JP2020200210A - Method for manufacturing graphene bonded body consisting of aggregate of graphene formed by bonding overlapped flat surface of graphene and method for covering surface of graphene bonded body with metal or aggregate of insulating metal oxide fine particle - Google Patents

Method for manufacturing graphene bonded body consisting of aggregate of graphene formed by bonding overlapped flat surface of graphene and method for covering surface of graphene bonded body with metal or aggregate of insulating metal oxide fine particle Download PDF

Info

Publication number
JP2020200210A
JP2020200210A JP2019107537A JP2019107537A JP2020200210A JP 2020200210 A JP2020200210 A JP 2020200210A JP 2019107537 A JP2019107537 A JP 2019107537A JP 2019107537 A JP2019107537 A JP 2019107537A JP 2020200210 A JP2020200210 A JP 2020200210A
Authority
JP
Japan
Prior art keywords
graphene
metal
collection
container
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019107537A
Other languages
Japanese (ja)
Other versions
JP2020200210A5 (en
JP7195513B2 (en
Inventor
小林 博
Hiroshi Kobayashi
博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019107537A priority Critical patent/JP7195513B2/en
Publication of JP2020200210A publication Critical patent/JP2020200210A/en
Publication of JP2020200210A5 publication Critical patent/JP2020200210A5/ja
Application granted granted Critical
Publication of JP7195513B2 publication Critical patent/JP7195513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method for manufacturing a graphene bonded body consisting of an aggregate of graphene formed by bonding the overlapped flat surfaces of graphene, and a method for covering the surface of the graphene bonded body with metal or an aggregate of insulating metal fine particles.SOLUTION: The method for manufacturing a graphene bonded body consisting of an aggregate of graphene formed by bonding the overlapped flat surfaces of graphene comprises: the first step of manufacturing the aggregate of graphene from an aggregate of graphite particles in methanol; the second step of separating the aggregate of graphene into graphene one by one in the methanol; the third step of repeatedly adding vibrations in the front and back, right and left, and top and bottom directions to a vessel; and the fourth step of equally compressing the upper surface of the aggregate of graphene to generate frictional heat in a portion having the overlapped flat surfaces to form a graphene bonded body obtained by bonding the flat surfaces of graphene by the frictional heat on the bottom surface of the vessel as the shape of the bottom surface.SELECTED DRAWING: Figure 1

Description

本発明は、メタノールが充填された容器内で、黒鉛粒子を形成する黒鉛結晶の基底面の層間結合を破壊し、該基底面からなるグラフェンの集まりを製造する。次に、グラフェンの扁平面同士が重なり合った該扁平面同士を接合し、該グラフェンの集まりからなるグラフェン接合体を、容器の底面に該底面の形状として製造する。さらに、グラフェン接合体の表面を金属ないしは絶縁性の金属酸化物の微粒子の集まりで覆う。なお、グラフェンは、炭素原子が六角形からなる網目構造を二次元的に形成する炭素原子の集まりからなる単結晶材料で、厚みが0.332nmからなり、極めて軽量な素材である。また、本発明では、グラフェンの扁平面同士を直接重なり合って接合した、厚みが薄いフィルム状のグラフェンの集まりを、グラフェン接合体と呼ぶ。なお、黒鉛粒子は、黒鉛の単結晶のみからなり、黒鉛の結晶化が100%進んだ最も安価な炭素材料であり、黒鉛粒子を形成する黒鉛結晶の基底面の層間結合を破壊すると、基底面からなるグラフェンの集まりが得られる。 The present invention breaks the interlayer bond of the basal plane of graphite crystals forming graphite particles in a container filled with methanol to produce a group of graphene composed of the basal plane. Next, the flat surfaces on which the flat surfaces of graphene are overlapped are joined to each other, and a graphene junction composed of a collection of graphene is produced on the bottom surface of the container as the shape of the bottom surface. In addition, the surface of the graphene conjugate is covered with a collection of fine particles of metal or insulating metal oxide. Graphene is a single crystal material composed of a collection of carbon atoms that two-dimensionally forms a network structure in which carbon atoms are hexagonal, and has a thickness of 0.332 nm, and is an extremely lightweight material. Further, in the present invention, a group of thin film-like graphene in which the flat surfaces of graphene are directly overlapped and bonded is called a graphene junction. The graphite particles are the cheapest carbon materials composed of only single crystals of graphite and 100% of graphite is crystallized. When the interlayer bond between the basal planes of the graphite crystals forming the graphite particles is broken, the basal plane A collection of graphene consisting of is obtained.

2004年に英国マンチェスター大学の物理学者が、セロファンテープを使用して、グラファイトから1枚の結晶子、すなわち、炭素原子が六角形からなる網目構造を二次元的に形成する基底面を引きはがし、炭素原子の大きさが厚みとなる平面状の物質を取り出すことに初めて成功した。この新たな物質をグラフェンと呼んだ。この研究成果に対して、2010年のノーベル物理学書が授与されている。 In 2004, a physicist at the University of Manchester in the United Kingdom used cellophane tape to tear off a single crystallite from graphite, the basal plane, which two-dimensionally forms a network of hexagonal carbon atoms. For the first time, we succeeded in extracting a planar substance having a thickness of carbon atoms. This new substance was called graphene. The 2010 Nobel Prize in Physics has been awarded for this research result.

グラフェンは、厚みが炭素原子の大きさに相当する極めて薄い物質で、かつ、質量をほとんど持たない全く新しい炭素材料である。このため、従来の物質とは大きくかけ離れた物性を持ち、幅広い用途に応用できる材料として注目されている。
例えば、厚みが0.332nmからなる最も薄い材料である。また、単位質量当たりの表面積が3000m/gである最も広い表面積を持つ。さらに、ヤング率が1020GPaと大きな値を持ち、最も伸長ができ、折り曲げができる材料である。また、せん断弾性率が440GPaという大きな数値を持つ最も強靭な物質である。さらに、熱伝導率は19.5W/Cmで、金属の中で最も熱伝導率が高い銀の熱伝導率の4.5倍の熱伝導率を持つ。また、電流密度は銅の1000倍を超える。さらに、銅の比抵抗の23倍に過ぎない電気導電性を持つ。また、電子移動度が15000cm/ボルト・秒であり、シリコーンの移動度の1400cm/ボルト・秒より一桁高い値を持つ。さらに、融点が3000℃を超える単結晶材料で、耐熱性が極めて高い材料である。
Graphene is an extremely thin substance whose thickness corresponds to the size of a carbon atom, and is a completely new carbon material having almost no mass. For this reason, it has physical properties that are far from those of conventional substances, and is attracting attention as a material that can be applied to a wide range of applications.
For example, it is the thinnest material with a thickness of 0.332 nm. It also has the largest surface area of 3000 m 2 / g per unit mass. Further, it has a Young's modulus as large as 1020 GPa, and is the most stretchable and bendable material. Moreover, it is the toughest substance having a large shear modulus of 440 GPa. Further, the thermal conductivity is 19.5 W / Cm, which is 4.5 times the thermal conductivity of silver, which has the highest thermal conductivity among metals. Moreover, the current density exceeds 1000 times that of copper. Furthermore, it has electrical conductivity that is only 23 times the specific resistance of copper. Further, the electron mobility is 15000 cm 2 / volt / sec, which is an order of magnitude higher than the mobility of silicone of 1400 cm 2 / volt / sec. Further, it is a single crystal material having a melting point of more than 3000 ° C. and has extremely high heat resistance.

いっぽう、グラフェンは様々な方法で製造される。例えば、前記したマンチェンスター大学の教授は、人の手でグラファイトからグラフェンを物理的に引きはがした。この方法は、大量のグラフェンを短時間に引き剥がすことは困難で、また、剥がされたものが黒鉛結晶の単一層、つまり、グラフェンになるとは限らない。
また、特許文献1に、炭化ケイ素の単結晶を熱分解することでグラフェンを製造する方法が記載されている。つまり、炭化ケイ素を不活性雰囲気で加熱し、表面を熱分解させる。この際、昇華温度が相対的に低いケイ素が優先的に昇華し、残存した炭素によってグラフェンが生成される。しかし、炭化ケイ素の単結晶が高価な材料である。さらに、面積が大きいグラフェンを製造するには、炭化ケイ素の単結晶を成長させなければならず、炭化ケイ素の単結晶がさらに高価になる。また、1600℃を超える高温で、かつ、真空度が高い雰囲気でケイ素を昇華させるが、ケイ素が僅かでも残存した場合は、熱分解後の残渣物としてグラフェンが生成されない。このため、炭化ケイの単結晶の生成と、単結晶の熱分解処理に係わる費用は非常に高価になる。また、大量のグラフェンを製造するには、さらに高価な費用が掛かる。
さらに、特許文献2に、シート状の単結晶のグラファイト化金属触媒に、炭素系物質を接触させ、還元性雰囲気で熱処理することで、グラフェンを製造する方法が記載されている。しかしながら、この製造方法も、安価な製造方法ではなく、かつ、量産性に優れた製造方法ではない。第一に、単結晶のグラファイト化金属触媒を製造する製造コストは、炭化ケイ素の単結晶よりさらに高い。第二に、単結晶のグラファイト化金属触媒を炭素系物質に接触させる方法は量産性に劣る。第三に、水素ガスを含む窒素ガスがリッチな雰囲気で、1000℃を超える高温度で、グラファイト化金属触媒を還元処理する方法は高価になる。従って、大量のグラフェンを製造するには、さらに高価な費用が掛かる。
Graphene, on the other hand, is produced in a variety of ways. For example, the professor at Manchenster University mentioned above physically peeled graphene from graphite by hand. In this method, it is difficult to peel off a large amount of graphene in a short time, and the peeled material is not always a single layer of graphite crystals, that is, graphene.
Further, Patent Document 1 describes a method for producing graphene by thermally decomposing a single crystal of silicon carbide. That is, the silicon carbide is heated in an inert atmosphere to thermally decompose the surface. At this time, silicon having a relatively low sublimation temperature is preferentially sublimated, and graphene is produced by the remaining carbon. However, a single crystal of silicon carbide is an expensive material. Furthermore, in order to produce graphene having a large area, a single crystal of silicon carbide must be grown, which makes the single crystal of silicon carbide even more expensive. Further, silicon is sublimated at a high temperature exceeding 1600 ° C. and in an atmosphere having a high degree of vacuum, but if even a small amount of silicon remains, graphene is not produced as a residue after thermal decomposition. Therefore, the cost of producing a single crystal of carbonized silica and the thermal decomposition treatment of the single crystal becomes very expensive. In addition, producing a large amount of graphene is more expensive.
Further, Patent Document 2 describes a method for producing graphene by bringing a carbon-based substance into contact with a sheet-shaped single crystal graphitized metal catalyst and heat-treating it in a reducing atmosphere. However, this manufacturing method is also not an inexpensive manufacturing method and is not a manufacturing method having excellent mass productivity. First, the production cost of producing a single crystal graphitized metal catalyst is even higher than that of a single crystal of silicon carbide. Second, the method of contacting a single crystal graphitized metal catalyst with a carbon-based substance is inferior in mass productivity. Thirdly, the method of reducing the graphitized metal catalyst in an atmosphere rich in nitrogen gas including hydrogen gas at a high temperature exceeding 1000 ° C. becomes expensive. Therefore, producing a large amount of graphene is more expensive.

現在までのグラフェンの製造方法はいずれも、第一に、安価な製造方法で大量のグラフェンを同時に製造する方法ではない。第二に、製造したグラフェンが必ずしもグラフェンでない。つまり、グラフェンは、炭素原子が六角形からなる網目構造を二次元的に形成する炭素原子の集まりからなる単結晶材料であり、不純物が全くない雰囲気で、炭素原子の結晶成長ができなければ、グラフェンが生成されない。さらに、生成したグラフェンの厚みが極薄く、極軽量であるため、グラフェンであることを確認する方法が困難である。
このため、本発明者は、製造したグラフェンが全て完全なグラフェンで、かつ、極めて簡単な方法で大量のグラフェンを瞬時に製造する方法を見出した(特許文献3)。すなわち、黒鉛の単結晶のみからなり、黒鉛の結晶化が100%進み、さらに、最も安価な炭素材料である、天然の黒鉛結晶の塊を破砕し、該破砕した黒鉛結晶から鱗片状黒鉛粒子ないしは塊状黒鉛粒子の集まりを選別した黒鉛粒子の集まりを、2枚の平行平板電極の間隙に引き詰め、該2枚の平行平板電極に電界を印加し、該電界の印加によって黒鉛粒子を形成する全ての黒鉛結晶の基底面の層間結合を同時に破壊し、基底面からなるグラフェンを大量に製造する方法である。この製造方法に依れば、鱗片状黒鉛粒子ないしは塊状黒鉛粒子の僅か1gから、1.62×1013個に及ぶグラフェンの集まりが瞬時に得られる。
None of the graphene production methods to date have been, first of all, a method of simultaneously producing a large amount of graphene by an inexpensive production method. Second, the graphene produced is not necessarily graphene. In other words, graphene is a single crystal material consisting of a collection of carbon atoms that two-dimensionally forms a network structure in which carbon atoms are hexagonal, and if carbon atoms cannot grow in crystals in an atmosphere free of impurities, Graphene is not produced. Furthermore, since the graphene produced is extremely thin and extremely lightweight, it is difficult to confirm that it is graphene.
Therefore, the present inventor has found a method in which all the graphene produced is a complete graphene and a large amount of graphene is instantly produced by an extremely simple method (Patent Document 3). That is, it consists of only a single crystal of graphite, the crystallization of graphite progresses 100%, and a mass of natural graphite crystal, which is the cheapest carbon material, is crushed, and scaly graphite particles or scaly graphite particles or scaly graphite crystals are crushed from the crushed graphite crystal. A collection of aggregated graphite particles is selected. The collection of graphite particles is narrowed into the gap between the two parallel plate electrodes, an electric field is applied to the two parallel plate electrodes, and the application of the electric field forms graphite particles. This is a method for producing a large amount of graphene composed of the basal plane by simultaneously breaking the interlayer bond of the basal plane of the graphite crystal. According to this production method, a collection of 1.62 × 10 13 graphenes can be instantly obtained from only 1 g of scaly graphite particles or lump graphite particles.

特開2015−110485号公報JP-A-2015-110485 特開2009−143799号公報JP-A-2009-143799 特許第6166860号Patent No. 6166860

