JP2020202917A - Bone joint material - Google Patents
Bone joint material Download PDFInfo
- Publication number
- JP2020202917A JP2020202917A JP2019111221A JP2019111221A JP2020202917A JP 2020202917 A JP2020202917 A JP 2020202917A JP 2019111221 A JP2019111221 A JP 2019111221A JP 2019111221 A JP2019111221 A JP 2019111221A JP 2020202917 A JP2020202917 A JP 2020202917A
- Authority
- JP
- Japan
- Prior art keywords
- bone
- osteosynthesis
- lactide
- average molecular
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 64
- 210000000988 bone and bone Anatomy 0.000 title abstract description 29
- 229920001577 copolymer Polymers 0.000 claims description 11
- 230000010478 bone regeneration Effects 0.000 abstract description 8
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 8
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 7
- 238000005227 gel permeation chromatography Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 230000001097 osteosynthetic effect Effects 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- -1 polytrimethylene oxalate Polymers 0.000 description 3
- UQDJGEHQDNVPGU-UHFFFAOYSA-N serine phosphoethanolamine Chemical compound [NH3+]CCOP([O-])(=O)OCC([NH3+])C([O-])=O UQDJGEHQDNVPGU-UHFFFAOYSA-N 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920001432 poly(L-lactide) Polymers 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 208000005422 Foreign-Body reaction Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- ZGEYCCHDTIDZAE-BYPYZUCNSA-N L-glutamic acid 5-methyl ester Chemical compound COC(=O)CC[C@H](N)C(O)=O ZGEYCCHDTIDZAE-BYPYZUCNSA-N 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001277 beta hydroxy acids Chemical class 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229920003175 pectinic acid Polymers 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 108700024573 poly-gamma-benzyl-L-glutamate Proteins 0.000 description 1
- 108010054442 polyalanine Proteins 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
- Surgical Instruments (AREA)
Abstract
Description
本発明は、骨が再生するまでの間充分な強度で骨を固定できるとともに骨の再生後は速やかに体内に吸収される骨接合材料に関する。 The present invention relates to an osteosynthesis material that can fix bone with sufficient strength until the bone is regenerated and is rapidly absorbed into the body after the bone is regenerated.
従来から、骨折が治癒するまで骨を固定する骨接合材料としてステンレス、セラミック等より成るワイヤー、プレート、ねじ、ピン、ビス、ステープル、クリップ、ロッド等が用いられている。しかし、金属やセラミックからなる骨接合材料は、人体に吸収されないことから治癒後も体内に残存し、また、これらの骨接合材料は、SUS−316のステンレス製のもので323N/mm2程度、セラミック製のもので245〜490N/mm2程度と、実用上充分な曲げ強度を有する一方で、人骨に比べて剛性が高すぎることから、適用部の骨が削られたり、持続刺激によって局部の骨の融解、新生骨の強度低下、再生骨の成長遅延等を生じたりする恐れがあるという問題点があった。 Conventionally, wires, plates, screws, pins, screws, staples, clips, rods and the like made of stainless steel, ceramics and the like have been used as osteosynthesis materials for fixing bones until the fracture is healed. However, since the osteosynthesis material made of metal or ceramic is not absorbed by the human body, it remains in the body even after healing, and these osteosynthesis materials are made of stainless steel of SUS-316 and are about 323 N / mm 2 . Although it is made of stainless steel and has a bending strength of about 245 to 490 N / mm 2 which is practically sufficient, it is too rigid compared to human bones, so that the bone of the applied part is scraped or local stimulation is performed. There is a problem that bone melting, decrease in strength of new bone, delay in growth of regenerated bone, etc. may occur.
これに対して、ポリ−L−乳酸等の生体吸収性材料からなる骨接合材料が開発されている。例えば、特許文献1には、生体吸収性材料の成形物を、該ポリマーのガラス転移点以上であって融点以下の温度で静水圧押出しして、生体吸収性材料の分子が長軸方向に配向した高密度成形体であって、浮沈法で測定した密度が1.260g/cm3以上である骨接合材料が開示されている。 On the other hand, osteosynthesis materials made of bioabsorbable materials such as poly-L-lactic acid have been developed. For example, in Patent Document 1, a molded product of a bioabsorbable material is extruded hydrostatically at a temperature equal to or higher than the glass transition point of the polymer and lower than the melting point, and the molecules of the bioabsorbable material are oriented in the long axis direction. There is disclosed an osteosynthesis material which is a high-density molded product and has a density of 1.260 g / cm 3 or more measured by a floating-sink method.
