JP2020198722A - Monitoring unit, power storage device, and start method of monitoring unit - Google Patents

Monitoring unit, power storage device, and start method of monitoring unit Download PDF

Info

Publication number
JP2020198722A
JP2020198722A JP2019104299A JP2019104299A JP2020198722A JP 2020198722 A JP2020198722 A JP 2020198722A JP 2019104299 A JP2019104299 A JP 2019104299A JP 2019104299 A JP2019104299 A JP 2019104299A JP 2020198722 A JP2020198722 A JP 2020198722A
Authority
JP
Japan
Prior art keywords
current
power storage
unit
measuring unit
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019104299A
Other languages
Japanese (ja)
Inventor
将克 冨士松
Masakatsu Fujimatsu
将克 冨士松
和田 直也
Naoya Wada
直也 和田
章正 杉浦
Akimasa Sugiura
章正 杉浦
祐樹 松田
Yuki Matsuda
祐樹 松田
智士 國田
Satoshi Kunita
智士 國田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2019104299A priority Critical patent/JP2020198722A/en
Priority to PCT/JP2020/020490 priority patent/WO2020246285A1/en
Publication of JP2020198722A publication Critical patent/JP2020198722A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To activate a monitoring device to monitor a power storage element when a current exceeding a threshold value flows through the power storage element.SOLUTION: A monitoring unit 110 of a power storage element 62 includes a first current measuring unit 55 that measures a current of the power storage element 62, a second current measuring unit 140 that measures a current of the power storage element 62, and a monitoring device 130. The first current measuring unit 55 has a current measuring range F1 capable of detecting an overcurrent, and a current measuring range F2 of the second current measuring unit 140 is narrower than the current measuring range F1 of the first current measuring unit 55, and when the second current measuring unit 140 detects a current of a threshold Ix or more during hibernation, the monitoring device 130 is activated, and monitors a state of the power storage element 62 on the basis of the measured value of the first current measuring unit 55.SELECTED DRAWING: Figure 5

Description

本発明は、蓄電装置に関する。 The present invention relates to a power storage device.

蓄電装置は、蓄電素子の状態を監視する監視装置を有している。下記特許文献1には、消費電力を抑えるため、エンジン停止時に、監視装置をスリープモードに切り替えて、蓄電素子の監視を一時的に停止する点が記載されている。 The power storage device has a monitoring device that monitors the state of the power storage element. The following Patent Document 1 describes that when the engine is stopped, the monitoring device is switched to the sleep mode to temporarily stop the monitoring of the power storage element in order to suppress the power consumption.

特開2017−216879号公報JP-A-2017-216879

監視装置が休止している期間に蓄電素子が閾値を超える電流を充放電した場合、蓄電素子の状態が不確定になるため、監視を再開することが好ましい。
蓄電素子に閾値を超える電流が流れた場合、監視装置を起動して蓄電素子を監視することを目的とする。
If the power storage element charges and discharges a current exceeding the threshold value while the monitoring device is inactive, the state of the power storage element becomes uncertain, so it is preferable to restart monitoring.
The purpose is to activate the monitoring device to monitor the power storage element when a current exceeding the threshold value flows through the power storage element.

蓄電素子の監視ユニットは、前記蓄電素子の電流を計測する第1電流計測部と、前記蓄電素子の電流を計測する第2電流計測部と、監視装置と、を含み、前記第1電流計測部は過電流の検出が可能な電流計測範囲を持ち、前記第2電流計測部の電流計測範囲は、前記第1電流計測部の電流計測範囲よりも狭く、前記監視装置は、前記第2電流計測部が閾値以上の電流を休止中に検出した場合、起動して、前記第1電流計測部の計測値に基づいて前記蓄電素子の状態を監視する。 The monitoring unit of the power storage element includes a first current measuring unit that measures the current of the power storage element, a second current measuring unit that measures the current of the power storage element, and a monitoring device, and the first current measuring unit. Has a current measurement range capable of detecting an overcurrent, the current measurement range of the second current measurement unit is narrower than the current measurement range of the first current measurement unit, and the monitoring device measures the second current. When the unit detects a current equal to or greater than the threshold value during hibernation, it starts up and monitors the state of the power storage element based on the measured value of the first current measuring unit.

本技術は、蓄電装置、監視ユニットの起動方法に適用することが出来る。 This technology can be applied to a method of starting a power storage device and a monitoring unit.

蓄電素子に閾値を超える電流が流れた場合、監視装置を起動して蓄電素子を監視することが出来る。 When a current exceeding the threshold value flows through the power storage element, the monitoring device can be activated to monitor the power storage element.

バッテリの分解斜視図Disassembled perspective view of the battery 二次電池の平面図Top view of secondary battery 図2のA−A線断面図Cross-sectional view taken along the line AA of FIG. 自動二輪車の側面図Side view of a motorcycle バッテリのブロック図Battery block diagram 第2電流計測部のブロック図Block diagram of the second current measurement unit 回路基板の断面図Cross section of circuit board 第1電流計測部と第2電流計測部の電流計測範囲を示す図The figure which shows the current measurement range of the 1st current measurement part and the 2nd current measurement part 二次電池のSOC−OCV特性SOC-OCV characteristics of secondary batteries 監視モードのタイミングチャートMonitoring mode timing chart 起動処理のフローチャートFlowchart of startup process

蓄電素子の監視ユニットは、前記蓄電素子の電流を計測する第1電流計測部と、前記蓄電素子の電流を計測する第2電流計測部と、監視装置と、を含み、前記第1電流計測部は過電流の検出が可能な電流計測範囲を持ち、前記第2電流計測部の電流計測範囲は、前記第1電流計測部の電流計測範囲よりも狭く、前記監視装置は、前記第2電流計測部が閾値以上の電流を休止中に検出した場合、起動して、前記第1電流計測部の計測値に基づいて前記蓄電素子の状態を監視する。 The monitoring unit of the power storage element includes a first current measuring unit that measures the current of the power storage element, a second current measuring unit that measures the current of the power storage element, and a monitoring device, and the first current measuring unit. Has a current measurement range capable of detecting an overcurrent, the current measurement range of the second current measurement unit is narrower than the current measurement range of the first current measurement unit, and the monitoring device measures the second current. When the unit detects a current equal to or greater than the threshold value during hibernation, it starts up and monitors the state of the power storage element based on the measured value of the first current measuring unit.

第1電流計測部は、過電流の検出が可能であることから、電流計測範囲が広く小電流の検出には不向きであり、電流検出をトリガーにして監視装置を起動したくても、電流検出が困難な場合がある。 Since the first current measurement unit can detect overcurrent, it has a wide current measurement range and is not suitable for detecting small currents. Even if you want to start the monitoring device with current detection as a trigger, current detection May be difficult.

