JP2020202399A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2020202399A
JP2020202399A JP2020151906A JP2020151906A JP2020202399A JP 2020202399 A JP2020202399 A JP 2020202399A JP 2020151906 A JP2020151906 A JP 2020151906A JP 2020151906 A JP2020151906 A JP 2020151906A JP 2020202399 A JP2020202399 A JP 2020202399A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
reflecting member
peak wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020151906A
Other languages
Japanese (ja)
Other versions
JP7057528B2 (en
Inventor
祐太 岡
Yuta Oka
祐太 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2020151906A priority Critical patent/JP7057528B2/en
Publication of JP2020202399A publication Critical patent/JP2020202399A/en
Application granted granted Critical
Publication of JP7057528B2 publication Critical patent/JP7057528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a light-emitting device having a high brightness and high color rendering property.SOLUTION: A light-emitting device comprises: a first light-emitting element 31 operable to emit light of a first peak wavelength; a second light-emitting element 32 operable to emit light of a second peak wavelength different from the first peak wavelength; a first light reflective member 20 disposed in contact with a side face of the first light-emitting element, exposing an upper face of the first light-emitting element, and having an upper face substantially in the same plane as that of the upper face of the first light-emitting element; a wavelength conversion member 41 covering the upper face of the first light-emitting element, which is operable to convert light of the first peak wavelength into light of a third peak wavelength different from the first peak wavelength and the second peak wavelength; and a second light reflective member 40 disposed on the upper face of the first light reflective member and located between the second light-emitting element and the wavelength conversion member in plan view. The second light reflective member 40 has an upper face located above an upper face of the second light-emitting element.SELECTED DRAWING: Figure 2

Description

本開示は発光装置に関する。 The present disclosure relates to a light emitting device.

照明に用いられる発光装置は、高輝度かつ高い演色性が求められる場合がある。発光装置の演色性は、例えば、発光波長の異なる発光素子を複数用いることによって高めることができる。例えば特許文献1は、白色、赤色、緑色および青色の光を出射する発光素子を備えた発光装置を開示している。 The light emitting device used for lighting may be required to have high brightness and high color rendering properties. The color rendering property of the light emitting device can be enhanced, for example, by using a plurality of light emitting elements having different light emitting wavelengths. For example, Patent Document 1 discloses a light emitting device including a light emitting element that emits white, red, green, and blue light.

特開2006−310613号公報Japanese Unexamined Patent Publication No. 2006-310613

従来の発光装置よりも、更に高輝度かつ高い演色性の発光装置が求められている。本開示の実施形態は、高輝度かつ高い演色性の発光装置を提供することを目的とする。 There is a demand for a light emitting device having higher brightness and higher color rendering properties than a conventional light emitting device. It is an object of the present disclosure to provide a light emitting device having high brightness and high color rendering properties.

本開示の発光装置は、第1ピーク波長の光を出射する第1発光素子と、前記第1ピーク波長と異なる第2ピーク波長の光を出射する第2発光素子と、前記第1発光素子の側面に接して配置され、前記第1発光素子の上面を露出し、前記第1発光素子の上面と略同一面に上面を備える第1光反射部材と、前記第1発光素子の上面を覆い、前記第1ピーク波長の光を前記第1ピーク波長および前記第2ピーク波長と異なる第3ピーク波長の光に変換する波長変換部材と、前記第1光反射部材の上面に配置され、平面視において前記第2発光素子と前記波長変換部材との間に位置する第2光反射部材とを備えており、前記第2光反射部材の上面が前記第2発光素子の上面よりも高い位置にある。 The light emitting device of the present disclosure includes a first light emitting element that emits light having a first peak wavelength, a second light emitting element that emits light having a second peak wavelength different from the first peak wavelength, and the first light emitting element. A first light reflecting member which is arranged in contact with a side surface, exposes the upper surface of the first light emitting element, and has an upper surface substantially on the same surface as the upper surface of the first light emitting element, and covers the upper surface of the first light emitting element. A wavelength conversion member that converts light having the first peak wavelength into light having a third peak wavelength different from the first peak wavelength and the second peak wavelength, and a light reflecting member arranged on the upper surface of the first light reflecting member in a plan view. A second light reflecting member located between the second light emitting element and the wavelength conversion member is provided, and the upper surface of the second light reflecting member is located higher than the upper surface of the second light emitting element.

本開示によれば、高輝度でかつ高い演色性の発光装置が提供され得る。 According to the present disclosure, a light emitting device having high brightness and high color rendering property can be provided.

図1は、本開示の発光装置の一実施形態を示す平面図である。FIG. 1 is a plan view showing an embodiment of the light emitting device of the present disclosure. 図2は、図1のA−A線における発光装置の断面図である。FIG. 2 is a cross-sectional view of the light emitting device in line AA of FIG. 図3は、図1に示す発光装置の底面図である。FIG. 3 is a bottom view of the light emitting device shown in FIG. 図4は、図1に示す発光装置の各発光素子と配線基板との接続例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of connection between each light emitting element of the light emitting device shown in FIG. 1 and a wiring board. 図5は、図1に示す発光装置における発光素子の配置例を示す平面図である。FIG. 5 is a plan view showing an arrangement example of light emitting elements in the light emitting device shown in FIG. 図6Aは、図1に示す発光装置の波長変換部材の構造を示す断面図である。FIG. 6A is a cross-sectional view showing the structure of the wavelength conversion member of the light emitting device shown in FIG. 図6Bは、波長変換部材および第2光反射部材の高さの関係を示す断面図である。FIG. 6B is a cross-sectional view showing the relationship between the heights of the wavelength conversion member and the second light reflecting member. 図6Cは、波長変換部材および第2光反射部材の高さの他の関係を示す断面図である。FIG. 6C is a cross-sectional view showing another relationship between the heights of the wavelength conversion member and the second light reflecting member. 図7Aは、図1に示す発光装置の製造方法を説明する工程断面図である。FIG. 7A is a process sectional view illustrating a method for manufacturing the light emitting device shown in FIG. 図7Bは、図1に示す発光装置の製造方法を説明する工程断面図である。FIG. 7B is a process sectional view illustrating a method for manufacturing the light emitting device shown in FIG. 図7Cは、図1に示す発光装置の製造方法を説明する工程断面図である。FIG. 7C is a process sectional view illustrating a method for manufacturing the light emitting device shown in FIG. 図7Dは、図1に示す発光装置の製造方法を説明する工程断面図である。FIG. 7D is a process sectional view illustrating a method for manufacturing the light emitting device shown in FIG. 図7Eは、図1に示す発光装置の製造方法を説明する工程断面図である。FIG. 7E is a process sectional view illustrating a method for manufacturing the light emitting device shown in FIG. 図8は本開示の発光装置の他の実施形態を示す平面図である。FIG. 8 is a plan view showing another embodiment of the light emitting device of the present disclosure.

以下、図面を参照しながら、本開示の発光装置の実施形態を詳細に説明する。以下の実施形態は、例示であり、本開示の発光装置は、以下の実施形態に限られない。以下の説明では、特定の方向や位置を示す用語(例えば、「上」、「下」およびそれらの用語を含む別の用語)を用いる場合がある。それらの用語は、参照した図面における相対的な方向や位置を、分かり易さのために用いているに過ぎない。参照した図面における「上」、「下」等の用語による相対的な方向や位置の関係が同一であれば、本開示以外の図面、実際の製品等において、参照した図面と同一の配置でなくてもよい。また、図面が示す構成要素の大きさや位置関係等は、分かり易さのため、誇張されている場合があり、実際の面発光装置における大きさあるいは、実際の面発光装置における構成要素間の大小関係を反映していない場合がある。また、本開示において「略同一面」とは、特に他の言及がない限り、±50μm程度の範囲にある場合を含む。 Hereinafter, embodiments of the light emitting device of the present disclosure will be described in detail with reference to the drawings. The following embodiments are examples, and the light emitting device of the present disclosure is not limited to the following embodiments. In the following description, terms indicating a specific direction or position (for example, "top", "bottom" and other terms including those terms) may be used. These terms use relative orientations and positions in the referenced drawings for clarity only. If the relative directions and positional relationships in terms such as "top" and "bottom" in the referenced drawings are the same, the layout is not the same as the referenced drawings in drawings other than the present disclosure, actual products, etc. You may. In addition, the sizes and positional relationships of the components shown in the drawings may be exaggerated for the sake of clarity, and may be the size of the actual surface light emitting device or the size of the components in the actual surface light emitting device. It may not reflect the relationship. Further, in the present disclosure, "substantially the same surface" includes a case where the range is about ± 50 μm unless otherwise specified.

図1は、本開示の発光装置101の一実施形態を示す平面図であり、図2は、図1のA−A線における、発光装置101の断面図である。また、図3は、発光装置101の底面図である。 FIG. 1 is a plan view showing an embodiment of the light emitting device 101 of the present disclosure, and FIG. 2 is a cross-sectional view of the light emitting device 101 in line AA of FIG. Further, FIG. 3 is a bottom view of the light emitting device 101.

発光装置101は、発光波長が異なる少なくとも2種類の発光素子と、第1光反射部材20と、第2光反射部材40と波長変換部材41とを備える。本実施形態では、発光装置101は、第1発光素子31と、発光波長が異なる第2発光素子32とを備える。また、第1発光素子31および第2発光素子32と発光波長の異なる第3発光素子33をさらに備えていてもよい。発光装置101は、第1発光素子31および第2発光素子32を支持する配線基板(基体)10と、第1発光素子31、第2発光素子32および波長変換部材41を覆う被覆部材50とをさらに備えていてもよい。以下、これらの構成要素を詳細に説明する。 The light emitting device 101 includes at least two types of light emitting elements having different light emitting wavelengths, a first light reflecting member 20, a second light reflecting member 40, and a wavelength conversion member 41. In the present embodiment, the light emitting device 101 includes a first light emitting element 31 and a second light emitting element 32 having different light emitting wavelengths. Further, a third light emitting element 33 having a different emission wavelength from the first light emitting element 31 and the second light emitting element 32 may be further provided. The light emitting device 101 includes a wiring substrate (base) 10 that supports the first light emitting element 31 and the second light emitting element 32, and a covering member 50 that covers the first light emitting element 31, the second light emitting element 32, and the wavelength conversion member 41. Further may be provided. Hereinafter, these components will be described in detail.

(配線基板10)
配線基板10は、第1発光素子31および第2発光素子32を載置し、第1発光素子31および第2発光素子32と発光装置101の外部回路との電気的接続を行う。発光装置101が第3発光素子33を備えている場合は、配線基板10は、第3発光素子33も載置し、第3発光素子33と発光装置101の外部回路との電気的接続も行う。配線基板10は例えば、基板11と基板11の上面11aに位置する配線導体13と、下面11bに位置する端子電極12c、12dとを含む。
(Wiring board 10)
The wiring board 10 mounts the first light emitting element 31 and the second light emitting element 32, and electrically connects the first light emitting element 31 and the second light emitting element 32 to the external circuit of the light emitting device 101. When the light emitting device 101 includes the third light emitting element 33, the wiring substrate 10 also mounts the third light emitting element 33, and also electrically connects the third light emitting element 33 and the external circuit of the light emitting device 101. .. The wiring board 10 includes, for example, a wiring conductor 13 located on the substrate 11 and the upper surface 11a of the substrate 11, and terminal electrodes 12c and 12d located on the lower surface 11b.