3段落で説明したように、グラフェンが従来の素材とは全くかけ離れた驚異的な物性を持つため、グラフェンを用いた様々な部品やデバイの研究開発が行われている。従って、安価な製造方法で製造したグラフェンの集まりから、グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体を製造する方法が見いだせれば、グラフェンの性質に近いグラフェン接合体を用いた安価な部品やデバイスの実用化が進む。さらに、グラフェン接合体の表面を金属ないしは絶縁性の金属酸化物の微粒子の集まりで覆うことができれば、表面が導電性ないしは絶縁性のグラフェン接合体を、基材や部品に圧着することができ、基材や部品にグラフェン接合体の性質が付与できる。
いっぽう、特許文献3による製造方法で大量のグラフェンを瞬時に製造できるが、このグラフェンの集まりから、グラフェン接合体を製造する方法は見出されていない。また、グラフェンは、極めて厚みが薄い物質であり、極めて軽量で、殆ど質量を持たない。さらに、黒鉛粒子から製造したグラフェンの面積は小さく、取り扱いが困難である。また、特許文献3における電界の印加によって、黒鉛粒子における黒鉛結晶の層間結合を同時に破壊して製造したグラフェンは、製造時と製造後において、容易に飛散する。さらに、グラフェンは厚みが極めて薄いため、厚みに対する結晶面の大きさの比率であるアスペクト比が極めて大きい扁平面を持つ。また、黒鉛粒子が一定の形状を持ち、黒鉛粒子の形状は同一でないため、黒鉛粒子における黒鉛結晶の層間結合を破壊して製造したグラフェンのアスペクト比は、個々のグラフェンで異なる。従って、特許文献3における製造方法では、グラフェンの製造時に容易にグラフェンン扁平面同士が重なり合う。さらに、重なり合ったグラフェンの枚数は一定でない。また、扁平面同士で重なり合ったか否かを識別することは困難で、電子顕微鏡の観察で識別する方法がある。さらに、扁平面で重なり合ったグラフェンは、扁平面での接合力が微弱であるため、扁平面が重なり合った部位で、グラフェン接合体が容易に分離する。このため、グラフェンの扁平面同士が重なり合った該扁平面同士を強固に接合しなければ、グラフェン接合体にならない。
従って、グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体を製造するに当たり、解決すべき課題として次の5つの課題がある。
第一に、粘度が低く、沸点が低い液体が充填された容器内で、グラフェンの集まりを製造する。これによって、グラフェンの製造時と製造後において、液体中に析出したグラフェンは飛散しない。
第二に、前記容器の底面に、グラフェンの扁平面を、液体を介して重なり合わせる。さらに、前記容器を前記液体の沸点に昇温し、該液体を気化させ、扁平面が重なり合ったグラフェンの集まりを、前記容器の底面に形成する。つまり、グラフェンの厚みが極めて薄く、厚みに対する表面積の比率であるアスペクト比は極めて大きい。また、グラフェンは厚みが極めて薄く、殆ど質量を持たない。従って、これら2つの特徴を活かす方法によって、扁平面が重なり合ったグラフェンの集まりを、容器の底面に形成することができる。
第三に、グラフェンの集まりの上方の平面を均等に圧縮し、グラフェンの扁平面が重なり合った部位に摩擦熱を発生させ、該摩擦熱によって重なり合った扁平面が接合され、グラフェン接合体が、容器の底面に底面の形状として形成される。つまり、グラフェンは、破断強度が42N/mであり、鋼の100倍を超える強度を持つ強靭な素材である。従って、この特徴を活かす方法によって、扁平面が重なり合った部位が強固に接合できる。
第四に、上記した3つの工程における処理が何れも極めて簡単な処理で、また、用いる材料が汎用的な安価な材料である。これによって、安価な黒鉛粒子の集まりを用いて、安価な方法でグラフェンの集まりを製造し、安価な方法でグラフェン接合体を製造する。この結果、グラフェンの性質に近いグラフェン接合体が安価に製造できる。
グラフェン接合体を製造するが上で、解決する課題は上記の4つの課題である。
さらに、前記したグラフェン接合体の表面を、金属ないしは絶縁性の金属酸化物の微粒子の集まりで覆うに当たり、解決すべき課題として次の3つの課題がある。
第一に、容器の底面に、該底面の形状として形成されたグラフェン接合体の表面を、金属ないしは絶縁性の金属酸化物からなる微粒子の集まりで覆う。このため、金属ないしは絶縁性の金属酸化物の原料が液相化される必要がある。
第二に、表面が金属ないしは絶縁性の金属酸化物からなる微粒子の集まりで覆われたグラフェン接合体を、容器から取り出すことができる。これによって、表面が導電性ないしは絶縁性のグラフェン接合体を、基材や部品に圧着することができ、基材や部品にグラフェン接合体の性質が付与できる。
第三に、グラフェン接合体の表面を金属ないしは絶縁性の金属酸化物からなる微粒子の集まりで覆う処理が極めて簡単で、用いる材料が汎用的な安価な材料である。これによって、安価なグラフェン接合体を、基材や部品に圧着することができる。
グラフェン接合体の表面を金属ないしは絶縁性の金属酸化物からなる微粒子の集まりで覆う上で、解決する課題は上記の3つの課題である。
従って、本発明が解決しようとする課題は、合計7つの課題がある。
As explained in paragraph 3, graphene has amazing physical properties that are completely different from conventional materials, so research and development of various parts and devices using graphene are being carried out. Therefore, if a method for producing a graphene conjugate composed of a collection of graphene obtained by joining the flat surfaces in which the flat surfaces of graphene overlap each other can be found from a collection of graphene produced by an inexpensive production method, the properties of graphene can be found. Inexpensive parts and devices using graphene joints close to the above will be put into practical use. Furthermore, if the surface of the graphene joint can be covered with a collection of fine particles of metal or insulating metal oxide, the graphene joint having a conductive or insulating surface can be pressure-bonded to the base material or parts. The properties of a graphene joint can be imparted to the base material and parts.
On the other hand, a large amount of graphene can be instantly produced by the production method according to Patent Document 3, but a method for producing a graphene conjugate has not been found from this collection of graphene. Graphene is an extremely thin substance, extremely lightweight, and has almost no mass. Furthermore, the area of graphene produced from graphite particles is small and difficult to handle. Further, graphene produced by simultaneously breaking the interlayer bond of graphite crystals in graphite particles by applying an electric field in Patent Document 3 is easily scattered during and after production. Further, since graphene is extremely thin, it has a flat surface having an extremely large aspect ratio, which is the ratio of the size of the crystal plane to the thickness. Further, since the graphite particles have a constant shape and the shapes of the graphite particles are not the same, the aspect ratio of the graphene produced by breaking the interlayer bond of the graphite crystals in the graphite particles is different for each graphene. Therefore, in the production method in Patent Document 3, graphene flat surfaces easily overlap each other when graphene is produced. Moreover, the number of overlapping graphenes is not constant. In addition, it is difficult to distinguish whether or not the flat surfaces overlap each other, and there is a method of distinguishing by observing with an electron microscope. Further, since the graphenes overlapping on the flat surfaces have a weak bonding force on the flat surfaces, the graphene joints are easily separated at the sites where the flat surfaces overlap. For this reason, a graphene junction cannot be formed unless the flat surfaces on which the flat surfaces of graphene overlap each other are firmly bonded to each other.
Therefore, there are the following five problems to be solved in manufacturing a graphene junction composed of a collection of graphene obtained by joining the flat surfaces in which the flat surfaces of graphene are overlapped with each other.
First, a collection of graphene is produced in a container filled with a liquid with low viscosity and low boiling point. As a result, the graphene precipitated in the liquid does not scatter during and after the production of graphene.
Second, a flat surface of graphene is superposed on the bottom surface of the container via a liquid. Further, the temperature of the container is raised to the boiling point of the liquid, the liquid is vaporized, and a collection of graphene on which flat surfaces are overlapped is formed on the bottom surface of the container. That is, the thickness of graphene is extremely thin, and the aspect ratio, which is the ratio of the surface area to the thickness, is extremely large. In addition, graphene is extremely thin and has almost no mass. Therefore, a group of graphene with overlapping flat surfaces can be formed on the bottom surface of the container by a method utilizing these two characteristics.
Third, the plane above the graphene cluster is evenly compressed, frictional heat is generated at the site where the graphene flat planes overlap, and the overlapping flat planes are joined by the frictional heat, and the graphene junction is formed into a container. It is formed as the shape of the bottom surface on the bottom surface of That is, graphene is a tough material having a breaking strength of 42 N / m, which is more than 100 times stronger than steel. Therefore, by a method utilizing this feature, the portions where the flat surfaces overlap can be firmly joined.
Fourth, the treatments in the above three steps are all extremely simple treatments, and the materials used are general-purpose and inexpensive materials. Thereby, the graphene aggregate is produced by an inexpensive method and the graphene conjugate is produced by an inexpensive method using an inexpensive graphite particle aggregate. As a result, a graphene conjugate having properties similar to those of graphene can be produced at low cost.
In manufacturing a graphene conjugate, the problems to be solved are the above four problems.
Further, there are the following three problems to be solved when covering the surface of the graphene bonded body with a collection of fine particles of a metal or an insulating metal oxide.
First, the surface of the graphene junction formed on the bottom surface of the container in the shape of the bottom surface is covered with a collection of fine particles made of a metal or an insulating metal oxide. Therefore, it is necessary that the raw material of the metal or the insulating metal oxide is liquid-phased.
Second, a graphene conjugate whose surface is covered with a collection of fine particles of metal or insulating metal oxide can be removed from the container. As a result, the graphene joint having a conductive or insulating surface can be pressure-bonded to the base material or the component, and the properties of the graphene joint can be imparted to the base material or the component.
Thirdly, it is extremely easy to cover the surface of the graphene joint with a collection of fine particles made of metal or an insulating metal oxide, and the material used is a general-purpose and inexpensive material. As a result, an inexpensive graphene joint can be pressure-bonded to a base material or a component.
In covering the surface of the graphene joint with a collection of fine particles made of a metal or an insulating metal oxide, the problems to be solved are the above three problems.
Therefore, there are a total of seven problems to be solved by the present invention.

グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体を製造する方法は、
2枚の平行平板電極のうちの一方の平行平板電極の表面に、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを平坦に引き詰め、該平行平板電極を容器に充填されたメタノール中に浸漬させ、さらに、他方の平行平板電極を前記一方の平行平板電極の上に重ね合わせ、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりを介して、前記2枚の平行平板電極を離間させるとともに、該離間させた2枚の平行平板電極を前記メタノール中に浸漬させる、この後、該2枚の平行平板電極の間隙に直流の電位差を印加する、これによって、該電位差の大きさを前記2枚の平行平板電極の間隙の大きさで割った値に相当する電界が、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりに印加され、該電界の印加によって、前記鱗片状黒鉛粒子ないしは前記塊状黒鉛粒子を形成する基底面の層間結合の全てが同時に破壊され、前記2枚の平行平板電極の間隙に、前記基底面に相当するグラフェンの集まりが製造される、この後、前記2枚の平行平板電極の間隙を拡大し、該2枚の平行平板電極を前記メタノール中で傾斜させ、さらに、前記容器に左右、前後、上下の3方向の振動を繰り返し加え、前記グラフェンの集まりを、前記2枚の平行平板電極の間隙から前記メタノール中に移動させる、この後、前記容器から前記2枚の平行平板電極を取り出す、さらに、前記容器に前後、左右、上下の3方向の振動を繰り返し加え、前記グラフェンの扁平面がメタノールを介して重なり合った該グラフェンの集まりを、前記容器の底面に該底面の形状として形成する、この後、前記容器を前記メタノールの沸点に昇温して該メタノールを気化させ、前記グラフェンの扁平面が重なり合った該グラフェンの集まりを、前記容器の底面に該底面の形状として形成する、この後、該グラフェンの集まりの上方の平面を均等に圧縮し、前記グラフェンの扁平面が重なり合った部位に摩擦熱を発生させ、該摩擦熱によって該グラフェンの扁平面同士が重なり合った該扁平面同士を接合し、グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体が、前記容器の底面に該底面の形状として形成される、グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体を製造する方法である。
A method for producing a graphene junction composed of a collection of graphene obtained by joining the flat planes in which the flat planes of graphene overlap each other is
A collection of scaly graphite particles or a collection of massive graphite particles is flatly packed on the surface of one of the two parallel plate electrodes, and the parallel plate electrode is immersed in methanol filled in a container. Further, the other parallel plate electrode is superposed on the one parallel plate electrode, and the two parallel plate electrodes are separated from each other through a collection of the scaly graphite particles or a collection of the massive graphite particles. At the same time, the two separated parallel plate electrodes are immersed in the graphite, and then a DC potential difference is applied to the gap between the two parallel plate electrodes, whereby the magnitude of the potential difference is increased. An electric field corresponding to the value divided by the size of the gap between the two parallel plate electrodes is applied to the aggregate of the scaly graphite particles or the aggregate of the lump graphite particles, and the application of the electric field causes the scaly graphite particles. Or, all of the interlayer bonds of the basal plane forming the massive graphite particles are simultaneously destroyed, and a group of graphene corresponding to the basal plane is produced in the gap between the two parallel plate electrodes. The gap between the two parallel plate electrodes is expanded, the two parallel plate electrodes are tilted in the methanol, and vibrations in three directions of left and right, front and back, and up and down are repeatedly applied to the container to form a collection of graphene. , The two parallel plate electrodes are moved into the methanol through the gap between the two parallel plate electrodes, and then the two parallel plate electrodes are taken out from the container, and the container is vibrated in three directions of front-back, left-right, and up-down. Repeatedly added, a collection of graphene in which the flat planes of the graphene are overlapped with each other via methanol is formed on the bottom surface of the container in the shape of the bottom surface, after which the container is heated to the boiling point of the graphite. Methanol is vaporized to form an aggregate of the graphene on which the flat planes of the graphene are overlapped on the bottom surface of the container as the shape of the bottom surface, and then the plane above the aggregate of graphene is evenly compressed. Friction heat is generated at the site where the graphite flat surfaces overlap, and the frictional heat joins the graphite flat surfaces that overlap each other, and joins the graphite flat surfaces that overlap each other. A graphene junction composed of a collection of graphite formed is formed on the bottom surface of the container as the shape of the bottom surface. The graphene junction composed of a collection of graphite obtained by joining the graphite flat surfaces on which the graphite flat surfaces overlap each other. Is a method of manufacturing.

グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体を製造する方法は、次の4つの工程からなる。
第一に、メタノール中で、黒鉛粒子の集まりからグラフェンの集まりを製造する。すなわち、2枚の平行平板電極の間隙に引き詰められた鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを、絶縁体であるメタノール中に浸漬させ、2枚の平行平板電極間に直流の電位差を印加させる。これによって、電位差を2枚の平行平板電極の間隙の大きさで割った値に相当する電界が、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりが存在する電極間隙に発生する。この電界は、前記した黒鉛粒子の全てに対し、黒鉛結晶からなる基底面の層間結合を破壊させるのに十分なクーロン力を、基底面の層間結合の担い手である全てのπ電子に同時に与える。これによって、π電子はπ軌道上の拘束から解放され、全てのπ電子がπ軌道から離れて自由電子となる。つまり、π電子に作用するクーロン力が、π軌道の相互作用より大きな力としてπ電子に与えられると、π電子はπ軌道の拘束から解放されて自由電子になる。この結果、基底面の層間結合の担い手である全てのπ電子が、π軌道上に存在しなくなり、黒鉛粒子の全てについて、黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てが同時に破壊される。この結果、2枚の平行平板電極の間隙に、基底面の集まり、すなわちグラフェンの集まりが瞬時に製造される。製造されたグラフェンは、不純物がなく、黒鉛結晶のみからなる真性な物質である。なお、2枚の平行平板電極がメタノール中に浸漬しているため、2枚の平行平板電極の間隙に析出したグラフェンの集まりは飛散しない。これによって、7段落に記載したグラフェン接合体を製造する上での4つの課題のうち、第1の課題が解決された。
なお、絶縁体であるメタノール中に浸漬した2枚の平行平板電極間に、電位差を印加させると、2枚の平行平板電極の間隙に電界が発生する。すなわち、メタノールは比抵抗が3メガΩ・cm以上で、誘電率が33の絶縁体である。また、エタノールも誘電率が24からなる絶縁体である。なお、エタノールの電気導電率は7.5×10−6S/mで、鱗片状黒鉛粒子の電気伝導度が43.9S/mである。従って、エタノールは、導電体である鱗片状黒鉛粒子に比べ、電気導電度が1.7×10倍低い絶縁体である。
第二に、グラフェンの集まりを、2枚の平行平板電極の間隙からメタノール中に移動させる。このため、2枚の平行平板電極の間隙を、メタノール中で拡大させ、さらに、メタノール中で傾斜させ、この後、メタノールが充填された容器に3方向の振動を加える。これによって、グラフェンの集まりが、2枚の平行平板電極の間隙からメタノール中に移動する。この後、2枚の平行平板電極を容器から取り出す。
第三に、容器に前後、左右、上下の3方向の振動を繰り返し加え、グラフェンの扁平面同士がメタノールを介して重なり合った該グラフェンの集まりを、容器の底面に該底面の形状として形成する。つまり、グラフェンのアスペクト比が極めて大きく、また、極めて軽量であるため、容器に3方向の振動を加えると、扁平面を上にしてグラフェンがメタノール中を移動し、容器の底面全体にグラフェンが拡散するとともに、扁平面同士がメタノールを介して重なり合う。いっぽう、2枚の平行平板電極の間隙に、グラフェンの集まりが析出する際に、グラフェンンの一部は扁平面同士で重なり合う。こうした扁平面が重なり合ったグラフェンの接合面に、メタノールの振動を加え、グラフェンの接合面を分離させる。従って、容器に加える振動加速度は、扁平面同士が重なり合ったグラフェンを分離させるため、最初に0.5G程度の振動加速度を加え、この後、0.2G程度の振動加速度を加え、グラフェンをメタノール中で移動させる。この後、容器への加振を停止すると、扁平面同士がメタノールを介して重なり合ったグラフェンの集まりが、容器の底面に該底面の形状として形成される。さらに、容器をメタノールの沸点に昇温し、メタノールを気化させると、扁平面同士が重なり合ったグラフェンの集まりが、容器の底面に該底面の形状として形成される。これによって、7段落に記載したグラフェン接合体を製造する上での4つの課題のうち、第2の課題が解決された。
なお、次の第4の工程で、扁平面同士が重なり合った該扁平面同士を接合させることでグラフェン接合体を形成させるため、全てのグラフェンを1枚1枚のグラフェンに分離させなくてもよく、重なり合ったグラフェンの枚数が多いグラフェンの集まりを、メタノールの振動で分離させる。また、気化したメタノールは回収機で回収し、再利用する。
第四に、容器の底面に形成されたグラフェンの集まりの上方の平面を均等に圧縮し、グラフェンの扁平面同士が重なり合った部位に摩擦熱を発生させ、該摩擦熱によってグラフェンの扁平面同士を接合し、グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体を、容器の底面に該底面の形状として形成する。つまり、グラフェンは、破断強度が42N/mであり、鋼の100倍を超える強度を持つ。このため、容器の底面に形成されたグラフェンの集まりの上方の平面に過大な圧縮応力を加えても、グラフェンの扁平面は変形も破壊もしない。従って、容器の底面に形成されたグラフェンの集まりの上方の平面を均等に圧縮すると、加えられた圧縮応力が低減することなく、グラフェンの扁平面同士が重なり合った部位に圧縮応力が加わり、これによって、扁平面同士が重なり合った部位に摩擦熱が発生し、該摩擦熱によってグラフェンの扁平面同士が接合し、グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体が、容器の底面に該底面の形状として形成される。なお、グラフェンは、メタノール中で析出させ、メタノール中での処理を継続したため、不純物がなく、黒鉛結晶のみからなる真性な物質である。このグラフェンの扁平面を摩擦熱で接合したため、グラフェンの扁平面は強固に接合される。これによって、7段落に記載したグラフェン接合体を製造する上での4つの課題のうち、第3の課題が解決された。
グラフェン接合体は、グラフェンの扁平面同士が摩擦熱で接合されたため、グラフェンは一定の結合力で接合される。このため、グラフェン接合体が容器の底面に形成されている該容器に、左右、前後、上下の3方向の振動を短時間加えると、グラフェン接合体が容器から解離し、容器からグラフェン接合体が取り出せる。また、取り出したグラフェン接合体は、ハンドリングが可能である。なお、容器に加える振動加速度は、グラフェン接合体が極めて軽量であるため、0.2G程度の振動加速度である。
ところで、グラフェン接合体を製造する際に用いるメタノールは、安価な工業用薬品である。また、黒鉛粒子も安価な工業用素材である。また、前記した4つの工程は極めて簡単な処理からなる。従って、本方法に依れば、安価な黒鉛粒子とメタノールとを用い、極めて簡単な4つの工程を連続して実施すると、グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体が、容器の底面に該底面の形状として形成される。これによって、7段落に記載したグラフェン接合体を製造する上での4つの課題のうち第4の課題が解決され、すべての課題が解決された。
以上に説明した製造方法で製造したグラフェン接合体は、次の作用効果をもたらす。
第一に、グラフェンは、厚みが炭素原子の大きさに相当する0.332nmで、極めて軽量で、ほとんど質量を持たない。また、厚みが極めて薄いため、グラフェンの存在は、目視では確認できない。さらに、黒鉛粒子から製造したグラフェンの面積は小さい。このため、1枚1枚のグラフェンを取り扱うことは困難である。これに対し、扁平面を介してグラフェン同士を接合したグラフェン接合体は、厚みが薄いが、一定の面積を持つため、1枚1枚のグラフェン接合体を取り扱うことができる。このグラフェン接合体は、グラフェンのみから構成されるため、グラフェンの性質に近い。さらに、グラフェン接合体は、安価な材料を用い、安価な方法で製造できる安価な工業用素材である。このため、グラフェン接合体を用いた様々な工業製品への応用が開拓される。
第二に、容器の底面に該底面の形状からなるグラフェン接合体が製造される。従って、厚みがサブミクロンのグラフェン接合体が製造でき、また、容器の底面の形状に応じて、グラフェン接合体の形状と面積とが自在に変えられる。このため、熱伝導性と電気導電性との双方に優れたグラフェン接合体は、面積が小さい電極や接点、細長い配線パターン、面積が広い熱伝導シートに至るまで、任意の大きさと形状と厚みを持つ、グラフェンの性質からなるグラフェン接合体として、自在に製造することができる。
第三に、グラフェン接合体は熱伝導性と電気導電性との双方に優れる。すなわち、グラフェンは、前記したように、銀の熱伝導率の4.5倍に相当する熱伝導性と、銅の比抵抗の23倍に過ぎない電気導電性とを兼備する。従って、グラフェンの扁平面同士が接合されたグラフェン接合体は、グラフェンに近い性質をもち、熱伝導性と電気導電性とともに、帯電防止機能と電磁波遮蔽機能と放熱機能とを兼備する。
第四に、グラフェン接合体は、不純物がなく、黒鉛結晶のみからなる真性な物質であるグラフェン同士を、扁平面を介して摩擦熱で接合したため、グラフェン同士が強固に接合される。また、グラフェン同士が接合される間隙は、グラフェンの厚みに相当する0.332nmよりさらに狭い。このため、グラフェン同士の間隙に物質が侵入できない。さらに、グラフェン接合体は、融点が3000℃を超えるグラフェンのみで構成され、グラフェンの耐熱性に近い耐熱性を持つ。また、グラフェンは、酸やアルカリにも侵食されない極めて安定した物質である。従って、グラフェン接合体は、どのような環境で使用されても経時変化しない。このため、グラフェンの性質からなるグラフェン接合体は、様々な分野の工業用素材として用いられる。
第五に、グラフェン接合体の表面の凹凸は、グラフェンの厚みの0.332nmに過ぎず、完全な平面に近い。このため、グラフェン接合体の表面は、接触角が180度に近い超撥水性を示し、表面に撥水性と撥油性と防汚性とがもたらされる。
ここで、第一の処理において、2枚の平行平板電極の間隙に印加した電界によって、2枚の平行平板電極の間隙に引き詰められた黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合が、同時に破壊される現象を説明する。
黒鉛粒子における黒鉛結晶を形成する炭素原子は4つの価電子を持つ。このうちの3つの価電子は、基底面、すなわち、グラフェンを形成するσ電子である。このσ電子は、基底面上で隣り合う3つの炭素原子が持つσ電子と互いに120度の角度をなして共有結合し、六角形の強固な網目構造を2次元的に形成する。残り一つの価電子はπ電子であり、基底面に垂直な方向に伸びるπ軌道上に存在する。このπ電子は、基底面に垂直な上下方向で隣り合う炭素原子が持つπ電子と弱い結合力で結合し、この弱い結合力に基づいて基底面が層状に積層される。つまり基底面、すなわちグラフェンは、弱い結合力であるπ軌道の相互作用によって互いに層状に結合されている。このため、黒鉛粒子は、黒鉛結晶からなる基底面で剥がれ易い性質、すなわち、機械的な異方性を持つ。この機械的な異方性は、黒鉛粒子の潤滑性として良く知られている。
こうした黒鉛粒子に電界を印加させると、全てのπ電子に電界によるクーロン力が作用する。π電子に作用するクーロン力が、π電子に作用しているπ軌道の相互作用より大きな力としてπ電子に作用すると、π電子はπ軌道上の拘束から解放される。この結果、全てのπ電子がπ軌道から離れて自由電子となる。これによって、基底面の層間結合の担い手である全てのπ電子がπ軌道上にいなくなるため、基底面の層間結合の全てが同時に破壊される。すなわち、π電子がクーロン力Fによって基底面の層間距離bの距離を動く際に、π電子は仕事W(W=b・F)を行う。この仕事Wが、π電子に作用する1原子当たりのπ軌道の相互作用の大きさである35ミリエレクトロンボルト (エレクトロンボルトは電子が持つエネルギーの大きさを表す単位で、1エレクトロンボルトは1.62×10−19ジュールに相当する)を超えると、π電子はπ軌道の相互作用の拘束から解放されて自由電子になる。例えば、2枚の平行平板電極の間隙を100μmで離間させ、この電極の間隙に10.6キロボルト以上の直流の電位差を印加させると、基底面の層間結合が瞬時に破壊される。このように、安価な黒鉛粒子の集まりに電界を印加するという極めて簡単な手段によって、大量のグラフェンが安価に製造できる。また、基底面の層間結合の全てが同時に破壊するため、得られる微細な物質は、確実に黒鉛結晶からなる基底面であるグラフェンである。
なお、ここで言う黒鉛粒子の集まりとは、1gから100g程度の比較的少量の黒鉛粒子の集まりを言う。つまり、鱗片状黒鉛粒子ないしは塊状黒鉛粒子は、嵩密度が0.2−0.5g/cmで、粒子の大きさが1−300ミクロンの分布を持つ微細な粒子である。従って、黒鉛粒子の集まりを2枚の平行平板電極の間隙に引き詰めることは容易で、2枚の平行平板電極に電位差を印加することも容易である。2枚の平行平板電極の間隙に電位差を印加すると、黒鉛粒子が引きつめられた全ての領域に電界が発生する。この電界が、π軌道の相互作用より大きなクーロン力としてπ電子に作用し、π電子はπ軌道上の拘束から解放され、自由電子になる。この結果、黒鉛粒子における基底面の層間結合の全てが同時に破壊され、2枚の平行平板電極の間隙に、グラフェンの集まりが製造される。
ここで、懸濁体中に分散されるグラフェンの数を算術で求める。ここでは、全ての黒鉛粒子が、直径が25ミクロンの球から構成されると仮定し、黒鉛の真密度が2.25×10kg/mであるから、黒鉛粒子の1個の重さは僅かに1.84×10−8gになる。また、黒鉛粒子の厚みの平均値が10ミクロンと仮定すると、層間距離が3.354オングストロームであるので、10ミクロンの厚みを持つ鱗片状黒鉛粒子には297,265個のグラフェンが積層されている。従って、基底面の層間結合を全て破壊することで、僅か1個の球状の黒鉛粒子から297,265個のグラフェンの集まりが得られる。このため、球状の黒鉛粒子の僅か1gの集まりについて、基底面の層間結合の全てを破壊した際に、1.62×1013個からなるグラフェンの集まりが得られる。従って、本製造方法によって、僅かな量の黒鉛粒子の集まりから、莫大な数からなるグラフェンの集まりが得られる。
A method for producing a graphene junction composed of a collection of graphene obtained by joining the flat surfaces on which the flat surfaces of graphene overlap each other comprises the following four steps.
First, graphene aggregates are produced from graphite particle aggregates in methanol. That is, a collection of scaly graphite particles or a collection of massive graphite particles narrowed in the gap between the two parallel plate electrodes is immersed in methanol, which is an insulator, and a DC potential difference between the two parallel plate electrodes. Is applied. As a result, an electric field corresponding to the value obtained by dividing the potential difference by the size of the gap between the two parallel plate electrodes is generated in the electrode gap where a collection of scaly graphite particles or a collection of massive graphite particles exists. This electric field simultaneously applies a Coulomb force sufficient for breaking the interlayer bond of the basal plane made of graphite crystals to all the above-mentioned graphite particles to all the π electrons that are responsible for the interlayer bond of the basal plane. As a result, the π electron is released from the constraint on the π orbital, and all the π electrons are separated from the π orbital and become free electrons. That is, when the Coulomb force acting on the π electron is given to the π electron as a force larger than the interaction of the π orbitals, the π electron is released from the constraint of the π orbital and becomes a free electron. As a result, all the π electrons that are responsible for the interlayer bonding of the basal plane do not exist in the π orbital, and for all the graphite particles, all of the interlayer bonding of the basal plane made of graphite crystals forming the graphite particles are simultaneously performed. It will be destroyed. As a result, a collection of basal planes, that is, a collection of graphene, is instantly produced in the gap between the two parallel plate electrodes. The graphene produced is an intrinsic substance consisting only of graphite crystals without impurities. Since the two parallel plate electrodes are immersed in methanol, the graphene deposited in the gap between the two parallel plate electrodes does not scatter. As a result, the first problem out of the four problems in producing the graphene conjugate described in paragraph 7 was solved.
When a potential difference is applied between two parallel plate electrodes immersed in methanol, which is an insulator, an electric field is generated in the gap between the two parallel plate electrodes. That is, methanol is an insulator having a specific resistance of 3 megaΩ · cm or more and a dielectric constant of 33. Ethanol is also an insulator having a dielectric constant of 24. The electric conductivity of ethanol is 7.5 × 10-6 S / m, and the electric conductivity of the scaly graphite particles is 43.9 S / m. Thus, ethanol, compared to the scaly graphite particles is a conductor, the electric conductivity is 1.7 × 10 7 times lower insulator.
Second, a collection of graphene is moved into methanol through the gap between the two parallel plate electrodes. Therefore, the gap between the two parallel plate electrodes is expanded in methanol, further inclined in methanol, and then vibrations in three directions are applied to the container filled with methanol. As a result, the graphene aggregate moves into the methanol through the gap between the two parallel plate electrodes. After that, the two parallel plate electrodes are taken out from the container.
Thirdly, vibrations in three directions of front-back, left-right, and up-down are repeatedly applied to the container to form a group of graphene in which the flat surfaces of graphene are overlapped with each other via methanol as the shape of the bottom surface of the container. In other words, the aspect ratio of graphene is extremely large and it is extremely lightweight, so when the container is vibrated in three directions, graphene moves in methanol with the flat surface facing up, and graphene diffuses over the entire bottom surface of the container. At the same time, the flat planes overlap each other via methanol. On the other hand, when a collection of graphene is deposited in the gap between the two parallel plate electrodes, a part of graphene overlaps with each other on the flat surfaces. Vibration of methanol is applied to the graphene joint surfaces on which these flat surfaces overlap to separate the graphene joint surfaces. Therefore, as for the vibration acceleration applied to the container, in order to separate the graphene on which the flat surfaces overlap, the vibration acceleration of about 0.5 G is first applied, and then the vibration acceleration of about 0.2 G is applied to put the graphene in methanol. Move with. After that, when the vibration to the container is stopped, a collection of graphene in which the flat surfaces are overlapped with each other via methanol is formed on the bottom surface of the container as the shape of the bottom surface. Further, when the temperature of the container is raised to the boiling point of methanol and the methanol is vaporized, a collection of graphene in which flat surfaces are overlapped is formed on the bottom surface of the container as the shape of the bottom surface. As a result, the second problem out of the four problems in producing the graphene conjugate described in paragraph 7 was solved.
In the next fourth step, since the graphene joints are formed by joining the flat planes on which the flat planes overlap each other, it is not necessary to separate all the graphene into individual graphenes. , A collection of graphene with a large number of overlapping graphenes is separated by vibration of methanol. In addition, the vaporized methanol is recovered by a recovery machine and reused.
Fourth, the plane above the group of graphene formed on the bottom surface of the container is evenly compressed, frictional heat is generated at the portion where the flat planes of graphene overlap each other, and the flat planes of graphene are separated by the frictional heat. A graphene junction composed of a collection of graphene obtained by joining the graphene flat surfaces on which the flat planes of the graphene are overlapped is formed on the bottom surface of the container as the shape of the bottom surface. That is, graphene has a breaking strength of 42 N / m, which is more than 100 times that of steel. Therefore, even if an excessive compressive stress is applied to the plane above the group of graphene formed on the bottom surface of the container, the flat plane of graphene is neither deformed nor broken. Therefore, evenly compressing the plane above the graphene cluster formed on the bottom of the container does not reduce the applied compressive stress, but applies compressive stress to the overlapping flat planes of the graphene. , Friction heat is generated at the part where the flat surfaces overlap each other, and the graphene flat surfaces are joined to each other by the frictional heat, and the graphene composed of a group of graphenes formed by joining the flat surfaces where the flat surfaces of graphene overlap each other. A joint is formed on the bottom surface of the container in the shape of the bottom surface. Since graphene was precipitated in methanol and the treatment in methanol was continued, graphene is a genuine substance consisting only of graphite crystals without impurities. Since the flat surfaces of graphene are joined by frictional heat, the flat surfaces of graphene are firmly joined. As a result, the third problem out of the four problems in producing the graphene conjugate described in paragraph 7 was solved.
In the graphene junction, since the flat surfaces of graphene are bonded by frictional heat, the graphene is bonded with a constant bonding force. Therefore, when vibrations in three directions of left-right, front-back, and up-down are applied to the container in which the graphene joint is formed on the bottom surface of the container for a short time, the graphene joint dissociates from the container and the graphene joint is released from the container. Can be taken out. In addition, the graphene joint taken out can be handled. The vibration acceleration applied to the container is about 0.2 G because the graphene joint is extremely lightweight.
By the way, methanol used in producing a graphene conjugate is an inexpensive industrial chemical. Graphite particles are also an inexpensive industrial material. In addition, the above-mentioned four steps consist of extremely simple processes. Therefore, according to this method, when four extremely simple steps are carried out in succession using inexpensive graphite particles and methanol, the graphene obtained by joining the graphenes in which the graphenes are overlapped with each other. A graphene junction composed of aggregates is formed on the bottom surface of the container in the shape of the bottom surface. As a result, the fourth problem out of the four problems in producing the graphene conjugate described in paragraph 7 was solved, and all the problems were solved.
The graphene conjugate produced by the production method described above brings about the following effects.
First, graphene has a thickness of 0.332 nm, which corresponds to the size of a carbon atom, is extremely lightweight, and has almost no mass. Moreover, since the thickness is extremely thin, the presence of graphene cannot be visually confirmed. Moreover, the area of graphene produced from graphite particles is small. Therefore, it is difficult to handle graphene one by one. On the other hand, the graphene joints in which graphenes are joined to each other via a flat surface are thin, but have a certain area, so that each graphene joint can be handled. Since this graphene conjugate is composed only of graphene, it is close to the properties of graphene. Further, the graphene conjugate is an inexpensive industrial material that can be manufactured by an inexpensive method using an inexpensive material. For this reason, application to various industrial products using graphene conjugates will be pioneered.
Secondly, a graphene joint having the shape of the bottom surface is manufactured on the bottom surface of the container. Therefore, a graphene joint having a thickness of submicron can be produced, and the shape and area of the graphene joint can be freely changed according to the shape of the bottom surface of the container. For this reason, graphene conjugates with excellent both thermal and electrical conductivity can be of any size, shape, and thickness, including electrodes and contacts with small areas, elongated wiring patterns, and heat conductive sheets with large areas. It can be freely manufactured as a graphene conjugate having the properties of graphene.
Third, the graphene conjugate is excellent in both thermal conductivity and electrical conductivity. That is, as described above, graphene has both thermal conductivity equivalent to 4.5 times the thermal conductivity of silver and electrical conductivity corresponding to only 23 times the specific resistance of copper. Therefore, the graphene junction in which the flat surfaces of graphene are joined has properties similar to those of graphene, and has both thermal conductivity and electrical conductivity, as well as an antistatic function, an electromagnetic wave shielding function, and a heat dissipation function.
Fourth, in the graphene junction, graphenes, which are genuine substances consisting only of graphite crystals without impurities, are bonded to each other by frictional heat via a flat surface, so that the graphenes are firmly bonded to each other. Further, the gap at which graphenes are joined is narrower than 0.332 nm, which corresponds to the thickness of graphene. Therefore, the substance cannot enter the gap between graphenes. Further, the graphene conjugate is composed only of graphene having a melting point of more than 3000 ° C., and has heat resistance close to that of graphene. Graphene is an extremely stable substance that is not eroded by acids or alkalis. Therefore, the graphene conjugate does not change over time no matter what environment it is used in. Therefore, graphene conjugates having graphene properties are used as industrial materials in various fields.
Fifth, the surface irregularities of the graphene joint are only 0.332 nm of the graphene thickness, which is close to a perfect flat surface. Therefore, the surface of the graphene bonded body exhibits super water repellency with a contact angle close to 180 degrees, and the surface is provided with water repellency, oil repellency, and antifouling property.
Here, in the first treatment, the interlayer bond of the basal plane made of graphite crystals forming graphite particles narrowed in the gaps between the two parallel plate electrodes by the electric field applied to the gaps between the two parallel plate electrodes. However, the phenomenon of being destroyed at the same time will be explained.
The carbon atom forming the graphite crystal in the graphite particles has four valence electrons. Three of these valence electrons are the basal plane, that is, the σ electrons that form graphene. These σ electrons covalently bond with the σ electrons of three adjacent carbon atoms on the basal plane at an angle of 120 degrees to form a strong hexagonal network structure two-dimensionally. The remaining one valence electron is a π electron, which exists in a π orbit extending in a direction perpendicular to the basal plane. The π-electrons are bonded to the π-electrons of adjacent carbon atoms in the vertical direction perpendicular to the basal plane with a weak bonding force, and the basal plane is laminated in layers based on this weak bonding force. That is, the basal plane, that is, graphene, is layered to each other by the interaction of π orbitals, which is a weak bonding force. Therefore, the graphite particles have a property of being easily peeled off at the basal plane made of graphite crystals, that is, having mechanical anisotropy. This mechanical anisotropy is well known as the lubricity of graphite particles.
When an electric field is applied to these graphite particles, a Coulomb force due to the electric field acts on all π electrons. When the Coulomb force acting on the π electron acts on the π electron as a force larger than the interaction of the π orbital acting on the π electron, the π electron is released from the constraint on the π orbit. As a result, all π electrons move away from the π orbital and become free electrons. As a result, all the π electrons that are responsible for the interlayer bonding of the basal plane disappear from the π orbital, so that all the interlayer bonding of the basal plane is destroyed at the same time. That is, when the π electron moves a distance of the interlayer distance b of the basal plane by the Coulomb force F, the π electron performs work W (W = b · F). This work W is 35 millielectronvolts, which is the magnitude of the interaction of π orbitals per atom acting on π electrons (electron volt is a unit that expresses the magnitude of energy possessed by an electron, and 1 electron volt is 1. Beyond (corresponding to 62 × 10-19 joules), the π electron is released from the constraint of the interaction of the π orbit and becomes a free electron. For example, if the gap between the two parallel plate electrodes is separated by 100 μm and a DC potential difference of 10.6 kilovolt or more is applied to the gap between the electrodes, the interlayer bond on the basal plane is instantly broken. As described above, a large amount of graphene can be inexpensively produced by an extremely simple means of applying an electric field to a collection of inexpensive graphite particles. Further, since all the interlayer bonds of the basal plane are broken at the same time, the obtained fine substance is graphene, which is the basal plane made of graphite crystals.
The group of graphite particles referred to here means a group of relatively small amounts of graphite particles of about 1 g to 100 g. That is, the scaly graphite particles or the massive graphite particles are fine particles having a bulk density of 0.2-0.5 g / cm 3 and a particle size of 1-300 microns. Therefore, it is easy to pull the aggregate of graphite particles into the gap between the two parallel plate electrodes, and it is also easy to apply a potential difference to the two parallel plate electrodes. When a potential difference is applied to the gap between the two parallel plate electrodes, an electric field is generated in all the regions where the graphite particles are attracted. This electric field acts on the π electron as a Coulomb force larger than the interaction of the π orbit, and the π electron is released from the constraint on the π orbit and becomes a free electron. As a result, all the interlayer bonds of the basal plane in the graphite particles are simultaneously broken, and a graphene aggregate is produced in the gap between the two parallel plate electrodes.
Here, the number of graphene dispersed in the suspension is calculated by arithmetic. Here, it is assumed that all graphite particles are composed of spheres having a diameter of 25 microns, and since the true density of graphite is 2.25 × 10 3 kg / m 3 , the weight of one graphite particle is high. Is only 1.84 x 10-8 g. Assuming that the average thickness of the graphite particles is 10 microns, the interlayer distance is 3.354 angstroms. Therefore, 297,265 graphenes are laminated on the scaly graphite particles having a thickness of 10 microns. .. Therefore, by breaking all the interlayer bonds on the basal plane, a collection of 297,265 graphenes can be obtained from only one spherical graphite particle. Therefore, for an aggregate of only 1 g of spherical graphite particles, an aggregate of 1.62 × 10 13 graphenes can be obtained when all the interlayer bonds on the basal plane are broken. Therefore, according to this production method, an enormous number of graphene aggregates can be obtained from a small amount of graphite particles.