しかしながら、従来のポリ−L−乳酸からなる骨接合材料は、体内での分解速度が遅く、成長が早い小児の治療には適さない場合もあった。 However, the conventional osteosynthetic material composed of poly-L-lactic acid has a slow decomposition rate in the body and may not be suitable for the treatment of fast-growing children.
本発明は、上記現状に鑑み、骨が再生するまでの間充分な強度で骨を固定できるとともに骨の再生後は速やかに体内に吸収される骨接合材料を提供することを目的とする。 In view of the above situation, it is an object of the present invention to provide an osteosynthesis material capable of fixing bone with sufficient strength until bone regeneration and being rapidly absorbed into the body after bone regeneration.
本発明は、生体吸収性材料からなり、重量平均分子量が14万以上32万以下である骨接合材料である。
以下に本発明を詳述する。
The present invention is an osteosynthesis material made of a bioabsorbable material and having a weight average molecular weight of 140,000 or more and 320,000 or less.
The present invention will be described in detail below.
本発明者らは、鋭意検討の結果、驚くべきことに生体吸収性材料からなる骨接合材料において、重量平均分子量を特定の範囲とすることで、骨が再生するまでの間充分な強度を有する骨接合材料が得られることを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventors surprisingly have sufficient strength until the bone is regenerated by setting the weight average molecular weight in a specific range in the osteosynthesis material made of a bioabsorbable material. We have found that an osteosynthesis material can be obtained, and have completed the present invention.
本発明の骨接合材料は、生体吸収性材料からなる。
骨接合材料を生体吸収性材料によって構成することで、骨接合材料が時間の経過とともに体内へ徐々に吸収されることから、後に手術によって取り出す必要がない。
The osteosynthesis material of the present invention comprises a bioabsorbable material.
By constructing the osteosynthesis material with a bioabsorbable material, the osteosynthesis material is gradually absorbed into the body over time, so that it does not need to be removed by surgery later.
上記生体吸収性材料としては、例えば、ポリグリコリド、ポリラクチド、ポリ−ε−カプロラクトン、ラクチド−グリコール酸共重合体、グリコリド−ε−カプロラクトン共重合体、ラクチド−ε−カプロラクトン共重合体、ポリクエン酸、ポリリンゴ酸、ポリ−α−シアノアクリレート、ポリ−β−ヒドロキシ酸、ポリトリメチレンオキサレート、ポリテトラメチレンオキサレート、ポリオルソエステル、ポリオルソカーボネート、ポリエチレンカーボネート、ポリ−γ−ベンジル−L−グルタメート、ポリ−γ−メチル−L−グルタメート、ポリ−L−アラニン、ポリグリコールセバスチン酸等の合成高分子や、デンプン、アルギン酸、ヒアルロン酸、キチン、ペクチン酸及びその誘導体等の多糖類や、ゼラチン、コラーゲン、アルブミン、フィブリン等のタンパク質等の天然高分子等が挙げられる。なかでも、体内での分解速度が骨接合材料として用いるのに適していることからラクチド−グリコール酸共重合体であることが好ましい。なお、本明細書においてラクチドは、L−ラクチド、D−ラクチド、D,L−ラクチド(ラセミ体)のいずれをも含むが、好ましくはL−ラクチドである。これらの生体吸収性材料は単独で用いてもよく、2種以上を併用してもよい。 Examples of the bioabsorbable material include polyglycolide, polylactide, poly-ε-caprolactone, lactide-glycolic acid copolymer, glycolide-ε-caprolactone copolymer, lactide-ε-caprolactone copolymer, polycitrate, and the like. Polyapple acid, poly-α-cyanoacrylate, poly-β-hydroxy acid, polytrimethylene oxalate, polytetramethylene oxalate, polyorthoester, polyorthocarbonate, polyethylene carbonate, poly-γ-benzyl-L-glutamate, Synthetic polymers such as poly-γ-methyl-L-glutamate, poly-L-alanine, and polyglycol sebastic acid, polysaccharides such as starch, alginic acid, hyaluronic acid, chitin, pectinic acid and derivatives thereof, gelatin, Examples thereof include natural polymers such as proteins such as collagen, albumin and fibrin. Of these, a lactide-glycolic acid copolymer is preferable because its decomposition rate in the body is suitable for use as an osteosynthesis material. In the present specification, lactide includes any of L-lactide, D-lactide, and D, L-lactide (racemic), but L-lactide is preferable. These bioabsorbable materials may be used alone or in combination of two or more.