基板11は、例えば、ガラスエポキシ、樹脂、セラミックス(HTCC、LTCC)などの絶縁性材料、絶縁性材料と金属部材との複合材料等によって形成される。基板11は、耐熱性および耐候性の高いセラミックスまたは熱硬化性樹脂によって形成されていることが好ましい。セラミックス材料としては、アルミナ、窒化アルミニウム、ムライトなどが挙げられる。特に、放熱性の高い窒化アルミニウムが好ましい。これらのセラミックス材料に、例えば、BTレジン、ガラスエポキシ、エポキシ系樹脂等の絶縁性材料を組み合わせて形成された基板でもよい。熱硬化性樹脂としては、エポキシ樹脂、トリアジン誘導体エポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂、アクリレート樹脂、ウレタン樹脂などを利用することができる。なかでも、トリアジン誘導体エポキシ樹脂を用いることがより好ましい。基板11は、表面が平坦な板形状を有していることが好ましい。 The substrate 11 is formed of, for example, an insulating material such as glass epoxy, resin, ceramics (HTCC, LTCC), a composite material of the insulating material and a metal member, and the like. The substrate 11 is preferably formed of ceramics or thermosetting resin having high heat resistance and weather resistance. Examples of the ceramic material include alumina, aluminum nitride, and mullite. In particular, aluminum nitride having high heat dissipation is preferable. A substrate formed by combining these ceramic materials with an insulating material such as BT resin, glass epoxy, or epoxy resin may be used. As the thermosetting resin, an epoxy resin, a triazine derivative epoxy resin, a modified epoxy resin, a silicone resin, a modified silicone resin, an acrylate resin, a urethane resin and the like can be used. Of these, it is more preferable to use a triazine derivative epoxy resin. The substrate 11 preferably has a plate shape having a flat surface.

配線導体13は、基板11の上面11aに位置し、第1発光素子31、第2発光素子32および第3発光素子33の端子と電気的に接続される。後述するように、発光装置101は、それぞれ1または複数の第1発光素子31および第2発光素子32を備えるため、配線導体13は、第1発光素子31および第2発光素子32を接続する回路パターンを構成している。配線導体13は、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル等の金属または鉄−ニッケル合金、燐青銅等の合金等によって形成することができる。配線導体13の厚さは、例えば、5μmから500μmである。 The wiring conductor 13 is located on the upper surface 11a of the substrate 11, and is electrically connected to the terminals of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33. As will be described later, since the light emitting device 101 includes one or a plurality of first light emitting elements 31 and second light emitting elements 32, respectively, the wiring conductor 13 is a circuit for connecting the first light emitting element 31 and the second light emitting element 32. It constitutes a pattern. The wiring conductor 13 can be formed of a metal such as copper, aluminum, gold, silver, tungsten, iron or nickel, or an alloy such as an iron-nickel alloy or phosphor bronze. The thickness of the wiring conductor 13 is, for example, 5 μm to 500 μm.

基板11の下面11bには、図3に示すように少なくとも一対の端子電極12c、12dが位置している。端子電極12c、12dは、基板11内に設けられたビア導体によって配線導体13と電気的に接続されている。端子電極12c、12dは、一方が正極であり、他方が負極であり、外部の駆動回路等と接続される。極性の違いを識別できるように、端子電極12c、12dの一方に、切り欠き等のアノードマークあるいはカソードマークを設けてもよい。例えば、端子電極12cに切り欠き12eを設けてもよい。端子電極12c、12dも例えば、配線導体13と同じ材料によって形成することができる。 As shown in FIG. 3, at least a pair of terminal electrodes 12c and 12d are located on the lower surface 11b of the substrate 11. The terminal electrodes 12c and 12d are electrically connected to the wiring conductor 13 by a via conductor provided in the substrate 11. One of the terminal electrodes 12c and 12d is a positive electrode and the other is a negative electrode, which are connected to an external drive circuit or the like. An anode mark or a cathode mark such as a notch may be provided on one of the terminal electrodes 12c and 12d so that the difference in polarity can be identified. For example, the terminal electrode 12c may be provided with a notch 12e. The terminal electrodes 12c and 12d can also be formed of, for example, the same material as the wiring conductor 13.

(第1発光素子31、第2発光素子32、第3発光素子33)
第1発光素子31、第2発光素子32および第3発光素子33は、例えば発光ダイオードチップ等の半導体発光素子である。半導体発光素子は、透光性基板、半導体積層体、および、電極を備える。透光性基板には、例えば、サファイア(Al23)のような透光性の絶縁性材料や、半導体積層体からの発光を透過する半導体材料(例えば、窒化物系半導体材料)を用いることができる。
(1st light emitting element 31, 2nd light emitting element 32, 3rd light emitting element 33)
The first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are semiconductor light emitting elements such as a light emitting diode chip. The semiconductor light emitting device includes a translucent substrate, a semiconductor laminate, and electrodes. For the translucent substrate, for example, a translucent insulating material such as sapphire (Al 2 O 3 ) or a semiconductor material that transmits light emitted from the semiconductor laminate (for example, a nitride-based semiconductor material) is used. be able to.

半導体積層体は、例えば、n型半導体層、発光層(活性層)およびp型半導体層等の複数の半導体層を含む。半導体層には、例えば、III−V族化合物半導体、II−VI族化合物半導体等の半導体材料から形成することができる。具体的には、InxAlyGa1-x-yN(0≦x、0≦y、x+y≦1)等の窒化物系の半導体材料や、ガリウムヒ素系の
半導体材料や、インジウム燐系の半導体材料を用いることができる。
The semiconductor laminate includes, for example, a plurality of semiconductor layers such as an n-type semiconductor layer, a light emitting layer (active layer), and a p-type semiconductor layer. The semiconductor layer can be formed from a semiconductor material such as a group III-V compound semiconductor or a group II-VI compound semiconductor. Specifically, In x Al y Ga 1- xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1) and semiconductor material of the nitride-based, such as, a semiconductor material of gallium arsenide-based semiconductor of indium phosphide-based Materials can be used.

電極の形状は略矩形や円形などの種々の形状に形成することができる。電極の材料は導電性であればよく公知の材料が用いられる。 The shape of the electrode can be formed into various shapes such as a substantially rectangular shape and a circular shape. As the material of the electrode, a known material may be used as long as it is conductive.

第1発光素子31、第2発光素子32および第3発光素子33の厚み(高さ方向)は、透光性基板、半導体積層体、および、電極を含んでおり、例えば、500μm以下であることが好ましく、400μm以下、300μm以下、また100μm以上であることがより好ましい。平面視における第1発光素子31、第2発光素子32および第3発光素子33の形状は、四角形又はこれに近似する形状が好ましい。発光素子が略四角形状である場合の第1発光素子31、第2発光素子32および第3発光素子33の大きさは、5mm×5mm以下であることが好ましく、例えば、200μm×200μm以上であることがより好ましい。尚、平面視における発光素子が略四角形状である場合の発光素子の大きさは、発光素子の縦の1辺×発光素子の横の1辺で求めることができる。 The thickness (height direction) of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 includes the translucent substrate, the semiconductor laminate, and the electrodes, and is, for example, 500 μm or less. Is preferable, and it is more preferably 400 μm or less, 300 μm or less, and 100 μm or more. The shapes of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 in a plan view are preferably a quadrangle or a shape similar thereto. When the light emitting element has a substantially quadrangular shape, the sizes of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are preferably 5 mm × 5 mm or less, for example, 200 μm × 200 μm or more. Is more preferable. The size of the light emitting element when the light emitting element in a plan view is substantially square can be obtained by one vertical side of the light emitting element x one horizontal side of the light emitting element.

第1発光素子31、第2発光素子32および第3発光素子33は互いに異なる波長の光を出射する。具体的には、第1発光素子31、第2発光素子32および第3発光素子33は第1ピーク波長、第2ピーク波長および第4ピーク波長の光をそれぞれ出射する。ピーク波長とは、発光素子から出射する光のうち、出射強度が最大となる波長をいう。本実施形態では、第1ピーク波長は第2ピーク波長および第4ピーク波長よりも短波長である。例えば、第1発光素子31は青色光を出射し、第2発光素子32は緑色または赤色光を出射し、第3発光素子33は赤色または緑色光を出射する。第1発光素子31、第2発光素
子32および第3発光素子33が出射する光の波長は、例えば、半導体積層体の発光層を形成している半導体材料の混晶比を制御することや異なる半導体材料を使用すること等によって異ならせることができる。第1発光素子31とピーク波長が異なる第2発光素子32を備えることで発光装置の演色性が向上する。また、第1発光素子31および第2発光素子32とピーク波長が異なる第3発光素子33を備えることで更に発光装置の演色性が向上する。
The first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 emit light having different wavelengths from each other. Specifically, the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 emit light having a first peak wavelength, a second peak wavelength, and a fourth peak wavelength, respectively. The peak wavelength is the wavelength of the light emitted from the light emitting element that has the maximum emission intensity. In this embodiment, the first peak wavelength is shorter than the second peak wavelength and the fourth peak wavelength. For example, the first light emitting element 31 emits blue light, the second light emitting element 32 emits green or red light, and the third light emitting element 33 emits red or green light. The wavelengths of the light emitted by the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 differ from, for example, controlling the mixed crystal ratio of the semiconductor material forming the light emitting layer of the semiconductor laminate. It can be made different by using a semiconductor material or the like. By providing the second light emitting element 32 having a peak wavelength different from that of the first light emitting element 31, the color rendering property of the light emitting device is improved. Further, by providing the third light emitting element 33 having a peak wavelength different from that of the first light emitting element 31 and the second light emitting element 32, the color rendering property of the light emitting device is further improved.

図1に示すように、本実施形態では、発光装置101は、7つの第1発光素子31と、1つの第2発光素子32および1つの第3発光素子33とを含む。第1発光素子31の個数が第2発光素子32の個数および第3発光素子33の個数よりも多い方が好ましい。第1発光素子31の上面は波長変換部材に覆われているので、第1発光素子31の第1ピーク波長の光の一部は異なる波長の光に変換される。このため、第1ピーク波長の光の輝度が低下するおそれがある。第1発光素子31の数を第2発光素子32の数および第3発光素子33の数よりも多くすることで、第1ピーク波長の光の輝度を増加させることができるので発光装置の演色性が向上する。 As shown in FIG. 1, in the present embodiment, the light emitting device 101 includes seven first light emitting elements 31, one second light emitting element 32, and one third light emitting element 33. It is preferable that the number of the first light emitting elements 31 is larger than the number of the second light emitting elements 32 and the number of the third light emitting elements 33. Since the upper surface of the first light emitting element 31 is covered with a wavelength conversion member, a part of the light having the first peak wavelength of the first light emitting element 31 is converted into light having a different wavelength. Therefore, the brightness of the light having the first peak wavelength may decrease. By increasing the number of the first light emitting elements 31 to be larger than the number of the second light emitting elements 32 and the number of the third light emitting elements 33, the brightness of the light having the first peak wavelength can be increased, so that the color rendering property of the light emitting device can be increased. Is improved.

第1発光素子31、第2発光素子32および第3発光素子33は上面31a、32a、33aと下面、31b、32b、33bとをそれぞれ有し、上面31a、32a、33aから上述した波長の光を出射する。下面31b、32b、33bは、配線基板10に対向しており、通電用の端子が設けられている。図2に示すように、第1発光素子31、第2発光素子32および第3発光素子33は配線基板10の配線導体13上に配置され、電気的に接続される。例えば、金属バンプ35を介して第1発光素子31、第2発光素子32および第3発光素子33の端子と、配線導体13とが電気的に接続される。導電性ペースト、異方性導電ペースト、半田など他の接合部材を用いてもよい。 The first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 have upper surfaces 31a, 32a, 33a and lower surfaces, 31b, 32b, 33b, respectively, and light having the above-mentioned wavelengths from the upper surfaces 31a, 32a, 33a. Is emitted. The lower surfaces 31b, 32b, and 33b face the wiring board 10 and are provided with terminals for energization. As shown in FIG. 2, the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are arranged on the wiring conductor 13 of the wiring board 10 and are electrically connected. For example, the terminals of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are electrically connected to the wiring conductor 13 via the metal bump 35. Other bonding members such as a conductive paste, an anisotropic conductive paste, and solder may be used.