8段落に記載した方法で製造したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法は、
銀、銅、金、ないしはアルミニウムのいずれかの金属が熱分解で析出する金属化合物をメタノールに分散してメタノール分散液を作成し、該メタノール分散液を、8段落に記載した方法で製造したグラフェン接合体が容器の底面に形成されている該容器に充填し、さらに、該容器に左右、前後、上下の3方向の振動を繰り返し加え、前記グラフェン接合体の表面を前記メタノール分散液と接触させる、この後、前記容器を前記金属化合物が熱分解する温度に昇温する、これによって、最初に前記メタノールが気化し、前記グラフェン接合体の表面に前記金属化合物の微細な結晶の集まりが一斉に析出し、この後、前記金属化合物の微細な結晶が熱分解し、前記グラフェン接合体の表面に、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる粒状の金属微粒子の集まりが一斉に析出し、該金属微粒子同士が互いに接触する部位で金属結合し、前記グラフェン接合体の表面が、前記金属結合した銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりによって覆われる、8段落に記載した方法で製造したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法である。
The method of covering the surface of the graphene joint produced by the method described in paragraph 8 with a collection of metal fine particles made of any of silver, copper, gold, or aluminum is a method.
A metal compound in which any of silver, copper, gold, or aluminum is thermally decomposed is dispersed in methanol to prepare a methanol dispersion, and the methanol dispersion is prepared by the method described in paragraph 8. The container in which the bonded body is formed on the bottom surface of the container is filled, and further, vibrations in three directions of left and right, front and back, and up and down are repeatedly applied to the container to bring the surface of the graphene bonded body into contact with the methanol dispersion. After that, the temperature of the container is raised to a temperature at which the metal compound is thermally decomposed, whereby the methanol is first vaporized, and a collection of fine crystals of the metal compound is simultaneously gathered on the surface of the graphene bond. After precipitation, fine crystals of the metal compound are thermally decomposed, and a collection of granular metal fine particles made of any metal of silver, copper, gold, or aluminum is simultaneously gathered on the surface of the graphene bond. Precipitated and metal-bonded at the site where the metal fine particles come into contact with each other, and the surface of the graphene joint is covered with a collection of metal fine particles made of any of the metal-bonded silver, copper, gold, or aluminum. This is a method of covering the surface of a graphene bond produced by the method described in paragraph 8 with a collection of metal fine particles made of any of silver, copper, gold, or aluminum.

つまり、グラフェン接合体と金属化合物のメタノール分散液とが充填された容器を、金属化合物が熱分解する温度に昇温すると、最初にメタノールが気化し、グラフェン接合体の表面に、金属化合物の微細な結晶の集まりが一斉に析出し、微細な結晶の集まりがグラフェン接合体を覆う。すなわち、金属化合物のメタノール分散液は、金属化合物がメタノールに分子状態で分散されているため、メタノール分散液からメタノールを気化させると、金属化合物の微細な結晶の集まりが、グラフェン接合体の表面に一斉に析出し、グラフェン接合体の表面を覆う。なお、微細な結晶の大きさは、析出する微粒子の大きさに近い。次に、金属化合物が熱分解を始める温度に達すると、金属化合物が無機物ないしは有機物と金属とに分解する。無機物ないしは有機物の密度が金属の密度より小さいため、無機物ないしは有機物が上層に、金属が下層に析出し、上層の無機物ないしは有機物が気化熱を奪って気化し、気化が完了した直後に、40−60nmの大きさの銀、銅、金、ないしはアルミニウムのいずれかの金属からなる粒状の金属微粒子の集まりが、グラフェン接合体の表面に、グラフェン接合体の表面を覆って一斉に析出する。この金属微粒子は、不純物を持たず活性状態にあるため、互いに接触する部位で金属結合する。このため、グラフェン接合体の表面に析出した金属微粒子の集まりが、互いに接触する部位で金属結合し、該金属結合した金属微粒子の集まりがグラフェン接合体の表面を覆う。なお、メタノールに分散した金属化合物の量が増えると、析出する金属微粒子が増え、これによって、グラフェン接合体の表面に析出する金属微粒子が増え、金属結合した金属微粒子の集まりが積層し、積層した金属微粒子の集まりで、グラフェン接合体の表面が覆われる。この結果、7段落に記載したグラフェン接合体の表面を、金属の微粒子の集まりで覆う際の3つの課題のうち、第1の課題が解決された。なお、金属における熱伝導性と電気導電性とは、銀、銅、金、アルミニウムの順で優れる。また、これらの金属は、いずれも硬度が低い軟質金属である。
いっぽう、グラフェン接合体の表面全体が、金属結合した金属微粒子の集まりで覆われるため、金属結合した金属微粒子の集まりは一定の結合力で、グラフェン接合体を覆う。また、グラフェンの扁平面を介してグラフェン同士が摩擦熱で接合されているため、グラフェン接合体も一定の結合力を持つ。このため、容器からグラフェン接合体を取り出す際に、容器に前後、左右、上下の3方向の振動を短時間加えると、グラフェン接合体が容器から解離し、グラフェン接合体を容器から取り出せる。また、取り出したグラフェン接合体は、ハンドリングが可能になる。なお、容器に加える振動加速度は、グラフェン接合体が極めて軽量であるため、0.2G程度の振動加速度である。
この結果、7段落に記載したグラフェン接合体の表面を、金属の微粒子の集まりで覆う際の3つの課題のうち、第2の課題が解決された。
以上に説明した製造方法で製造したグラフェン接合体は、次の作用効果をもたらす。
第一に、容器の底面に該底面の形状からなるグラフェン接合体が製造される。従って、厚みがサブミクロンのグラフェン接合体が製造でき、また、容器の底面の形状に応じて、グラフェン接合体の形状と面積とが自在に変えられる。このため、熱伝導性と電気導電性との双方に優れたグラフェン接合体は、面積が小さい電極や接点、細長い配線パターン、面積が広い熱伝導シートに至るまで、任意の大きさと形状と厚みを持つグラフェン接合体として、自在に製造することができる。
第二に、グラフェン接合体は熱伝導性と電気導電性との双方に優れる。すなわち、グラフェンは、前記したように、銀の熱伝導率の4.5倍に相当する熱伝導性と、銅の比抵抗の23倍に過ぎない電気導電性とを兼備する。従って、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆われたグラフェン接合体は、相対的に熱伝導率が高い、つまり、熱が伝わりやすいグラフェンの扁平面に優先して熱が伝達し、相対的に電気導電率が高い、つまり、電流が流れやすい金属微粒子の集まりに優先して電流が流れる。この結果、グラフェン接合体は、銀より優れた熱伝導性をもち、金属に近い導電性を持つ。なお、アルミニウムの比抵抗は、銅の比抵抗の1.6倍であり、アルミニウムのほうがグラフェンより導電率が高い。
第三に、グラフェン接合体の表面全体が、40−60nmの軟質金属からなる金属微粒子の集まりで覆われ、表面は鏡面研磨より1桁小さい表面粗さを持ち、表面は撥水性、防汚性、潤滑性の性質を持つ。
第四に、グラフェン接合体の2つの平面が金属微粒子の集まりで覆われるため、グラフェン接合体を部品や基材に圧着できる。つまり、熱伝導性と電気導電性との双方に優れた銀、銅、金、アルミニウムからなる金属は、硬度が低い軟質金属であり、グラフェン接合体の一方の平面に圧縮応力を加えると、この平面に形成された金属微粒子の集まりが、部品や基材の表面に塑性変形ないしは弾性変形して食い込み、あるいは圧接し、グラフェン接合体が部品や基材に圧着する。このため、圧着によって、部品や基材にグラフェン接合体が一体化でき、部品や基材に熱伝導性と電気導電性との双方の性質が付与できる。
第五に、熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属を析出する金属化合物は汎用的な工業用の薬品であり、極めて簡単な処理で、グラフェン接合体の表面が、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆われる。従って、安価な材料を用い、安価な費用で、任意の大きさと形状と厚みを持つグラフェンの扁平面同士が、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆われたグラフェン接合体が、容器の底面に任意に製造できる。
これによって、7段落に記載したグラフェン接合体の表面を、金属の微粒子の集まりで覆う際の3つの課題のうち、第3の課題が解決され、全ての課題が解決された。
That is, when the temperature of the container filled with the graphene conjugate and the methanol dispersion of the metal compound is raised to a temperature at which the metal compound is thermally decomposed, methanol is first vaporized, and the surface of the graphene conjugate has fine metal compounds. A collection of fine crystals precipitates all at once, and a collection of fine crystals covers the graphene conjugate. That is, in the methanol dispersion of a metal compound, the metal compound is dispersed in methanol in a molecular state. Therefore, when methanol is vaporized from the methanol dispersion, a collection of fine crystals of the metal compound is formed on the surface of the graphene conjugate. It precipitates all at once and covers the surface of the graphene conjugate. The size of the fine crystals is close to the size of the precipitated fine particles. Next, when the temperature at which the metal compound begins to thermally decompose is reached, the metal compound decomposes into an inorganic substance or an organic substance and a metal. Since the density of the inorganic or organic matter is lower than the density of the metal, the inorganic or organic matter is deposited in the upper layer and the metal is deposited in the lower layer, and the inorganic or organic matter in the upper layer takes away the heat of vaporization and vaporizes, and immediately after the vaporization is completed, 40- A collection of granular metal fine particles made of any metal of silver, copper, gold, or aluminum having a size of 60 nm is deposited all at once on the surface of the graphene joint, covering the surface of the graphene joint. Since these metal fine particles have no impurities and are in an active state, they form metal bonds at sites where they come into contact with each other. Therefore, a collection of metal fine particles deposited on the surface of the graphene junction is metal-bonded at a site where they come into contact with each other, and the aggregate of the metal-bonded metal fine particles covers the surface of the graphene junction. As the amount of the metal compound dispersed in methanol increases, the amount of metal fine particles precipitated increases, and as a result, the amount of metal fine particles precipitated on the surface of the graphene conjugate increases, and a collection of metal-bonded metal fine particles is laminated and laminated. A collection of fine metal particles covers the surface of the graphene junction. As a result, the first of the three problems in covering the surface of the graphene joint described in paragraph 7 with a collection of metal fine particles was solved. The thermal conductivity and electrical conductivity of metal are superior in the order of silver, copper, gold, and aluminum. Further, all of these metals are soft metals having low hardness.
On the other hand, since the entire surface of the graphene junction is covered with a collection of metal-bonded metal fine particles, the collection of metal-bonded metal fine particles covers the graphene junction with a constant bonding force. Further, since the graphenes are bonded to each other by frictional heat via the flat surface of the graphene, the graphene joint also has a constant bonding force. Therefore, when the graphene joint is taken out from the container, if vibrations in three directions of front-back, left-right, and up-down are applied to the container for a short time, the graphene joint is dissociated from the container and the graphene joint can be taken out from the container. In addition, the graphene joint taken out can be handled. The vibration acceleration applied to the container is about 0.2 G because the graphene joint is extremely lightweight.
As a result, the second problem out of the three problems when covering the surface of the graphene joint described in paragraph 7 with a collection of metal fine particles was solved.
The graphene conjugate produced by the production method described above brings about the following effects.
First, a graphene joint having the shape of the bottom surface is manufactured on the bottom surface of the container. Therefore, a graphene joint having a thickness of submicron can be manufactured, and the shape and area of the graphene joint can be freely changed according to the shape of the bottom surface of the container. For this reason, graphene conjugates with excellent both thermal and electrical conductivity can be of any size, shape, and thickness, including electrodes and contacts with small areas, elongated wiring patterns, and heat conductive sheets with large areas. It can be freely manufactured as a graphene joint to have.
Second, graphene conjugates are excellent in both thermal and electrical conductivity. That is, as described above, graphene has both thermal conductivity equivalent to 4.5 times the thermal conductivity of silver and electrical conductivity corresponding to only 23 times the specific resistance of copper. Therefore, a graphene junction covered with a collection of fine metal particles made of any of silver, copper, gold, or aluminum has a relatively high thermal conductivity, that is, a flat surface of graphene that easily conducts heat. Heat is transferred preferentially, and the electric conductivity is relatively high, that is, the current flows preferentially to the collection of metal fine particles through which the current easily flows. As a result, the graphene conjugate has better thermal conductivity than silver and has conductivity close to that of metal. The specific resistance of aluminum is 1.6 times that of copper, and aluminum has a higher conductivity than graphene.
Third, the entire surface of the graphene joint is covered with a collection of metal fine particles made of soft metal of 40-60 nm, the surface has a surface roughness that is an order of magnitude smaller than that of mirror polishing, and the surface is water repellent and stain resistant. , Has lubricity properties.
Fourth, since the two planes of the graphene joint are covered with a collection of metal fine particles, the graphene joint can be crimped to the component or the base material. In other words, the metal composed of silver, copper, gold, and aluminum, which has excellent both thermal conductivity and electrical conductivity, is a soft metal with low hardness, and when compressive stress is applied to one plane of the graphene joint, this is applied. A collection of metal fine particles formed on a flat surface is plastically or elastically deformed to the surface of a part or a base material to bite or press contact, and the graphene joint presses against the part or the base material. Therefore, the graphene joint can be integrated with the component or the base material by crimping, and both the properties of thermal conductivity and electric conductivity can be imparted to the component and the base material.
Fifth, metal compounds that thermally decompose any of the metals silver, copper, gold, or aluminum are general-purpose industrial chemicals, and with extremely simple treatment, the surface of the graphene conjugate is silver. Covered with a collection of fine metal particles consisting of any metal, copper, gold, or aluminum. Therefore, using inexpensive materials and at low cost, the flat surfaces of graphene of arbitrary size, shape and thickness are covered with a collection of metal fine particles made of any metal such as silver, copper, gold or aluminum. The broken graphene conjugate can be optionally manufactured on the bottom surface of the container.
As a result, of the three problems in covering the surface of the graphene joint described in paragraph 7 with a collection of metal fine particles, the third problem was solved, and all the problems were solved.

10段落に記載したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法は、
無機物のイオンないしは分子からなる配位子が、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに配位結合した金属錯イオンを有する無機金属化合物からなる金属錯体を、10段落に記載した熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属が析出する金属化合物として用い、10段落に記載した方法に従って、グラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法である。
The method of covering the surface of the graphene joint described in paragraph 10 with a collection of metal fine particles made of any of silver, copper, gold, or aluminum is
A metal complex composed of an inorganic metal compound having a metal complex ion in which a ligand composed of an inorganic ion or a molecule is coordinated to a metal ion composed of a metal of silver, copper, gold, or aluminum. Used as a metal compound in which any of silver, copper, gold, or aluminum is precipitated by the thermal decomposition described in Paragraph 10, and the surface of the graphene conjugate is coated with silver, copper, gold, or aluminum according to the method described in paragraph 10. It is a method of covering with a collection of metal fine particles made of any of the above metals.