第2電流計測部の電流計測範囲は、第1電流計測部の電流計測範囲よりも狭く、第1電流計測部では検出が難しい小電流の検出が可能である。第2電流計測部を有することで、第1電流計測部では、検出が困難な小電流の検出をトリガーにして、監視装置を休止から起動し、蓄電素子の状態を監視することが出来る。 The current measurement range of the second current measurement unit is narrower than the current measurement range of the first current measurement unit, and it is possible to detect a small current that is difficult to detect by the first current measurement unit. By having the second current measuring unit, the first current measuring unit can start the monitoring device from hibernation and monitor the state of the power storage element by using the detection of a small current that is difficult to detect as a trigger.

前記第2電流計測部は、磁気式の電流センサを有していてもよい。磁気式の電流センサは、磁界の大きさにより電流を検出する。磁気式の電流センサは、非接触であることから、充放電時の発熱が少ない。故障が起き難いため、監視装置の起動不良を防止できる。また、非接触であることから、回路基板に対する配置の自由度が高い。 The second current measuring unit may have a magnetic current sensor. The magnetic current sensor detects the current based on the magnitude of the magnetic field. Since the magnetic current sensor is non-contact, it generates less heat during charging and discharging. Since failures are unlikely to occur, it is possible to prevent malfunction of the monitoring device from starting. Moreover, since it is non-contact, the degree of freedom of arrangement with respect to the circuit board is high.

前記第2電流計測部は、前記蓄電素子に流れる前記閾値以上の電流を検出して起動信号を出力する起動センサであり、前記監視装置は、前記起動信号に応答して起動して、前記蓄電素子の状態を監視してもよい。起動する際、監視装置は、起動信号の有無だけを確認すればよく、電流値のレベル判定などの処理を行う必要がない。 The second current measuring unit is a start sensor that detects a current equal to or greater than the threshold value flowing through the power storage element and outputs a start signal, and the monitoring device is started in response to the start signal to store the power. The state of the element may be monitored. When starting up, the monitoring device only needs to confirm the presence or absence of the start-up signal, and does not need to perform processing such as determining the level of the current value.

前記起動センサは、電流センサと、前記電流センサの電流計測値を前記閾値と比較して前記起動信号を出力するコンパレータを含んでもよい。電流センサは、電流が閾値より高いか低いかを判断できる電流計測精度で足りる。そのため、高精度な電流計測が不要で、安価なセンサを用いることが出来るためコストメリットがある。 The activation sensor may include a current sensor and a comparator that compares the current measurement value of the current sensor with the threshold value and outputs the activation signal. The current sensor requires a current measurement accuracy that can determine whether the current is higher or lower than the threshold value. Therefore, high-precision current measurement is not required, and an inexpensive sensor can be used, which has a cost merit.

<実施形態1>
1.バッテリ50の構造説明
バッテリ50は、図1に示すように、組電池60と、制御基板65と、収容体71を備える。
<Embodiment 1>
1. 1. Structural Description of Battery 50 As shown in FIG. 1, the battery 50 includes an assembled battery 60, a control board 65, and an accommodating body 71.

収容体71は、合成樹脂材料からなる本体73と蓋体74とを備えている。本体73は有底筒状である。本体73は、底面部75と、4つの側面部76とを備えている。4つの側面部76によって上端部分に上方開口部77が形成されている。 The housing body 71 includes a main body 73 made of a synthetic resin material and a lid body 74. The main body 73 has a bottomed tubular shape. The main body 73 includes a bottom surface portion 75 and four side surface portions 76. An upper opening 77 is formed at the upper end portion by the four side surface portions 76.

収容体71は、組電池60と制御基板65を収容する。組電池60は12個の二次電池62を有する。12個の二次電池62は、3並列で4直列に接続されている。制御基板65は、回路基板100と回路基板100上に搭載される電子部品とを含み、組電池60の上部に配置されている。後述する監視ユニット110は、制御基板65の一部である。 The accommodating body 71 accommodates the assembled battery 60 and the control board 65. The assembled battery 60 has 12 secondary batteries 62. The 12 secondary batteries 62 are connected in 3 parallels and 4 in series. The control board 65 includes a circuit board 100 and electronic components mounted on the circuit board 100, and is arranged above the assembled battery 60. The monitoring unit 110, which will be described later, is a part of the control board 65.

蓋体74は、本体73の上方開口部77を閉鎖する。蓋体74の周囲には外周壁78が設けられている。蓋体74は、平面視略T字形の突出部79を有する。蓋体74の前部のうち、一方の隅部に正極の第1外部端子51が固定され、他方の隅部に負極の第2外部端子52が固定されている。 The lid 74 closes the upper opening 77 of the main body 73. An outer peripheral wall 78 is provided around the lid body 74. The lid body 74 has a protrusion 79 having a substantially T-shaped plan view. The first external terminal 51 of the positive electrode is fixed to one corner of the front portion of the lid 74, and the second external terminal 52 of the negative electrode is fixed to the other corner.

図2及び図3に示すように、二次電池62は、直方体形状のケース82内に電極体83を非水電解質と共に収容したものである。二次電池62は一例としてリチウムイオン二次電池である。ケース82は、ケース本体84と、その上方の開口部を閉鎖する蓋85とを有している。 As shown in FIGS. 2 and 3, the secondary battery 62 is a rectangular parallelepiped case 82 in which an electrode body 83 is housed together with a non-aqueous electrolyte. The secondary battery 62 is, for example, a lithium ion secondary battery. The case 82 has a case body 84 and a lid 85 that closes an opening above the case body 84.

電極体83は、詳細については図示しないが、銅箔からなる基材に活物質を塗布した負極要素と、アルミニウム箔からなる基材に活物質を塗布した正極要素との間に、多孔性の樹脂フィルムからなるセパレータを配置したものである。これらはいずれも帯状で、セパレータに対して負極要素と正極要素とを幅方向の反対側にそれぞれ位置をずらした状態で、ケース本体84に収容可能となるように扁平状に巻回されている。 Although not shown in detail, the electrode body 83 is porous between the negative electrode element in which the active material is applied to the base material made of copper foil and the positive electrode element in which the active material is applied to the base material made of aluminum foil. A separator made of a resin film is arranged. All of these are band-shaped, and are wound flat so that they can be accommodated in the case body 84 with the negative electrode element and the positive electrode element shifted to the opposite sides in the width direction with respect to the separator. ..

