JP2020201578A - 圃場管理システム - Google Patents

圃場管理システム Download PDF

Info

Publication number
JP2020201578A
JP2020201578A JP2019106264A JP2019106264A JP2020201578A JP 2020201578 A JP2020201578 A JP 2020201578A JP 2019106264 A JP2019106264 A JP 2019106264A JP 2019106264 A JP2019106264 A JP 2019106264A JP 2020201578 A JP2020201578 A JP 2020201578A
Authority
JP
Japan
Prior art keywords
hardness
work vehicle
field
region
overlap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019106264A
Other languages
English (en)
Inventor
雄介 西田
Yusuke Nishida
雄介 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Power Technology Co Ltd
Original Assignee
Yanmar Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Power Technology Co Ltd filed Critical Yanmar Power Technology Co Ltd
Priority to JP2019106264A priority Critical patent/JP2020201578A/ja
Publication of JP2020201578A publication Critical patent/JP2020201578A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】専用の計測装置を用いることなく、硬度特性を低コストで効率良く推定することができる圃場管理システムを提供する。【解決手段】圃場管理システム1は、圃場内を走行しながら作業を行う作業車両2に搭載され、作業車両2の位置情報を取得する位置情報取得部44と、位置情報取得部44によって取得された作業車両2の位置情報に基づいて、圃場内において作業車両2の走行軌跡が重複する重複領域と、重複領域における走行軌跡の重複度合とを特定し、重複領域および重複度合に基づいて硬度特性を推定する硬度特性推定部71とを含む。【選択図】図2