つまり、無機物のイオンないしは分子からなる配位子が、金属イオンに配位結合した金属錯イオンを有する無機金属化合物からなる金属錯体を、還元雰囲気で熱処理すると、180−220℃で金属が析出する。すなわち、無機金属化合物からなる金属錯体は、還元雰囲気で熱処理すると、無機物と金属とに分解され、無機物が気化熱を奪って気化し、180−220℃で無機物の気化が完了し、金属が析出して熱分解反応を終える。
つまり、金属錯体を構成するイオンの中で、分子の中央に位置する金属イオンが最も大きく、金属イオンと配位子との距離が最も長い。この金属錯体を還元雰囲気で熱処理すると、金属イオンが配位子と結合する配位結合部が最初に分断され、金属と無機物とに分解する。さらに温度が上がると、無機物が気化熱を奪って気化し、無機物の気化が完了すると金属が析出する。こうした無機金属化合物からなる金属錯体は、分子量が小さいため、無機物の気化が180−220℃で完了し、金属が析出する温度は、金属化合物の熱分解で金属が析出する温度の中で最も低い。
また、無機物からなる分子ないしはイオンが配位子になって、金属イオンに配位結合する金属錯イオンは、他の金属錯イオンに比べて合成が容易である。このような金属錯イオンとして、アンモニアNHが配位子となって金属イオンに配位結合するアンミン金属錯イオン、水HOが配位子となって金属イオンに配位結合するアクア金属錯イオン、水酸基OHが配位子となって金属イオンに配位結合するヒドロキソ金属錯イオン、塩素イオンClが、ないしは塩素イオンClとアンモニアNHとが配位子となって金属イオンに配位結合するクロロ金属錯イオンなどがある。こうした配位子は、いずれも分子量が小さい。さらに、このような金属錯イオンを有する塩化物、硫酸塩、硝酸塩などの無機塩からなる金属錯体は、無機塩の分子量が小さい。このため、180−220℃の温度範囲で無機物の気化が完了し金属を析出する。この金属が析出する温度は、金属化合物の熱分解で金属を析出する温度の中で最も低い。
従って、10段落に記載したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法は、熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属を析出する金属化合物として、無機物のイオンないしは分子からなる配位子が、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに配位結合した無機金属化合物からなる金属錯体を用い、10段落に記載したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法に従って、グラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法である。
That is, when a metal complex composed of an inorganic metal compound having a metal complex ion in which a ligand composed of an inorganic ion or a molecule is coordinated to a metal ion is heat-treated in a reducing atmosphere, a metal is precipitated at 180-220 ° C. .. That is, when the metal complex composed of the inorganic metal compound is heat-treated in a reducing atmosphere, it is decomposed into an inorganic substance and a metal, the inorganic substance takes away heat of vaporization and vaporizes, and the vaporization of the inorganic substance is completed at 180-220 ° C., and the metal precipitates. And finish the thermal decomposition reaction.
That is, among the ions constituting the metal complex, the metal ion located in the center of the molecule is the largest, and the distance between the metal ion and the ligand is the longest. When this metal complex is heat-treated in a reducing atmosphere, the coordination bond portion where the metal ion binds to the ligand is first separated and decomposed into a metal and an inorganic substance. When the temperature rises further, the inorganic substance takes away the heat of vaporization and vaporizes, and when the vaporization of the inorganic substance is completed, the metal precipitates. Since the metal complex composed of such an inorganic metal compound has a small molecular weight, the vaporization of the inorganic substance is completed at 180-220 ° C., and the temperature at which the metal is precipitated is the lowest among the temperatures at which the metal is precipitated by the thermal decomposition of the metal compound. ..
Further, a metal complex ion in which a molecule or an ion composed of an inorganic substance serves as a ligand and is coordinate-bonded to the metal ion is easier to synthesize than other metal complex ions. As such metal complex ions, ammonia NH 3 serves as a ligand to coordinate bond to metal ions, and water H 2 O serves as a ligand to coordinate bond to metal ions. Hydroxometal complex ion, chlorine ion Cl −, which is coordinated to metal ion with complex ion, hydroxyl group OH as a ligand, or chlorine ion Cl and ammonia NH 3 serve as ligand for metal ion. There are chlorometal complex ions that are coordinated to. All of these ligands have a small molecular weight. Further, a metal complex composed of an inorganic salt such as a chloride, a sulfate or a nitrate having such a metal complex ion has a small molecular weight of the inorganic salt. Therefore, the vaporization of the inorganic substance is completed in the temperature range of 180-220 ° C., and the metal is precipitated. The temperature at which this metal precipitates is the lowest among the temperatures at which the metal is precipitated by the thermal decomposition of the metal compound.
Therefore, the method of covering the surface of the graphene junction described in paragraph 10 with a collection of metal fine particles made of any of silver, copper, gold, or aluminum is thermally decomposed into silver, copper, gold, or aluminum. As a metal compound that precipitates any metal, a ligand composed of an inorganic ion or molecule is composed of an inorganic metal compound coordinated to a metal ion composed of any metal of silver, copper, gold, or aluminum. Using a metal complex, the surface of the graphene conjugate is coated with silver, according to the method described in paragraph 10 in which the surface of the graphene conjugate is covered with a collection of metal fine particles made of any of silver, copper, gold, or aluminum. It is a method of covering with a collection of metal fine particles made of any metal such as copper, gold, or aluminum.

10段落に記載したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法は、
カルボン酸のカルボキシル基を構成する酸素イオンが、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに共有結合する第一の特徴と、前記カルボン酸が飽和脂肪酸からなる第二の特徴とを兼備するカルボン酸金属化合物を、10段落に記載した熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属が析出する金属化合物として用い、10段落に記載した方法に従って、グラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法である。
The method of covering the surface of the graphene joint described in paragraph 10 with a collection of metal fine particles made of any of silver, copper, gold, or aluminum is
The first feature that the oxygen ion constituting the carboxyl group of the carboxylic acid is covalently bonded to the metal ion made of any metal of silver, copper, gold or aluminum, and the second feature that the carboxylic acid is made of a saturated fatty acid. A metal carboxylate compound having both characteristics is used as a metal compound in which any metal of silver, copper, gold, or aluminum is precipitated by the thermal decomposition described in paragraph 10, and graphene bonding is performed according to the method described in paragraph 10. It is a method of covering the surface of a body with a collection of metal fine particles made of any metal such as silver, copper, gold, or aluminum.

つまり、カルボン酸のカルボキシル基を構成する酸素イオンが金属イオンに共有結合する第一の特徴と、カルボン酸が飽和脂肪酸からなる第二の特徴とを兼備するカルボン酸金属化合物は、金属イオンが最も大きいイオンであり、カルボキシル基を構成する酸素イオンと金属イオンとの距離が、他のイオン同士の距離より長い。こうした分子構造上の特徴を持つカルボン酸金属化合物を、大気雰囲気で熱処理すると、カルボン酸の沸点を超えると、カルボキシル基を構成する酸素イオンと金属イオンとの結合部が最初に分断され、カルボン酸と金属とに分離する。カルボン酸が飽和脂肪酸から構成される場合は、炭素原子が水素原子に対して過剰となる不飽和構造を持たないため、カルボン酸を構成する炭化水素の構造と、カルボン酸の分子量と数とに応じて、カルボン酸が気化熱を奪って気化し、気化が完了すると金属が析出する。
こうしたカルボン酸金属化合物として、オクチル酸金属化合物、ラウリン酸金属化合物、ステアリン酸金属化合物などがある。なお、オクチル酸は、炭化水素が分岐構造であるため鎖の長さが短く、沸点が228℃と低い。また、炭化水素が直鎖構造であるカルボン酸は、カルボン酸の分子量が小さいほど、すなわち、直鎖の鎖が短いほど沸点が低く、ラウリン酸の沸点は296℃であり、ステアリン酸の沸点は361℃である。従って、これらのカルボン酸金属化合物は、前記した沸点に応じて、大気雰囲気の290−430℃の温度で熱分解が完了する。
なお、不飽和脂肪酸からなるカルボン酸金属化合物は、飽和脂肪酸からなるカルボン酸金属化合物に比べて、炭素原子が水素原子に対して過剰になるため、熱分解によって金属酸化物、例えば、オレイン酸銅の場合は、酸化第一銅CuOと酸化第二銅CuOとが同時に析出し、酸化第一銅CuOと酸化第二銅CuOとを銅に還元する処理を要する。特に、酸化第一銅CuOは、大気雰囲気より酸素がリッチな雰囲気で一度酸化第二銅CuOに酸化させ、さらに、還元雰囲気で銅に還元させるため、処理費用がかさむ。
さらに、カルボン酸金属化合物は、容易に合成できる安価な工業用薬品である。すなわち、最も汎用的な有機酸であるカルボン酸を、強アルカリと反応させるとカルボン酸アルカリ金属化合物が生成され、カルボン酸アルカリ金属化合物を無機金属化合物と反応させると、様々な金属からなるカルボン酸金属化合物が合成される。従って、有機金属化合物の中で最も安価な有機金属化合物である。このため、15段落で説明した無機金属化合物からなる金属錯体より熱処理温度が高いが、金属錯体より安価な金属化合物である。
従って、10段落に記載したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法は、熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属を析出する金属化合物として、カルボン酸のカルボキシル基を構成する酸素イオンが、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに共有結合する第一の特徴と、前記カルボン酸が飽和脂肪酸からなる第二の特徴とを兼備するカルボン酸金属化合物を用い、10段落に記載したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法に従って、グラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法である。
That is, the metal ion is the most common carboxylic acid metal compound having both the first characteristic that the oxygen ion constituting the carboxyl group of the carboxylic acid is covalently bonded to the metal ion and the second characteristic that the carboxylic acid is composed of a saturated fatty acid. It is a large ion, and the distance between the oxygen ion constituting the carboxyl group and the metal ion is longer than the distance between other ions. When a metal carboxylic acid compound having such molecular structural characteristics is heat-treated in an air atmosphere, when the boiling point of the carboxylic acid is exceeded, the bond portion between the oxygen ion and the metal ion constituting the carboxyl group is first separated, and the carboxylic acid. And metal. When a carboxylic acid is composed of a saturated fatty acid, it does not have an unsaturated structure in which carbon atoms are excessive with respect to hydrogen atoms. Therefore, the structure of the hydrocarbon constituting the carboxylic acid and the molecular weight and number of the carboxylic acid Correspondingly, the carboxylic acid takes away the heat of vaporization and vaporizes, and when the vaporization is completed, the metal precipitates.
Examples of such metal carboxylate compounds include metal octylate compounds, metal laurate compounds, and metal stearate compounds. Since the hydrocarbon has a branched structure, the octyl acid has a short chain length and a low boiling point of 228 ° C. Further, the boiling point of carboxylic acid having a linear structure of hydrocarbon is lower as the molecular weight of carboxylic acid is smaller, that is, the shorter the linear chain is, the boiling point of lauric acid is 296 ° C, and the boiling point of stearic acid is. It is 361 ° C. Therefore, these metal carboxylate compounds are thermally decomposed at a temperature of 290-430 ° C. in the atmospheric atmosphere according to the boiling point described above.
The metal carboxylate compound composed of unsaturated fatty acids has an excess of carbon atoms with respect to hydrogen atoms as compared with the metal carboxylate compound composed of saturated fatty acids. Therefore, metal oxides such as copper oleate are thermally decomposed. In the case of, the cuprous oxide Cu 2 O and the cupric oxide Cu O are precipitated at the same time, and a treatment for reducing the cuprous oxide Cu 2 O and the cupric oxide CuO to copper is required. In particular, cuprous oxide Cu 2 O is once oxidized to cupric oxide Cu O in an atmosphere richer in oxygen than in the air atmosphere, and further reduced to copper in a reducing atmosphere, which increases the processing cost.
Further, the metal carboxylate compound is an inexpensive industrial chemical that can be easily synthesized. That is, when a carboxylic acid, which is the most general-purpose organic acid, is reacted with a strong alkali, a carboxylic acid alkali metal compound is produced, and when a carboxylic acid alkali metal compound is reacted with an inorganic metal compound, a carboxylic acid composed of various metals is produced. Metal compounds are synthesized. Therefore, it is the cheapest organometallic compound among the organometallic compounds. Therefore, the heat treatment temperature is higher than that of the metal complex composed of the inorganic metal compound described in paragraph 15, but the metal compound is cheaper than the metal complex.
Therefore, the method of covering the surface of the graphene junction described in paragraph 10 with a collection of metal fine particles made of any of silver, copper, gold, or aluminum is thermally decomposed into silver, copper, gold, or aluminum. As a metal compound that precipitates any metal, the first feature is that the oxygen ion constituting the carboxyl group of the carboxylic acid is covalently bonded to the metal ion composed of any metal of silver, copper, gold, or aluminum. Using a metal carboxylate compound in which the carboxylic acid has the second characteristic of being a saturated fatty acid, the surface of the graphene conjugate described in paragraph 10 is made of any metal of silver, copper, gold, or aluminum. According to the method of covering with a collection of metal fine particles, the surface of the graphene junction is covered with a collection of metal fine particles made of any of silver, copper, gold, or aluminum.

8段落に記載した方法で製造したグラフェン接合体の表面を、絶縁性の金属酸化物からなる微粒子の集まりで覆う方法は、
絶縁性の金属酸化物が熱分解で析出する金属化合物をメタノールに分散してメタノール分散液を作成し、該メタノール分散液を、8段落に記載した方法で製造したグラフェン接合体が容器の底面に形成されている該容器に充填し、該容器に左右、前後、上下の3方向の振動を繰り返し加え、前記グラフェン接合体の表面を前記メタノール分散液と接触させる、この後、前記容器を前記金属化合物が熱分解する温度に昇温する、これによって、最初に前記メタノールが気化し、前記グラフェン接合体の表面に前記金属化合物の微細な結晶の集まりが一斉に析出し、この後、前記金属化合物の微細な結晶が熱分解し、前記グラフェン接合体の表面に、前記絶縁性の金属酸化物の微粒子の集まりが一斉に析出し、該絶縁性の金属酸化物の微粒子の集まりで表面が覆われた前記グラフェン接合体が、前記容器の底面に該底面の形状として形成される、8段落に記載した方法で製造したグラフェン接合体の表面を、絶縁性の金属酸化物からなる微粒子の集まりで覆う方法である。
The method of covering the surface of the graphene joint produced by the method described in paragraph 8 with a collection of fine particles made of an insulating metal oxide is described.
A metal compound in which an insulating metal oxide is precipitated by thermal decomposition is dispersed in methanol to prepare a methanol dispersion, and a graphene conjugate produced by the method described in paragraph 8 is placed on the bottom surface of the container. The formed container is filled, and vibrations in three directions of left and right, front and back, and up and down are repeatedly applied to the container to bring the surface of the graphene conjugate into contact with the methanol dispersion, and then the container is brought into contact with the metal. The temperature is raised to a temperature at which the compound is thermally decomposed, whereby the methanol is first vaporized, and a collection of fine crystals of the metal compound is simultaneously precipitated on the surface of the graphene conjugate, and then the metal compound is generated. The fine crystals of the oxide are thermally decomposed, and a collection of fine particles of the insulating metal oxide is deposited all at once on the surface of the graphene conjugate, and the surface is covered with the collection of fine particles of the insulating metal oxide. The surface of the graphene junction produced by the method described in paragraph 8 in which the graphene conjugate is formed on the bottom surface of the container as the shape of the bottom surface is covered with a collection of fine particles made of an insulating metal oxide. The method.

つまり、最初に、8段落に記載した製造方法で、容器の底面にグラフェン接合体を、該底面の形状として形成する。次に、熱分解で絶縁性の金属酸化物が析出する金属化合物をメタノールに分散し、該メタノール分散液を、グラフェン接合体が容器の底面に形成された該容器に充填する。なお、金属化合物は、メタノールに分散して液相化される。この後、容器に3方向の振動を繰り返し加えると、容器の底面にあるグラフェン接合体の表面がメタノール分散液と接触する。なお、11段落で説明したように、容器内にグラフェン接合体が存在するため、0.2G程度の振動加速度を加える。さらに、容器を金属化合物が熱分解する温度に昇温する。最初にメタノールが気化し、グラフェン接合体のメタノール分散液と接触した部位に、金属化合物の微細な結晶の集まりが一斉に析出する。つまり、金属化合物のメタノール分散液には、金属化合物がメタノールに分子状態で分散されているため、メタノール分散液からメタノールを気化させると、金属化合物の微細な結晶が一斉に析出する。この後、金属化合物の微細な結晶が熱分解し、グラフェン接合体のメタノール分散液と接触した部位、すなわち、グラフェン接合体の表面全体に、絶縁性の金属酸化物の微粒子の集まりが一斉に析出し、グラフェン接合体の表面全体を金属酸化物の微粒子が覆う。これによって、グラフェン接合体の表面は絶縁性の金属酸化物の性質を持つ。なお、メタノールに分散した金属化合物の量が増えると、析出する金属酸化物の微粒子が増え、これによって、グラフェン接合体の表面に析出する金属酸化物の微粒子が増え、金属酸化物の微粒子同士が積層し、積層した金属酸化物の微粒子の集まりで、グラフェン接合体の表面全体が覆われる。
なお、金属酸化物の中で、導電性の金属酸化物としてマグネタイトFe(酸化鉄の一種で四酸化三鉄ともいう)が存在し、不純物を持つことによって、あるいは化学量論組成からずれる成分を含むことで、絶縁性が低下する金属酸化物として、酸化クロムCrO、酸化ニッケルNiO、酸化亜鉛ZnO、酸化スズSnO、酸化銅CuOなどの金属酸化物がある。これらの金属酸化物を除く絶縁性の金属酸化物は、いずれも高度が高い。例えば、モース硬度では、酸化アルミニウムAlで9、酸化クロムCrで8−8.5、酸化チタンTiO(ルチル型)で7−7.5である。これに対し、熱伝導性と電気導電性に優れる軟質金属のモース硬度は、銀で2.5、銅で2.5−3、金で2.5−3、アルミニウムで2であり、前記した絶縁性の金属酸化物より高度が低い。また、体積抵抗率は、酸化アルミニウムAlで1014−15Ω・cm、酸化チタンTiOで10Ω・cm、酸化クロムCrで1012Ω・cmで、いずれも絶縁性が高い。なお、金属酸化物は、不純物を含む、あるいは、化学量論組成からずれる成分を含むことで、絶縁性が低下する。上記3種類の絶縁性が高い金属酸化物は、化学量論組成からずれた物質を含まず、また、不純物を含まない、絶縁性が高い金属酸化物である。
That is, first, a graphene joint is formed on the bottom surface of the container as the shape of the bottom surface by the manufacturing method described in paragraph 8. Next, a metal compound in which an insulating metal oxide is precipitated by thermal decomposition is dispersed in methanol, and the methanol dispersion is filled in the container in which a graphene conjugate is formed on the bottom surface of the container. The metal compound is dispersed in methanol to form a liquid phase. After that, when vibrations in three directions are repeatedly applied to the container, the surface of the graphene conjugate on the bottom surface of the container comes into contact with the methanol dispersion. As described in paragraph 11, since the graphene joint exists in the container, a vibration acceleration of about 0.2 G is applied. Further, the temperature of the container is raised to a temperature at which the metal compound is thermally decomposed. First, methanol is vaporized, and a collection of fine crystals of the metal compound is deposited all at once at the site of contact with the methanol dispersion of the graphene conjugate. That is, since the metal compound is dispersed in methanol in a molecular state in the methanol dispersion of the metal compound, when methanol is vaporized from the methanol dispersion, fine crystals of the metal compound are precipitated all at once. After that, fine crystals of the metal compound were thermally decomposed, and a collection of fine particles of insulating metal oxide was simultaneously deposited on the site of the graphene conjugate in contact with the methanol dispersion, that is, on the entire surface of the graphene conjugate. However, the entire surface of the graphene conjugate is covered with fine metal oxide particles. As a result, the surface of the graphene conjugate has the property of an insulating metal oxide. As the amount of the metal compound dispersed in methanol increases, the amount of metal oxide fine particles precipitated increases, and as a result, the amount of metal oxide fine particles precipitated on the surface of the graphene conjugate increases, and the metal oxide fine particles become compatible with each other. The entire surface of the graphene conjugate is covered with a collection of laminated and laminated metal oxide fine particles.
Among the metal oxides, magnetite Fe 3 O 4 (a type of iron oxide, also called triiron tetroxide) exists as a conductive metal oxide and has impurities, or from the chemical quantitative composition. As metal oxides whose insulating property is lowered by containing a component that shifts, there are metal oxides such as chromium CrO 2 , nickel oxide NiO, zinc oxide ZnO, tin oxide SnO 2 , and copper oxide CuO. Insulating metal oxides other than these metal oxides have high altitudes. For example, the Mohs hardness, aluminum oxide Al 2 O 3 9, chromium oxide Cr 2 O 3 8-8.5, is 7-7.5 titanium oxide TiO 2 (rutile). On the other hand, the moth hardness of soft metals having excellent thermal conductivity and electrical conductivity is 2.5 for silver, 2.5-3 for copper, 2.5-3 for gold, and 2 for aluminum, as described above. Lower in altitude than insulating metal oxides. The volume resistivity of aluminum oxide Al 2 O 3 is 10 14-15 Ω · cm, titanium oxide TiO 2 is 10 7 Ω · cm, and chromium oxide Cr 2 O 3 is 10 12 Ω · cm, all of which are insulated. Highly sex. It should be noted that the metal oxide contains impurities or a component deviating from the stoichiometric composition, so that the insulating property is lowered. The above three types of highly insulating metal oxides are metal oxides having high insulating properties that do not contain substances deviating from the stoichiometric composition and do not contain impurities.