上記生体吸収性材料がラクチド―グリコール酸共重合体である場合、ラクチドとグリコール酸のモル比が70:30〜95:5であることが好ましい。このような比率でラクチドとグリコール酸を含むラクチド―グリコール酸共重合体を用いることで、骨の再生まで充分な強度を有する骨接合材料とすることができる。上記ラクチド―グリコール酸共重合体におけるラクチドとグリコール酸のモル比は、75:25〜90:10であることがより好ましく、79:21〜85:15であることが更に好ましい。 When the bioabsorbable material is a lactide-glycolic acid copolymer, the molar ratio of lactide to glycolic acid is preferably 70:30 to 95: 5. By using a lactide-glycolic acid copolymer containing lactide and glycolic acid in such a ratio, an osteosynthesis material having sufficient strength until bone regeneration can be obtained. The molar ratio of lactide to glycolic acid in the lactide-glycolic acid copolymer is more preferably 75:25 to 90:10, and even more preferably 79:21 to 85:15.
本発明の骨接合材料は、重量平均分子量が14万以上32万以下である。
従来の生分解性材料を用いた骨接合材料は、体内での吸収速度が速く、骨の再生が完了するまで充分な強度維持することが難しかった。本発明の骨接合材料は、驚くべきことに骨接合材料の重量平均分子量を上記範囲とすることで、骨が再生するまでの間充分な強度で骨を固定することができる。また、骨の再生後は早期に体内へ吸収されるため、体内での異物反応を抑えることもできる。骨の再生が完了するまでの強度をより向上させるとともに、骨の再生後には骨接合材料を早く生体内へ吸収させる観点から、上記骨接合材料の重量平均分子量は18万以上が好ましく、20万以上がより好ましく、30万以下であることが好ましく、28万以下であることが更に好ましい。上記重量平均分子量を上記範囲に調節する方法としては、原料である生体吸収性材料の重量平均分子量を調節する方法が挙げられるが、骨接合材料の重量平均分子量は原料の重量平均分子量のみによって決定されるものではなく、骨接合材料の製造工程の条件や処理等によっても影響される。
なお、ここで重量平均分子量とは、GPC(Gel Permeation Chromatography:ゲルパーミエーションクロマトグラフィ)による標準ポリスチレン換算の重量平均分子量である。具体的には、カラム温度40℃において溶出液としてクロロホルム、カラムとして細孔多分散型有機溶媒系カラム(例えば、SHODEX GPCカラム LF−80、昭和電工社製)、GPC装置として日立ハイテクノロジーズ社製LaChrom Eliteシステムを用いて、ポリスチレン標準により決定することができる。
The osteosynthetic material of the present invention has a weight average molecular weight of 140,000 or more and 320,000 or less.
Conventional osteosynthetic materials using biodegradable materials have a high absorption rate in the body, and it is difficult to maintain sufficient strength until bone regeneration is completed. Surprisingly, the osteosynthesis material of the present invention can fix the bone with sufficient strength until the bone is regenerated by setting the weight average molecular weight of the osteosynthesis material in the above range. In addition, since bone is absorbed into the body at an early stage after bone regeneration, foreign body reaction in the body can be suppressed. The weight average molecular weight of the osteosynthesis material is preferably 180,000 or more, preferably 200,000, from the viewpoint of further improving the strength until the bone regeneration is completed and allowing the osteosynthesis material to be quickly absorbed into the living body after the bone regeneration. The above is more preferable, it is preferably 300,000 or less, and further preferably 280,000 or less. Examples of the method for adjusting the weight average molecular weight within the above range include a method for adjusting the weight average molecular weight of the bioabsorbable material as a raw material, but the weight average molecular weight of the osteosynthesis material is determined only by the weight average molecular weight of the raw material. It is not affected by the conditions and treatment of the manufacturing process of the osteosynthesis material.