Description

本発明は、圃場管理システムに関する。
下記特許文献1には、圃場に設定された複数の測位ポイントにおいて土壌硬度計を用いて土壌硬度を測定する方法が開示されている。この方法では、各測位ポイントにおいて衛星測位システムを用いて位置データを取得した後、取得された各測位ポイントにおける土壌硬度および位置データに基づいて土壌硬度等高線マップが生成される。
特開2019−20395号公報
特許文献1に記載の方法を用いて圃場内の各位置における硬度特性を把握するためには、専用の計測装置(土壌硬度計)を圃場内に持ち込んで土壌の硬度を測定する必要がある。
そこで、この発明の一つの目的は、専用の計測装置を用いることなく、硬度特性を低コストで効率良く推定することができる圃場管理システムを提供することである。
この発明の一実施形態は、圃場内を走行しながら作業を行う作業車両に搭載され、前記作業車両の位置情報を取得する位置情報取得部と、前記位置情報取得部によって取得された前記作業車両の前記位置情報に基づいて、前記圃場内において前記作業車両の走行軌跡が重複する重複領域と、前記重複領域における前記走行軌跡の重複度合とを特定し、前記重複領域および前記重複度合に基づいて硬度特性を推定する硬度特性推定部とを含む、圃場管理システムを提供する。
この構成によれば、作業車両の走行中に位置情報取得部によって取得された位置情報に基づいて、作業車両の走行軌跡の重複領域および重複度合が特定される。圃場内で作業車両が走行しながら作業する際、圃場内において作業車両が通った箇所の土壌は、作業車両の重量によって圧縮されて硬くなる。そのため、重複領域において走行軌跡が重複している回数(重複度数)が多いほど、圃場の硬度が高くなる。そのため、作業車両の走行中に取得された位置情報に基づいて作業車両の走行軌跡の重複度数を特定することで、圃場の硬度特性を推定することができる。
したがって、硬度測定専用の計測装置を用いることなく、作業車両を圃場内で走行させるだけで、最終的に圃場の硬度特性を推定することができる。専用の計測装置を用いる必要がないので、圃場の硬度特性を効率良く低コストで推定することができる。
この発明の一実施形態では、前記硬度特性推定部が、前記硬度特性に基づいて、前記圃場内の各位置における土壌の硬度を示す硬度マップを生成する。そのため、生成された硬度マップを利用すれば、圃場内において土壌の硬度が高い領域を避けて作業車両を走行させることができる。これにより、圃場において土壌の硬度が局所的に上昇することを避けることができる。
この発明の一実施形態では、前記硬度特性推定部が、前記重複度合が所定の閾値を超える前記重複領域を高硬度領域として特定し、前記圃場内における前記高硬度領域以外の領域を非高硬度領域として特定する。これにより、圃場内の各位置を、高硬度領域および非高硬度領域のいずれかに分類することができる。そのため、圃場内において作業車両の走行を避けるべき領域や耕耘が必要な領域を容易に把握することができる。
この発明の一実施形態では、前記圃場管理システムは、前記高硬度領域を通過しない走行経路を生成する走行経路生成部をさらに含む。そのため、走行経路生成部によって生成された走行経路にしたがって作業車両を走行させることで、高硬度領域において土壌の硬度がさらに高くなることを避けることができる。
この発明の一実施形態では、前記圃場管理システムが、前記高硬度領域では、前記非高硬度領域よりも強くまたは深く耕耘するように耕耘作業車両を制御する耕耘作業制御部を含む。
この構成によれば、耕耘の強さを強くしたり、耕耘の深さを深くしたりすることで、土壌の硬度を低減することができる。そのため、非高硬度領域よりも高硬度領域において強くまたは深く耕耘するように耕耘作業機に圃場内を耕耘させることによって、高硬度領域における土壌の硬度を低減することができる。これにより、圃場内において土壌の硬度のむらを容易に低減することができる。
図1は、本発明の第1実施形態に係る圃場管理システムの構成を示す模式図である。 図2は、前記圃場管理システムに備えられた作業車両および管理サーバの電気的構成を示すブロック図である。 図3は、圃場内で走行する前記作業車両の走行軌跡を示す模式図である。 図4は、前記管理サーバに備えられたサーバ制御部によって実行される硬度特性推定処理の一例を示すフローチャートである。 図5は、複数のメッシュで分割された圃場内の模式図である。 図6は、前記サーバ制御部に備えられた硬度特性推定部によって生成された硬度マップを示す模式図である。 図7は、本発明の第2実施形態に係る圃場管理システムにおいて、前記サーバ制御部に備えられた硬度特性推定部による硬度特性推定処理のステップS4の詳細を示すフローチャートである。 図8は、第2実施形態に係る硬度特性推定処理において生成される硬度マップの模式図である。 図9は、第2実施形態に係る硬度特性推定処理において生成される硬度マップに基づいて生成された走行経路の一例を示す模式図である。 図10は、第2実施形態に係る圃場管理システムを利用して耕耘作業を行う耕耘作業車両の側面図である。 図11は、前記耕耘作業車両の電気的構成を示すブロック図である。 図12は、圃場内で走行する前記耕耘作業車両の走行経路と硬度マップとを重ねた模式図である。
以下では、この発明の実施の形態を添付図面を参照して詳細に説明する。
<第1実施形態>