正極要素には正極集電体86を介して正極端子87が、負極要素には負極集電体88を介して負極端子89がそれぞれ接続されている。正極集電体86及び負極集電体88は、平板状の台座部90と、この台座部90から延びる脚部91とからなる。台座部90には貫通孔が形成されている。脚部91は正極要素又は負極要素に接続されている。正極端子87及び負極端子89は、端子本体部92と、その下面中心部分から下方に突出する軸部93とからなる。そのうち、正極端子87の端子本体部92と軸部93とは、アルミニウム(単一材料)によって一体成形されている。負極端子89においては、端子本体部92がアルミニウム製で、軸部93が銅製であり、これらを組み付けたものである。正極端子87及び負極端子89の端子本体部92は、蓋85の両端部に絶縁材料からなるガスケット94を介して配置され、このガスケット94から外方へ露出されている。 The positive electrode terminal 87 is connected to the positive electrode element via the positive electrode current collector 86, and the negative electrode terminal 89 is connected to the negative electrode element via the negative electrode current collector 88. The positive electrode current collector 86 and the negative electrode current collector 88 include a flat plate-shaped pedestal portion 90 and leg portions 91 extending from the pedestal portion 90. A through hole is formed in the pedestal portion 90. The leg 91 is connected to a positive electrode element or a negative electrode element. The positive electrode terminal 87 and the negative electrode terminal 89 include a terminal body portion 92 and a shaft portion 93 protruding downward from the center portion of the lower surface thereof. Among them, the terminal body portion 92 and the shaft portion 93 of the positive electrode terminal 87 are integrally molded with aluminum (single material). In the negative electrode terminal 89, the terminal body portion 92 is made of aluminum and the shaft portion 93 is made of copper, and these are assembled. The terminal body 92 of the positive electrode terminal 87 and the negative electrode terminal 89 is arranged at both ends of the lid 85 via a gasket 94 made of an insulating material, and is exposed to the outside from the gasket 94.

蓋85は、圧力開放弁95を有している。圧力開放弁95は、図2に示すように、正極端子87と負極端子89の間に位置している。圧力開放弁95は、ケース82の内圧が制限値を超えた時に、開放して、ケース82の内圧を下げる。 The lid 85 has a pressure release valve 95. As shown in FIG. 2, the pressure release valve 95 is located between the positive electrode terminal 87 and the negative electrode terminal 89. When the internal pressure of the case 82 exceeds the limit value, the pressure release valve 95 opens to reduce the internal pressure of the case 82.

バッテリ50は、図4に示すように、自動二輪車10に搭載して使用することが出来る。バッテリ50は、自動二輪車10の駆動装置であるエンジン20の始動用でもよい。 As shown in FIG. 4, the battery 50 can be mounted on the motorcycle 10 and used. The battery 50 may be used for starting the engine 20 which is the driving device of the motorcycle 10.

2.バッテリ50の電気的構成
図5はバッテリ50のブロック図である。バッテリ50は、組電池60と、第1電流計測部55と、電流遮断装置53と、信号処理回路58と、第2電流計測部140と、電圧計測部120と、監視装置130と、組電池60の温度を検出する温度センサ(図略)と、を備える。
2. 2. Electrical Configuration of Battery 50 FIG. 5 is a block diagram of battery 50. The battery 50 includes an assembled battery 60, a first current measuring unit 55, a current interrupting device 53, a signal processing circuit 58, a second current measuring unit 140, a voltage measuring unit 120, a monitoring device 130, and an assembled battery. A temperature sensor (not shown) for detecting the temperature of 60 is provided.

組電池60は、複数の二次電池62から構成されている。二次電池62は、12個あり、3並列で4直列に接続されている。図5は、並列に接続された3つの二次電池62を1つの電池記号で表している。二次電池62は「蓄電素子」の一例である。バッテリ50は、定格12Vである。 The assembled battery 60 is composed of a plurality of secondary batteries 62. There are twelve secondary batteries 62, which are connected in three parallels and four in series. In FIG. 5, three secondary batteries 62 connected in parallel are represented by one battery symbol. The secondary battery 62 is an example of a “storage element”. The battery 50 is rated at 12V.

組電池60、電流遮断装置53及び第1電流計測部55は、パワーライン70P、パワーライン70Nを介して、直列に接続されている。パワーライン70P、パワーライン70Nは電流経路の一例である。 The assembled battery 60, the current cutoff device 53, and the first current measuring unit 55 are connected in series via the power line 70P and the power line 70N. The power line 70P and the power line 70N are examples of current paths.

パワーライン70Pは、第1外部端子51と組電池60の正極とを接続するパワーラインである。パワーライン70Nは、第2外部端子52と組電池60の負極とを接続するパワーラインである。 The power line 70P is a power line that connects the first external terminal 51 and the positive electrode of the assembled battery 60. The power line 70N is a power line that connects the second external terminal 52 and the negative electrode of the assembled battery 60.

電流遮断装置53と第1電流計測部55は、組電池60の負極に位置し、負極側のパワーライン70Nに設けられている。 The current cutoff device 53 and the first current measuring unit 55 are located on the negative electrode of the assembled battery 60, and are provided on the power line 70N on the negative electrode side.

電流遮断装置53はリレーなどの有接点スイッチ(機械式)やFETやトランジスタなどの半導体スイッチでもよい。電流遮断装置53は、正常時はクローズに制御される。異常時に、電流遮断装置53をオープンにより電流Iを遮断することが出来る。 The current cutoff device 53 may be a contact switch (mechanical type) such as a relay or a semiconductor switch such as an FET or a transistor. The current cutoff device 53 is normally controlled to be closed. At the time of abnormality, the current I can be cut off by opening the current cutoff device 53.

第1電流計測部55は、シャント抵抗でもよい。シャント抵抗は金属板製の抵抗体である。シャント抵抗は、一対の電極57A、電極57Bと、抵抗体56と、を備える。 The first current measuring unit 55 may be a shunt resistor. A shunt resistor is a resistor made of a metal plate. The shunt resistor includes a pair of electrodes 57A, an electrode 57B, and a resistor 56.

抵抗体56は、電気抵抗の温度変化率の小さい合金(一例として、銅、マンガン、ニッケルの合金:マンガニン)である。電極57A、電極57Bは、銅などの金属である。一対の電極57Aと電極57Bは、抵抗体56の両側に位置しており、抵抗体56に対して溶接により接合されている。 The resistor 56 is an alloy having a small temperature change rate of electrical resistance (for example, an alloy of copper, manganese, and nickel: manganin). The electrodes 57A and 57B are metals such as copper. The pair of electrodes 57A and 57B are located on both sides of the resistor 56 and are joined to the resistor 56 by welding.

第1電流計測部55は、バッテリ50の電流Iに比例した電圧を発生する。信号処理回路58は、第1電流計測部55の両端に信号線を介して接続されている。 The first current measuring unit 55 generates a voltage proportional to the current I of the battery 50. The signal processing circuit 58 is connected to both ends of the first current measuring unit 55 via a signal line.

信号処理回路58は、第1電流計測部55の両端電圧Vrをディジタル値に変換して監視装置130に出力する。監視装置130は、入力される電圧値Vrより、電流Iを取得することができる。 The signal processing circuit 58 converts the voltage Vr across the first current measuring unit 55 into a digital value and outputs it to the monitoring device 130. The monitoring device 130 can acquire the current I from the input voltage value Vr.

電圧計測部120は、4つの二次電池62、二次電池62、二次電池62、二次電池62の電池電圧Vと、組電池60の総電圧を検出することができる。組電池60の総電圧は、4つの二次電池62の合計電圧である。 The voltage measuring unit 120 can detect the battery voltage V of the four secondary batteries 62, the secondary battery 62, the secondary battery 62, and the secondary battery 62, and the total voltage of the assembled battery 60. The total voltage of the assembled battery 60 is the total voltage of the four secondary batteries 62.