16段落に記載したグラフェン接合体の表面を絶縁性の金属酸化物からなる微粒子の集まりで覆う方法は、
カルボン酸のカルボキシル基を構成する酸素イオンが配位子になって、金属イオンに配位結合したカルボン酸金属化合物を、16段落に記載した熱分解で絶縁性の金属酸化物が析出する金属化合物として用い、16段落に記載した方法に従って、グラフェン接合体の表面を絶縁性の金属酸化物からなる微粒子の集まりで覆う方法である。
The method of covering the surface of the graphene conjugate described in paragraph 16 with a collection of fine particles made of an insulating metal oxide is described.
A metal compound in which an oxygen ion constituting a carboxyl group of a carboxylic acid serves as a ligand to coordinate-bond a metal carboxylic acid compound to a metal ion, and an insulating metal oxide is precipitated by thermal decomposition described in paragraph 16. It is a method of covering the surface of the graphene bond with a collection of fine particles made of an insulating metal oxide according to the method described in paragraph 16.

つまり、カルボン酸のカルボキシル基を構成する酸素イオンが配位子になって、金属イオンに配位結合したカルボン酸金属化合物は、熱分解によって金属酸化物を析出する。このため、16段落に記載したグラフェン接合体の表面を、絶縁性の金属酸化物の微粒子の集まりで覆う方法は、絶縁性の金属酸化物を熱分解で析出する金属化合物として、前記したカルボン酸金属化合物を用い、16段落に記載した方法に従ってグラフェン接合体の表面を、絶縁性の金属酸化物の微粒子の集まりで覆うと、グラフェン接合体の表面は電気絶縁性になる。なお、カルボン酸金属化合物の熱分解温度は、ナフテン酸金属化合物が330℃で熱分解する温度が最も高い。また、カルボン酸金属化合物の大気雰囲気での熱分解は、窒素雰囲気での熱分解より30−50℃低いため、大気雰囲気での熱分解は、熱処理費用が安価で済む。また、カルボン酸金属化合物は、メタノールに10重量%近くまで分散する。
すなわち、カルボキシル基を構成する酸素イオンが配位子になって、金属イオンに近づいて配位結合するカルボン酸金属化合物は、最も大きいイオンである金属イオンに酸素イオンが近づいて配位結合するため、両者の距離は短くなる。このため、金属イオンに配位結合する酸素イオンが、金属イオンの反対側で共有結合するイオンとの距離が最も長くなる。こうした分子構造上の特徴を持つカルボン酸金属化合物は、カルボン酸金属化合物を構成するカルボン酸の沸点を超えると、カルボキシル基を構成する酸素イオンが金属イオンの反対側で共有結合するイオンとの結合部が最初に分断され、金属イオンと酸素イオンとの化合物である金属酸化物とカルボン酸とに分解する。さらに昇温すると、カルボン酸が気化熱を奪って気化し、カルボン酸の気化が完了した直後に金属酸化物が析出する。こうしたカルボン酸金属化合物として、酢酸金属化合物、カプリル酸金属酸化物、安息香酸金属酸化物、ナフテン酸金属酸化物などがある。
なお、酢酸金属酸化物の一部は、熱分解でアモルファス化した金属酸化物や不安定な金属酸化物を析出するため、熱分解で金属酸化物を析出するカルボン酸金属酸化物化合物は、カプリル酸金属酸化物、安息香酸金属酸化物、ナフテン酸金属酸化物からなるカルボン酸金属酸化物が望ましい。
また、カルボン酸金属化合物は、いずれも容易に合成できる安価な工業用薬品である。すなわち、汎用的なカルボン酸を強アルカリと反応させるとカルボン酸アルカリ金属化合物が生成される。この後、カルボン酸アルカリ金属化合物を、無機金属化合物と反応させると、カルボン酸金属化合物が合成される。また、原料となるカルボン酸は、有機酸の沸点の中で相対的に低い沸点を有する有機酸であり、大気雰囲気においては330℃程度の低い熱処理温度で、金属酸化物が析出する。
以上に説明したように、16段落に記載したグラフェン接合体の表面を絶縁性の金属酸化物の微粒子の集まりで覆う方法は、16段落に記載した絶縁性の金属酸化物が熱分解で析出する金属化合物として、カルボン酸のカルボキシル基を構成する酸素イオンが配位子になって、金属イオンに配位結合したカルボン酸金属化合物を用い、16段落に記載した方法に従って、グラフェン接合体の表面を絶縁性の金属酸化物からなる微粒子の集まりで覆う方法である。
That is, the oxygen ion constituting the carboxyl group of the carboxylic acid serves as a ligand, and the metal carboxylic acid compound coordinated to the metal ion precipitates a metal oxide by thermal decomposition. Therefore, the method of covering the surface of the graphene conjugate described in paragraph 16 with a collection of fine particles of the insulating metal oxide is described as the above-mentioned carboxylic acid as a metal compound that precipitates the insulating metal oxide by thermal decomposition. When a metal compound is used and the surface of the graphene conjugate is covered with a collection of fine particles of insulating metal oxide according to the method described in paragraph 16, the surface of the graphene conjugate becomes electrically insulating. The thermal decomposition temperature of the metal carboxylate compound is the highest at which the metal naphthenate compound thermally decomposes at 330 ° C. Further, since the thermal decomposition of the carboxylic acid metal compound in the atmospheric atmosphere is 30 to 50 ° C. lower than the thermal decomposition in the nitrogen atmosphere, the thermal decomposition in the atmospheric atmosphere requires a low heat treatment cost. Further, the metal carboxylate compound is dispersed in methanol up to nearly 10% by weight.
That is, the carboxylic acid metal compound in which the oxygen ions constituting the carboxyl group act as a ligand and coordinate-bond close to the metal ion is because the oxygen ion approaches the metal ion, which is the largest ion, to coordinate-bond. , The distance between the two becomes shorter. Therefore, the oxygen ion coordinate-bonded to the metal ion has the longest distance from the ion covalently bonded on the opposite side of the metal ion. When the carboxylic acid metal compound having such molecular structural characteristics exceeds the boiling point of the carboxylic acid constituting the carboxylic acid metal compound, the oxygen ion constituting the carboxyl group is bonded to the ion covalently bonded on the opposite side of the metal ion. The part is first divided and decomposed into a metal oxide and a carboxylic acid, which are compounds of a metal ion and an oxygen ion. When the temperature is further raised, the carboxylic acid takes away the heat of vaporization and vaporizes, and the metal oxide precipitates immediately after the vaporization of the carboxylic acid is completed. Examples of such a metal carboxylate compound include a metal acetate compound, a metal caprylate oxide, a metal benzoate oxide, and a metal naphthenate oxide.
Since some of the metal acetate oxides precipitate metal oxides that have been amorphized by thermal decomposition and unstable metal oxides, the carboxylic acid metal oxide compound that precipitates metal oxides by thermal decomposition is capryl. A carboxylic acid metal oxide composed of an acid metal oxide, a benzoate metal oxide, and a naphthenate metal oxide is desirable.
In addition, the metal carboxylate compounds are inexpensive industrial chemicals that can be easily synthesized. That is, when a general-purpose carboxylic acid is reacted with a strong alkali, an alkali metal carboxylate compound is produced. After that, when the alkali metal carboxylate compound is reacted with the inorganic metal compound, the metal carboxylate compound is synthesized. The carboxylic acid used as a raw material is an organic acid having a relatively low boiling point among the boiling points of the organic acid, and a metal oxide is precipitated at a low heat treatment temperature of about 330 ° C. in an air atmosphere.
As described above, in the method of covering the surface of the graphene conjugate described in paragraph 16 with a collection of fine particles of insulating metal oxide, the insulating metal oxide described in paragraph 16 is precipitated by thermal decomposition. As the metal compound, a metal carboxylate compound in which an oxygen ion constituting the carboxyl group of the carboxylic acid serves as a ligand and is coordinated to the metal ion is used, and the surface of the graphene conjugate is prepared according to the method described in paragraph 16. This is a method of covering with a collection of fine particles made of an insulating metal oxide.

16段落に記載した方法で製造したグラフェン接合体を容器から取り出す方法は、
16段落に記載した方法に従って、絶縁性の金属酸化物からなる微粒子の集まりで表面が覆われたグラフェン接合体を、容器の底面に該底面の形状として形成し、さらに、該グラフェン接合体の上方の平面を均等に圧縮する、これによって、該グラフェン接合体の双方の平面の表層に形成された金属酸化物の微粒子の集まりにおいて、該金属酸化物の微粒子同士が互いに接触する部位に摩擦熱が発生し、該摩擦熱によって前記金属酸化物の微粒子同士が接合する、この後、前記容器に前後、左右、上下の3方向の振動を加え、該容器から前記グラフェン接合体を取り出す、16段落に記載した方法で製造したグラフェン接合体を容器から取り出す方法である。
The method for removing the graphene conjugate produced by the method described in paragraph 16 from the container is as follows.
According to the method described in paragraph 16, a graphene junction whose surface is covered with a collection of fine particles of insulating metal oxide is formed on the bottom surface of the container as the shape of the bottom surface, and further above the graphene junction. By evenly compressing the planes of the graphene, frictional heat is generated at the sites where the metal oxide fine particles come into contact with each other in a collection of metal oxide fine particles formed on the surface layers of both planes of the graphene junction. Generated and the fine particles of the metal oxide are bonded to each other by the frictional heat. After that, the container is vibrated in three directions of front-back, left-right, and up-down, and the graphene junction is taken out from the container. It is a method of taking out a graphene conjugate produced by the described method from a container.

つまり、16段落に記載した方法で製造したグラフェン接合体の表面を、絶縁性の金属酸化物の微粒子の集まりで覆う際に、不純物を持たず活性状態にある金属酸化物の微粒子の集まりが、グラフェン接合体の表面に析出する。金属酸化物の微粒子は、微粒子同士が互いに接触して析出するが、金属酸化物の微粒子同士は、金属結合しないため、金属酸化物の微粒子同士の結合力は小さい。このため、16段落に記載した方法で製造したグラフェン接合体を容器から取り出す際に、金属酸化物の微粒子がグラフェン接合体から容易に解離する。
いっぽう、絶縁性の金属酸化物は、17段落に記載したように硬度が高い。また、圧縮強度も高い。例えば、アルミナの圧縮強度は3200MPaで、銅の引張り強度の16倍である。このため、容器の底面に形成されたグラフェン接合体の上方の平面を均等に圧縮すると、グラフェン接合体の双方の平面の表層に形成された金属酸化物の微粒子は、変形も破壊もしないため、加えられた圧縮応力が低減することなく、微粒子同士が互いに接触する部位に摩擦熱が発生する。この摩擦熱によって金属酸化物の微粒子同士が接合する。これによって、グラフェン接合体の双方の平面は、摩擦熱で接合した金属酸化物の微粒子の集まりで覆われる。この後、容器に前後、左右、上下の3方向に、0.2G程度の振動加速度を加え、容器からグラフェン接合体を取り出す。
なお、グラフェン接合体の側面に形成された金属酸化物の微粒子は容器と接しているため、グラフェン接合体の上方の平面を均等に圧縮した際に、金属酸化物の微粒子がグラフェン接合体の側面から解離することが拘束され、側面に形成された金属微粒子についても、金属酸化物の微粒子同士が互いに接触する部位に摩擦熱が発生し、該摩擦熱によって金属酸化物の微粒子同士が接合する。しかし、金属酸化物の微粒子に作用する圧縮応力は、グラフェン接合体の双方の平面に形成された金属酸化物の微粒子に作用する圧縮応力ほど大きくないため、金属酸化物の微粒子同士の接合力は、グラフェン接合体の双方の平面に形成された金属酸化物の微粒子同士の接合力に比べれば小さい。
このグラフェン接合体は、表層の金属酸化物の微粒子同士が摩擦熱で接合され、金属酸化物の微粒子の集まりは、一定の結合力を持つ。これによって、容器から取り出したグラフェン接合体は、ハンドリングが可能になる。
このグラフェン接合体の双方の平面は、摩擦熱で接合された金属酸化物の微粒子の集まりが形成されているため、グラフェン接合体を基材や部品に圧着させることができる。つまり、グラフェン接合体を部品や基材の表面に配置し、グラフェン接合体の平面を均等に圧縮すると、グラフェン接合体の一方の平面の金属酸化物の微粒子が、部品や基材の表面に食い込む。これによって、グラフェン接合体が部品や基材に圧着され、圧着されたグラフェン接合体のもう一方の平面は絶縁性を持つ。この結果、部品や基材に、熱伝導性と電気導電性に優れ、表面が絶縁性であるグラフェン接合体が圧着される。
That is, when the surface of the graphene conjugate produced by the method described in paragraph 16 is covered with a collection of insulating metal oxide fine particles, the collection of metal oxide fine particles having no impurities and in an active state is formed. Precipitates on the surface of graphene conjugates. The fine particles of the metal oxide are precipitated by contacting the fine particles with each other, but since the fine particles of the metal oxide do not form a metal bond, the bonding force between the fine particles of the metal oxide is small. Therefore, when the graphene conjugate produced by the method described in paragraph 16 is taken out from the container, the fine particles of the metal oxide are easily dissociated from the graphene conjugate.
On the other hand, the insulating metal oxide has a high hardness as described in paragraph 17. In addition, the compression strength is also high. For example, the compressive strength of alumina is 3200 MPa, which is 16 times the tensile strength of copper. Therefore, when the upper flat surface of the graphene joint formed on the bottom surface of the container is uniformly compressed, the fine particles of the metal oxide formed on the surface layers of both planes of the graphene joint do not deform or break. Friction heat is generated at a portion where the fine particles come into contact with each other without reducing the applied compressive stress. The frictional heat causes the fine particles of metal oxide to join each other. As a result, both planes of the graphene junction are covered with a collection of fine particles of metal oxide bonded by frictional heat. After that, a vibration acceleration of about 0.2 G is applied to the container in three directions of front-back, left-right, and up-down, and the graphene joint is taken out from the container.
Since the metal oxide fine particles formed on the side surface of the graphene junction are in contact with the container, when the upper plane of the graphene junction is evenly compressed, the metal oxide fine particles are present on the side surface of the graphene junction. With respect to the metal fine particles formed on the side surface, frictional heat is generated at a portion where the metal oxide fine particles come into contact with each other, and the metal oxide fine particles are bonded to each other by the frictional heat. However, since the compressive stress acting on the metal oxide fine particles is not as large as the compressive stress acting on the metal oxide fine particles formed on both planes of the graphene joint, the bonding force between the metal oxide fine particles is large. , It is smaller than the bonding force between the fine particles of the metal oxide formed on both planes of the graphene bonded body.
In this graphene junction, the metal oxide fine particles on the surface layer are bonded to each other by frictional heat, and the collection of the metal oxide fine particles has a certain bonding force. This allows the graphene conjugate removed from the container to be handled.
Since a collection of fine metal oxide fine particles bonded by frictional heat is formed on both planes of the graphene bonded body, the graphene bonded body can be pressure-bonded to a base material or a component. That is, when the graphene joint is placed on the surface of the component or the base material and the plane of the graphene joint is evenly compressed, the fine particles of the metal oxide on one plane of the graphene joint bite into the surface of the part or the base material. .. As a result, the graphene joint is crimped to the component or the base material, and the other flat surface of the crimped graphene joint has an insulating property. As a result, a graphene joint having excellent thermal conductivity and electrical conductivity and an insulating surface is pressure-bonded to the component or the base material.

グラフェンの扁平面同士が重なり合ったグラフェン接合体の側面の一部を拡大し、模式的に表した説明図である。It is explanatory drawing which enlarged and represented a part of the side surface of the graphene junction in which the flat planes of graphene overlapped.