図1は、本発明の第1実施形態に係る圃場管理システム1の構成を示す模式図である。圃場管理システム1は、ユーザが所有する圃場に関連する情報を管理するシステムである。圃場管理システム1は、圃場内で作業しながら走行する作業車両2と、圃場内で作業しながら走行することによって作業車両2が取得した情報を管理する管理サーバ4とを含む。作業車両2は、トラクタ、田植機、コンバイン、土木・建設作業車両、除雪車等、乗用型作業車両であってもよいし、歩行型作業車両であってもよい。圃場管理システム1には、作業車両2が複数設けられていてもよい。各作業車両2は、通信網5を介して管理サーバ4と無線通信可能である。
図2は、圃場管理システム1の電気的構成を示すブロック図である。各作業車両2の電気的構成はほぼ同じであるため、図2では、1つの作業車両2のみを図示している。
作業車両2は、作業車両2の動作(前進、後進、停止、旋回等の動作)を制御する作業車両制御部40を含む。作業車両制御部40は、CPUおよびメモリ(RAM等)41を備えたマイクロコンピュータを含む。作業車両制御部40には、通信部42、コントローラ43、位置情報取得部44、記憶部45および作業情報取得部46が電気的に接続されている。通信部42は、管理サーバ4と無線通信するための通信インターフェースである。記憶部45は、不揮発性メモリ等の記憶デバイスから構成されている。
コントローラ43は、作業車両2において、作業車両制御部40によって制御されることによって圃場F内で農作業を行う作業部を制御するコントローラである。作業車両2がトラクタである場合、作業部は、圃場内で走行する走行機体に連結された作業機である。作業機としては、ロールベーラ、耕耘機、プラウ、施肥機、草刈機、播種機等が挙げられる。作業車両2が田植機やコンバインである場合、作業部は、作業車両2において、走行機体と一体的に設けられている。
位置情報取得部44は、作業車両2に取り付けられた衛星信号受信用アンテナ47に電気的に接続されている。衛星信号受信用アンテナ47は、衛星測位システムを構成する測位衛星からの信号を受信するものである。衛星測位システムは、たとえば、GNSS(Global Navigation Satellite System)である。衛星信号受信用アンテナ47で受信された測位信号は、位置情報取得部44に入力される。位置情報取得部44は、測位信号に基づいて、所定間隔(たとえば、1秒間隔)の作業車両2(厳密には、衛星信号受信用アンテナ47)の位置情報(たとえば緯度・経度情報)を取得する。通信部42は、管理サーバ4に向けて、エンジンを起動してからエンジンを停止させるまでの間の位置情報をまとめて送信する。
管理サーバ4は、管理サーバ4を制御するサーバ制御部50を含む。サーバ制御部50は、CPUおよびメモリ(ROM、RAM等)51を備えたマイクロコンピュータを含む。サーバ制御部50には、通信部52、操作表示部53、操作部54および記憶部55が電気的に接続されている。
通信部52は、サーバ制御部50が作業車両2と無線通信するための通信インターフェースである。通信部52は、作業車両2から送信される位置情報を受信する。通信部52によって受信された位置情報は、メモリ51に保存される。操作表示部53は、たとえば、タッチパネルディスプレイである。操作部54は、たとえば、キーボード、マウス等を含む。記憶部55は、ハードディスク、不揮発性メモリ等の記憶デバイスから構成されている。
図3は、圃場F内で走行する作業車両2の走行軌跡T1〜T3を示す模式図である。図3に示す例では、作業車両2が圃場F内で3回走行したときの走行軌跡T1〜T3をそれぞれ示している。
圃場F内の土壌の硬度は、圃場F内で栽培される作物の生育に影響を与える。圃場F内において土壌の硬度が高い領域では、作物の生育が妨げられるおそれがある。圃場F内で作業車両2が走行する際、圃場F内において作業車両2が通った箇所の土壌は、作業車両2の重量によって圧縮されて硬くなる。そのため、重複領域において走行軌跡T1〜T3が重複している回数(重複度数)が多い箇所ほど、圃場Fの硬度が高くなる。そのため、重複度数が多い箇所において、作業車両2の走行による硬度の増加によって作物の生育が妨げられるおそれがある。
そこで、図2を参照して、サーバ制御部50は、作業車両2の走行軌跡に基づいて圃場F内の各位置における走行軌跡の重複度合を特定することで、圃場F内の各位置における硬度特性を推定できるように構成されている。硬度特性とは、圃場F内の各位置における土壌の硬度の大小を示す指標のことである。
サーバ制御部50は、位置情報取得部44によって取得された作業車両2の位置情報に基づいて、走行軌跡を特定する走行軌跡特定部70を含む。走行軌跡特定部70は、作業車両2が圃場F内に入ってから圃場Fから出るまでの位置情報をひとまとまりの位置情報として、このひとまとまりの位置情報に基づいて一つの走行軌跡を特定する。サーバ制御部50は、走行軌跡特定部70によって特定された複数の走行軌跡に基づいて、圃場F内の各位置における走行軌跡の重複度合を特定し、重複度合に基づいて圃場F内の各位置における土壌の硬度特性を推定する硬度特性推定部71をさらに含む。
記憶部55は、走行軌跡特定部70によって特定された走行軌跡を記憶する走行軌跡記憶部60と、硬度特性推定部71によって特定された硬度特性を記憶する硬度特性記憶部61とを含む。
次に、サーバ制御部50による硬度特性推定処理について詳しく説明する。図4は、サーバ制御部50によって実行される硬度特性推定処理の一例を示すフローチャートである。
硬度特性推定処理では、まず、サーバ制御部50の走行軌跡特定部70は、作業車両2の位置情報がサーバ制御部50によって取得されたか否かを判定する(ステップS1)。具体的には、走行軌跡特定部70は、メモリ51内に新たな位置情報が存在するか否かを判定する。作業車両2の位置情報がサーバ制御部50によって取得されていない場合には(ステップS1:NO)、走行軌跡特定部70は、ステップS1に戻る。
作業車両2の位置情報がサーバ制御部50によって取得された場合には(ステップS1:YES)、走行軌跡特定部70は、作業車両2の位置情報に基づいて、走行軌跡を特定し、走行軌跡記憶部60に保存する(ステップS2)。
前述したように、圃場F内において作業車両2が通った箇所の土壌は、作業車両2の重量によって圧縮されて硬くなる。そのため、走行軌跡特定部70によって特定される走行軌跡は、作業車両2において、土壌に接触している部分の移動軌跡であることが好ましい。そのため、走行軌跡特定部70によって特定される走行軌跡は、作業車両2のタイヤ(車輪)やクローラ等の走行部の移動軌跡であることが好ましい。複数の走行軌跡は、同一の作業車両2の走行軌跡である必要はなく、各走行軌跡は、互いに異なる作業車両2の走行軌跡であってもよい。
作業車両2の走行部の移動軌跡は、作業車両2の位置情報と、作業車両2における衛星信号受信用アンテナ47の位置と、作業車両2における走行部の位置とに基づいて算出することができる。走行軌跡特定部70によって特定される走行軌跡は、作業車両2における衛星信号受信用アンテナ47の位置であってもよい。
そして、走行軌跡特定部70は、走行軌跡記憶部60に走行軌跡が複数存在しているか否かを判定する(ステップS3)。走行軌跡記憶部60に走行軌跡が1つしか存在していない場合には(ステップS3:NO)、走行軌跡特定部70は、ステップS1に戻る。
走行軌跡記憶部60に走行軌跡が複数記憶されている場合には(ステップS3:YES)、サーバ制御部50の硬度特性推定部71は、複数の走行軌跡に基づいて、圃場F内の各位置における走行軌跡の重複度数を特定する(ステップS4)。
具体的には、図5に示すように、硬度特性推定部71は、圃場Fを複数のメッシュmに分割し、各メッシュmについて重複度数を付与する。重複度数とは、複数の走行軌跡がメッシュm内を通る走行軌跡の合計回数である。硬度特性推定部71は、1番目のメッシュm1から順に各メッシュmにおける走行軌跡の重複度数を算出する。
あるメッシュmi(iは自然数である。)内を1つの走行軌跡が通っている場合や、あるメッシュmi内を走行軌跡が通っていない場合には、当該メッシュmiに与えられる重複度数は0である。あるメッシュmi内を2つの走行軌跡が通っている場合には、当該メッシュmiに与えられる重複度数は1である。あるメッシュmi内3つの走行軌跡が通っている場合には、当該メッシュmiに与えられる重複度数は2である。複数のメッシュmのうち重複度数が1以上のメッシュmiを重複領域という。そのため、圃場F内の各位置(各メッシュm)について重複度数を特定することによって、圃場F内の重複領域も特定することができる。
硬度特性推定部71は、重複度数の大きさを識別できるように各メッシュmを表示した硬度マップを生成する。記憶部55は、硬度特性推定部71によって生成された硬度マップを記憶する硬度マップ記憶部62を含む。
図6は、硬度特性推定部71によって生成された硬度マップM1を示す模式図である。硬度マップM1では、たとえば、重複度数が大きいほどメッシュmの色が濃くされていている。また、硬度マップM1では、図6とは異なり、重複度数の大きさに応じてメッシュmが色分けされていてもよい。硬度マップM1では、図6とは異なり、メッシュmiが色付けされておらず、各メッシュm内に重複度数が表示されていてもよい。ステップS4の後、サーバ制御部50は、硬度特性推定処理を終了する。
第1実施形態によれば、作業車両2の走行中に取得された位置情報に基づいて、圃場Fに設定された各メッシュmにおいて重複度合が特定される。前述したように、圃場Fにおいて重複度合が大きい箇所ほど土壌の硬度が増大する。そのため、作業車両2の走行中に取得された位置情報に基づいて作業車両2の走行軌跡の重複度数を特定することで、圃場Fの硬度特性を推定することができる。
したがって、硬度測定専用の計測装置を用いることなく、作業車両2を圃場F内で走行させれば、最終的に圃場Fの硬度特性を推定することができる。すなわち、専用の計測装置を用いる必要がないので、圃場Fの硬度特性を効率良く低コストで推定することができる。
また第1実施形態によれば、硬度特性推定部71は、推定された硬度特性に基づいて硬度マップM1を生成する硬度マップ生成部でもある。そのため、生成された硬度マップM1を利用すれば、圃場F内において土壌の硬度が高い領域を避けて作業車両2を走行させることができる。これにより、圃場Fにおいて土壌の硬度が局所的に上昇することを避けることができる。
たとえば、果樹園において、トラクタによって施肥作業が行われた後、スピードスプレーヤによる防除作業が複数回(たとえば2回)行われる場合がある。この場合において、2回目のスピードスプレーヤによる防除作業が行われる前に、硬度特性推定処理が実行されることで、果樹園において土壌の硬度の局所的な上昇を避けながら2回目の防除作業を行うことができる。