第2電流計測部140は、図6に示すように、電流センサ141と、コンパレータ145を含む。電流センサ141は、磁気式でもよい。電流センサ141は、電流Iにより生じる磁束の大きさに比例した検出信号を出力する。コンパレータ145は、閾値電圧と、電流センサ141の検出電圧を比較して、電流センサ141の検出電圧の方が高い場合、監視装置130に起動信号Saを出力する。第2電流計測部140は、組電池60に流れる閾値Ix以上の電流を検出して、起動信号Saを出力する起動センサである。 As shown in FIG. 6, the second current measuring unit 140 includes a current sensor 141 and a comparator 145. The current sensor 141 may be of a magnetic type. The current sensor 141 outputs a detection signal proportional to the magnitude of the magnetic flux generated by the current I. The comparator 145 compares the threshold voltage with the detection voltage of the current sensor 141, and outputs a start signal Sa to the monitoring device 130 when the detection voltage of the current sensor 141 is higher. The second current measurement unit 140 is a start sensor that detects a current of the threshold value Ix or more flowing through the assembled battery 60 and outputs a start signal Sa.

第2電流計測部140は、図5に示すように、負極のパワーライン70Nの近傍に位置しており、パワーライン70Nの電流Iが閾値Ix以上の場合、監視装置130に起動信号を出力する。 As shown in FIG. 5, the second current measuring unit 140 is located near the power line 70N of the negative electrode, and outputs a start signal to the monitoring device 130 when the current I of the power line 70N is equal to or higher than the threshold value Ix. ..

図7は、回路基板100と第2電流計測部140との位置関係を示している。回路基板100の第1面100Aには、パワーライン70Nが位置する。パワーライン70Nは、金属箔によるパターンである。第1電流計測部55は、回路基板100の第1面100Aのパワーライン70N上に位置する。第2電流計測部140は、回路基板100の第2面100Bに位置する。第2電流計測部140は、パワーライン70Nに流れる電流Iの磁界を検出し易いように、パワーライン70Nの真下に位置する。 FIG. 7 shows the positional relationship between the circuit board 100 and the second current measuring unit 140. A power line 70N is located on the first surface 100A of the circuit board 100. The power line 70N is a pattern made of metal foil. The first current measuring unit 55 is located on the power line 70N on the first surface 100A of the circuit board 100. The second current measuring unit 140 is located on the second surface 100B of the circuit board 100. The second current measuring unit 140 is located directly below the power line 70N so that the magnetic field of the current I flowing through the power line 70N can be easily detected.

図8は、第1電流計測部55の電流計測範囲F1と、第2電流計測部140の電流計測範囲F2を示している。第1電流計測部55は、バッテリ保護のため短絡電流Isを計測できるように広範囲でもよい。短絡電流Isが最大1500A程度である場合、第1電流計測部55の電流計測範囲F1は、0〜2000[A]程度でもよい。閾値Iyは過電流を判断する閾値である。閾値Iyはバッテリ50を安全に使用できる電流上限値である。 FIG. 8 shows the current measurement range F1 of the first current measurement unit 55 and the current measurement range F2 of the second current measurement unit 140. The first current measuring unit 55 may have a wide range so that the short-circuit current Is can be measured for battery protection. When the short-circuit current Is is about 1500 A at the maximum, the current measurement range F1 of the first current measurement unit 55 may be about 0 to 2000 [A]. The threshold value Iy is a threshold value for determining an overcurrent. The threshold value Iy is a current upper limit value at which the battery 50 can be used safely.

電流計測範囲と分解能(検出できる最小単位)は、一般的にトレードオフの関係にあり、第1電流計測部55の分解能は低く、10[A]以下の電流は、検出精度は低い。 The current measurement range and the resolution (the smallest unit that can be detected) are generally in a trade-off relationship, and the resolution of the first current measurement unit 55 is low, and the detection accuracy of a current of 10 [A] or less is low.

第2電流計測部140の電流計測範囲F2は、第1電流計測部55の電流計測範囲F1よりも狭くてもよい。第2電流計測部140の電流計測範囲F2は、0〜5[A]程度でもよい。第2電流計測部140が起動信号Saを出力する閾値Ixは1〜2「A」であり、第2電流計測部140は、第1電流計測部55による高精度な計測が困難な小電流を検出して、起動信号Saを出力する。電流計測範囲F2は、閾値Iyは含まず、閾値Ixは含んでいてもよい。 The current measurement range F2 of the second current measurement unit 140 may be narrower than the current measurement range F1 of the first current measurement unit 55. The current measurement range F2 of the second current measurement unit 140 may be about 0 to 5 [A]. The threshold value Ix at which the second current measuring unit 140 outputs the start signal Sa is 1 to 2 “A”, and the second current measuring unit 140 measures a small current that is difficult to measure with high accuracy by the first current measuring unit 55. Detects and outputs the start signal Sa. The current measurement range F2 does not include the threshold value Iy and may include the threshold value Ix.

監視装置130は、CPU131と、メモリ133と、起動信号Saの受信確認を行う信号受信部135を備える。監視装置130は、電圧計測部120、第1電流計測部55、温度センサの出力に基づいて、バッテリ50の監視処理を行う。バッテリ50の監視処理は、バッテリ50の電流Iの異常、各二次電池62の電池電圧Vの異常を、バッテリ50の温度の異常を監視する処理でもよい。 The monitoring device 130 includes a CPU 131, a memory 133, and a signal receiving unit 135 for confirming reception of the start signal Sa. The monitoring device 130 monitors the battery 50 based on the outputs of the voltage measuring unit 120, the first current measuring unit 55, and the temperature sensor. The monitoring process of the battery 50 may be a process of monitoring an abnormality of the current I of the battery 50, an abnormality of the battery voltage V of each secondary battery 62, and an abnormality of the temperature of the battery 50.

監視装置130は、バッテリ50の異常監視のみ行い、SOCやSOHは非計測でもよい。SOC(state of charge)は、組電池50の充電状態である。SOCは満充電容量(実容量)に対する残存容量の比率である。SOH(state of helth)は、組電池50の健康状態である。SOHは、内部抵抗増加率や容量維持率から算出することが出来る。 The monitoring device 130 only monitors the abnormality of the battery 50, and the SOC and SOH may not be measured. The SOC (state of charge) is the charged state of the assembled battery 50. SOC is the ratio of the remaining capacity to the full charge capacity (actual capacity). SOH (state of helth) is the health state of the assembled battery 50. SOH can be calculated from the internal resistance increase rate and the capacity maintenance rate.

監視装置130は分岐線137を通じて組電池60に接続されている。監視装置130は、組電池60を電源とする。 The monitoring device 130 is connected to the assembled battery 60 through the branch line 137. The monitoring device 130 uses the assembled battery 60 as a power source.