実施例1
本実施例は、8段落に記載した製造方法に従って、グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体を、容器の底面に形成する実施例である。
最初に、2リットルのメタノールを、1.2m×1.2mの底面をもち、底が浅い容器に充填した。
次に、2枚の平行平板電極の間隙に電界が発生する電極の有効面積が、1m×1mである平行平板電極を用意し、2枚の平行平板電極を100μmの間隙で重ね合わせ、この間隙に黒鉛粒子を満遍なく引き詰める。なお、黒鉛粒子を粒径が25μmの球と仮定し、黒鉛粒子の厚みの平均値が10μmと仮定した場合、2枚の平行平板電極で作られる100μmの間隙に、黒鉛粒子を満遍なく引き詰めた場合、6.4×10個の黒鉛粒子が存在する。この黒鉛粒子の集まりに、10.6キロボルト以上の直流電圧を印加すると、全ての黒鉛粒子の基底面の層間結合が同時に破壊される。この際、1.9×1013個のグラフェンの集まりが得られ、用いる黒鉛粒子の集まりは、僅かに1.18gである。
このため、電界が発生する電極の有効面積が1m×1mである平行平板電極の表面に、鱗片状黒鉛粒子(例えば、伊藤黒鉛工業株式会社のXD100)の10gを重ねて引き詰めた。この平行平板電極を、メタノールが充填された容器に浸漬し、さらに、もう一方の平行平板電極を前記の平行平板電極の上に重ね合わせ、2枚の平行平板電極を100μmの間隙で離間させ、12キロボルトの直流電圧を電極間に加えた。次に、2枚の平行平板電極の間隙を拡大し、さらに、2枚の平行平板電極をメタノール中で傾斜させ、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、この後、容器から2枚の平行平板電極を取り出した。さらに、容器内のメタノールに、超音波ホモジナイザー装置(ヤマト科学株式会社の製品LUH300)によって20kHzの超音波振動を2分間加えた。この後、再度、0.2Gからなる3方向の振動加速度を容器に繰り返し加えた。
次に、容器を65℃に昇温し、メタノールを気化した。さらに、容器の底面に形成された試料の上方の平面に、1.2m×1.2mのアルミニウム板を載せ、さらに、アルミニウム板の上に50kgの重りを載せ、試料の上方の平面を均等に圧縮した。重りとアルミニウム板とを取り除いた後に、容器に0.2Gからなる3方向の振動加速度を加え、容器から試料を取り出した。取り出した試料の上に再度アルミニウム板を載せ、さらに、10kgの重りを載せたが、試料の状態は変わらなかった。
次に、試料の2つの平面と側面とを、電子顕微鏡を用いて観察と分析を行なった。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は、100ボルトからの極低加速電圧による表面観察が可能で、試料に導電性の被膜を形成せずに直接試料の表面が観察できる特徴を持つ。最初に、試料の平面からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料の平面に、極めて厚みが薄い段差が確認できた。次に、試料の側面からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。厚みが極めて薄い物質が、10層重なり合っていた。さらに、特性エックス線のエネルギーとその強度を画像処理した結果、炭素原子のみ存在し、試料は、グラフェンの扁平面同士が重なり合ったグラフェン接合体であることが確認できた。
図1に、グラフェンの扁平面同士が重なり合ったグラフェン接合体の側面の一部を拡大し、模式的に表した。1はグラフェンである。
なお、容器からグラフェン接合体を取り出し、グラフェン接合体に10kgの重りを載せても、グラフェン接合体は破壊されなかったので、一定の接合力でグラフェンの扁平面同士が接合されている。
Example 1
This embodiment is an example in which a graphene junction composed of a collection of graphene obtained by joining the flat planes in which the flat planes of graphene overlap each other is formed on the bottom surface of the container according to the manufacturing method described in paragraph 8. ..
First, 2 liters of methanol was filled into a container having a bottom surface of 1.2 m × 1.2 m and a shallow bottom.
Next, a parallel plate electrode having an effective area of 1 m × 1 m in which an electric field is generated in the gap between the two parallel plate electrodes is prepared, and the two parallel plate electrodes are superposed with a gap of 100 μm, and this gap is formed. The graphite particles are evenly packed. Assuming that the graphite particles are spheres having a particle size of 25 μm and the average thickness of the graphite particles is 10 μm, the graphite particles are evenly packed in the gap of 100 μm formed by the two parallel plate electrodes. In the case, there are 6.4 × 10 7 graphite particles. When a DC voltage of 10.6 kilovolts or more is applied to this group of graphite particles, the interlayer bonds on the basal planes of all the graphite particles are simultaneously broken. At this time, an aggregate of 1.9 × 10 13 graphenes was obtained, and the aggregate of graphite particles used was only 1.18 g.
Therefore, 10 g of scaly graphite particles (for example, XD100 manufactured by Ito Graphite Industry Co., Ltd.) were stacked and pulled on the surface of a parallel plate electrode having an effective area of an electrode in which an electric field is generated of 1 m × 1 m. This parallel plate electrode was immersed in a container filled with methanol, and the other parallel plate electrode was superposed on the parallel plate electrode, and the two parallel plate electrodes were separated by a gap of 100 μm. A DC voltage of 12 kilovolts was applied between the electrodes. Next, the gap between the two parallel plate electrodes is expanded, the two parallel plate electrodes are tilted in methanol, and vibration acceleration in three directions consisting of 0.2 G is repeatedly applied to the container, and then the container is used. Two parallel plate electrodes were taken out from. Further, ultrasonic vibration of 20 kHz was applied to methanol in the container for 2 minutes by an ultrasonic homogenizer device (product LUH300 of Yamato Scientific Co., Ltd.). After that, vibration acceleration in three directions consisting of 0.2 G was repeatedly applied to the container.
Next, the temperature of the container was raised to 65 ° C., and methanol was vaporized. Further, a 1.2 m × 1.2 m aluminum plate is placed on the upper flat surface of the sample formed on the bottom surface of the container, and a 50 kg weight is placed on the aluminum plate to evenly place the upper flat surface of the sample. Compressed. After removing the weight and the aluminum plate, a vibration acceleration of 0.2 G in three directions was applied to the container, and the sample was taken out from the container. An aluminum plate was placed again on the sample taken out, and a weight of 10 kg was further placed, but the state of the sample did not change.
Next, the two planes and sides of the sample were observed and analyzed using an electron microscope. As the electron microscope, an extremely low accelerating voltage SEM manufactured by JFE Techno Research Co., Ltd. was used. This device can observe the surface with an extremely low accelerating voltage from 100 volts, and has the feature that the surface of the sample can be directly observed without forming a conductive film on the sample. First, the secondary electron beam between 900 and 1000 volts of the backscattered electron beam from the plane of the sample was taken out and image processed. An extremely thin step was confirmed on the flat surface of the sample. Next, the secondary electron beam between 900 and 1000 volts of the backscattered electron beam from the side surface of the sample was taken out and image processing was performed. Ten layers of extremely thin substances were stacked. Furthermore, as a result of image processing of the energy of the characteristic X-ray and its intensity, it was confirmed that only carbon atoms were present and the sample was a graphene conjugate in which the flat planes of graphene overlapped with each other.
In FIG. 1, a part of the side surface of the graphene junction in which the flat surfaces of graphene overlap each other is enlarged and schematically shown. 1 is graphene.
Even if the graphene joint was taken out from the container and a weight of 10 kg was placed on the graphene joint, the graphene joint was not destroyed, so that the flat surfaces of the graphene were joined with a constant joining force.

実施例2
本実施例は、実施例1において、容器の底面に形成したグラフェン接合体の表面を、銀微粒子の集まりで覆う実施例である。
最初に、熱分解で銀を析出する金属化合物をメタノールに分散し、メタノール分散液を作成する。銀化合物として、最も合成が容易である銀錯イオンの一つである2個のアンミンが、銀イオンAgに配位結合したジアンミン銀イオン[Ag(NH+1の塩化物であるジアンミン銀塩化物[Ag(NH]Cl(例えば、田中貴金属販売株式会社の製品)を用い、ジアンミン銀塩化物の0.1モルを100ccのメタノールに分散した。このメタノール分散液を、実施例1において、グラフェン接合体が容器の底面に該底面の形状として形成されている該容器に充填した。次に、0.2Gからなる3方向の振動加速度を容器に繰り返し加えた。さらに、容器を、水素ガスの雰囲気で180℃まで昇温し、180℃に5分間放置した。この後、再度、容器に0.2Gからなる3方向の振動加速度を短時間加え、容器の底から試料を取り出した。
次に、試料の2つの平面と側面とを、実施例1で用いた電子顕微鏡で観察と分析とを行なった。最初に、反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。平面と側面との双方に、40−60nmの大きさからなる粒状粒子が、満遍なく形成されていた。次に、反射電子線の900−1000ボルトの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。濃淡が認められなかったので、同一の物質から形成されていた。さらに、特性エックス線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。銀原子のみが存在し、粒状微粒子が銀微粒子であることが分かった。
次に、試料の側面に形成された銀微粒子の集まりを剥ぎ落し、試料の側面からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。実施例1の側面と同様に、グラフェンの扁平面同士が重なり合ったグラフェン接合体が観察できた。この結果から、グラフェン接合体の表面が、銀微粒子の集まりで覆われていることが分かった。
以上に説明したように、実施例1において、グラフェンの扁平面同士が接合されたグラフェン接合体を容器の底面に形成し、実施例2において、銀微粒子の集まりをグラフェン接合体の表面に析出させ、グラフェン接合体の表面を銀微粒子で覆った。この後、容器に0.2Gからなる3方向の振動加速度を短時間加え、容器の底から試料を取り出した。この際、グラフェン接合体から銀微粒子が剥離されなかったため、銀微粒子の集まりは、一定の強度でグラフェン接合体を覆っていることが分かった。従って、グラフェン接合体はハンドリングが可能になり、グラフェン接合体を基材や部品に載せ、グラフェン接合体を圧縮すると、グラフェン接合体が銀微粒子を介して、基材や部品に圧着し、圧着されたグラフェン接合体は、グラフェンの熱伝導性と銀の導電性を示す。
Example 2
This example is an example in which the surface of the graphene junction formed on the bottom surface of the container in Example 1 is covered with a collection of silver fine particles.
First, a metal compound that precipitates silver by thermal decomposition is dispersed in methanol to prepare a methanol dispersion. As a silver compound, two ammines, which are one of the most easily synthesized silver complex ions, are chlorides of diammine silver ion [Ag (NH 3 ) 2 ] + 1 coordinated to silver ion Ag +. Using diammine silver chloride [Ag (NH 3 ) 2 ] Cl (for example, a product of Tanaka Kikinzoku Sales Co., Ltd.), 0.1 mol of diammine silver chloride was dispersed in 100 cc of methanol. In Example 1, this methanol dispersion was filled in a container in which a graphene conjugate was formed on the bottom surface of the container in the shape of the bottom surface. Next, vibration acceleration in three directions consisting of 0.2 G was repeatedly applied to the container. Further, the container was heated to 180 ° C. in an atmosphere of hydrogen gas and left at 180 ° C. for 5 minutes. After that, vibration acceleration in three directions consisting of 0.2 G was applied to the container again for a short time, and the sample was taken out from the bottom of the container.
Next, the two planes and sides of the sample were observed and analyzed with the electron microscope used in Example 1. First, the secondary electron beam between 900 and 1000 volts of the backscattered electron beam was taken out and image processed. Granular particles having a size of 40-60 nm were evenly formed on both the plane and the side surface. Next, the energy between 900 and 1000 volts of the reflected electron beam was extracted and image processing was performed, and the difference in material was observed depending on the shade of the image. Since no shade was observed, it was formed from the same substance. Furthermore, the energy of the characteristic X-ray and its intensity were image-processed, and the elements constituting the fine particles were analyzed. It was found that only silver atoms were present and the granular fine particles were silver fine particles.
Next, a collection of silver fine particles formed on the side surface of the sample was peeled off, and the secondary electron beam between 900 and 1000 volts of the backscattered electron beam from the side surface of the sample was taken out and image processing was performed. Similar to the side surface of Example 1, a graphene junction in which the flat surfaces of graphene overlapped with each other could be observed. From this result, it was found that the surface of the graphene conjugate was covered with a collection of silver fine particles.
As described above, in Example 1, a graphene junction in which the flat surfaces of graphene are joined is formed on the bottom surface of the container, and in Example 2, a collection of silver fine particles is deposited on the surface of the graphene junction. , The surface of the graphene conjugate was covered with silver fine particles. After that, a vibration acceleration of 0.2 G in three directions was applied to the container for a short time, and the sample was taken out from the bottom of the container. At this time, since the silver fine particles were not peeled off from the graphene joint, it was found that the collection of silver fine particles covered the graphene joint with a certain strength. Therefore, the graphene joint can be handled, and when the graphene joint is placed on the base material or parts and the graphene joint is compressed, the graphene joint is crimped to the base material or parts via silver fine particles and crimped. The graphene conjugate exhibits the thermal conductivity of graphene and the conductivity of silver.

実施例3
本実施例は、実施例1において、容器の底面に形成されたグラフェン接合体の表面を、酸化アルミニウムAlの微粒子の集まりで覆う実施例である。なお、酸化アルミニウムは、1014−15Ω・cmの体積抵抗率をもち、10−15キロボルト/mmの絶縁耐力を持つ絶縁体である。
最初に、安息香酸アルミニウムAl(CCOO)(例えば、三津和化学薬品株式会社の製品)の0.1モルを、100ccのメタノールに分散し、メタノール分散液を作成した。このメタノール分散液を、実施例1において、グラフェン接合体が容器の底面に該底面の形状として形成されている該容器に充填した。
次に、0.2Gからなる3方向の振動加速度を容器に繰り返し加えた。さらに、容器を、大気雰囲気で310℃まで昇温し、310℃に1分間放置した。この後、実施例1と同様に、アルミニウムの板を容器内の試料の上方の平面に載せ、さらに、20kgの重りを載せ、この後、重りとアルミニウムの板を取り出した。さらに、容器に0.2Gからなる3方向の振動加速度を短時間加え、容器から試料を取り出した。取り出した試料に再度5kgの重りを載せたが、試料の表面から微粒子は剥離されなかった。
この後、実施例2と同様に、電子顕微鏡によって、試料の2つの平面と側面の観察と分析とを行った。平面と側面との双方に、40−60nmの大きさからなる粒状の微粒子が、満遍なく積み重なって形成され、粒状微粒子は酸化アルミニウムで構成されていた。
この後、側面の粒状の微粒子の集まりを全て剥ぎ落し、側面を再度電子顕微鏡で観察した。この結果、実施例1の側面と同様に、グラフェンの扁平面同士が重なり合ったグラフェン接合体が観察できた。
この結果から、グラフェン接合体の表面が、酸化アルミニウムの微粒子の集まりで覆われていることが分かった。また、容器からグラフェン接合体を取り出し、グラフェン接合体に5kgの重りを載せても、酸化アルミニウムの微粒子はグラフェン接合体から解離されなかったため、グラフェン接合体に20kgの重りを載せた際に、酸化アルミニウムの微粒子同士が摩擦熱で接合し、酸化アルミニウムの微粒子の集まりが、一定の強度でグラフェン接合体の表面を覆っていることが分かった。
以上の結果から、実施例1において、グラフェンの扁平面同士が接合されたグラフェン接合体を容器の底面に形成し、実施例3において、グラフェン接合体の表面に酸化アルミニウムの微粒子の集まりを析出させ、グラフェン接合体の表面を、酸化アルミニウムの微粒子の集まりで覆った。この後、グラフェン接合体の平面の全体に圧縮応力を均等に加えると、酸化アルミニウムの微粒子同士が、互いに接触する部位で摩擦熱によって接合した。このため、グラフェン接合体はハンドリングが可能になり、グラフェン接合体を基材や部品に載せ、グラフェン接合体を圧縮すると、グラフェン接合体が酸化アルミニウムの微粒子を介して、基材や部品に圧着し、圧着されたグラフェン接合体は、グラフェンの熱伝導性をもち、表面は絶縁性を示す。
Example 3
This example is an example in which the surface of the graphene junction formed on the bottom surface of the container in Example 1 is covered with a collection of fine particles of aluminum oxide Al 2 O 3 . Aluminum oxide is an insulator having a volume resistivity of 10 14-15 Ω · cm and a dielectric strength of 10-15 kilovolts / mm.
First, 0.1 mol of aluminum benzoate Al (C 6 H 5 COO) 3 (for example, a product of Mitsuwa Chemical Co., Ltd.) was dispersed in 100 cc of methanol to prepare a methanol dispersion. In Example 1, this methanol dispersion was filled in a container in which a graphene conjugate was formed on the bottom surface of the container in the shape of the bottom surface.
Next, vibration acceleration in three directions consisting of 0.2 G was repeatedly applied to the container. Further, the container was heated to 310 ° C. in an air atmosphere and left at 310 ° C. for 1 minute. After that, as in Example 1, an aluminum plate was placed on a flat surface above the sample in the container, a weight of 20 kg was further placed, and then the weight and the aluminum plate were taken out. Further, a vibration acceleration of 0.2 G in three directions was applied to the container for a short time, and the sample was taken out from the container. A weight of 5 kg was placed on the sample taken out again, but the fine particles were not peeled off from the surface of the sample.
After that, as in Example 2, the two planes and sides of the sample were observed and analyzed with an electron microscope. Granular fine particles having a size of 40-60 nm were evenly stacked and formed on both the flat surface and the side surface, and the granular fine particles were composed of aluminum oxide.
After that, all the aggregates of granular fine particles on the side surface were stripped off, and the side surface was observed again with an electron microscope. As a result, similarly to the side surface of Example 1, a graphene junction in which the flat surfaces of graphene overlapped with each other could be observed.
From this result, it was found that the surface of the graphene conjugate was covered with a collection of fine particles of aluminum oxide. Further, even if the graphene joint was taken out from the container and a weight of 5 kg was placed on the graphene joint, the fine particles of aluminum oxide were not dissociated from the graphene joint. Therefore, when the weight of 20 kg was placed on the graphene joint, it was oxidized. It was found that the aluminum fine particles were bonded to each other by frictional heat, and a collection of aluminum oxide fine particles covered the surface of the graphene bonded body with a constant strength.
From the above results, in Example 1, a graphene joint in which the flat surfaces of graphene were joined was formed on the bottom surface of the container, and in Example 3, a collection of fine particles of aluminum oxide was deposited on the surface of the graphene joint. , The surface of the graphene conjugate was covered with a collection of fine particles of aluminum oxide. After that, when compressive stress was evenly applied to the entire plane of the graphene bonded body, the fine particles of aluminum oxide were bonded by frictional heat at the sites where they were in contact with each other. Therefore, the graphene joint can be handled, and when the graphene joint is placed on the base material or parts and the graphene joint is compressed, the graphene joint is crimped to the base material or parts via fine particles of aluminum oxide. The crimped graphene joint has the thermal conductivity of graphene, and the surface exhibits insulating properties.