また、生成された硬度マップM1を利用して圃場Fで耕耘作業を行うことで、圃場F内において土壌の硬度が高い領域の硬度を低減することもできる。たとえば、水田では、トラクタによって耕耘作業および施肥作業が行われた後、田植機によって苗の移植作業が行われ、さらにその後、コンバインによって収穫作業が行われるというサイクルが毎年行われる。そこで、翌年にトラクタによって耕耘作業が行われる前に、硬度特性推定処理が実行されれば、硬度マップを利用して、水田において土壌の硬度が局所的に高い領域の硬度を適切に低減させることができる。
<第2実施形態>
第1実施形態に係る硬度特性推定処理において生成された硬度マップM1(図6参照)には、圃場F内の各位置において重複度数が示される。第2実施形態に係る硬度特性推定処理では、第1実施形態に係る硬度特性推定処理とは異なり、圃場F内の各位置が高硬度領域と非高硬度領域とに分類される。そのため、圃場F内において作業車両2の走行を避けるべき領域や耕耘が必要な領域を容易に把握することができる。
具体的には、図4に示す硬度特性推定処理のステップS4において、図7に示す処理が実行される。図7は、第2実施形態に係る硬度特性推定処理のステップS4の詳細を示すフローチャートである。
まず、硬度特性推定部71は、1番目のメッシュm1を注目メッシュとして設定する(ステップS10)。そして、硬度特性推定部71は、注目メッシュにおける走行軌跡の重複度数Di(重複度数D1)を特定する(ステップS11)。そして、硬度特性推定部71は、重複度数Di(重複度数D1)が所定の閾値αよりも大きいか否かを判定する(ステップS12)。所定の閾値αは、たとえば1である。
硬度特性推定部71は、重複度数Di(重複度数D1)が閾値αよりも大きい場合には(ステップS12:YES)、注目メッシュを、土壌の硬度が高い高硬度領域として特定する(ステップS13)。硬度特性推定部71は、重複度数Di(重複度数D1)が閾値α以下である場合には(ステップS12:NO)、注目メッシュを、高硬度領域よりも硬度が低い非高硬度領域として特定する(ステップS14)。非高硬度領域は、圃場Fにおいて高硬度領域以外の領域である。その後、硬度特性推定部71は、全てのメッシュmについて処理が行われたか否かを判定する(ステップS15)。
未処理のメッシュmが残っている場合には(ステップS15:NO)、硬度特性推定部71は、次のi番目(2番目)のメッシュmi(メッシュm2)を注目メッシュとして設定する(ステップS16)。そして、硬度特性推定部71は、ステップS11に戻る。その後、全てのメッシュmについてステップS13またはステップS14の処理が行われる。
全てのメッシュmについて処理が行われた後(ステップS15:YES)、硬度特性推定部71は、高硬度領域Hと非高硬度領域Nとを識別可能に表示した硬度マップM2(図8参照)を生成し、硬度特性推定処理を終了する。硬度マップM2では、たとえば、図8に示すように、高硬度領域Hのみが色付けされている。硬度マップM2では、図8とは異なり、メッシュmに色付けがされておらず、高硬度領域Hに「1」が付され、非高硬度領域Nに「0」が付されてもよい。
第2実施形態に係るサーバ制御部50は、硬度マップ生成部72によって生成された硬度マップM2に基づいて、高硬度領域Hを通過しない走行経路Rを生成する走行経路生成部73を含む(図2の二点鎖線を参照)。記憶部55は、走行経路生成部73によって生成された走行経路を記憶する走行経路記憶部63を含む(図2の二点鎖線を参照)。図9は、走行経路生成部73によって生成された走行経路Rの一例を示す模式図である。図9に示すように、走行経路Rは、高硬度領域Hを避けるように設定されている。言い換えると、走行経路Rは、非高硬度領域Nのみを通るように設定されている。
次に、圃場Fが水田である場合の硬度マップの利用方法について詳しく説明する。前述したように、硬度マップを利用して、耕耘作業を行うことで、水田において土壌の硬度が局所的に高い領域の硬度を適切に低減させることができる。
図10は、第2実施形態に係る圃場管理システム1を利用して耕耘作業を行う耕耘作業車両100の側面図である。耕耘作業車両100は、エンジン105の駆動力によって走行するトラクタ101と、トラクタ101に取り付けられた耕耘作業機102とを含む。
耕耘作業機102は、昇降リンク機構103を介してトラクタ101の後方に連結されている。トラクタ101の後部には、エンジン105の駆動力を耕耘作業機102に出力するためのPTO軸104と、耕耘作業機102を昇降駆動するための一対の昇降シリンダ106(図11参照)とが配置されている。
PTO軸104を介してエンジン105の駆動力の一部が耕耘作業機8に伝達される。これにより、耕耘作業機8が駆動して耕耘作業が行われる。耕耘作業機8の下部には、水平に配置された軸109aを中心に回転駆動される耕耘爪(作業体)109が複数設けられている。
昇降リンク機構103は、左右一対のトップリンク103Aおよび左右一対のロアリンク103Bからなる三点リンク構造により構成されている。三点リンク機構には、昇降シリンダ106(図11参照)が連結されている。昇降シリンダ106を伸縮動作させることによって、耕耘作業機102の全体を昇降させることができる。
PTO軸104から耕耘作業機8に伝達される回転のトルクの大きさを調整することで、耕耘爪109の回転トルク(耕耘の強さ)を調整することができる。昇降シリンダ106を伸縮させて、耕耘作業機102を昇降させることで、回転する耕耘爪109の高さ位置(耕耘の深さ)を調整することができる。
図11は、耕耘作業車両100の電気的構成を示すブロック図である。トラクタ101は、耕耘作業車両100に備えられた各部の動作を制御するための制御部110を備える。制御部110には、位置情報取得部111、通信部112、昇降コントローラ113、PTOコントローラ114および記憶部120が電気的に接続されている。位置情報取得部111には、衛星信号受信用アンテナ115が受信した測位信号が入力される。
通信部112は、管理サーバ4と無線通信するための通信インターフェースである。記憶部120は、不揮発性メモリ等の記憶デバイスから構成されている。
昇降コントローラ113は、昇降シリンダ106の昇降を制御するものである。具体的には、昇降コントローラ113は、制御部110から入力された制御信号に基づいて昇降シリンダ106の伸縮度合を調整し、耕耘作業機102の高さ位置(耕耘爪109)の位置(耕耘深さ)を調整する。
PTOコントローラ114は、PTO軸104の回転を制御するものである。具体的には、PTOコントローラ114は、制御部110から入力された制御信号に基づいてPTO軸104の回転トルクを制御し、耕耘爪109の回転トルク(耕耘強さ)を調整する。
トラクタ101の制御部110は、通信部112を介して管理サーバ4から硬度マップを受信する。記憶部120には、管理サーバ4のサーバ制御部50によって生成された硬度マップが記憶されている。すなわち、記憶部120は、硬度マップ記憶部121を含む。
制御部110は、硬度マップM2と耕耘作業車両100の位置情報とに基づいて、高硬度領域Hでは、非高硬度領域Nよりも強くまたは深く耕耘するように耕耘作業機102を制御する耕耘作業制御部130を含む。詳しくは、耕耘作業制御部130は、昇降コントローラ113またはPTOコントローラ114を制御する。
耕耘作業車両100が水田で耕耘作業を行う場合、耕耘作業車両100は、圃場Fの一端から他端に向かってつづら折り状に走行する。耕耘作業車両100を圃場F内でつづら折り状に走行させながら、非高硬度領域Nよりも高硬度領域Hにおいて強くまたは深く耕耘するように耕耘作業機102に圃場F内を耕耘させることによって、高硬度領域Hにおける土壌の硬度を低減することができる。これにより、圃場F内において土壌の硬度のむらを容易に低減することができる。
この発明は、以上に説明した実施形態に限定されるものではなく、さらに他の形態で実施することができる。
たとえば、上述の実施形態では、圃場F内の全てのメッシュmについての重複度数が硬度特性推定部71によって特定される。しかしながら、たとえば、圃場F内に樹木等の障害物が存在する場合には、障害物の位置を予め管理サーバ4に記憶させておくことで、障害物が位置するメッシュmについては重複度数の特定の対象から排除してもよい。この場合、硬度マップM1、M2において、障害物が位置するメッシュmを他のメッシュmから識別できるように図示する必要がある。
また、耕耘作業車両100は、自動走行可能に構成されていてもよい。この場合、トラクタ101の制御部110には、エンジン105の回転数を制御するエンジンコントローラ、トラクタ101の車速を制御する車速コントローラ、トラクタ101の向きを制御する操向コントローラ等が電気的に接続されている。さらに、記憶部120には、管理サーバ4のサーバ制御部50によって生成された走行経路が記憶されている。すなわち、記憶部120は、走行経路記憶部122を含む(図11参照)。また、硬度マップ記憶部121には、圃場Fが水田であるときの硬度マップM3が記憶されている。
図12は、圃場F内で走行する耕耘作業車両100の走行経路R3と硬度マップM3とを重ねた模式図である。耕耘作業車両100が自動走行する場合、耕耘作業制御部130は、硬度マップM3内の高硬度領域Hと走行経路R3とが重なる位置を耕耘作業車両100が通過する際に、非高硬度領域Nよりも高硬度領域Hにおいて強くまたは深く耕耘するように耕耘作業機102を制御する。
耕耘作業制御部130は、トラクタ101の制御部110に備えられている必要はない。耕耘作業制御部130は、トラクタ101に着脱可能に取り付けられる通信ユニット(図示せず)や、トラクタ101を遠隔操作するタブレット等の遠隔操作装置(図示せず)に備えられていてもよい。あるいは、耕耘作業制御部130は、管理サーバ4に備えられていてもよい。
また、上述の実施形態では、走行軌跡の重複度合は、圃場F内の各位置について特定される。しかしながら、上述の実施形態とは異なり、重複度合は、重複領域においてのみ特定されてもよい。
その他、特許請求の範囲に記載した範囲で種々の変更を行うことができる。
1 :圃場管理システム
2 :作業車両
71 :硬度特性推定部
73 :走行経路生成部
100 :耕耘作業車両
101 :トラクタ
102 :耕耘作業機
130 :耕耘作業制御部
Di :重複度数
F :圃場
H :高硬度領域
M1 :硬度マップ
M2 :硬度マップ
M3 :硬度マップ
R :走行経路
T1 :走行軌跡
T2 :走行軌跡
T3 :走行軌跡
m :メッシュ(重複領域)
α :閾値

Claims (5)

  1. 圃場内を走行しながら作業を行う作業車両に搭載され、前記作業車両の位置情報を取得する位置情報取得部と、
    前記位置情報取得部によって取得された前記作業車両の前記位置情報に基づいて、前記圃場内において前記作業車両の走行軌跡が重複する重複領域と、前記重複領域における前記走行軌跡の重複度合とを特定し、前記重複領域および前記重複度合に基づいて硬度特性を推定する硬度特性推定部とを含む、圃場管理システム。
  2. 前記硬度特性推定部は、前記硬度特性に基づいて、前記圃場内の各位置における土壌の硬度を示す硬度マップを生成する、請求項1に記載の圃場管理システム。
  3. 前記硬度特性推定部が、前記重複度合が所定の閾値を超える前記重複領域を高硬度領域として特定し、前記圃場内における前記高硬度領域以外の領域を非高硬度領域として特定する、請求項1または2に記載の圃場管理システム。
  4. 前記高硬度領域を通過しない走行経路を生成する走行経路生成部をさらに含む、請求項3に記載の圃場管理システム。
  5. 前記高硬度領域では、前記非高硬度領域よりも強くまたは深く耕耘するように耕耘作業車両を制御する耕耘作業制御部を含む、請求項3に記載の圃場管理システム。
JP2019106264A 2019-06-06 2019-06-06 圃場管理システム Pending JP2020201578A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019106264A JP2020201578A (ja) 2019-06-06 2019-06-06 圃場管理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019106264A JP2020201578A (ja) 2019-06-06 2019-06-06 圃場管理システム

