例3)
形状を3.7mm間隔に直径2.3mmの穴を有する、幅5.0mm、長さ23mm、厚み1.4mmのダンベル状とした以外は実施例1と同様にして骨接合材料を得た。
(Example 3)
An osteosynthesis material was obtained in the same manner as in Example 1 except that the shape was a dumbbell shape having a width of 5.0 mm, a length of 23 mm, and a thickness of 1.4 mm having holes having a diameter of 2.3 mm at intervals of 3.7 mm.

(比較例1)
ラクトソーブ(Zimmer biomet社製、(品番)915−2413、ラクチド(L体)−グリコール酸共重合体、幅5.6mm、長さ22.9mm、厚み0.9mm、穴の直径1.5mm)をそのまま用いた。実施例1と同様の方法で重量平均分子量を測定したところ13万であった。
(Comparative Example 1)
Lactosorb (manufactured by Zimmer biomet, (product number) 915-2413, lactide (L-form) -glycolic acid copolymer, width 5.6 mm, length 22.9 mm, thickness 0.9 mm, hole diameter 1.5 mm) It was used as it was. When the weight average molecular weight was measured by the same method as in Example 1, it was 130,000.

(比較例2)
ラクトソーブ(Zimmer biomet社製、(品番)915−2210、ラクチド(L体)−グリコール酸共重合体、幅6.9mm、長さ21.2mm、厚み1.4mm、穴の直径2.0mm)をそのまま用いた。実施例1と同様の方法で重量平均分子量を測定したところ13万であった。
(Comparative Example 2)
Lactosorb (manufactured by Zimmer biomet, (product number) 915-2210, lactide (L-form) -glycolic acid copolymer, width 6.9 mm, length 21.2 mm, thickness 1.4 mm, hole diameter 2.0 mm) It was used as it was. When the weight average molecular weight was measured by the same method as in Example 1, it was 130,000.

<評価>
実施例、比較例で得られた骨接合材料について以下の方法により評価を行った。
結果を表1に示した。
<Evaluation>
The osteosynthesis materials obtained in Examples and Comparative Examples were evaluated by the following methods.
The results are shown in Table 1.

(1)耐曲げ性の評価
オートグラフを用いて3点曲げ試験を行い骨接合材料の曲げ方向に対する破断強力を測定することで、耐曲げ性を評価した。
(1) Evaluation of bending resistance Bending resistance was evaluated by performing a three-point bending test using an autograph and measuring the breaking strength of the osteosynthesis material in the bending direction.

(2)耐引張性の評価
オートグラフを用いてJIS規格のK7113(プラスチックの引張試験方法)に準じて接合材料の引張方向に対する破断強力を測定することで、耐引張性を評価した。
(2) Evaluation of Tensile Resistance The tensile strength was evaluated by measuring the breaking strength of the bonding material in the tensile direction according to JIS standard K7113 (tensile test method for plastics) using an autograph.

(3)分解性の評価
50℃のPBSに得られた骨接合材料を浸漬し、所定の時間経過したものについて上記耐曲げ性の評価と同様の方法で破断強力を測定した。得られた破断強力を上記耐曲げ性の評価で得られた破断強力で除することにより強力保持率(%)を算出することで、骨接合材料の分解性を評価した。なお、50℃のPBSに浸漬したものは生体内の約8倍の速度で分解するものと考えられる。
(3) Evaluation of Degradability The obtained osteosynthetic material was immersed in PBS at 50 ° C., and the breaking strength was measured in the same manner as in the above evaluation of bending resistance after a lapse of a predetermined time. The degradability of the osteosynthetic material was evaluated by calculating the strength retention rate (%) by dividing the obtained breaking strength by the breaking strength obtained in the above evaluation of bending resistance. It is considered that the product immersed in PBS at 50 ° C. decomposes at a rate of about 8 times that in the living body.

Figure 2020202917
Figure 2020202917

本発明によれば、骨が再生するまでの間充分な強度で骨を固定できるとともに骨の再生後は速やかに体内に吸収される骨接合材料を提供することができる。
According to the present invention, it is possible to provide an osteosynthesis material that can fix the bone with sufficient strength until the bone is regenerated and is rapidly absorbed into the body after the bone is regenerated.