第1電流計測部55、信号処理回路58、電圧計測部120、第2電流計測部140及び監視装置130は、バッテリ50を監視する監視ユニット110である。監視ユニット110は、回路基板100上に設けられている。 The first current measuring unit 55, the signal processing circuit 58, the voltage measuring unit 120, the second current measuring unit 140, and the monitoring device 130 are monitoring units 110 that monitor the battery 50. The monitoring unit 110 is provided on the circuit board 100.

バッテリ50には、図5に示すように、エンジン始動装置であるセルモータ21、車両発電機であるオルタネータ23、一般電気負荷25が接続されている。一般電気負荷25は、定格12Vであり、車両ECU、ヘッドランプ、補機類などを例示することができる。 As shown in FIG. 5, the battery 50 is connected to a starter 21 which is an engine starting device, an alternator 23 which is a vehicle generator, and a general electric load 25. The general electric load 25 has a rating of 12 V, and can exemplify vehicle ECUs, headlamps, accessories, and the like.

また、バッテリ50は通信レスであり、自動二輪車10との通信機能を有していない。つまり、バッテリ50は、有線や無線などの通信形態を問わず、車両との通信を可能とする通信手段(通信部)を有していない。バッテリ50は通信レスであることから、監視装置130は、自動二輪車10から車両の走行状態やエンジン20の動作状況(エンジン始動やエンジン停止など)に関する情報を受け取ることが出来ない。 Further, the battery 50 is communication-less and does not have a communication function with the motorcycle 10. That is, the battery 50 does not have a communication means (communication unit) that enables communication with the vehicle regardless of the communication form such as wired or wireless. Since the battery 50 is communication-less, the monitoring device 130 cannot receive information on the running state of the vehicle and the operating state of the engine 20 (engine start, engine stop, etc.) from the motorcycle 10.

図9はリチウムイオン二次電池62のSOC−OCV特性を示す。リチウムイオン二次電池は、正極活物質にリン酸鉄リチウム(LiFePO4)、負極活物質にグラファイトを用いたリン酸鉄系である。OCV(open circuit voltage:開放電圧)は、二次電池62の開放電圧である。二次電池62の開放電圧は、無電流又は無電流とみなせる状態において、二次電池62の電圧を計測することにより、取得できる。 FIG. 9 shows the SOC-OCV characteristics of the lithium ion secondary battery 62. The lithium ion secondary battery is an iron phosphate type using lithium iron phosphate (LiFePO4) as the positive electrode active material and graphite as the negative electrode active material. The OCV (open circuit voltage) is the open circuit voltage of the secondary battery 62. The open circuit voltage of the secondary battery 62 can be obtained by measuring the voltage of the secondary battery 62 in a state where it can be regarded as no current or no current.

リチウムイオン二次電池62は、SOCが概ね31%から97%の範囲は、グラフがほぼ平坦なプラトー領域H1である。プラトー領域H1は、SOCの変化量に対するOCVの変化量が2[mV/%]以下の領域である。プラトー領域H1は、SOCに対するOCVの変化率が所定値以下の第1領域である。 In the lithium ion secondary battery 62, the SOC in the range of approximately 31% to 97% is the plateau region H1 in which the graph is substantially flat. The plateau region H1 is a region in which the amount of change in OCV with respect to the amount of change in SOC is 2 [mV /%] or less. The plateau region H1 is a first region in which the rate of change of OCV with respect to SOC is equal to or less than a predetermined value.

SOCが31%以下の範囲H2、97%以上の範囲H3は、SOCの変化量に対するOCVの変化量が、プラトー領域H1よりも大きい高変化領域である。 The range H2 in which the SOC is 31% or less and the range H3 in which the SOC is 97% or more are high change regions in which the amount of change in OCV with respect to the amount of change in SOC is larger than that in the plateau region H1.

3.監視装置の起動処理
監視装置130の電源は、組電池60である。電力消費を抑えるためには、エンジン停止時など、バッテリ50の非使用期間は、監視装置130によるバッテリ監視を停止するか、頻度を下げることが好ましい。
3. 3. Start-up processing of the monitoring device The power source of the monitoring device 130 is the assembled battery 60. In order to reduce power consumption, it is preferable to stop the battery monitoring by the monitoring device 130 or reduce the frequency during the non-use period of the battery 50 such as when the engine is stopped.

監視装置130は、第1電流計測部55の計測値に基づいて、エンジン20の動作状態を判断し、監視モードの切り換えを行う。つまり、電流Iが所定値以上の場合、エンジン20が動作していると判断して、バッテリ50の監視を短周期N1で行う第1モードを実行する。電流Iが所定値未満の場合、エンジン20が停止していると判断して、バッテリ50の監視を長周期N2で行う第2モードを実行する。N1は一例として10[ms]であり、N2は一例として60[s]である。所定値は、一例として15[A]である。周期Nの切り換えはCPU131の内部クロックを利用してもよい。 The monitoring device 130 determines the operating state of the engine 20 based on the measured value of the first current measuring unit 55, and switches the monitoring mode. That is, when the current I is equal to or greater than a predetermined value, it is determined that the engine 20 is operating, and the first mode in which the battery 50 is monitored in the short cycle N1 is executed. When the current I is less than a predetermined value, it is determined that the engine 20 is stopped, and the second mode in which the battery 50 is monitored in the long period N2 is executed. N1 is 10 [ms] as an example, and N2 is 60 [s] as an example. The predetermined value is 15 [A] as an example. The internal clock of the CPU 131 may be used to switch the period N.

第2モード中、監視装置130は、図10に示すように、長周期N2で起動して監視処理を行い、監視処理を実行していない期間は監視機能を停止して休止する。休止は、監視機能を停止して電力消費の小さい状態である。休止中、監視装置130は、信号受信部135による受信確認処理、つまり、起動信号Saの受信の有無を確認する処理だけを行う。図10では、監視処理の実行期間を「W」で示し、監視装置130の休止期間を「R」で示している。 In the second mode, as shown in FIG. 10, the monitoring device 130 is started in a long period N2 to perform the monitoring process, and the monitoring function is stopped and paused during the period when the monitoring process is not executed. Hibernation is a state in which the monitoring function is stopped and power consumption is low. During hibernation, the monitoring device 130 only performs a reception confirmation process by the signal receiving unit 135, that is, a process of confirming whether or not the start signal Sa has been received. In FIG. 10, the execution period of the monitoring process is indicated by “W”, and the pause period of the monitoring device 130 is indicated by “R”.

図11は、監視装置の起動処理のフローチャートである。監視装置130の休止中、つまり休止期間Rに、自動二輪車10の電気負荷25が使用されて、閾値Ixを超える電流Iが流れると、第2電流計測部140から監視装置130に対して起動信号Saが出力される(S10)。 FIG. 11 is a flowchart of the activation process of the monitoring device. When the electric load 25 of the motorcycle 10 is used and the current I exceeding the threshold value Ix flows during the suspension of the monitoring device 130, that is, during the suspension period R, the second current measuring unit 140 sends a start signal to the monitoring device 130. Sa is output (S10).