Publications (1)

Publication Number Publication Date
JP2020201578A true JP2020201578A (ja) 2020-12-17

Family

ID=73744021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019106264A Pending JP2020201578A (ja) 2019-06-06 2019-06-06 圃場管理システム

Country Status (1)

Country Link
JP (1) JP2020201578A (ja)

Similar Documents

Publication Publication Date Title
WO2019117094A1 (ja) スリップ判定システム、走行経路生成システム及び圃場作業車
US11154002B2 (en) System and method for controlling the operation of an agricultural implement based on determined soil moisture content
US6236924B1 (en) System and method for planning the operations of an agricultural machine in a field
US6070673A (en) Location based tractor control
JP6638683B2 (ja) 農作業支援システム
US8296052B2 (en) Method for avoiding point rows for quadrilateral fields using autoguidance
JP2019207284A (ja) 地図情報生成システム、および作業支援システム
WO2017131029A1 (ja) 植林システム、植林方法、耕作機械、植林機械及び管理装置
CN111093355A (zh) 农业支援装置及农业支援系统
JP6956620B2 (ja) 走行経路生成システム及び圃場作業車
JP6648727B2 (ja) 農作業支援システム
JP2004213239A (ja) 作業管理装置
JP2020113121A (ja) 営農システム
JP2019114138A (ja) 農作業支援システム
JP2020004438A (ja) 圃場管理システム
Zhou et al. Quantifying the benefits of alternative fieldwork patterns in a potato cultivation system
JP2019170189A (ja) 圃場作業機、および、圃場作業支援プログラム
JP2023001289A (ja) 作業機、及び、作業機の自動走行制御システム
JP2019088217A (ja) 圃場作業支援端末、圃場作業機、および、圃場作業支援プログラム
JP2024016273A (ja) 作業関連情報管理装置および作業関連情報管理システム
US11371844B2 (en) System and method for tile cached visualizations
JP2020201578A (ja) 圃場管理システム
KR102144830B1 (ko) 농업용 작업차량의 운전제어 장치 및 운전제어 방법
JP7066250B1 (ja) 農作業支援システム
WO2023106158A1 (ja) 自動運転を行う農業機械のための経路計画システム