Claims (2)

生体吸収性材料からなり、重量平均分子量が14万以上32万以下であることを特徴とする骨接合材料。 An osteosynthesis material made of a bioabsorbable material and having a weight average molecular weight of 140,000 or more and 320,000 or less. 前記生体吸収性材料がラクチド−グリコール酸共重合体であることを特徴とする請求項1記載の骨接合材料。 The osteosynthesis material according to claim 1, wherein the bioabsorbable material is a lactide-glycolic acid copolymer.
JP2019111221A 2019-06-14 2019-06-14 Bone synthesis materials Active JP7456733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019111221A JP7456733B2 (en) 2019-06-14 2019-06-14 Bone synthesis materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019111221A JP7456733B2 (en) 2019-06-14 2019-06-14 Bone synthesis materials

Publications (2)

Publication Number Publication Date
JP2020202917A true JP2020202917A (en) 2020-12-24
JP7456733B2 JP7456733B2 (en) 2024-03-27

Family

ID=73837781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019111221A Active JP7456733B2 (en) 2019-06-14 2019-06-14 Bone synthesis materials

Country Status (1)

Country Link
JP (1) JP7456733B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198553A (en) * 1987-12-28 1989-08-10 Takiron Co Ltd Biodegradable and absorbable surgical material and its preparation
JPH05168647A (en) * 1991-12-25 1993-07-02 Gunze Ltd Bone treating implement and its production
JPH09135892A (en) * 1995-09-14 1997-05-27 Takiron Co Ltd Bone joint material
JP2005519654A (en) * 2001-09-05 2005-07-07 ジンテーズ アクチエンゲゼルシャフト クール Poly (L-lactide-co-glycolide) copolymer and medical device containing said compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198553A (en) * 1987-12-28 1989-08-10 Takiron Co Ltd Biodegradable and absorbable surgical material and its preparation
JPH05168647A (en) * 1991-12-25 1993-07-02 Gunze Ltd Bone treating implement and its production
JPH09135892A (en) * 1995-09-14 1997-05-27 Takiron Co Ltd Bone joint material
JP2005519654A (en) * 2001-09-05 2005-07-07 ジンテーズ アクチエンゲゼルシャフト クール Poly (L-lactide-co-glycolide) copolymer and medical device containing said compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED POLYMER SCIENCE, vol. 100, JPN6023003105, 2006, pages 1983 - 1987, ISSN: 0005097871 *

Also Published As

Publication number Publication date
JP7456733B2 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
JP3043778B2 (en) Decomposition-absorbent molded article and method for producing the molded article
JP2619760B2 (en) Bone treatment device and method for producing the same
JP6719447B2 (en) Anisotropic biocomposite material, medical implant containing anisotropic biocomposite material, and method for treating such medical implant
AU2008206383B2 (en) Novel biodegradable bone plates and bonding systems
EP1058519B1 (en) Bioabsorbable, deformable fixation plate
JPH0329663A (en) In vivo decomposable and absorptive molded product for surgical use
Mukherjee et al. Bioabsorbable fixation: scientific, technical, and clinical concepts
EP0349656B1 (en) Biodegradable and resorbable surgical materials and process for preparation of the same
JP2024133353A (en) Bone Fixation Screws
WO2015043496A1 (en) Bone injury repair and fixation instrument and method of manufacturing same
WO2018113579A1 (en) High-strength absorbable internal fixation bone screw for fractures
JPH11206871A (en) In vivo degradable and absorptive bone fixing material and its manufacture
JP7456733B2 (en) Bone synthesis materials
Demina et al. Biodegradable nanostructured composites for surgery and regenerative medicine
JP7313199B2 (en) osteosynthesis material
KR101568146B1 (en) Manufacturing method of ultra-high molecular weight poly glycol acid having biodegradable and implant having high stiffness and biodegradable manufacturing thereof
JP2021040796A (en) Bone screw
WO2023085236A1 (en) Bone joint material, and method for producing bone joint material
Lopez et al. 1-Year pullout strength and degradation of ultrasound welded vs tapped craniomaxillofacial fixation screws
JP3141088B2 (en) Method for producing biodegradable and absorbable surgical materials
JP2009240413A (en) Bone connecting material
SCRIPCARU¹ et al. The Advantages of Bioresorbable INION® Implants in Traumatology
JP2023172593A (en) Medical screw
McManus et al. Characterization of a faster resorbing polymer after real time aging
JP3023470B2 (en) Method for producing osteosynthesis material having through holes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240314

R150 Certificate of patent or registration of utility model

Ref document number: 7456733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150