信号受信部135が起動信号Saを受信すると、監視装置130は起動して、バッテリ50の監視処理を実行可能な状態にする(S20)。つまり、監視処理で使用される演算部やメモリ133を立ち上げて監視処理を実行できる状態にする。演算部は、監視装置130に設けた専用ICでもいいし、CPU131の一部でもよい。そして、監視装置130は、起動後、監視モードを第2モードから第1モードに切り換え、短周期N1で起動して、バッテリ50の監視を再開する(S40)。 When the signal receiving unit 135 receives the activation signal Sa, the monitoring device 130 is activated to make the monitoring process of the battery 50 executable (S20). That is, the arithmetic unit and the memory 133 used in the monitoring process are started up so that the monitoring process can be executed. The calculation unit may be a dedicated IC provided in the monitoring device 130, or may be a part of the CPU 131. Then, after the monitoring device 130 is started, the monitoring mode is switched from the second mode to the first mode, started in the short cycle N1, and the monitoring of the battery 50 is restarted (S40).

時刻t1に起動信号Saを受信した場合、図10に示すように、監視装置130は、時刻t1にて監視処理を実行し、それ以降、第1モードでバッテリ50の監視を行う。 When the start signal Sa is received at time t1, as shown in FIG. 10, the monitoring device 130 executes the monitoring process at time t1, and thereafter monitors the battery 50 in the first mode.

第1モード中、監視装置130は、信号受信部135を停止して起動信号Saの受信確認をしなくてもよい。起動信号Saの受信確認は、第2モード中において、監視装置130の休止期間Rを対象に行うとよい。 During the first mode, the monitoring device 130 does not have to stop the signal receiving unit 135 to confirm the reception of the start signal Sa. The reception confirmation of the activation signal Sa may be performed for the pause period R of the monitoring device 130 in the second mode.

5.効果説明
閾値Ixを超える電流を検出すると、第2電流計測部140が監視装置130に起動信号Saを出力する。監視装置130は、休止中に起動信号Saを受信すると、それに応答して、バッテリ50の監視を再開する。つまり、監視装置130の休止中に、バッテリ50に閾値Ixを超える電流が流れると、それをトリガーにして、バッテリ50の監視が開始されるので、バッテリ50の安全性を確保することが出来る。
5. Explanation of effect When a current exceeding the threshold value Ix is detected, the second current measuring unit 140 outputs a start signal Sa to the monitoring device 130. When the monitoring device 130 receives the start signal Sa during hibernation, the monitoring device 130 resumes monitoring of the battery 50 in response to the start signal Sa. That is, if a current exceeding the threshold value Ix flows through the battery 50 while the monitoring device 130 is inactive, the monitoring of the battery 50 is started by using this as a trigger, so that the safety of the battery 50 can be ensured.

特にリチウムイオン二次電池62は、図9に示すように、SOCの変化量に対するOCVの変化量がプラトー領域H1よりも大きい高変化領域H2と高変化領域H3を有している。高変化領域H2と高変化領域H3は、小電流によるわずかなSOC変化でも、電圧が急激に変化して、過充電や過放電になる場合がある。この技術を用いることで、リチウムイオン二次電池62が、過放電や過充電など危険な状態になることを抑制できる。 In particular, as shown in FIG. 9, the lithium ion secondary battery 62 has a high change region H2 and a high change region H3 in which the change amount of OCV with respect to the change amount of SOC is larger than that of the plateau region H1. In the high change region H2 and the high change region H3, even a slight SOC change due to a small current may cause a sudden change in voltage, resulting in overcharging or overdischarging. By using this technique, it is possible to prevent the lithium ion secondary battery 62 from being in a dangerous state such as over-discharging or over-charging.

第2電流計測部140は、第1電流計測部55に比べて、狭い電流計測範囲F2を持つので、第1電流計測部55では検出が難しい小電流の検出が可能であり、小電流を検出して監視装置130を起動させることが出来る。 Since the second current measuring unit 140 has a narrow current measuring range F2 as compared with the first current measuring unit 55, it is possible to detect a small current that is difficult for the first current measuring unit 55 to detect, and the small current is detected. Then, the monitoring device 130 can be activated.

自動二輪車用のバッテリ50は、自動車用に比べてコスト重視であることから、車両との通信機能を有していない場合がある。通信機能を有していないバッテリ50は、自動二輪車10の状態を通信で取得して、監視装置130を起動させる制御を行うことは出来ず、監視装置130の起動は、電流値からしか判断することが出来ない。本技術の適用により、小電流を検出して、監視装置130を起動することが出来るので、自動二輪車10の電気負荷25が使用されて第1電流計測部55では検出が困難なレベルの電流が流れた場合に、通信機能がなくても、監視装置130を起動することが可能であり、バッテリ50が未監視のままになることを抑制することが出来る。 Since the battery 50 for a motorcycle is more cost-oriented than that for an automobile, it may not have a communication function with the vehicle. The battery 50, which does not have a communication function, cannot control the activation of the monitoring device 130 by acquiring the state of the motorcycle 10 by communication, and the activation of the monitoring device 130 is determined only from the current value. I can't. By applying this technology, it is possible to detect a small current and start the monitoring device 130, so that the electric load 25 of the motorcycle 10 is used and the current at a level that is difficult for the first current measuring unit 55 to detect is generated. When the current flows, the monitoring device 130 can be activated even if there is no communication function, and it is possible to prevent the battery 50 from being left unmonitored.

監視装置130は、SOC及びSOHを計測しない。SOC及びSOHを計測しないバッテリ50は、高精度な電流計測機能が不要であり、第1電流計測部55に高精度なセンサを用いることは適切でない。本技術の適用により、第1電流計測部55に高精度なセンサを使用しなくても、小電流での起動検出が可能となり、また過電流に対する保護も行うことが出来る。 The monitoring device 130 does not measure SOC and SOH. The battery 50 that does not measure SOC and SOH does not require a high-precision current measurement function, and it is not appropriate to use a high-precision sensor for the first current measurement unit 55. By applying this technology, it is possible to detect start-up with a small current without using a high-precision sensor for the first current measurement unit 55, and it is also possible to protect against overcurrent.