Here, the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight by GPC (Gel Permeation Chromatography: Gel Permeation Chromatography). Specifically, at a column temperature of 40 ° C., chloroform is used as the eluate, the pore-polydispersed organic solvent-based column (for example, SHODEX GPC column LF-80, manufactured by Showa Denko Co., Ltd.) is used as the column, and Hitachi High Technologies America Co., Ltd. is used as the GPC device. It can be determined by polystyrene standards using a LaChrom Elute system.
本発明の骨接合材料の形状は特に限定されないが、プレート状やダンベル状等が挙げられる。また、骨接合材料を骨に固定するために、骨接合材料と同じ材料をねじ状としたものも本発明に含まれる。更に、本発明の骨接合材料のねじを通す穴の大きさや配置は適用する骨の部位に応じて適宜調節することができる。 The shape of the osteosynthesis material of the present invention is not particularly limited, and examples thereof include a plate shape and a dumbbell shape. Further, in order to fix the osteosynthesis material to the bone, the same material as the osteosynthesis material is screw-shaped is also included in the present invention. Further, the size and arrangement of the holes through which the screws of the osteosynthesis material of the present invention are passed can be appropriately adjusted according to the part of the bone to be applied.
本発明の骨接合材料は、厚みが0.5mm以上2.0mm以下であることが好ましい。骨接合材料の厚みが上記範囲であることで、骨が再生するまでの間充分な強度を維持できるとともに、骨の再生後はより早く体内へ吸収されるようにすることができる。上記厚みは、0.9mm以上であることがより好ましく、1.5mm以下であることがより好ましい。 The osteosynthesis material of the present invention preferably has a thickness of 0.5 mm or more and 2.0 mm or less. When the thickness of the osteosynthesis material is within the above range, sufficient strength can be maintained until the bone is regenerated, and after the bone is regenerated, it can be absorbed into the body sooner. The thickness is more preferably 0.9 mm or more, and more preferably 1.5 mm or less.
本発明の骨接合材料の製造方法は特に限定されず、例えば、射出成形や切削をすることで製造することができる。 The method for producing the osteosynthesis material of the present invention is not particularly limited, and for example, it can be produced by injection molding or cutting.
本発明によれば、骨が再生するまでの間充分な強度で骨を固定できるとともに骨の再生後は速やかに体内に吸収される骨接合材料を提供することができる。 According to the present invention, it is possible to provide an osteosynthesis material that can fix the bone with sufficient strength until the bone is regenerated and is rapidly absorbed into the body after the bone is regenerated.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(実施例1)
骨接合材料の原料としてラクチド(L体)−グリコール酸共重合体(ラクチドに由来する構成単位:ε−カプロラクトンに由来する構成単位のモル比=82:18、重量平均分子量:28万)を準備した。
上記原料を射出成形し、切削加工によりネジ挿入孔を形成することにより、4mm間隔に直径1.9mmの穴を有する、幅5.75mm、長さ26mm、厚み0.95mmの板状の骨接合材料を得た。得られた骨接合材料について、日立ハイテクノロジーズ社製LaChrom Eliteシステム及び細孔多分散型有機溶媒系カラム(SHODEX GPCカラム LF−80)を用いて、カラム温度40℃、溶出液クロロホルムの条件でGPC測定を行ったところ、重量平均分子量は26万であった。
(Example 1)
A lactide (L-form) -glycolic acid copolymer (constituent unit derived from lactide: molar ratio of structural unit derived from ε-caprolactone = 82:18, weight average molecular weight: 280,000) is prepared as a raw material for the osteosynthesis material. did.
By injection molding the above raw material and forming screw insertion holes by cutting, plate-shaped osteosynthesis with a width of 5.75 mm, a length of 26 mm, and a thickness of 0.95 mm having holes with a diameter of 1.9 mm at 4 mm intervals. Obtained the material. The obtained osteosynthetic material was subjected to GPC under the conditions of a column temperature of 40 ° C. and an eluate chloroform using a LaChrom Elite system manufactured by Hitachi High-Technologies Corporation and a pore-multidisperse organic solvent-based column (SHODEX GPC column LF-80). As a result of measurement, the weight average molecular weight was 260,000.
(実施例2)
形状を3.7mm間隔に直径2.3mmの穴を有する、幅6.5mm、長さ24.5mm、厚み1.4mmの板状とした以外は実施例1と同様にして骨接合材料を得た。
(Example 2)
An osteosynthesis material was obtained in the same manner as in Example 1 except that the shape was a plate having a width of 6.5 mm, a length of 24.5 mm, and a thickness of 1.4 mm having holes having a diameter of 2.3 mm at intervals of 3.7 mm. It was.