第1発光素子31、第2発光素子32および第3発光素子33の上面31a、32a、33aは例えば矩形形状を有し、それぞれ、4つの側面31c、32c、33cをさらに備える。第1発光素子31、第2発光素子32および第3発光素子33の上面31a、32a、33a、下面31b、32b、33b、側面31c、32c、33cは、酸化ケイ素、窒化珪素などの無機保護膜を備えていてもよい。 The upper surfaces 31a, 32a, 33a of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 have, for example, a rectangular shape, and further include four side surfaces 31c, 32c, 33c, respectively. The upper surfaces 31a, 32a, 33a, lower surfaces 31b, 32b, 33b, side surfaces 31c, 32c, 33c of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are formed of an inorganic protective film such as silicon oxide or silicon nitride. May be provided.

第1発光素子31、第2発光素子32および第3発光素子33はそれぞれの上面31a、32a、33aが略同一面に位置するように配線基板10に支持される。第1発光素子31、第2発光素子32および第3発光素子33の高さは、例えば、出射光の波長が異なることによる半導体積層体の差異に起因して、互いに異なっていてもよい。高さは、上面31a、32a、33aと、下面31b、32b、33bとの間隔で定義される。この場合、図4に示すように、第1発光素子31、第2発光素子32および第3発光素子33の上面31a、32a、33aが略同一面p1上に位置するように、各素子を配線導体13に接続する金属バンプ35の高さhを調節することが好ましい。 The first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are supported by the wiring board 10 so that their upper surfaces 31a, 32a, and 33a are located on substantially the same surface. The heights of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 may be different from each other, for example, due to the difference in the semiconductor laminate due to the difference in the wavelength of the emitted light. The height is defined by the distance between the upper surfaces 31a, 32a, 33a and the lower surfaces 31b, 32b, 33b. In this case, as shown in FIG. 4, each element is wired so that the upper surfaces 31a, 32a, 33a of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are located on substantially the same surface p1. It is preferable to adjust the height h of the metal bump 35 connected to the conductor 13.

第1発光素子31、第2発光素子32および第3発光素子33は、配線基板10上において配置される。図5は、第1発光素子31、第2発光素子32および第3発光素子33の配置例を示す図である。図1に示す例では、第1発光素子31、第2発光素子32および第3発光素子33はx方向およびy方向において、3行3列のマトリクス状に配置されている。後述するように第1発光素子31上には波長変換部材が配置される。このため、第1発光素子31はまとまって配置されていることが好ましい。具体的には、7つの第1発光素子31のそれぞれは、x方向およびy方向の少なくともいずれか一方の方向において、他の第1発光素子31と隣接するように配置されていることが好ましい。これにより、第1発光素子31が出射する光の領域を1つにまとめることができ、波長変換部材を設ける領域を1か所にすることができる。ただし、第1発光素子31、第2発光素子32お
よび第3発光素子33の配置は図5に示す例に限らず、例えば、第1発光素子31、第2発光素子32および第3発光素子33は同心円状に配置されていてもよいし、ランダムに配置されていてもよい。
The first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are arranged on the wiring board 10. FIG. 5 is a diagram showing an arrangement example of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33. In the example shown in FIG. 1, the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are arranged in a matrix of 3 rows and 3 columns in the x direction and the y direction. As will be described later, a wavelength conversion member is arranged on the first light emitting element 31. Therefore, it is preferable that the first light emitting elements 31 are arranged together. Specifically, it is preferable that each of the seven first light emitting elements 31 is arranged so as to be adjacent to the other first light emitting element 31 in at least one of the x direction and the y direction. As a result, the regions of the light emitted by the first light emitting element 31 can be combined into one, and the region where the wavelength conversion member is provided can be provided in one place. However, the arrangement of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 is not limited to the example shown in FIG. 5, and for example, the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are arranged. May be arranged concentrically or may be arranged randomly.

第1発光素子31、第2発光素子32および第3発光素子33の間隔に特に制限はないが、例えば各発光素子の一辺の長さよりも短いことが好ましい。例えば1μm以上200μm以下であることが好ましく、50μm以上100μm以下であることがより好ましい。これにより、後述するように、第2光反射部材を配置する領域を確保しつつ、発光素子間の間隔を狭くすることによって、波長変換部材のうち、第1発光素子から出射する光が直接入射しにくい領域をできるだけ小さくすることができる。このようにすることで、波長変換部材の輝度ムラを抑制することができる。 The distance between the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 is not particularly limited, but is preferably shorter than the length of one side of each light emitting element, for example. For example, it is preferably 1 μm or more and 200 μm or less, and more preferably 50 μm or more and 100 μm or less. As a result, as will be described later, by narrowing the distance between the light emitting elements while securing the area for arranging the second light reflecting member, the light emitted from the first light emitting element among the wavelength conversion members is directly incident. The difficult area can be made as small as possible. By doing so, it is possible to suppress the uneven brightness of the wavelength conversion member.

(第1光反射部材20)
第1光反射部材20は、第1発光素子31から出射された光が第2発光素子32および/または第3発光素子33に吸収されることを抑制するための部材である。第1光反射部材20は、配線基板10上において、少なくとも第1発光素子31の側面31cに接して配置される。第1光反射部材20を備えることで、第1発光素子31の側面から出射される光が第1光反射部材20によって遮られるので、第2発光素子32および/または第3発光素子33に吸収されることを抑制することができるので発光装置の輝度低下を抑制することができる。第1光反射部材20と第1発光素子31の側面31cとが接していることで、第1光反射部材20と第1発光素子31の側面31cとが接していない場合よりも、第1発光素子31の側面から出射される光を第1光反射部材20で遮りやすくなる。また、第1光反射部材20は第1発光素子31の上面31aを露出し、断面視において、第1発光素子31の上面31aと略同一面上に位置する上面20aを有する。本実施形態では、第1光反射部材20は、配線基板10上において、第2発光素子32および第3発光素子33の側面32c、33cも覆っており、上面20aは、第2発光素子32および第3発光素子33の上面32a、33aとも略同一面に位置している。つまり、第1光反射部材20は、第1発光素子31、第2発光素子32および第3発光素子33の上面31a、32a、33aを露出させて、側面31c、32c、33cの全体を覆うように、第1発光素子31、第2発光素子32および第3発光素子33を埋め込んでいる。このようにすることで、第2発光素子から出射された光が第1発光素子31および/または第3発光素子33に吸収されることを抑制することができる。また、第3発光素子から出射された光が第1発光素子31および/または第2発光素子22に吸収されることを抑制することができる。
(First light reflecting member 20)
The first light reflecting member 20 is a member for suppressing the light emitted from the first light emitting element 31 from being absorbed by the second light emitting element 32 and / or the third light emitting element 33. The first light reflecting member 20 is arranged on the wiring board 10 in contact with at least the side surface 31c of the first light emitting element 31. By providing the first light reflecting member 20, the light emitted from the side surface of the first light emitting element 31 is blocked by the first light reflecting member 20, and thus absorbed by the second light emitting element 32 and / or the third light emitting element 33. Since it is possible to suppress the decrease in brightness of the light emitting device, it is possible to suppress the decrease in brightness of the light emitting device. Since the first light reflecting member 20 and the side surface 31c of the first light emitting element 31 are in contact with each other, the first light emission is performed as compared with the case where the first light reflecting member 20 and the side surface 31c of the first light emitting element 31 are not in contact with each other. The light emitted from the side surface of the element 31 is easily blocked by the first light reflecting member 20. Further, the first light reflecting member 20 exposes the upper surface 31a of the first light emitting element 31, and has an upper surface 20a located on substantially the same surface as the upper surface 31a of the first light emitting element 31 in a cross-sectional view. In the present embodiment, the first light reflecting member 20 also covers the side surfaces 32c and 33c of the second light emitting element 32 and the third light emitting element 33 on the wiring substrate 10, and the upper surface 20a covers the second light emitting element 32 and the second light emitting element 32. The upper surfaces 32a and 33a of the third light emitting element 33 are also located on substantially the same surface. That is, the first light reflecting member 20 exposes the upper surfaces 31a, 32a, 33a of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33, and covers the entire side surfaces 31c, 32c, 33c. The first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are embedded therein. By doing so, it is possible to prevent the light emitted from the second light emitting element from being absorbed by the first light emitting element 31 and / or the third light emitting element 33. Further, it is possible to suppress the light emitted from the third light emitting element from being absorbed by the first light emitting element 31 and / or the second light emitting element 22.

第1光反射部材20の上面20aは平面(平坦)でも、平面でなくてもよい。第1光反射部材20の上面20aが平面ではない場合では、第1光反射部材20を形成する際における樹脂材料の硬化時において、自重により、あるいは、樹脂のひけによって、一部が窪んでいてもよい。 The upper surface 20a of the first light reflecting member 20 may or may not be flat. When the upper surface 20a of the first light reflecting member 20 is not flat, a part of the upper surface 20a of the first light reflecting member 20 is dented due to its own weight or the sink of the resin when the resin material is cured when forming the first light reflecting member 20. May be good.

第1光反射部材20は絶縁体であり、ある程度の強度を有する光反射性樹脂により形成することができる。光反射性樹脂は、発光素子からの光に対する反射率が高く、例えば、70%以上の反射率を有する。 The first light reflecting member 20 is an insulator and can be formed of a light reflecting resin having a certain level of strength. The light-reflecting resin has a high reflectance to light from a light emitting element, and has, for example, a reflectance of 70% or more.

光反射性樹脂としては、例えば透光性樹脂に、光反射性物質を分散させたものが使用できる。光反射性物質としては、例えば、酸化チタン、二酸化ケイ素、二酸化ジルコニウム、チタン酸カリウム、酸化アルミ二ウム、窒化アルミニウム、窒化ホウ素、ムライトなどが好適である。光反射性物質は、粒状、繊維状、薄板片状などが利用できるが、特に、繊維状のものは光反射部材の熱膨張率を低くして、例えば、発光素子との間の熱膨張率差を小さくできるので好ましい。光反射性樹脂に含まれる樹脂材料としては、特に、シリコー
ン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性の透光性樹脂であるのが好ましい。
As the light-reflecting resin, for example, a light-transmitting resin in which a light-reflecting substance is dispersed can be used. As the light-reflecting substance, for example, titanium oxide, silicon dioxide, zirconium dioxide, potassium titanate, aluminum oxide, aluminum nitride, boron nitride, mullite and the like are suitable. As the light-reflecting substance, granular, fibrous, thin plate pieces, etc. can be used, but in particular, the fibrous material lowers the coefficient of thermal expansion of the light-reflecting member, for example, the coefficient of thermal expansion with the light emitting element. It is preferable because the difference can be reduced. The resin material contained in the light-reflecting resin is particularly preferably a thermosetting translucent resin such as a silicone resin, a silicone-modified resin, an epoxy resin, or a phenol resin.

尚、第1光反射部材20によって第1発光素子31および第2発光素子32を支持してもよい。この場合には、発光装置が配線基板を備えていなくてもよい。配線基板10を備えていない場合は、第1発光素子および第2発光素子の電極と外部回路とが電気的に接続される。 The first light reflecting member 20 may support the first light emitting element 31 and the second light emitting element 32. In this case, the light emitting device does not have to be provided with a wiring board. When the wiring board 10 is not provided, the electrodes of the first light emitting element and the second light emitting element and the external circuit are electrically connected.

(波長変換部材41)
波長変換部材41は、第1発光素子31から出射される第1ピーク波長の光を第1ピーク波長とは異なる波長の光に変換する部材である。波長変換部材41は、第1発光素子31の上面31aを覆っている。本実施形態では、発光装置101は、複数の第1発光素子31を備えるため、複数の第1発光素子31間に位置する第1光反射部材20の上面20aにも波長変換部材41が位置している。確実に第1発光素子31の上面31a全体を覆うため、平面(上面)視において、波長変換部材41は、第1発光素子31の上面31aを規定する外縁よりも外側に位置する第1光反射部材20の上面20aも覆っている。波長変換部材41の位置は、後述する第2光反射部材40が囲む領域で定義される。波長変換部材41は第2発光素子32および第3発光素子33の上面32a、33aを覆っていない。
(Wavelength conversion member 41)
The wavelength conversion member 41 is a member that converts light having a first peak wavelength emitted from the first light emitting element 31 into light having a wavelength different from that of the first peak wavelength. The wavelength conversion member 41 covers the upper surface 31a of the first light emitting element 31. In the present embodiment, since the light emitting device 101 includes a plurality of first light emitting elements 31, the wavelength conversion member 41 is also located on the upper surface 20a of the first light reflecting member 20 located between the plurality of first light emitting elements 31. ing. In order to surely cover the entire upper surface 31a of the first light emitting element 31, the wavelength conversion member 41 is located outside the outer edge defining the upper surface 31a of the first light emitting element 31 in a plan view (upper surface) view. It also covers the upper surface 20a of the member 20. The position of the wavelength conversion member 41 is defined by a region surrounded by the second light reflecting member 40, which will be described later. The wavelength conversion member 41 does not cover the upper surfaces 32a and 33a of the second light emitting element 32 and the third light emitting element 33.

図6Aに示すように、波長変換部材41は、第1発光素子31が出射する光の一部を吸収し、蛍光(あるいはりん光、以下単に光と称する)を放出する蛍光体42を含む。蛍光体が放出する光は、第1ピーク波長および第2ピーク波長とは異なる第3ピーク波長の光である。つまり、波長変換部材41は、第1ピーク波長の光の一部を第3ピーク波長の光に変換する。例えば、第1ピーク波長が青色である場合、波長変換部材41は、第1発光素子31が出射する青色光の一部を吸収し、黄色光を放出する。第1ピーク波長の光および第3ピーク波長の光は、混合することによって白色光となる組み合わせであることが好ましい。また、波長変換部材41により変換された第3ピーク波長の光は、発光素子から出射された光のスペクトルと比較してブロードなスペクトルを示す。このため、第3ピーク波長の光を出射する発光素子を用いる場合よりも発光装置の演色性が向上する。また、発光装置101は、第1発光素子から出射される第1ピーク波長及び波長変換部材に変換された第3ピーク波長とは、異なるピーク波長の光を出射する第2発光素子32および第3発光素子33を備えることで更に発光装置の演色性が向上する。 As shown in FIG. 6A, the wavelength conversion member 41 includes a phosphor 42 that absorbs a part of the light emitted by the first light emitting element 31 and emits fluorescence (or phosphorescent light, hereinafter simply referred to as light). The light emitted by the phosphor is light having a third peak wavelength different from the first peak wavelength and the second peak wavelength. That is, the wavelength conversion member 41 converts a part of the light having the first peak wavelength into the light having the third peak wavelength. For example, when the first peak wavelength is blue, the wavelength conversion member 41 absorbs a part of the blue light emitted by the first light emitting element 31 and emits yellow light. The light having the first peak wavelength and the light having the third peak wavelength are preferably a combination of white light when mixed. Further, the light having the third peak wavelength converted by the wavelength conversion member 41 shows a broad spectrum as compared with the spectrum of the light emitted from the light emitting element. Therefore, the color rendering property of the light emitting device is improved as compared with the case of using a light emitting element that emits light having a third peak wavelength. Further, the light emitting device 101 emits light having a peak wavelength different from that of the first peak wavelength emitted from the first light emitting element and the third peak wavelength converted into the wavelength conversion member, and the second light emitting element 32 and the third light emitting device 101. By providing the light emitting element 33, the color rendering property of the light emitting device is further improved.

波長変換部材41において、第1発光素子31の光が入射しない領域、あるいは、第1発光素子31からの光の入射量が少ない領域では、波長変換によって生成した黄色光と、波長変換部材41を透過する第1発光素子31からの光とのバランスがくずれるため、白色光からずれた色調で発光しているように見えたり、輝度が低下したりする場合がある。このため、第2光反射部材40が囲む面積、つまり波長変換部材41が設けられている面積に対して、第1発光素子31の上面31aと重なる部分の面積の割合は大きいほうが好ましく、例えば、70%以上であることが好ましい。より好ましくは、80%以上である。 In the wavelength conversion member 41, in the region where the light of the first light emitting element 31 is not incident, or in the region where the amount of light incident from the first light emitting element 31 is small, the yellow light generated by the wavelength conversion and the wavelength conversion member 41 are used. Since the balance with the light from the first light emitting element 31 that is transmitted is lost, it may appear that the light is emitted in a color tone deviating from the white light, or the brightness may be lowered. Therefore, it is preferable that the ratio of the area of the portion overlapping the upper surface 31a of the first light emitting element 31 to the area surrounded by the second light reflecting member 40, that is, the area where the wavelength conversion member 41 is provided is large. It is preferably 70% or more. More preferably, it is 80% or more.

波長変換部材41の蛍光体42は、例えば、以下の材料であってもよい。 The phosphor 42 of the wavelength conversion member 41 may be made of, for example, the following material.

(i)アルミニウムガーネット系等のガーネット系蛍光体(例えば、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)系蛍光体、セリウムで賦活されたルテチウム・アルミニウム・ガーネット(LAG)系蛍光体等)
(ii)ユウロピウムおよび/またはクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO−Al23−SiO2)系蛍光体
(iii)ユウロピウムで賦活されたシリケート系((Sr,Ba)2SiO4)蛍光体
(iv)β−SiAlON系蛍光体
(v)CASN(CaAlSiN3:Eu)系またはSCASN系等の窒化物系蛍光体
(vi)LnSi311系、LnSiAlON系等の希土類窒化物系蛍光体(Lnは希
土類元素)
(vii)BaSi222:Eu系、Ba3Si6122:Eu系等の酸窒化物系蛍光体
(viii)マンガンで賦活されたフッ化物錯体蛍光体(例えば、KSF系(K2Si
6:Mn)蛍光体)
(ix)CaS系(CaS:Eu)、SrGa24系(SrGa24:Eu)、SrAl24系、ZnS系等の硫化物系蛍光体
(x)クロロシリケート系蛍光体
(I) Garnet-based phosphors such as aluminum garnet-based (for example, yttrium-aluminum-garnet (YAG) -based phosphors activated with cerium, lutetium-aluminum-garnet (LAG) -based phosphors activated with cerium, etc.)
(Ii) Europium and / or chromium-activated nitrogen-containing calcium aluminosilicate (CaO-Al 2 O 3- SiO 2 ) -based phosphor (iii) Europium-activated silicate-based ((Sr, Ba) 2 SiO 4 ) ) phosphor (iv) beta-SiAlON phosphor (v) CASN (CaAlSiN 3: Eu) based or nitride-based fluorescent material SCASN system, etc. (vi) LnSi 3 N 11 system, rare earth nitride such LnSiAlON system Fluorescent material (Ln is a rare earth element)
(Vii) BaSi 2 O 2 N 2 : Eu-based, Ba 3 Si 6 O 12 N 2 : Acid-nitride-based phosphors such as Eu-based (viii) Manganese-activated fluoride complex phosphors (for example, KSF-based) (K 2 Si
F 6 : Mn) phosphor)
(Ix) CaS system (CaS: Eu), SrGa 2 S 4 type (SrGa 2 S 4: Eu) , SrAl 2 O 4 system, sulfide-based phosphor of ZnS system, etc. (x) chlorosilicate phosphor

また、蛍光体42は、半導体材料、例えば、II−VI族、III−V族、IV−VI族半導体、具体的には、CdSe、コアシェル型のCdSxSe1-x/ZnS、GaP等のナノサイズの高分散粒子であるいわゆるナノクリスタル、量子ドット(Q−Dots)と称される発光物質でもよい。量子ドット蛍光体は、不安定であるため、PMMA(ポリメタクリル酸メチル)、シリコーン樹脂、エポキシ樹脂、これらのハイブリッド樹脂などで粒子の表面を被覆または安定化してもよい。 Further, the phosphor 42 is a semiconductor material such as II-VI group, III-V group, IV-VI group semiconductor, specifically, CdSe, core-shell type CdS x Se 1-x / ZnS, GaP and the like. It may be a so-called nanocrystal, which is a nano-sized highly dispersed particle, or a luminescent material called quantum dots (Q-Dots). Since the quantum dot phosphor is unstable, the surface of the particles may be coated or stabilized with PMMA (polymethyl methacrylate), a silicone resin, an epoxy resin, a hybrid resin thereof, or the like.

波長変換部材41は、さらに光拡散材43を含んでいてもよい。光拡散材43としては、具体的には、SiO2、Al23、Al(OH)3、MgCO3、TiO2、ZrO2、Z
nO、Nb25、MgO、Mg(OH)2、SrO、In23、TaO2、HfO、SeO、Y23、CaO、Na2O、B23などの酸化物、SiN、AlN、AlONなどの窒
化物、MgF2のようなフッ化物などを用いることができる。これらは、単独で用いても
よいし、混合して用いてもよい。
The wavelength conversion member 41 may further include a light diffusing material 43. Specifically, the light diffusing material 43 includes SiO 2 , Al 2 O 3 , Al (OH) 3 , MgCO 3 , TiO 2 , ZrO 2 , Z.
Oxides such as nO, Nb 2 O 5 , MgO, Mg (OH) 2 , SrO, In 2 O 3 , TaO 2 , HfO, SeO, Y 2 O 3 , CaO, Na 2 O, B 2 O 3 , SiN , AlN, AlON and other nitrides, MgF 2 and other fluorides can be used. These may be used alone or in combination.

また、光拡散材43として有機フィラーを用いてもよい。例えば粒子形状を有する各種樹脂を用いることができる。この場合、各種樹脂として、例えば、シリコーン樹脂、ポリカーボネ−ト樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリテトラフルオロエチレン樹脂、エポキシ樹脂、シアナート樹脂、フェノール樹脂、アクリル樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリビニルアセタール樹脂、ポリメタクリル酸メチル樹脂、ウレタン樹脂およびポリエステル樹脂などを用いることができる。 Moreover, you may use an organic filler as a light diffusing material 43. For example, various resins having a particle shape can be used. In this case, as various resins, for example, silicone resin, polycarbonate resin, polyether sulfone resin, polyarylate resin, polytetrafluoroethylene resin, epoxy resin, cyanato resin, phenol resin, acrylic resin, polyimide resin, polystyrene resin, etc. Polypropylene resin, polyvinyl acetal resin, polymethyl methacrylate resin, urethane resin, polyester resin and the like can be used.

光拡散材43は、実質的に第1発光素子31から出射する光を波長変換しない材料であることが好ましい。光拡散材43の含有量は、光が拡散される程度であればよく、例えば0.01wt%程度以上30wt%程度以下、好ましくは2wt%程度以上20wt%程度以下である。また、光拡散材43のサイズも同様に光が拡散される程度であればよく、例えば0.01μm程度以上30μm程度以下、好ましくは0.5μm程度以上10μm程度以下である。形状は、球形でも鱗片形状でもよいが、均一に拡散させるために球状であることが好ましい。 The light diffusing material 43 is preferably a material that does not substantially convert the wavelength of the light emitted from the first light emitting element 31. The content of the light diffusing material 43 may be such that light is diffused, and is, for example, about 0.01 wt% or more and about 30 wt% or less, preferably about 2 wt% or more and about 20 wt% or less. Similarly, the size of the light diffusing material 43 may be such that light is diffused, and is, for example, about 0.01 μm or more and about 30 μm or less, preferably about 0.5 μm or more and about 10 μm or less. The shape may be spherical or scaly, but is preferably spherical in order to diffuse uniformly.

波長変換部材41は、シリコーン樹脂、エポキシ樹脂、ユリア樹脂等の透光性樹脂44を含み、透光性樹脂44に蛍光体42が分散していてもよい。後述する第2光反射部材40を堰とし、第2光反射部材40で囲われた領域に、波長変換部材41を配置することが可能であるため、透光性樹脂44として未硬化の状態では、比較的低粘度な液状樹脂材料(例えば、25℃のときの粘度が0.01〜5.0Pa・s)を用いることができる。このため、波長変換部材41を形成する領域が小さくても、精度よく所定の領域に波長変換部材41を配置することができる。 The wavelength conversion member 41 may include a translucent resin 44 such as a silicone resin, an epoxy resin, or a urea resin, and the phosphor 42 may be dispersed in the translucent resin 44. Since it is possible to use the second light reflecting member 40, which will be described later, as a dam and arrange the wavelength conversion member 41 in the region surrounded by the second light reflecting member 40, the translucent resin 44 is in an uncured state. , A liquid resin material having a relatively low viscosity (for example, a viscosity at 25 ° C. of 0.01 to 5.0 Pa · s) can be used. Therefore, even if the region forming the wavelength conversion member 41 is small, the wavelength conversion member 41 can be accurately arranged in a predetermined region.

また、未硬化の樹脂材料が、上述した特徴を有する透光性樹脂44を用いる場合、未硬化の樹脂材料中において、比較的比重が大きい蛍光体が沈殿し易い。この特徴を利用して、波長変換部材41における蛍光体42を偏在させることや、選択的に、光拡散材43と蛍光体42と配置することが可能である。例えば、図6Aに示すように、波長変換部材41は、蛍光体42、光拡散材43および透光性樹脂44を含み、透光性樹脂44中において、蛍光体42は第1発光素子31の上面31a側に偏在し、光拡散材43は、蛍光体42の上方に偏在している。このような構造の波長変換部材41は、粘度の小さい未硬化の樹脂材料に、蛍光体42と光拡散材43とを混合し、第1発光素子31の上面31aに未硬化の樹脂材料を滴下することによって、樹脂材料の硬化中に、相対的に比重の大きな蛍光体42を沈降させ、相対的に比重が小さい光拡散材43を蛍光体42の上方に配置することができる。 Further, when the uncured resin material uses the translucent resin 44 having the above-mentioned characteristics, a phosphor having a relatively large specific gravity is likely to precipitate in the uncured resin material. Utilizing this feature, the phosphor 42 in the wavelength conversion member 41 can be unevenly distributed, or the light diffusing material 43 and the phosphor 42 can be selectively arranged. For example, as shown in FIG. 6A, the wavelength conversion member 41 includes a phosphor 42, a light diffusing material 43, and a translucent resin 44, and in the translucent resin 44, the phosphor 42 is a first light emitting element 31. It is unevenly distributed on the upper surface 31a side, and the light diffusing material 43 is unevenly distributed above the phosphor 42. In the wavelength conversion member 41 having such a structure, the phosphor 42 and the light diffusing material 43 are mixed with the uncured resin material having a low viscosity, and the uncured resin material is dropped on the upper surface 31a of the first light emitting element 31. By doing so, the phosphor 42 having a relatively large specific gravity can be precipitated during the curing of the resin material, and the light diffusing material 43 having a relatively small specific gravity can be arranged above the phosphor 42.

蛍光体42は、光を吸収し、異なる波長の光を放出する際に発熱する。このため、蛍光体42が、第1発光素子31および配線基板10に近接して配置されることによって、蛍光体42で発生した熱を効率的に配線基板10へ伝導させ、放熱させることができる。蛍光体として水分に弱いものを使用した場合には、蛍光体を第1発光素子の上面側に偏在させることで、透光性樹脂が保護層としての機能を果たす。これにより、蛍光体が劣化されることを抑制し、良好な色度を保つことができる。例えば、水分に弱い蛍光体としてはKSF系蛍光体が挙げられる。また、波長変換部材41の出射面である上面41a側に光拡散材43を選択的に配置することにより、波長変換部材41から出射する光を拡散させ、発光素子間の暗部を目立ちにくくさせることが可能となる。このため、発光装置101が波長変換部材41に覆われた複数の第1発光素子を備えていても、点光源として見えるように出射光の分布を均一にすることができ、光質を向上させることができる。 The phosphor 42 absorbs light and generates heat when emitting light of different wavelengths. Therefore, by arranging the phosphor 42 close to the first light emitting element 31 and the wiring board 10, the heat generated by the phosphor 42 can be efficiently conducted to the wiring board 10 and dissipated. .. When a phosphor that is sensitive to moisture is used, the translucent resin functions as a protective layer by unevenly distributing the phosphor on the upper surface side of the first light emitting element. As a result, deterioration of the phosphor can be suppressed and good chromaticity can be maintained. For example, a KSF-based phosphor can be mentioned as a phosphor that is sensitive to moisture. Further, by selectively arranging the light diffusing material 43 on the upper surface 41a side which is the emitting surface of the wavelength conversion member 41, the light emitted from the wavelength conversion member 41 is diffused and the dark portion between the light emitting elements is made inconspicuous. Is possible. Therefore, even if the light emitting device 101 includes a plurality of first light emitting elements covered with the wavelength conversion member 41, the distribution of the emitted light can be made uniform so as to be seen as a point light source, and the light quality is improved. be able to.

(第2光反射部材40)
第2光反射部材40は、第2発光素子32から出射された光が波長変換部材41に入射することを抑制する部材である。第2発光素子32から出射された光が波長変換部材41に入射することを抑制することで、第2発光素子32から出射された光が波長変換部材41に吸収されることを抑制できる。これにより発光装置の輝度を高めることができる。第2光反射部材40は、第1光反射部材20の上面20a上に配置されており、平面視において、第2発光素子32と波長変換部材41との間に位置する。本実施形態では、発光装置101は、第3発光素子33も備えているため、第2光反射部材40は、平面視において、第3発光素子33と波長変換部材41との間に位置もしている。このようにすることで、第2光反射部材40により、第3発光素子33から出射された光が波長変換部材41に入射することを抑制することができる。好ましくは、波長変換部材41に第1発光素子31以外の発光素子からの光が入射しないよう、第2光反射部材40は、波長変換部材41の側面と接し、側面全体を囲んでいる。第2光反射部材40は第1発光素子31から出射した光が波長変換部材41の側面から出射するのを抑制し、発光装置101の発光効率を向上させるための反射板として機能する。また、波長変換部材41の領域を画定させる。
(Second light reflecting member 40)
The second light reflecting member 40 is a member that suppresses the light emitted from the second light emitting element 32 from entering the wavelength conversion member 41. By suppressing the light emitted from the second light emitting element 32 from entering the wavelength conversion member 41, it is possible to suppress the light emitted from the second light emitting element 32 from being absorbed by the wavelength conversion member 41. This makes it possible to increase the brightness of the light emitting device. The second light reflecting member 40 is arranged on the upper surface 20a of the first light reflecting member 20, and is located between the second light emitting element 32 and the wavelength conversion member 41 in a plan view. In the present embodiment, since the light emitting device 101 also includes the third light emitting element 33, the second light reflecting member 40 is also positioned between the third light emitting element 33 and the wavelength conversion member 41 in a plan view. There is. By doing so, the second light reflecting member 40 can prevent the light emitted from the third light emitting element 33 from entering the wavelength conversion member 41. Preferably, the second light reflecting member 40 is in contact with the side surface of the wavelength conversion member 41 and surrounds the entire side surface so that light from a light emitting element other than the first light emitting element 31 does not enter the wavelength conversion member 41. The second light reflecting member 40 suppresses the light emitted from the first light emitting element 31 from being emitted from the side surface of the wavelength conversion member 41, and functions as a reflector for improving the luminous efficiency of the light emitting device 101. In addition, the region of the wavelength conversion member 41 is defined.

図6Bに示すように、第2光反射部材40の断面は先端が丸みを帯びた凸形状を有する好ましい。このようにすることで、第2光反射部材の断面が略四角形状の場合よりも、第1発光素子、第2発光素子、および/または第3発光素子から出射された光の内で第2光反射部材に反射された光を発光装置の上方向に進む光にできる。このため、第1発光素子、第2発光素子、および/または第3発光素子から出射された光を発光装置の外側に取り出しやすくなるので、発光装置の光取り出し効率を向上させることができる。 As shown in FIG. 6B, the cross section of the second light reflecting member 40 preferably has a convex shape with a rounded tip. By doing so, the light emitted from the first light emitting element, the second light emitting element, and / or the third light emitting element is second than that in the case where the cross section of the second light reflecting member is substantially square. The light reflected by the light reflecting member can be converted into light traveling upward in the light emitting device. Therefore, the light emitted from the first light emitting element, the second light emitting element, and / or the third light emitting element can be easily taken out to the outside of the light emitting device, so that the light taking out efficiency of the light emitting device can be improved.

図6Bに示すように、第2光反射部材40の上面40aは、第2発光素子32の上面3
2aよりも高い位置にある。第2光反射部材40の上面40aが曲面である場合には、上面40aの位置とは、第1光反射部材20の上面20aから最も高い点40cにおける位置をいう。これにより、第2発光素子32から出射した光の一部は、第2光反射部材40に遮られ、波長変換部材41に入射することが抑制される。本実施形態では、発光装置101は第3発光素子33を備えるため、第2光反射部材40の上面40aは、第3発光素子33の上面33aよりも高い位置にある。これにより、第3発光素子33から出射した光の一部は、第2光反射部材40に遮られ、波長変換部材41に入射することが抑制される。
As shown in FIG. 6B, the upper surface 40a of the second light reflecting member 40 is the upper surface 3 of the second light emitting element 32.
It is higher than 2a. When the upper surface 40a of the second light reflecting member 40 is a curved surface, the position of the upper surface 40a means the position at the highest point 40c from the upper surface 20a of the first light reflecting member 20. As a result, a part of the light emitted from the second light emitting element 32 is blocked by the second light reflecting member 40 and is suppressed from entering the wavelength conversion member 41. In the present embodiment, since the light emitting device 101 includes the third light emitting element 33, the upper surface 40a of the second light reflecting member 40 is located higher than the upper surface 33a of the third light emitting element 33. As a result, a part of the light emitted from the third light emitting element 33 is blocked by the second light reflecting member 40, and is suppressed from entering the wavelength conversion member 41.

また、第2発光素子32の光が出射する面における任意の点と、波長変換部材41に位置する任意の点とを結ぶ直線上に、第1光反射部材20および/または第2光反射部材40が位置していることが好ましい。これにより、第2発光素子32から出射する光が第1光反射部材20および第2光反射部材40の少なくとも一方によって遮られ、波長変換部材41へ入射するのが抑制される。 Further, on a straight line connecting an arbitrary point on the surface of the second light emitting element 32 on which light is emitted and an arbitrary point located on the wavelength conversion member 41, the first light reflecting member 20 and / or the second light reflecting member It is preferable that 40 is located. As a result, the light emitted from the second light emitting element 32 is blocked by at least one of the first light reflecting member 20 and the second light reflecting member 40, and is suppressed from entering the wavelength conversion member 41.

本実施形態では、第2発光素子32の側面32cが第1光反射部材20によって覆われている。このため、第2発光素子32の側面32cおける任意の点と、波長変換部材41に位置する任意の点とを結ぶ直線上に、第1光反射部材20が位置しており、側面32cから漏れる光は、少なくとも第1光反射部材20によって抑制される。 In the present embodiment, the side surface 32c of the second light emitting element 32 is covered with the first light reflecting member 20. Therefore, the first light reflecting member 20 is located on a straight line connecting an arbitrary point on the side surface 32c of the second light emitting element 32 and an arbitrary point located on the wavelength conversion member 41, and leaks from the side surface 32c. Light is suppressed by at least the first light reflecting member 20.

図6Bにおいて点線で示すように、第2発光素子32の上面32aにおける任意の点と、波長変換部材41に位置する任意の点とを結ぶ直線上には、第2光反射部材40が位置している。このため、上面32aから出射する光は、第2光反射部材40によって抑制される。 As shown by the dotted line in FIG. 6B, the second light reflecting member 40 is located on a straight line connecting an arbitrary point on the upper surface 32a of the second light emitting element 32 and an arbitrary point located on the wavelength conversion member 41. ing. Therefore, the light emitted from the upper surface 32a is suppressed by the second light reflecting member 40.

本実施形態では、発光装置101は第3発光素子33を備えるため、第3発光素子33の光が出射する面における任意の点と、波長変換部材41に位置する任意の点とを結ぶ直線上に、第1光反射部材20および/または第2光反射部材40が位置していることが好ましい。これにより、第3発光素子33から出射する光が第1光反射部材20および第2光反射部材40の少なくとも一方によって遮られ、波長変換部材41へ入射するのが抑制される。 In the present embodiment, since the light emitting device 101 includes the third light emitting element 33, it is on a straight line connecting an arbitrary point on the surface of the third light emitting element 33 from which light is emitted and an arbitrary point located on the wavelength conversion member 41. It is preferable that the first light reflecting member 20 and / or the second light reflecting member 40 is located there. As a result, the light emitted from the third light emitting element 33 is blocked by at least one of the first light reflecting member 20 and the second light reflecting member 40, and is suppressed from entering the wavelength conversion member 41.

図6Bに示すように、第2光反射部材40の上面40aが、波長変換部材41の上面41aよりも高さ(厚さ)よりも高い位置にある場合、波長変換部材41に対する第2発光素子32および第3発光素子33の位置にかかわらず、第2発光素子32の上面32aおよび第3発光素子33の上面33aにおける任意の点と、波長変換部材41に位置する任意の点とを結ぶ直線上に、第2光反射部材40が位置する。このため、第2発光素子32の上面32aおよび第3発光素子33の上面33aから出射する光は、第2光反射部材40によって抑制される。この特徴により、第2発光素子32および第3発光素子33から出射する光が波長変換部材41へ入射するのをより確実に抑制することができる。第2光反射部材40の平面視における幅は、発光素子の間隔よりも狭いことが好ましい。 As shown in FIG. 6B, when the upper surface 40a of the second light reflecting member 40 is at a position higher than the height (thickness) of the upper surface 41a of the wavelength conversion member 41, the second light emitting element with respect to the wavelength conversion member 41. A straight line connecting an arbitrary point on the upper surface 32a of the second light emitting element 32 and the upper surface 33a of the third light emitting element 33 and an arbitrary point located on the wavelength conversion member 41 regardless of the positions of the 32 and the third light emitting element 33. The second light reflecting member 40 is located above. Therefore, the light emitted from the upper surface 32a of the second light emitting element 32 and the upper surface 33a of the third light emitting element 33 is suppressed by the second light reflecting member 40. With this feature, it is possible to more reliably suppress the light emitted from the second light emitting element 32 and the third light emitting element 33 from entering the wavelength conversion member 41. The width of the second light reflecting member 40 in a plan view is preferably narrower than the distance between the light emitting elements.

図6Cは、波長変換部材41の上面41aが第2光反射部材40の上面40aよりも高くに位置している例を示している。ここで、波長変換部材41の上面41aは曲面であるため、上面41aの位置は、第1光反射部材20の上面20aから最も高い点41cにおける位置をいう。このような場合でも、点線で示すように、第2発光素子32の上面32aおよび第3発光素子33の上面33aにおける任意の点と、波長変換部材41に位置する任意の点とを結ぶ直線上に、第2光反射部材40を配置することが可能である。よって、第2光反射部材40は、第2発光素子32の上面32aおよび第3発光素子33の上面33aから出射する光が波長変換部材41へ入射するのを抑制することができる。 FIG. 6C shows an example in which the upper surface 41a of the wavelength conversion member 41 is located higher than the upper surface 40a of the second light reflecting member 40. Here, since the upper surface 41a of the wavelength conversion member 41 is a curved surface, the position of the upper surface 41a means the position at the highest point 41c from the upper surface 20a of the first light reflecting member 20. Even in such a case, as shown by the dotted line, on a straight line connecting an arbitrary point on the upper surface 32a of the second light emitting element 32 and the upper surface 33a of the third light emitting element 33 and an arbitrary point located on the wavelength conversion member 41. It is possible to arrange the second light reflecting member 40 in the. Therefore, the second light reflecting member 40 can suppress the light emitted from the upper surface 32a of the second light emitting element 32 and the upper surface 33a of the third light emitting element 33 from entering the wavelength conversion member 41.

この形態によれば、第2光反射部材40の高さを低くし、第2発光素子32および第3発光素子33から出射する光が第2光反射部材40によって遮られる角度をできるだけ小さくすることができる。第2発光素子32および第3発光素子33から出射する光は、第1発光素子31から出射する光および波長変換部材41が発する光における強度が不足する波長域を補うものであるため、遮られる角度が小さくなることにより、発光装置101は、より広い出射角度で演色性の高い光を出射することが可能となる。 According to this embodiment, the height of the second light reflecting member 40 is lowered, and the angle at which the light emitted from the second light emitting element 32 and the third light emitting element 33 is blocked by the second light reflecting member 40 is made as small as possible. Can be done. The light emitted from the second light emitting element 32 and the third light emitting element 33 is blocked because it compensates for the insufficient intensity of the light emitted from the first light emitting element 31 and the light emitted by the wavelength conversion member 41. As the angle becomes smaller, the light emitting device 101 can emit light having high color rendering properties at a wider emission angle.

第2光反射部材40は、第1光反射部材20上へ液状やペースト状で成形し、そのまま硬化させて形成できる材料を用いることが好ましい。波長変換部材41を形成する際の堰として第2光反射部材40が十分な高さを備えることができるよう、ペースト状すなわち高粘度(例えば、25℃のときの粘度が380〜450Pa・s)を有する液状の材料であることが好ましい。このような材料として熱硬化性樹脂や熱可塑性樹脂が挙げられる。具体的には、フェノール樹脂、エポキシ樹脂、BTレジン、PPA、シリコーン樹脂等を用いることができる。第2光反射部材40は、高い反射率を有するように、白色であることが好ましい。また、より高い反射率を有するよう、これらの樹脂材料に、発光素子が発光した光を吸収し難く、かつ、母材となる樹脂材料に対して屈折率差の大きい光反射性物質の粉末を、予め分散させて形成してもよい。光反射性物質には上述の部材を用いることができる。 As the second light reflecting member 40, it is preferable to use a material that can be formed on the first light reflecting member 20 in a liquid or paste form and then cured as it is. Paste-like, that is, high viscosity (for example, viscosity at 25 ° C. is 380 to 450 Pa · s) so that the second light reflecting member 40 can have a sufficient height as a weir when forming the wavelength conversion member 41. It is preferable that it is a liquid material having. Examples of such a material include thermosetting resins and thermoplastic resins. Specifically, phenol resin, epoxy resin, BT resin, PPA, silicone resin and the like can be used. The second light reflecting member 40 is preferably white so as to have a high reflectance. Further, in order to have higher reflectance, powder of a light-reflecting substance having a large difference in refractive index with respect to the resin material as a base material, which is difficult to absorb the light emitted by the light emitting element, is applied to these resin materials. , May be formed by dispersing in advance. The above-mentioned member can be used as the light-reflecting substance.

(被覆部材50)
被覆部材50は、第1発光素子31、波長変換部材41、第2光反射部材40および第2発光素子32を外部環境から保護するための部材である。被覆部材50は、第1光反射部材20の上面20a全体に設けられている。具体的には、被覆部材50は、第1発光素子31上に位置する波長変換部材41と、第2光反射部材40と、第2発光素子32と、第3発光素子33と接し、かつ、これらを覆っている。被覆部材50は、第1発光素子31とは直接接していないが、第1発光素子31の上方に位置しているという意味で、第1発光素子31も覆っている。
(Coating member 50)
The covering member 50 is a member for protecting the first light emitting element 31, the wavelength conversion member 41, the second light reflecting member 40, and the second light emitting element 32 from the external environment. The covering member 50 is provided on the entire upper surface 20a of the first light reflecting member 20. Specifically, the covering member 50 is in contact with the wavelength conversion member 41 located on the first light emitting element 31, the second light reflecting member 40, the second light emitting element 32, and the third light emitting element 33. It covers these. Although the covering member 50 is not in direct contact with the first light emitting element 31, it also covers the first light emitting element 31 in the sense that it is located above the first light emitting element 31.

被覆部材50は、曲面51cを有するレンズ部51と、レンズ部の周囲に位置する鍔部52とを含む。レンズ部51は第1発光素子31、第2発光素子32及び第3発光素子33の上方に位置している。曲面51cの形状は、発光装置101に求められる配光特性に応じて設計され得る。 The covering member 50 includes a lens portion 51 having a curved surface 51c and a flange portion 52 located around the lens portion. The lens unit 51 is located above the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33. The shape of the curved surface 51c can be designed according to the light distribution characteristics required for the light emitting device 101.

第2光反射部材40の上面40aは、鍔部52の上面52aよりも低い位置にあることが好ましい。第2光反射部材40の上面40aが低いことで第1発光素子31、第2発光素子32及び第3発光素子33からの光の混色性が向上する。第2光反射部材40の厚み(高さ方向)は、例えば、400μm以下であり、また100μm以上であることがより好ましい。第2光反射部材40の厚みが400μm以下であることで混色性が向上する。第2光反射部材40の厚みが100μmより厚いことで波長変換部材41を堰止めることが容易になる。 The upper surface 40a of the second light reflecting member 40 is preferably located at a position lower than the upper surface 52a of the flange portion 52. Since the upper surface 40a of the second light reflecting member 40 is low, the color mixing property of the light from the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 is improved. The thickness (height direction) of the second light reflecting member 40 is, for example, 400 μm or less, and more preferably 100 μm or more. When the thickness of the second light reflecting member 40 is 400 μm or less, the color mixing property is improved. When the thickness of the second light reflecting member 40 is thicker than 100 μm, it becomes easy to block the wavelength conversion member 41.

被覆部材50は、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂、ポリカーボネート樹脂、アクリル樹脂、メチルペンテン樹脂、ポリノルボルネン樹脂などの熱可塑性樹脂を用いて形成される。特に、耐光性、耐熱性に優れるシリコーン樹脂が好適に用いることができる。 The coating member 50 is formed by using a thermosetting resin such as a silicone resin, a silicone modified resin, an epoxy resin or a phenol resin, or a thermoplastic resin such as a polycarbonate resin, an acrylic resin, a methylpentene resin or a polynorbornene resin. In particular, a silicone resin having excellent light resistance and heat resistance can be preferably used.

(製造方法)
図7Aから図7Eを参照しながら、発光装置101の製造方法の一例を説明する。
(Production method)
An example of a method for manufacturing the light emitting device 101 will be described with reference to FIGS. 7A to 7E.

図7Aに示すように、配線基板10を準備する。配線基板10の配線導体13上に、第1発光素子31、第2発光素子32及び第3発光素子33を配置し、金属バンプ35を用いて、配線導体13と各発光素子の端子とを接続する。金属バンプに代えて、半田、導電ペースト等を用いてもよい。このとき、第1発光素子31、第2発光素子32及び第3発光素子33の上面31a、32a、33aは略同一面p1上に位置するように金属バンプの高さを調整してもよい。 As shown in FIG. 7A, the wiring board 10 is prepared. The first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are arranged on the wiring conductor 13 of the wiring board 10, and the wiring conductor 13 and the terminal of each light emitting element are connected by using the metal bump 35. To do. Instead of the metal bump, solder, conductive paste or the like may be used. At this time, the height of the metal bump may be adjusted so that the upper surfaces 31a, 32a, 33a of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are located on substantially the same surface p1.

この際、各発光素子と配線導体13との間に、光反射性を有し、かつ熱膨張率が第1光反射部材20よりも小さいアンダーフィルを充填してもよい。アンダーフィルを形成することで、配線導体13あるいは基板11と各発光素子との間に第1光反射部材20が充填されるのを抑制する。第1光反射部材20が各発光素子と配線導体13との間にも充填され、発光装置101の動作中に各発光素子の下方に位置する第1光反射部材20が膨張することによって、各発光素子が配線基板10から持ち上がるのを抑制することができる。 At this time, an underfill having light reflectivity and a thermal expansion coefficient smaller than that of the first light reflecting member 20 may be filled between each light emitting element and the wiring conductor 13. By forming the underfill, it is possible to prevent the first light reflecting member 20 from being filled between the wiring conductor 13 or the substrate 11 and each light emitting element. The first light reflecting member 20 is also filled between each light emitting element and the wiring conductor 13, and the first light reflecting member 20 located below each light emitting element expands during the operation of the light emitting device 101. It is possible to prevent the light emitting element from being lifted from the wiring substrate 10.