1 グラフェン
1 Graphene

Claims (7)

グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体を製造する方法は、
2枚の平行平板電極のうちの一方の平行平板電極の表面に、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを平坦に引き詰め、該平行平板電極を容器に充填されたメタノール中に浸漬させ、さらに、他方の平行平板電極を前記一方の平行平板電極の上に重ね合わせ、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりを介して、前記2枚の平行平板電極を離間させ、該離間させた2枚の平行平板電極を前記メタノール中に浸漬させる、この後、該2枚の平行平板電極の間隙に直流の電位差を印加する、これによって、該電位差の大きさを前記2枚の平行平板電極の間隙の大きさで割った値に相当する電界が、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりに印加され、該電界の印加によって、前記鱗片状黒鉛粒子ないしは前記塊状黒鉛粒子を形成する基底面の層間結合の全てが同時に破壊され、前記2枚の平行平板電極の間隙に、前記基底面に相当するグラフェンの集まりが製造される、この後、前記2枚の平行平板電極の間隙を拡大し、該2枚の平行平板電極を前記メタノール中で傾斜させ、さらに、前記容器に左右、前後、上下の3方向の振動を繰り返し加え、前記グラフェンの集まりを、前記2枚の平行平板電極の間隙から前記メタノール中に移動させる、この後、前記容器から前記2枚の平行平板電極を取り出す、さらに、前記容器に前後、左右、上下の3方向の振動を繰り返し加え、前記グラフェンの扁平面同士がメタノールを介して重なり合った該グラフェンの集まりを、前記容器の底面に該底面の形状として形成する、この後、前記容器を前記メタノールの沸点に昇温して該メタノールを気化させ、前記グラフェンの扁平面同士が重なり合った該グラフェンの集まりを、前記容器の底面に該底面の形状として形成する、この後、該グラフェンの集まりの上方の平面を均等に圧縮し、前記グラフェンの扁平面同士が重なり合った部位に摩擦熱を発生させ、該摩擦熱によって該グラフェンの扁平面同士を接合し、グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体が、前記容器の底面に該底面の形状として形成される、グラフェンの扁平面同士が重なり合った該扁平面同士を接合した該グラフェンの集まりからなるグラフェン接合体を製造する方法である。
A method for producing a graphene junction composed of a collection of graphene obtained by joining the flat planes in which the flat planes of graphene overlap each other is
A collection of scaly graphite particles or a collection of massive graphite particles is flatly packed on the surface of one of the two parallel plate electrodes, and the parallel plate electrode is immersed in methanol filled in a container. Further, the other parallel plate electrode is superposed on the one parallel plate electrode, and the two parallel plate electrodes are separated from each other through a collection of the scaly graphite particles or a collection of the massive graphite particles. , The two separated parallel plate electrodes are immersed in the methanol, and then a DC potential difference is applied to the gap between the two parallel plate electrodes, whereby the magnitude of the potential difference is increased to the above 2. An electric field corresponding to the value divided by the size of the gap between the parallel plate electrodes is applied to the group of scaly graphite particles or the group of lump graphite particles, and the application of the electric field causes the scaly graphite particles or All of the interlayer bonds of the basal plane forming the massive graphite particles are simultaneously destroyed, and a collection of graphene corresponding to the basal plane is produced in the gap between the two parallel plate electrodes. The gap between the parallel plate electrodes is expanded, the two parallel plate electrodes are tilted in the methanol, and vibrations in three directions of left and right, front and back, and up and down are repeatedly applied to the container to collect the graphene. It is moved into the methanol through the gap between the two parallel graphite plates, and then the two parallel graphite electrodes are taken out from the container, and the container is repeatedly vibrated in three directions of front-back, left-right, and up-down. In addition, a collection of graphene in which the flat planes of the graphene are overlapped with each other via methanol is formed on the bottom surface of the container as the shape of the bottom surface, and then the temperature of the container is raised to the boiling point of the graphite. Methanol is vaporized to form a group of graphene on which the flat planes of the graphene overlap each other as the shape of the bottom surface of the container, and then the plane above the group of graphene is evenly compressed. A collection of graphene in which frictional heat is generated at a portion where the graphite flat surfaces overlap each other, the graphite flat surfaces are joined to each other by the frictional heat, and the graphite flat surfaces are joined to each other. A graphene junction made of graphite is formed on the bottom surface of the container as the shape of the bottom surface, and is a method for producing a graphene junction composed of a collection of graphite obtained by joining the graphite flat surfaces on which the graphite flat surfaces are overlapped. is there.
請求項1に記載した方法で製造したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法は、
銀、銅、金、ないしはアルミニウムのいずれかの金属が熱分解で析出する金属化合物をメタノールに分散してメタノール分散液を作成し、該メタノール分散液を、請求項1に記載した方法で製造したグラフェン接合体が容器の底面に形成されている該容器に充填し、さらに、該容器に左右、前後、上下の3方向の振動を繰り返し加え、前記グラフェン接合体の表面を前記メタノール分散液と接触させる、この後、前記容器を前記金属化合物が熱分解する温度に昇温する、これによって、最初に前記メタノールが気化し、前記グラフェン接合体の表面に前記金属化合物の微細な結晶の集まりが一斉に析出し、この後、前記金属化合物の微細な結晶が熱分解し、前記グラフェン接合体の表面に、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる粒状の金属微粒子の集まりが一斉に析出し、該粒状の金属微粒子同士が互いに接触する部位で金属結合し、前記グラフェン接合体の表面が、前記金属結合した銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりによって覆われる、請求項1に記載した方法で製造したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法である。
A method of covering the surface of the graphene joint produced by the method according to claim 1 with a collection of metal fine particles made of any of silver, copper, gold, or aluminum.
A metal compound in which any metal of silver, copper, gold, or aluminum is precipitated by thermal decomposition is dispersed in methanol to prepare a methanol dispersion, and the methanol dispersion is produced by the method according to claim 1. The graphene bond is filled in the container formed on the bottom surface of the container, and the container is repeatedly vibrated in three directions of left and right, front and back, and up and down to bring the surface of the graphene bond into contact with the methanol dispersion. After that, the temperature of the container is raised to a temperature at which the metal compound is thermally decomposed, whereby the methanol is first vaporized, and a collection of fine crystals of the metal compound is simultaneously gathered on the surface of the graphene bond. After that, the fine crystals of the metal compound are thermally decomposed, and a collection of granular metal fine particles made of any metal of silver, copper, gold, or aluminum is simultaneously gathered on the surface of the graphene bond. The surface of the graphene bonded body is a metal fine particle made of any of the metal-bonded silver, copper, gold, or aluminum, which is deposited on the metal and is metal-bonded at a site where the granular metal fine particles are in contact with each other. A method of covering the surface of a graphene bond produced by the method according to claim 1, which is covered with an aggregate, with an aggregate of metal fine particles made of any metal of silver, copper, gold, or aluminum.
請求項2に記載したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法は、
無機物のイオンないしは分子からなる配位子が、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに配位結合した金属錯イオンを有する無機金属化合物からなる金属錯体を、請求項2に記載した銀、銅、金、ないしはアルミニウムのいずれかの金属が熱分解で析出する金属化合物として用い、請求項2に記載した方法に従って、グラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法である。
The method of covering the surface of the graphene joint according to claim 2 with a collection of metal fine particles made of any of silver, copper, gold, or aluminum.
Claims a metal complex composed of an inorganic metal compound having a metal complex ion in which a ligand composed of an inorganic ion or a molecule is coordinated to a metal ion composed of a metal of silver, copper, gold, or aluminum. The silver, copper, gold, or aluminum metal described in 2 is used as a metal compound that is precipitated by thermal decomposition, and the surface of the graphene conjugate is coated with silver, copper, gold, according to the method described in claim 2. Or it is a method of covering with a collection of metal fine particles made of any metal of aluminum.
請求項2に記載したグラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法は、
カルボン酸のカルボキシル基を構成する酸素イオンが、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに共有結合する第一の特徴と、前記カルボン酸が飽和脂肪酸からなる第二の特徴とを兼備するカルボン酸金属化合物を、請求項2に記載した銀、銅、金、ないしはアルミニウムのいずれかの金属が熱分解で析出する金属化合物として用い、請求項2に記載した方法に従って、グラフェン接合体の表面を、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりで覆う方法である。
The method of covering the surface of the graphene joint according to claim 2 with a collection of metal fine particles made of any of silver, copper, gold, or aluminum.
The first feature that the oxygen ion constituting the carboxyl group of the carboxylic acid is covalently bonded to the metal ion made of any metal of silver, copper, gold or aluminum, and the second feature that the carboxylic acid is made of a saturated fatty acid. A metal carboxylate compound having both characteristics is used as a metal compound in which any metal of silver, copper, gold, or aluminum according to claim 2 is precipitated by thermal decomposition, and according to the method according to claim 2. This is a method of covering the surface of a graphene joint with a collection of metal fine particles made of any of silver, copper, gold, or aluminum.
請求項1に記載した方法で製造したグラフェン接合体の表面を、絶縁性の金属酸化物からなる微粒子の集まりで覆う方法は、
絶縁性の金属酸化物が熱分解で析出する金属化合物をメタノールに分散してメタノール分散液を作成し、該メタノール分散液を、請求項1に記載した方法で製造したグラフェン接合体が容器の底面に形成されている該容器に充填し、さらに、該容器に左右、前後、上下の3方向の振動を繰り返し加え、前記グラフェン接合体の表面を前記メタノール分散液と接触させる、この後、前記容器を前記金属化合物が熱分解する温度に昇温する、これによって、最初に前記メタノールが気化し、前記グラフェン接合体の表面に前記金属化合物の微細な結晶の集まりが一斉に析出し、この後、前記金属化合物の微細な結晶が熱分解し、前記グラフェン接合体の表面に、前記絶縁性の金属酸化物の微粒子の集まりが一斉に析出し、該絶縁性の金属酸化物の微粒子の集まりで表面が覆われた前記グラフェン接合体が、前記容器の底面に該底面の形状として形成される、請求項1に記載した方法で製造したグラフェン接合体の表面を、絶縁性の金属酸化物からなる微粒子の集まりで覆う方法である。
A method of covering the surface of the graphene conjugate produced by the method according to claim 1 with a collection of fine particles made of an insulating metal oxide is described.
A graphene conjugate obtained by dispersing a metal compound in which an insulating metal oxide is thermally decomposed in methanol to prepare a methanol dispersion and producing the methanol dispersion by the method according to claim 1 is the bottom surface of the container. The container formed in the above is filled, and further, vibrations in three directions of left and right, front and back, and up and down are repeatedly applied to the container to bring the surface of the graphene conjugate into contact with the methanol dispersion, and then the container. The temperature is raised to a temperature at which the metal compound is thermally decomposed, whereby the methanol is first vaporized, and a collection of fine crystals of the metal compound is deposited all at once on the surface of the graphene conjugate, and then The fine crystals of the metal compound are thermally decomposed, and a collection of fine particles of the insulating metal oxide is deposited all at once on the surface of the graphene conjugate, and the surface is formed by the collection of fine particles of the insulating metal oxide. The surface of the graphene junction produced by the method according to claim 1, wherein the graphene conjugate covered with is formed on the bottom surface of the container as the shape of the bottom surface, is formed of fine particles made of an insulating metal oxide. It is a method of covering with a group of.
請求項5に記載したグラフェン接合体の表面を絶縁性の金属酸化物からなる微粒子の集まりで覆う方法は、
カルボン酸のカルボキシル基を構成する酸素イオンが配位子になって、金属イオンに配位結合したカルボン酸金属化合物を、請求項5に記載した熱分解で絶縁性の金属酸化物が析出する金属化合物として用い、請求項5に記載した方法に従って、グラフェン接合体の表面を絶縁性の金属酸化物からなる微粒子の集まりで覆う方法である。
The method of covering the surface of the graphene conjugate according to claim 5 with a collection of fine particles made of an insulating metal oxide is described.
A metal in which an insulating metal oxide is precipitated by thermal decomposition according to claim 5, wherein an oxygen ion constituting the carboxyl group of the carboxylic acid serves as a ligand to coordinate-bond the carboxylic acid metal compound to the metal ion. It is a method of using as a compound and covering the surface of a graphene conjugate with a collection of fine particles made of an insulating metal oxide according to the method according to claim 5.
請求項5に記載した方法で製造したグラフェン接合体を容器から取り出す方法は、
請求項5に記載した方法に従って、絶縁性の金属酸化物からなる微粒子の集まりで表面が覆われたグラフェン接合体を容器の底面に該底面の形状として形成し、さらに、該グラフェン接合体の上方の平面を均等に圧縮する、これによって、該グラフェン接合体の双方の平面の表層に形成された金属酸化物の微粒子の集まりにおいて、該金属酸化物の微粒子同士が互いに接触する部位に摩擦熱が発生し、該摩擦熱によって前記金属酸化物の微粒子同士が接合する、この後、前記容器に前後、左右、上下の3方向の振動を加え、該容器から前記グラフェン接合体を取り出す、請求項5に記載した方法で製造したグラフェン接合体を容器から取り出す方法である。
The method for taking out the graphene conjugate produced by the method according to claim 5 from the container is
According to the method according to claim 5, a graphene junction whose surface is covered with a collection of fine particles made of an insulating metal oxide is formed on the bottom surface of the container as the shape of the bottom surface, and further, above the graphene junction. By evenly compressing the planes of the graphene, frictional heat is generated at the sites where the metal oxide fine particles come into contact with each other in a collection of metal oxide fine particles formed on the surface layers of both planes of the graphene junction. 5. The graphene bonded body is taken out from the container by applying vibrations in three directions of front-back, left-right, and up-down to the container, which is generated and the fine particles of the metal oxide are bonded to each other by the frictional heat. This is a method of taking out the graphene conjugate produced by the method described in 1.
JP2019107537A 2019-06-09 2019-06-09 A method of producing a graphene sheet consisting of a collection of graphene in which flat planes of graphene are overlapped and joined, and a method of covering the surface of the graphene sheet with a collection of fine particles of metal or insulating metal oxide. Active JP7195513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019107537A JP7195513B2 (en) 2019-06-09 2019-06-09 A method of producing a graphene sheet consisting of a collection of graphene in which flat planes of graphene are overlapped and joined, and a method of covering the surface of the graphene sheet with a collection of fine particles of metal or insulating metal oxide.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019107537A JP7195513B2 (en) 2019-06-09 2019-06-09 A method of producing a graphene sheet consisting of a collection of graphene in which flat planes of graphene are overlapped and joined, and a method of covering the surface of the graphene sheet with a collection of fine particles of metal or insulating metal oxide.

Publications (3)

Publication Number Publication Date
JP2020200210A true JP2020200210A (en) 2020-12-17
JP2020200210A5 JP2020200210A5 (en) 2021-09-30
JP7195513B2 JP7195513B2 (en) 2022-12-26

Family

ID=73742404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019107537A Active JP7195513B2 (en) 2019-06-09 2019-06-09 A method of producing a graphene sheet consisting of a collection of graphene in which flat planes of graphene are overlapped and joined, and a method of covering the surface of the graphene sheet with a collection of fine particles of metal or insulating metal oxide.

Country Status (1)

Country Link
JP (1) JP7195513B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6166860B2 (en) * 2012-05-16 2017-07-19 小林 博 Method for producing graphene, method for producing graphene joined body obtained by joining the graphene, and method for producing substrate or part using the graphene or the graphene joined body
JP2019512441A (en) * 2016-02-12 2019-05-16 フラウンホーファ−ゲゼルシャフト ツァー フォルデルング デア アンゲバンデン フォルシュンク エー. ファオ.Fraunhofer−Gesellschaft Zur Forderung Der Angewandten Forschung E. V. Graphene and Graphene Production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6166860B2 (en) * 2012-05-16 2017-07-19 小林 博 Method for producing graphene, method for producing graphene joined body obtained by joining the graphene, and method for producing substrate or part using the graphene or the graphene joined body
JP2019512441A (en) * 2016-02-12 2019-05-16 フラウンホーファ−ゲゼルシャフト ツァー フォルデルング デア アンゲバンデン フォルシュンク エー. ファオ.Fraunhofer−Gesellschaft Zur Forderung Der Angewandten Forschung E. V. Graphene and Graphene Production

Also Published As

Publication number Publication date
JP7195513B2 (en) 2022-12-26

Similar Documents

Publication Publication Date Title
Luo et al. Design of p–p heterojunctions based on CuO decorated WS2 nanosheets for sensitive NH3 gas sensing at room temperature
Kobayashi et al. Metal–metal bonding process using metallic copper nanoparticles prepared in aqueous solution
Kubozono et al. Recent progress on carbon-based superconductors
Yang et al. A facile method to observe graphene growth on copper foil
KR102140147B1 (en) Heterogeneous laminate comprising graphene, preparing method thereof, thermoelectric material, thermoelectric module and thermoelectric apparatus comprising same
Das et al. Nanoscale modification of one-dimensional single-crystalline cuprous oxide
Ghosh et al. Modifying the thermoelectric transport of Sb2Te3 thin films via the carrier filtering effect by incorporating size-selected gold nanoparticles
Shen et al. Highly conductive vertically aligned molybdenum nanowalls and their field emission property
Xu et al. Triclinic boron nanosheets high-efficient electrocatalysts for water splitting
JP2021138566A (en) Method for producing graphene aggregate in which graphenes are superposed and joined to each other through collection of nano-level size fine particles composed of metal or metal oxide
JP2020200210A (en) Method for manufacturing graphene bonded body consisting of aggregate of graphene formed by bonding overlapped flat surface of graphene and method for covering surface of graphene bonded body with metal or aggregate of insulating metal oxide fine particle
JP2020186144A (en) Method for manufacturing graphene joined body in which flat faces of graphene are bonded together by assembly of metal fine particles composed of any metal of silver, copper, gold or aluminum
JP2020200210A5 (en)
Goto et al. Chemical-free exfoliation of hexagonal boron nitride via cavitation-bubble plasma in water
Gurgenc et al. Investigation of dielectric parameters and AC conductivity of ZnO: TiC nanocomposite powders
JP2020125225A (en) Method for manufacturing graphene bonded body formed by producing suspension in which a group of graphene individually separated is dispersed in alcohol and using the suspension to bond flat surfaces of graphenes with each other
JP2019200867A (en) Production method of conductive film where aspect ratio and shape can be freely changed
JP2024012241A (en) Method for manufacturing circuit component comprising using graphene assembly made by frictionally compressing graphenes with one another as circuit board, frictionally compressing insulating layer to surface of circuit board, and frictionally compressing conductive layer to surface of insulating layer
Yousaf et al. Layer-sliding-mediated controlled tuning of physical properties of intercalated silicene/hBN heterostructure
JP2015056392A (en) Production of electroconductive paste material and production method
JP2022120727A (en) Method for producing graphite sheet consisting of aggregates of flattened graphite powders in which interlayer bonds of basal surfaces of graphite crystals that form scale-like graphite particles are broken to form flattened powders having small thickness, and flat surfaces of the flattened powders are bonded together to sheet-like shape
JP2022113591A (en) Method for producing aggregation of scaly graphite particles in which aggregates of scaly graphite particles are fractured with regard to interlayer bonding in basal surfaces of graphite crystals, and basal surfaces of fractured scaly graphite particles are bonded to each other via a cluster of metal-bonded metal nanoparticles
JP2021107313A (en) Method for directly joining graphene-joined body formed by directly joining graphenes, to surface of base material or component
JP7023035B2 (en) A method for producing an insulating film having an insulating film having the shape of the bottom surface on the bottom surface of a container as an insulating film composed of a collection of the flat powders in which the flat surfaces of the insulating flat powder are overlapped with each other.
JP6896231B2 (en) Manufacturing method of dust core that does not require annealing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221202

R150 Certificate of patent or registration of utility model

Ref document number: 7195513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150