自動二輪車用のバッテリ50は、エンジン始動用である。エンジン始動用のバッテリ50は、エンジン始動時に大電流を放電する。電流センサ141は磁気式であり、非接触である。そのため、バッテリ50が大電流を放電しても、発熱が少なく、故障が起き難いため、監視装置の起動不良を防止できる。 The battery 50 for a motorcycle is for starting an engine. The battery 50 for starting the engine discharges a large current when the engine is started. The current sensor 141 is magnetic and non-contact. Therefore, even if the battery 50 discharges a large current, heat generation is small and failure is unlikely to occur, so that it is possible to prevent a start failure of the monitoring device.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described in the above description and drawings, and for example, the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態1では、蓄電素子の一例として、二次電池62を例示した。蓄電素子は、二次電池62に限らず、キャパシタでもよい。二次電池62は、リチウムイオン二次電池に限らず他の非水電解質二次電池でもよい。鉛蓄電池などを使用することも出来る。蓄電素子は、複数を直並列に接続する場合に限らず、直列の接続や、単セルの構成でもよい。 (1) In the first embodiment, the secondary battery 62 is illustrated as an example of the power storage element. The power storage element is not limited to the secondary battery 62, and may be a capacitor. The secondary battery 62 is not limited to the lithium ion secondary battery, and may be another non-aqueous electrolyte secondary battery. Lead-acid batteries and the like can also be used. The power storage element is not limited to the case where a plurality of energy storage elements are connected in series and parallel, and may be connected in series or in a single cell configuration.

(2)上記実施形態1では、バッテリ50をエンジン始動用とした。バッテリ50の使用用途は、特定の用途に限定されない。バッテリ50は、移動体用(車両用や船舶用、AGVなど)や、産業用(無停電電源システムや太陽光発電システムの蓄電装置)など、種々の用途に使用してもよい。車両は自動二輪車に限らず、自動四輪車でもよい。 (2) In the first embodiment, the battery 50 is used for starting the engine. The usage of the battery 50 is not limited to a specific usage. The battery 50 may be used for various purposes such as for mobile bodies (for vehicles, ships, AGVs, etc.) and for industrial purposes (power storage devices for power failure-free power generation systems and photovoltaic power generation systems). The vehicle is not limited to a motorcycle, but may be a motorcycle.

(3)上記実施形態1では、監視ユニット110は、第1電流計測部55と、信号処理回路58と、電圧計測部120と、監視装置130と、第2電流計測部140とを含んだ。監視ユニット110は、少なくとも、第1電流計測部55と、監視装置130と、第2電流計測部140とを含めばよく、電圧計測部120や信号処理回路58は無くてもよい。 (3) In the first embodiment, the monitoring unit 110 includes a first current measuring unit 55, a signal processing circuit 58, a voltage measuring unit 120, a monitoring device 130, and a second current measuring unit 140. The monitoring unit 110 may include at least the first current measuring unit 55, the monitoring device 130, and the second current measuring unit 140, and the voltage measuring unit 120 and the signal processing circuit 58 may be omitted.

(4)上記実施形態1では、バッテリ50の監視モードとして、バッテリ50を短周期N1で監視する第1モードと、バッテリ50を長周期N2で監視する第2モードとを設けた。長周期N2での監視を「監視停止」に変更してよい。つまり、電流Iが所定値以上の場合、エンジン20が動作していると判断して、短周期N1でバッテリ50の監視を行い、電流Iが所定値未満の場合、エンジン20が停止していると判断して、バッテリ50の監視を停止して、監視装置130を休止させてもよい。監視装置130は、バッテリ50の監視を停止している期間に、第2電流計測部140から起動信号Saを受けると起動して、バッテリ50の監視を再開してもよい。 (4) In the first embodiment, as the monitoring mode of the battery 50, a first mode for monitoring the battery 50 in the short cycle N1 and a second mode for monitoring the battery 50 in the long cycle N2 are provided. Monitoring in the long period N2 may be changed to "monitoring stop". That is, when the current I is equal to or more than the predetermined value, it is determined that the engine 20 is operating, the battery 50 is monitored in a short cycle N1, and when the current I is less than the predetermined value, the engine 20 is stopped. Therefore, the monitoring of the battery 50 may be stopped and the monitoring device 130 may be suspended. The monitoring device 130 may be activated when the start signal Sa is received from the second current measuring unit 140 during the period in which the monitoring of the battery 50 is stopped, and the monitoring of the battery 50 may be resumed.

(5)上記実施形態1では、第2電流計測部140は、電流センサ141とコンパレータ145とを有した。第2電流計測部140は、電流センサ141とアンプを有してもよく、電流センサ141の計測する電流値を、アンプを用いて増幅して出力してもよい。第2電流計測部140から監視装置130に電流値を出力する場合、信号受信部135により電流値を受信すると共に、電流値のレベルを判定して、起動の可否を決めてもよい。実施形態1では、電流センサ141を磁気式としたが、他の検出方式でもよい。 (5) In the first embodiment, the second current measuring unit 140 has a current sensor 141 and a comparator 145. The second current measuring unit 140 may have a current sensor 141 and an amplifier, and may amplify and output the current value measured by the current sensor 141 by using the amplifier. When the current value is output from the second current measuring unit 140 to the monitoring device 130, the signal receiving unit 135 may receive the current value and determine the level of the current value to determine whether or not to start. In the first embodiment, the current sensor 141 is a magnetic type, but other detection methods may be used.

10 自動二輪車
50 バッテリ(蓄電装置)
51、52 外部端子
53 電流遮断装置
55 第1電流計測部
60 組電池
62 二次電池(蓄電素子)
110 監視ユニット
120 電圧計測部
130 監視装置
135 信号受信部
140 第2電流計測部
141 電流センサ
145 コンパレータ
10 Motorcycle 50 Battery (power storage device)
51, 52 External terminal 53 Current cutoff device 55 First current measurement unit 60 sets Battery 62 Secondary battery (power storage element)
110 Monitoring unit 120 Voltage measuring unit 130 Monitoring device 135 Signal receiving unit 140 Second current measuring unit 141 Current sensor 145 Comparator

Claims (11)

蓄電素子の監視ユニットであって、
前記蓄電素子の電流を計測する第1電流計測部と、
前記蓄電素子の電流を計測する第2電流計測部と、
監視装置と、を含み、
前記第1電流計測部は過電流の検出が可能な電流計測範囲を有し、
前記第2電流計測部の電流計測範囲は、前記第1電流計測部の電流計測範囲よりも狭く、
前記監視装置は、前記第2電流計測部が閾値以上の電流を休止中に検出した場合、起動して、前記第1電流計測部の計測値に基づいて前記蓄電素子の状態を監視する、監視ユニット。
It is a monitoring unit for power storage elements.
A first current measuring unit that measures the current of the power storage element, and
A second current measuring unit that measures the current of the power storage element, and
Including monitoring equipment
The first current measuring unit has a current measuring range capable of detecting an overcurrent.
The current measurement range of the second current measurement unit is narrower than the current measurement range of the first current measurement unit.
When the second current measuring unit detects a current equal to or higher than the threshold value during hibernation, the monitoring device is activated to monitor the state of the power storage element based on the measured value of the first current measuring unit. unit.
請求項1に記載の監視ユニットであって、
前記第2電流計測部は、磁気式の電流センサを有する、監視ユニット。
The monitoring unit according to claim 1.
The second current measuring unit is a monitoring unit having a magnetic current sensor.
請求項1又は請求項2に記載の監視ユニットであって、
前記第2電流計測部は、前記蓄電素子に流れる前記閾値以上の電流を検出して起動信号を出力する起動センサであり、
前記監視装置は、前記起動信号に応答して起動して、前記蓄電素子の状態を監視する、監視ユニット。
The monitoring unit according to claim 1 or 2.
The second current measuring unit is a start sensor that detects a current equal to or higher than the threshold value flowing through the power storage element and outputs a start signal.
The monitoring device is a monitoring unit that starts in response to the start signal and monitors the state of the power storage element.
請求項3に記載の監視ユニットであって、
前記起動センサは、電流センサと、前記電流センサの電流計測値を前記閾値と比較して前記起動信号を出力するコンパレータを含む、監視ユニット。
The monitoring unit according to claim 3.
The activation sensor is a monitoring unit including a current sensor and a comparator that compares the current measurement value of the current sensor with the threshold value and outputs the activation signal.
蓄電素子と、
請求項1〜請求項4のいずれか一項に記載の監視ユニットと、を備えた、蓄電装置。
Power storage element and
A power storage device comprising the monitoring unit according to any one of claims 1 to 4.
請求項5に記載の蓄電装置であって、
前記蓄電素子は、リチウムイオン二次電池である、蓄電装置。
The power storage device according to claim 5.
The power storage element is a power storage device that is a lithium ion secondary battery.
請求項5又は請求項6に記載の車載用の蓄電装置であって、
車両との通信機能を有さない、蓄電装置。
The vehicle-mounted power storage device according to claim 5 or 6.
A power storage device that does not have a communication function with the vehicle.
請求項5〜請求項7のいずれか一項に記載の自動二輪用の蓄電装置。 The power storage device for motorcycles according to any one of claims 5 to 7. 請求項5〜請求項8のいずれか一項に記載のエンジン始動用の蓄電装置。 The power storage device for starting an engine according to any one of claims 5 to 8. 請求項5〜請求項9のいずれか一項に記載の蓄電装置であって、
前記監視装置は、前記蓄電素子のSOC及びSOHを非計測である、蓄電装置。
The power storage device according to any one of claims 5 to 9.
The monitoring device is a power storage device that does not measure the SOC and SOH of the power storage element.
監視ユニットの起動方法であって、
前記監視ユニットは、
蓄電素子の電流を計測する第1電流計測部と、
前記蓄電素子の電流を計測する第2電流計測部と、
監視装置と、を含み、
前記第1電流計測部は過電流の検出が可能な電流計測範囲を有し、
前記第2電流計測部の電流計測範囲は、前記第1電流計測部の電流計測範囲よりも狭く、
前記第2電流計測部が閾値以上の電流を休止中に検出した場合、監視装置は起動する、監視ユニットの起動方法。
How to start the monitoring unit
The monitoring unit
The first current measuring unit that measures the current of the power storage element and
A second current measuring unit that measures the current of the power storage element, and
Including monitoring equipment
The first current measuring unit has a current measuring range capable of detecting an overcurrent.
The current measurement range of the second current measurement unit is narrower than the current measurement range of the first current measurement unit.
A method of starting a monitoring unit, wherein the monitoring device is started when the second current measuring unit detects a current equal to or higher than a threshold value during hibernation.
JP2019104299A 2019-06-04 2019-06-04 Monitoring unit, power storage device, and start method of monitoring unit Pending JP2020198722A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019104299A JP2020198722A (en) 2019-06-04 2019-06-04 Monitoring unit, power storage device, and start method of monitoring unit
PCT/JP2020/020490 WO2020246285A1 (en) 2019-06-04 2020-05-25 Monitoring unit, electricity storage device, and method for starting up monitoring unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104299A JP2020198722A (en) 2019-06-04 2019-06-04 Monitoring unit, power storage device, and start method of monitoring unit

Publications (1)

Publication Number Publication Date
JP2020198722A true JP2020198722A (en) 2020-12-10

Family

ID=73649604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104299A Pending JP2020198722A (en) 2019-06-04 2019-06-04 Monitoring unit, power storage device, and start method of monitoring unit

Country Status (2)

Country Link
JP (1) JP2020198722A (en)
WO (1) WO2020246285A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052296A (en) * 2011-09-09 2014-03-20 Gs Yuasa Corp Monitoring device
WO2017006514A1 (en) * 2015-07-06 2017-01-12 三洋電機株式会社 Battery pack and method for controlling discharge from secondary battery
WO2018008714A1 (en) * 2016-07-07 2018-01-11 株式会社Gsユアサ Vehicle communication system, battery management device, circuit board, battery, and communications specification switching method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052296A (en) * 2011-09-09 2014-03-20 Gs Yuasa Corp Monitoring device
WO2017006514A1 (en) * 2015-07-06 2017-01-12 三洋電機株式会社 Battery pack and method for controlling discharge from secondary battery
WO2018008714A1 (en) * 2016-07-07 2018-01-11 株式会社Gsユアサ Vehicle communication system, battery management device, circuit board, battery, and communications specification switching method

Also Published As

Publication number Publication date
WO2020246285A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US10305299B2 (en) Battery apparatus, vehicle, battery management program, and management method of battery apparatus
US10800261B2 (en) Battery state estimation apparatus, assembled battery, energy storage system, and methods of using the same
JP2018136314A (en) Fault diagnosis device, power storage device, and fault diagnosis method
WO2022249943A1 (en) Estimation device, power storage device, and estimation method
WO2020179479A1 (en) Management device for storage element, storage device, system, method for managing storage element, and computer program
US20200400749A1 (en) Current measuring device, energy storage apparatus, and current measurement method
WO2022196362A1 (en) Power storage device and control method for power storage device
JP7464041B2 (en) Storage element management device and storage device
WO2020246285A1 (en) Monitoring unit, electricity storage device, and method for starting up monitoring unit
WO2022259766A1 (en) Power storage device and abnormal discharge detection method for power storage device
JP7099224B2 (en) Power storage element management device and power storage device
JP2021162552A (en) Power storage element management device, power storage element measurement method, and power storage device
JPWO2020100707A1 (en) Management equipment, management methods, and vehicles
US12032032B2 (en) Energy storage apparatus, capacity estimation method for energy storage device, and capacity estimation program for energy storage device
JP7276682B2 (en) Storage device management device, power storage device, and storage device management method
WO2021039355A1 (en) Method for correcting state-of-charge estimation value of power storage element, management device of power storage element, and power storage element
WO2022249784A1 (en) Correction device, power storage device, and correction method
JP6969307B2 (en) Management device, power storage system, method of equalizing the remaining capacity of the power storage element, method of estimating the internal state of the power storage element
WO2022196398A1 (en) Power storage device, and energizing component temperature management method
JP7583997B2 (en) POWER STORAGE DEVICE AND METHOD FOR CONTROLLING POWER STORAGE DEVICE
JP2023146434A (en) Power storage device
JP7320177B2 (en) power storage device
JP2023025388A (en) Power storage device and method for managing power storage device
JP2022138443A (en) Power storage device, and current-measuring method
JP2023008149A (en) Abnormality detection method for power storage device and assembled battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231003