(実施例3)
形状を3.7mm間隔に直径2.3mmの穴を有する、幅5.0mm、長さ23mm、厚み1.4mmのダンベル状とした以外は実施例1と同様にして骨接合材料を得た。
(Example 3)
An osteosynthesis material was obtained in the same manner as in Example 1 except that the shape was a dumbbell shape having a width of 5.0 mm, a length of 23 mm, and a thickness of 1.4 mm having holes having a diameter of 2.3 mm at intervals of 3.7 mm.
(比較例1)
ラクトソーブ(Zimmer biomet社製、(品番)915−2413、ラクチド(L体)−グリコール酸共重合体、幅5.6mm、長さ22.9mm、厚み0.9mm、穴の直径1.5mm)をそのまま用いた。実施例1と同様の方法で重量平均分子量を測定したところ13万であった。
(Comparative Example 1)
Lactosorb (manufactured by Zimmer biomet, (product number) 915-2413, lactide (L-form) -glycolic acid copolymer, width 5.6 mm, length 22.9 mm, thickness 0.9 mm, hole diameter 1.5 mm) It was used as it was. When the weight average molecular weight was measured by the same method as in Example 1, it was 130,000.
(比較例2)
ラクトソーブ(Zimmer biomet社製、(品番)915−2210、ラクチド(L体)−グリコール酸共重合体、幅6.9mm、長さ21.2mm、厚み1.4mm、穴の直径2.0mm)をそのまま用いた。実施例1と同様の方法で重量平均分子量を測定したところ13万であった。
(Comparative Example 2)
Lactosorb (manufactured by Zimmer biomet, (product number) 915-2210, lactide (L-form) -glycolic acid copolymer, width 6.9 mm, length 21.2 mm, thickness 1.4 mm, hole diameter 2.0 mm) It was used as it was. When the weight average molecular weight was measured by the same method as in Example 1, it was 130,000.
<評価>
実施例、比較例で得られた骨接合材料について以下の方法により評価を行った。
結果を表1に示した。
<Evaluation>
The osteosynthesis materials obtained in Examples and Comparative Examples were evaluated by the following methods.
The results are shown in Table 1.
(1)耐曲げ性の評価
オートグラフを用いて3点曲げ試験を行い骨接合材料の曲げ方向に対する破断強力を測定することで、耐曲げ性を評価した。
(1) Evaluation of bending resistance Bending resistance was evaluated by performing a three-point bending test using an autograph and measuring the breaking strength of the osteosynthesis material in the bending direction.
(2)耐引張性の評価
オートグラフを用いてJIS規格のK7113(プラスチックの引張試験方法)に準じて接合材料の引張方向に対する破断強力を測定することで、耐引張性を評価した。
(2) Evaluation of Tensile Resistance The tensile strength was evaluated by measuring the breaking strength of the bonding material in the tensile direction according to JIS standard K7113 (tensile test method for plastics) using an autograph.
(3)分解性の評価
50℃のPBSに得られた骨接合材料を浸漬し、所定の時間経過したものについて上記耐曲げ性の評価と同様の方法で破断強力を測定した。得られた破断強力を上記耐曲げ性の評価で得られた破断強力で除することにより強力保持率(%)を算出することで、骨接合材料の分解性を評価した。なお、50℃のPBSに浸漬したものは生体内の約8倍の速度で分解するものと考えられる。
(3) Evaluation of Degradability The obtained osteosynthetic material was immersed in PBS at 50 ° C., and the breaking strength was measured in the same manner as in the above evaluation of bending resistance after a lapse of a predetermined time. The degradability of the osteosynthetic material was evaluated by calculating the strength retention rate (%) by dividing the obtained breaking strength by the breaking strength obtained in the above evaluation of bending resistance. It is considered that the product immersed in PBS at 50 ° C. decomposes at a rate of about 8 times that in the living body.