図7Bに示すように、第1光反射部材20の樹脂材料20’を、第1発光素子31、第2発光素子32及び第3発光素子33の上面31a、32a、33aが露出され、第1発光素子31、第2発光素子32及び第3発光素子33の側面31c、32c、33cが覆われるように配置する。樹脂材料20’の上面20a’は、第1発光素子31、第2発光素子32及び第3発光素子33の上面31a、32a、33aと一致していることが好ましい。その後樹脂材料20’を硬化させ第1光反射部材20を形成する。 As shown in FIG. 7B, the resin material 20'of the first light reflecting member 20 is exposed to the upper surfaces 31a, 32a, 33a of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33, and the first The side surfaces 31c, 32c, and 33c of the light emitting element 31, the second light emitting element 32, and the third light emitting element 33 are arranged so as to be covered. The upper surface 20a'of the resin material 20'preferably coincides with the upper surfaces 31a, 32a, 33a of the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33. After that, the resin material 20'is cured to form the first light reflecting member 20.

図7Cに示すように、平面視において、第1発光素子31の上面31aを囲むように第2光反射部材40の樹脂材料40’を、第1発光素子31と第2発光素子32または第3発光素子33との間に位置する第1光反射部材20の上面20a上に形成する。樹脂材料40’は、樹脂吐出装置を用いて上面20a上に形成してもよいし、予め金型等で成形した樹脂材料40’を上面20a上に配置してもよいし、インクジェットや3Dプリンター等を用いて形成してもよい。樹脂材料40’を硬化し、第2光反射部材40を形成する。 As shown in FIG. 7C, in a plan view, the resin material 40'of the second light reflecting member 40 is placed so as to surround the upper surface 31a of the first light emitting element 31, the first light emitting element 31 and the second light emitting element 32 or the third. It is formed on the upper surface 20a of the first light reflecting member 20 located between the light emitting element 33 and the light emitting element 33. The resin material 40'may be formed on the upper surface 20a using a resin ejection device, the resin material 40'molded in advance with a mold or the like may be arranged on the upper surface 20a, or an inkjet or 3D printer. Etc. may be formed. The resin material 40'is cured to form the second light reflecting member 40.

図7Dに示すように、第2光反射部材40で囲まれた領域に波長変換部材41の樹脂材料41’を配置する。その後、樹脂材料41’を硬化し、波長変換部材41を形成する。 As shown in FIG. 7D, the resin material 41'of the wavelength conversion member 41 is arranged in the region surrounded by the second light reflecting member 40. After that, the resin material 41'is cured to form the wavelength conversion member 41.

図7Eに示すように、第1光反射部材20の上面20a上において、第2光反射部材40および波長変換部材41、第2発光素子32及び第3発光素子33の上面32a、33aを覆うように、被覆部材50の樹脂材料50’を配置し、成形することによって、被覆部材50を形成する。被覆部材50は、トランスファー成形や圧縮成形、樹脂の塗布(ポッティング)、キャスティングケースによる成形等、種々の方法を用いることができる。これにより、発光装置101が完成する。複数の発光装置101の配線基板10が接続されており、第1光反射部材20および被覆部材50が複数の発光装置101間で連続して形成される場合には、被覆部材50を形成後、第1光反射部材20および被覆部材50でつながった複数の発光装置101を切断することによって、個片化した発光装置101が得られる。 As shown in FIG. 7E, on the upper surface 20a of the first light reflecting member 20, the upper surfaces 32a and 33a of the second light reflecting member 40, the wavelength conversion member 41, the second light emitting element 32 and the third light emitting element 33 are covered. The coating member 50 is formed by arranging the resin material 50'of the coating member 50 and molding the coating member 50. As the covering member 50, various methods such as transfer molding, compression molding, resin coating (potting), and molding with a casting case can be used. As a result, the light emitting device 101 is completed. When the wiring boards 10 of the plurality of light emitting devices 101 are connected and the first light reflecting member 20 and the covering member 50 are continuously formed between the plurality of light emitting devices 101, after the covering member 50 is formed, the covering member 50 is formed. By cutting a plurality of light emitting devices 101 connected by the first light reflecting member 20 and the covering member 50, an individualized light emitting device 101 can be obtained.

(発光装置101の発光)
発光装置101において、第1ピーク波長の光および第3ピーク波長の光が、それぞれ青色光および黄色光である場合、第1発光素子31から出射した青色光の一部は、波長変換部材41において吸収され、黄色光が出射する。このため、波長変換部材41において吸収されず、そのまま透過した青色光と波長変換部材41において生成した黄色光とによって、発光装置101は白色光を出射する。第2発光素子32が出射する光の第2ピーク波長は、第1ピーク波長および第3ピーク波長と異なるため、第2ピーク波長は、白色として出射する光において強度が不足している波長域に位置する。このため、第2発光素子
32が出射する光は、発光装置101が出射する白色光において、強度が不足している帯域を補うことができ、発光装置101全体として、演色性の高い白色光を出射することができる。第3ピーク波長は第1ピーク波長より長波長であることが好ましい。第3ピーク波長を第1ピーク波長よりも長波長に変換することで、第3ピーク波長が第1ピーク波長よりも短波長の場合よりも、光取り出し効率が向上する。また、第3ピーク波長は第2ピーク波長より短波長であることが好ましい。このようにすることで、第1ピーク波長と第3ピーク波長の波長差が小さくできるので波長変換部材に使用できる蛍光体の選択肢を増やすことができる。
(Light emission of the light emitting device 101)
In the light emitting device 101, when the light having the first peak wavelength and the light having the third peak wavelength are blue light and yellow light, respectively, a part of the blue light emitted from the first light emitting element 31 is in the wavelength conversion member 41. It is absorbed and emits yellow light. Therefore, the light emitting device 101 emits white light by the blue light that is not absorbed by the wavelength conversion member 41 and is transmitted as it is and the yellow light generated by the wavelength conversion member 41. Since the second peak wavelength of the light emitted by the second light emitting element 32 is different from the first peak wavelength and the third peak wavelength, the second peak wavelength is set to a wavelength range in which the intensity of the light emitted as white is insufficient. To position. Therefore, the light emitted by the second light emitting element 32 can supplement the band in which the intensity of the white light emitted by the light emitting device 101 is insufficient, and the light emitting device 101 as a whole produces white light having high color rendering properties. It can be emitted. The third peak wavelength is preferably a longer wavelength than the first peak wavelength. By converting the third peak wavelength to a wavelength longer than the first peak wavelength, the light extraction efficiency is improved as compared with the case where the third peak wavelength is shorter than the first peak wavelength. Further, the third peak wavelength is preferably shorter than the second peak wavelength. By doing so, the wavelength difference between the first peak wavelength and the third peak wavelength can be reduced, so that the choice of phosphors that can be used for the wavelength conversion member can be increased.

また、第1発光素子31の側面を、第1光反射部材20で覆っているため、第2発光素子32の側面から出射した光が第1発光素子31の側面から入射し、発光素子間における光吸収が生じるのを抑制することができる。したがって、発光装置101における光取り出し効率を向上させることができる。 Further, since the side surface of the first light emitting element 31 is covered with the first light reflecting member 20, the light emitted from the side surface of the second light emitting element 32 is incident from the side surface of the first light emitting element 31 between the light emitting elements. It is possible to suppress the occurrence of light absorption. Therefore, the light extraction efficiency of the light emitting device 101 can be improved.

また、第2光反射部材40が平面視において第2発光素子32と波長変換部材41との間に位置しているため、第2光反射部材40は、第2発光素子32から出射する光が波長変換部材41へ入射するのを抑制することができる。特に、波長変換部材41の上面41aよりも第2光反射部材40の高さが高いため、第2発光素子32の上面32aから出射した光が波長変換部材41へ入射することをより確実に抑制することができる。よって、第2発光素子32からの光が波長変換部材41に吸収されることを抑制できるので発光装置の輝度を高めることができる。したがって本開示の発光装置101によれば、高輝度で演色性の高い光を出射することができる。 Further, since the second light reflecting member 40 is located between the second light emitting element 32 and the wavelength conversion member 41 in a plan view, the second light reflecting member 40 receives light emitted from the second light emitting element 32. It is possible to suppress the incident on the wavelength conversion member 41. In particular, since the height of the second light reflecting member 40 is higher than that of the upper surface 41a of the wavelength conversion member 41, the light emitted from the upper surface 32a of the second light emitting element 32 is more reliably suppressed from being incident on the wavelength conversion member 41. can do. Therefore, it is possible to suppress the light from the second light emitting element 32 from being absorbed by the wavelength conversion member 41, so that the brightness of the light emitting device can be increased. Therefore, according to the light emitting device 101 of the present disclosure, it is possible to emit light having high brightness and high color rendering property.

(他の形態)
上記実施形態は、本開示の発光装置101の一例であって、本開示の発光装置は、上記実施形態において種々の改変があってもよい。特に、発光素子の種類、数、ピーク波長については種々の改変が可能である。例えば、図8は、本開示の発光装置の他の例を示す平面図である。図8に示す発光装置102は、5つの第1発光素子31と、3つの第2発光素子32と、1つの第3発光素子33とを含んでいる。上記実施形態と同様、第1発光素子31は青色光を出射する。波長変換部材41は、青色光を吸収し、黄色光を放出する。第2発光素子32および第3発光素子33はそれぞれ、緑色光および赤色光を出射する。
(Other forms)
The above embodiment is an example of the light emitting device 101 of the present disclosure, and the light emitting device of the present disclosure may have various modifications in the above embodiment. In particular, the type, number, and peak wavelength of the light emitting elements can be modified in various ways. For example, FIG. 8 is a plan view showing another example of the light emitting device of the present disclosure. The light emitting device 102 shown in FIG. 8 includes five first light emitting elements 31, three second light emitting elements 32, and one third light emitting element 33. Similar to the above embodiment, the first light emitting element 31 emits blue light. The wavelength conversion member 41 absorbs blue light and emits yellow light. The second light emitting element 32 and the third light emitting element 33 emit green light and red light, respectively.

また、第1発光素子31の個数は、上記実施形態で例示した数に限られず、第2発光素子32および第3発光素子33の個数よりも多い方が好ましい。また、第2発光素子32と第3発光素子33の間に第1発光素子が位置することが好ましい。このようにすることで、第1ピーク波長の光および第3ピーク波長の光を出射する箇所が第2発光素子32と第3発光素子33の間に位置するので、第2発光素子32と第3発光素子33が隣接して位置する場合よりも混色性が向上しやすい。 Further, the number of the first light emitting elements 31 is not limited to the number illustrated in the above embodiment, and is preferably larger than the number of the second light emitting element 32 and the third light emitting element 33. Further, it is preferable that the first light emitting element is located between the second light emitting element 32 and the third light emitting element 33. By doing so, since the portion that emits the light having the first peak wavelength and the light having the third peak wavelength is located between the second light emitting element 32 and the third light emitting element 33, the second light emitting element 32 and the second light emitting element 32 The color mixing property is likely to be improved as compared with the case where the three light emitting elements 33 are located adjacent to each other.

発光色と波長域との関係を表1に示す。第1ピーク波長および第3ピーク波長は、それぞれ、下記表1に示す青色および黄色に対応する波長域内の値であればよく、また、第2ピーク波長および第4ピーク波長は、下記表に示す赤色および緑色に対応する波長域内の値であればよい。 Table 1 shows the relationship between the emission color and the wavelength range. The first peak wavelength and the third peak wavelength may be values within the wavelength range corresponding to blue and yellow shown in Table 1 below, respectively, and the second peak wavelength and the fourth peak wavelength are shown in the table below. Any value within the wavelength range corresponding to red and green may be used.

Figure 2020202399
Figure 2020202399

また、第3ピーク波長は赤色または緑色の波長域の値であってもよい。この場合、第2ピーク波長は緑色または赤色の波長域の値であり、第3発光素子33は備えていなくてもよい。あるいは、蛍光体から発する赤色または緑色の光を補うために、第3発光素子33は、第3ピーク波長と異なる第4ピーク波長を有するが、第4ピーク波長は同じ赤色または緑色の波長域の値であってもよい。 Further, the third peak wavelength may be a value in the wavelength range of red or green. In this case, the second peak wavelength is a value in the wavelength range of green or red, and the third light emitting element 33 may not be provided. Alternatively, in order to supplement the red or green light emitted from the phosphor, the third light emitting element 33 has a fourth peak wavelength different from the third peak wavelength, but the fourth peak wavelength is in the same red or green wavelength range. It may be a value.

さらに、波長変換部材41は、第1ピーク波長の光を第3ピーク波長の光および第5ピーク波長の光に変換してもよい。この場合、例えば、第1ピーク波長は青色に対応する波長域内の値であり、第3ピーク波長および第5ピーク波長は赤色および緑色に対応する波長域内の値であってもよい。つまり、波長変換部材41は、蛍光体42として赤色蛍光体および緑色蛍光体を含んでいてもよい。この場合、第1発光素子31が出射する光のうち、蛍光体42に吸収されなかった光(青色)と、赤色蛍光体および緑色蛍光体から発せられる赤色光および緑色光とによって白色光が得られる。この場合、第2発光素子32および第3発光素子33は、赤色蛍光体および緑色蛍光体が発する第3ピーク波長の光および第5ピーク波長の光のうち、輝度が低い光を補うために、第3ピーク波長および第5ピーク波長とは異なるピーク波長を有するが、同じ赤色および緑色の波長域の第2ピーク波長の光および第4ピーク波長の光を出射してもよい。 Further, the wavelength conversion member 41 may convert the light having the first peak wavelength into the light having the third peak wavelength and the light having the fifth peak wavelength. In this case, for example, the first peak wavelength may be a value in the wavelength range corresponding to blue, and the third peak wavelength and the fifth peak wavelength may be a value in the wavelength range corresponding to red and green. That is, the wavelength conversion member 41 may include a red phosphor and a green phosphor as the phosphor 42. In this case, among the light emitted by the first light emitting element 31, white light is obtained by the light (blue) not absorbed by the phosphor 42 and the red light and green light emitted from the red phosphor and the green phosphor. Be done. In this case, the second light emitting element 32 and the third light emitting element 33 compensate for the light having the lower brightness among the light having the third peak wavelength and the light having the fifth peak wavelength emitted by the red phosphor and the green phosphor. Although it has a peak wavelength different from the third peak wavelength and the fifth peak wavelength, the light of the second peak wavelength and the light of the fourth peak wavelength in the same red and green wavelength range may be emitted.

あるいは、第3ピーク波長は黄色の波長域の値であり、第5ピーク波長は赤色または緑色の波長域の値であってもよい。この場合、第2発光素子32および第3発光素子33は、輝度の低い色の波長域にピーク波長を有する光を出射してもよい。 Alternatively, the third peak wavelength may be a value in the yellow wavelength region, and the fifth peak wavelength may be a value in the red or green wavelength region. In this case, the second light emitting element 32 and the third light emitting element 33 may emit light having a peak wavelength in the wavelength region of a color having low brightness.

また、本開示の発光装置は、ツェナーダイオードなどの保護素子をさらに備えていてもよい。この場合、例えば、保護素子は配線導体に電気的に接続され、第1光反射部材に埋め込まれていてもよい。 Further, the light emitting device of the present disclosure may further include a protective element such as a Zener diode. In this case, for example, the protective element may be electrically connected to the wiring conductor and embedded in the first light reflecting member.

本開示の実施形態による照明モジュールおよび照明装置は、室内照明、室外照明、各種インジケーター、ディスプレイ、液晶表示装置のバックライト、センサー、信号機、車載部品、看板用チャンネルレター等、種々の用途に使用することができる。 The lighting module and lighting device according to the embodiment of the present disclosure are used for various purposes such as indoor lighting, outdoor lighting, various indicators, displays, backlights of liquid crystal display devices, sensors, traffic lights, in-vehicle parts, channel letters for signboards, and the like. be able to.

10 配線基板
11 基板
11a、20a、31a、32a、33a、40a、41a 上面
11b、20b、31b、32b、33b 下面
12c、12d 端子電極
12e 切り欠き
13 配線導体
20 第1光反射部材
31 第1発光素子
31c、32c、33c 側面
32 第2発光素子
33 第3発光素子
35 金属バンプ
40 第2光反射部材
42 蛍光体
43 光拡散材
44 透光性樹脂
50 被覆部材
51 レンズ部
51c 曲面
52 鍔部
101、 102 発光装置
10 Wiring board 11 Boards 11a, 20a, 31a, 32a, 33a, 40a, 41a Upper surface 11b, 20b, 31b, 32b, 33b Lower surface 12c, 12d Terminal electrode 12e Notch 13 Wiring conductor 20 First light reflecting member 31 First light emission Elements 31c, 32c, 33c Side surface 32 Second light emitting element 33 Third light emitting element 35 Metal bump 40 Second light reflecting member 42 Fluorescent material 43 Light diffusing material 44 Translucent resin 50 Coating member 51 Lens part 51c Curved surface 52 Flange part 101 , 102 Light emitting device

Claims (8)

青色光を出射する第1発光素子と、
緑色光を出射する第2発光素子と、
赤色光を出射する第3発光素子と、
前記第1発光素子、前記第2発光素子および前記第3発光素子の側面に接して配置され、前記第1発光素子、前記第2発光素子および前記第3発光素子の上面を露出し、前記第1発光素子の上面と略同一面に上面を備える第1光反射部材 と、
を備える発光装置。
The first light emitting element that emits blue light and
A second light emitting element that emits green light,
A third light emitting element that emits red light,
The first light emitting element, the second light emitting element, and the third light emitting element are arranged in contact with the side surfaces thereof, and the upper surfaces of the first light emitting element, the second light emitting element, and the third light emitting element are exposed, and the first light emitting element is exposed. 1 A first light reflecting member having an upper surface substantially on the same surface as the upper surface of the light emitting element,
A light emitting device equipped with.
断面視において前記第1発光素子および前記第2発光素子の上面が略同一面上に位置する請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the upper surfaces of the first light emitting element and the second light emitting element are located on substantially the same surface in a cross-sectional view. 断面視において前記第1発光素子および前記第3発光素子の上面が略同一面上に位置する請求項1または2に記載の発光装置。 The light emitting device according to claim 1 or 2, wherein the upper surfaces of the first light emitting element and the third light emitting element are located on substantially the same surface in a cross-sectional view. 平面視において、前記第1発光素子を囲む第2光反射部材を備える 請求項1から3のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, further comprising a second light reflecting member surrounding the first light emitting element in a plan view. 前記第2光反射部材の上面は、前記第2発光素子の上面よりも高い位置にある請求項4に記載の発光装置。 The light emitting device according to claim 4, wherein the upper surface of the second light reflecting member is located higher than the upper surface of the second light emitting element. 前記第2光反射部材の上面は、前記第3発光素子の上面よりも高い位置にある請求項4または5に記載の発光装置。 The light emitting device according to claim 4 or 5, wherein the upper surface of the second light reflecting member is located higher than the upper surface of the third light emitting element. 前記第1発光素子の上面を覆い、前記青色光を黄色光に変換する波長変換部材をさらに備える請求項1から3のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, further comprising a wavelength conversion member that covers the upper surface of the first light emitting element and converts the blue light into yellow light. 前記第1発光素子の上面を覆い、前記第2光反射部材に囲まれた領域に配置された波長変換部材をさらに備え、
前記波長変換部材は前記青色光を黄色光に変換する、請求項4から6のいずれか1項に記載の発光装置。
A wavelength conversion member that covers the upper surface of the first light emitting element and is arranged in a region surrounded by the second light reflecting member is further provided.
The light emitting device according to any one of claims 4 to 6, wherein the wavelength conversion member converts the blue light into yellow light.
JP2020151906A 2020-09-10 2020-09-10 Light emitting device Active JP7057528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020151906A JP7057528B2 (en) 2020-09-10 2020-09-10 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020151906A JP7057528B2 (en) 2020-09-10 2020-09-10 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016218874A Division JP6769248B2 (en) 2016-11-09 2016-11-09 Light emitting device

Publications (2)

Publication Number Publication Date
JP2020202399A true JP2020202399A (en) 2020-12-17
JP7057528B2 JP7057528B2 (en) 2022-04-20

Family

ID=73742094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020151906A Active JP7057528B2 (en) 2020-09-10 2020-09-10 Light emitting device

Country Status (1)

Country Link
JP (1) JP7057528B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310613A (en) * 2005-04-28 2006-11-09 Sharp Corp Semiconductor light emitting device
JP2010182724A (en) * 2009-02-03 2010-08-19 Mitsubishi Electric Corp Light-emitting device
JP2012033855A (en) * 2010-07-01 2012-02-16 Hitachi Cable Ltd Led module, led package, wiring board, and manufacturing method therefor
JP2013526016A (en) * 2010-04-16 2013-06-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device and method of manufacturing the optoelectronic device
JP2013527605A (en) * 2010-04-27 2013-06-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device and manufacturing method of optoelectronic device
US20140021493A1 (en) * 2012-07-20 2014-01-23 Peter Andrews Solid state lighting component package with layer
JP2015518284A (en) * 2012-06-01 2015-06-25 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic module and manufacturing method of optoelectronic module
JP2016066742A (en) * 2014-09-25 2016-04-28 株式会社小糸製作所 Light emission device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310613A (en) * 2005-04-28 2006-11-09 Sharp Corp Semiconductor light emitting device
JP2010182724A (en) * 2009-02-03 2010-08-19 Mitsubishi Electric Corp Light-emitting device
JP2013526016A (en) * 2010-04-16 2013-06-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device and method of manufacturing the optoelectronic device
JP2013527605A (en) * 2010-04-27 2013-06-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device and manufacturing method of optoelectronic device
JP2012033855A (en) * 2010-07-01 2012-02-16 Hitachi Cable Ltd Led module, led package, wiring board, and manufacturing method therefor
JP2015518284A (en) * 2012-06-01 2015-06-25 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic module and manufacturing method of optoelectronic module
US20140021493A1 (en) * 2012-07-20 2014-01-23 Peter Andrews Solid state lighting component package with layer
JP2016066742A (en) * 2014-09-25 2016-04-28 株式会社小糸製作所 Light emission device

Also Published As

Publication number Publication date
JP7057528B2 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
JP6769248B2 (en) Light emitting device
US10141491B2 (en) Method of manufacturing light emitting device
JP6149487B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
US9947841B2 (en) Light emitting device having light guider
JP4269709B2 (en) Light emitting device and manufacturing method thereof
JP6079209B2 (en) Light emitting device and manufacturing method thereof
KR100958509B1 (en) Light emitting device and method of manufacturing the same
US10347797B2 (en) Light emitting device
JP5701502B2 (en) Light emitting device
CN112838156A (en) Light emitting device
JP2011515848A (en) Semiconductor light emitting device
JP2004363537A (en) Semiconductor equipment, manufacturing method therefor and optical device using the same
US20230207752A1 (en) Light-emitting device and method of manufacturing the same
JP6326830B2 (en) Light emitting device and lighting device including the same
JP7057528B2 (en) Light emitting device
US11355678B2 (en) Light-emitting device and method of manufacturing the same
US11710809B2 (en) Light-emitting device and method of manufacturing the light-emitting device
JP6521119B2 (en) Light emitting device
JP2020115584A (en) Light-emitting device and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R150 Certificate of patent or registration of utility model

Ref document number: 7057528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150