本発明によれば、骨が再生するまでの間充分な強度で骨を固定できるとともに骨の再生後は速やかに体内に吸収される骨接合材料を提供することができる。
According to the present invention, it is possible to provide an osteosynthesis material that can fix the bone with sufficient strength until the bone is regenerated and is rapidly absorbed into the body after the bone is regenerated.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019111221A JP7456733B2 (en) | 2019-06-14 | 2019-06-14 | Bone synthesis materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019111221A JP7456733B2 (en) | 2019-06-14 | 2019-06-14 | Bone synthesis materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020202917A true JP2020202917A (en) | 2020-12-24 |
JP7456733B2 JP7456733B2 (en) | 2024-03-27 |
Family
ID=73837781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019111221A Active JP7456733B2 (en) | 2019-06-14 | 2019-06-14 | Bone synthesis materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7456733B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01198553A (en) * | 1987-12-28 | 1989-08-10 | Takiron Co Ltd | Biodegradable and absorbable surgical material and its preparation |
JPH05168647A (en) * | 1991-12-25 | 1993-07-02 | Gunze Ltd | Bone treating implement and its production |
JPH09135892A (en) * | 1995-09-14 | 1997-05-27 | Takiron Co Ltd | Bone joint material |
JP2005519654A (en) * | 2001-09-05 | 2005-07-07 | ジンテーズ アクチエンゲゼルシャフト クール | Poly (L-lactide-co-glycolide) copolymer and medical device containing said compound |
-
2019
- 2019-06-14 JP JP2019111221A patent/JP7456733B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01198553A (en) * | 1987-12-28 | 1989-08-10 | Takiron Co Ltd | Biodegradable and absorbable surgical material and its preparation |
JPH05168647A (en) * | 1991-12-25 | 1993-07-02 | Gunze Ltd | Bone treating implement and its production |
JPH09135892A (en) * | 1995-09-14 | 1997-05-27 | Takiron Co Ltd | Bone joint material |
JP2005519654A (en) * | 2001-09-05 | 2005-07-07 | ジンテーズ アクチエンゲゼルシャフト クール | Poly (L-lactide-co-glycolide) copolymer and medical device containing said compound |
Non-Patent Citations (1)
Title |
---|
JOURNAL OF APPLIED POLYMER SCIENCE, vol. 100, JPN6023003105, 2006, pages 1983 - 1987, ISSN: 0005097871 * |
Also Published As
Publication number | Publication date |
---|---|
JP7456733B2 (en) | 2024-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3043778B2 (en) | Decomposition-absorbent molded article and method for producing the molded article | |
JP2619760B2 (en) | Bone treatment device and method for producing the same | |
JP6719447B2 (en) | Anisotropic biocomposite material, medical implant containing anisotropic biocomposite material, and method for treating such medical implant | |
AU2008206383B2 (en) | Novel biodegradable bone plates and bonding systems | |
EP1058519B1 (en) | Bioabsorbable, deformable fixation plate | |
JPH0329663A (en) | In vivo decomposable and absorptive molded product for surgical use | |
Mukherjee et al. | Bioabsorbable fixation: scientific, technical, and clinical concepts | |
EP0349656B1 (en) | Biodegradable and resorbable surgical materials and process for preparation of the same | |
JP2024133353A (en) | Bone Fixation Screws | |
WO2015043496A1 (en) | Bone injury repair and fixation instrument and method of manufacturing same | |
WO2018113579A1 (en) | High-strength absorbable internal fixation bone screw for fractures | |
JPH11206871A (en) | In vivo degradable and absorptive bone fixing material and its manufacture | |
JP7456733B2 (en) | Bone synthesis materials | |
Demina et al. | Biodegradable nanostructured composites for surgery and regenerative medicine | |
JP7313199B2 (en) | osteosynthesis material | |
KR101568146B1 (en) | Manufacturing method of ultra-high molecular weight poly glycol acid having biodegradable and implant having high stiffness and biodegradable manufacturing thereof | |
JP2021040796A (en) | Bone screw | |
WO2023085236A1 (en) | Bone joint material, and method for producing bone joint material | |
Lopez et al. | 1-Year pullout strength and degradation of ultrasound welded vs tapped craniomaxillofacial fixation screws | |
JP3141088B2 (en) | Method for producing biodegradable and absorbable surgical materials | |
JP2009240413A (en) | Bone connecting material | |
SCRIPCARU¹ et al. | The Advantages of Bioresorbable INION® Implants in Traumatology | |
JP2023172593A (en) | Medical screw | |
McManus et al. | Characterization of a faster resorbing polymer after real time aging | |
JP3023470B2 (en) | Method for producing osteosynthesis material having through holes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240314 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7456733 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |