JP2020198702A - Output stabilizer - Google Patents

Output stabilizer Download PDF

Info

Publication number
JP2020198702A
JP2020198702A JP2019103476A JP2019103476A JP2020198702A JP 2020198702 A JP2020198702 A JP 2020198702A JP 2019103476 A JP2019103476 A JP 2019103476A JP 2019103476 A JP2019103476 A JP 2019103476A JP 2020198702 A JP2020198702 A JP 2020198702A
Authority
JP
Japan
Prior art keywords
power
output
renewable energy
power generation
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019103476A
Other languages
Japanese (ja)
Other versions
JP6877053B2 (en
Inventor
健太 小岩
Kenta Koiwa
健太 小岩
智也 石井
Tomoya Ishii
智也 石井
康志 劉
Kang-Zhi LIU
康志 劉
忠直 残間
Tadanao Zanma
忠直 残間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2019103476A priority Critical patent/JP6877053B2/en
Publication of JP2020198702A publication Critical patent/JP2020198702A/en
Application granted granted Critical
Publication of JP6877053B2 publication Critical patent/JP6877053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Abstract

To provide an output stabilizer which minimizes a phase lag of power (power after smoothing) transmitted to a power system to an output of a renewable energy power generator, and thus minimizes required rating output of an energy storage system.SOLUTION: An output stabilizer 6 is installed in a power system 5 to which a renewable energy power generator (wind generator) 1 is connected, and suppresses output change of the renewable energy power generator by exchanging storage power of an energy storage system 3 with the power system via an AC-DC converter 4. The AC-DC converter has: a detection circuit which detects at least output change of the renewable energy power generator; and a highpass filter which processes an output signal of the detection circuit.SELECTED DRAWING: Figure 1

Description

本発明は、再生可能エネルギー発電システムの電力系統に出力される電力を安定化する出力安定化装置に関し、より詳細には、再生可能エネルギー発電装置と電力貯蔵装置とを協調的に利用して電力系統に出力される電力を安定化する出力安定化装置に関する。 The present invention relates to an output stabilizer that stabilizes the electric power output to the power system of a renewable energy power generation system. More specifically, the present invention provides electric power by cooperatively utilizing a renewable energy power generation device and a power storage device. The present invention relates to an output stabilizer that stabilizes the power output to the grid.

近年、地球温暖化防止や化石燃料資源枯渇の観点から、風力エネルギーや太陽光エネルギーを利用する再生可能エネルギー発電装置が電力系統に多数接続されるようになってきた。そして、風力発電は、非枯渇性のクリーンエネルギーである風力エネルギーを利用した発電システムとして、世界各地で盛んに建設が行われている。また、離島や限られた地域内に電力を供給する小規模な配電網であるマイクログリッドに分散型電源として風力発電システムを配備することが検討されている。 In recent years, from the viewpoint of preventing global warming and depleting fossil fuel resources, many renewable energy power generation devices that use wind energy and solar energy have been connected to the power system. Wind power generation is being actively constructed all over the world as a power generation system using wind energy, which is a non-depleting clean energy. In addition, it is being considered to deploy a wind power generation system as a distributed power source on a microgrid, which is a small distribution network that supplies power to remote islands and limited areas.

しかし、自然エネルギーは不規則に変動するため、再生可能エネルギー発電装置を電力系統に導入すると、電力系統周波数や電力系統電圧が変動することになる。特に、風力エネルギーは不規則であり、風力発電機出力電力は風速の3乗に比例して大きく変動するため、電力系統周波数も乱れやすい。マイクログリッドに導入した場合、電力系統の規模が小さいため、電力系統への影響がより顕著になる。そのため、需要者からは電力品質を保持する要求があるので、風力発電設備を導入した電力系統も、電力系統周波数や電力系統電圧を一定に維持する必要がある。 However, since renewable energy fluctuates irregularly, when a renewable energy power generation device is introduced into the power system, the power system frequency and the power system voltage will fluctuate. In particular, wind energy is irregular, and the output power of a wind power generator fluctuates greatly in proportion to the cube of the wind speed, so that the power system frequency is also liable to be disturbed. When introduced into a microgrid, the impact on the power system becomes more pronounced because the scale of the power system is small. Therefore, since there is a demand from consumers to maintain the power quality, it is necessary to keep the power system frequency and the power system voltage constant even in the power system in which the wind power generation facility is installed.

風力変動による発電量の変動を補償するために、従来から風力発電システムに電力貯蔵システムを挿入して電力系統出力変動を抑制する方法が提案されている。そして、近年、電力貯蔵装置としてNaS電池などを使用した電力貯蔵システムが注目されている。電力貯蔵システムを風力発電設備に併設することにより、電力系統に悪影響を及ぼさない電力変動まで平滑化できる。しかし、電力貯蔵システムを併設することで設備コストが増加する。 In order to compensate for fluctuations in the amount of power generated due to fluctuations in wind power, a method has been conventionally proposed in which a power storage system is inserted into the wind power generation system to suppress fluctuations in power system output. In recent years, a power storage system using a NaS battery or the like as a power storage device has attracted attention. By installing the power storage system next to the wind power generation facility, it is possible to smooth out power fluctuations that do not adversely affect the power system. However, installing an electric power storage system will increase equipment costs.

例えば、下記非特許文献1には、風力発電システムに電力貯蔵システムを挿入して、両者を協調的に利用し、電力系統出力変動を抑制する出力安定化装置が開示されている。非特許文献1に開示された発明は、出力安定化装置の制御系に低域通過フィルタ(LPF)を用いた構成であり、風力発電システムの出力から変動成分を抽出し、その変動を抑制する電力を電力貯蔵システムが出力するものである。 For example, Non-Patent Document 1 below discloses an output stabilizer in which a power storage system is inserted into a wind power generation system and both are used in a coordinated manner to suppress fluctuations in power system output. The invention disclosed in Non-Patent Document 1 has a configuration in which a low-pass filter (LPF) is used in the control system of the output stabilizer, extracts fluctuation components from the output of the wind power generation system, and suppresses the fluctuation. The electric power is output by the electric power storage system.

由本勝久、七原俊也、輿水源太郎著 「風力発電出力平滑化用蓄電池の充電レベルの制御法-残存容量フィードバック制御に関する考察-」電気学会論文誌B,Vol.129,No.5,pp.605-613(2009)Katsuhisa Yumoto, Toshiya Shichihara, Gentaro Koshimizu "Controlling the Charge Level of Storage Batteries for Smoothing Wind Power Output-Considerations on Remaining Capacity Feedback Control-" Journal of the Institute of Electrical Engineers of Japan B, Vol.129, No.5, pp.605 -613 (2009)

従来の出力安定化装置のように低域通過フィルタを用いた制御系では、電力系統に悪影響を及ぼさない電力変動まで平滑化するためには、再生可能エネルギー発電(風力発電)の出力に対して、電力系統に送電される電力(平滑化後の電力)に大きな位相遅れが伴う。この位相遅れのため、電力貯蔵装置の所要定格出力が必要以上に増大してしまう問題点を有していた。定格出力の増大は、電力貯蔵装置が大型化するとともに、コストアップを招く要因となっていた。 In a control system that uses a low-pass filter like a conventional output stabilizer, in order to smooth out power fluctuations that do not adversely affect the power system, the output of renewable energy power generation (wind power generation) , The power transmitted to the power system (power after smoothing) is accompanied by a large phase delay. Due to this phase delay, there is a problem that the required rated output of the power storage device increases more than necessary. The increase in the rated output has been a factor in increasing the size of the power storage device and increasing the cost.

本発明は、上記課題に鑑みてなされたものであり、再生可能エネルギー発電の出力に対する、電力系統に送電される電力(平滑化後の電力)の位相遅れを最小化して、電力貯蔵装置の所要定格出力を最小化する出力安定化装置を提供することを目的とする。また、位相遅れの最小化に際して、簡単な制御系で、容易に実装できる出力安定化装置を提供することも目的とする。 The present invention has been made in view of the above problems, and requires a power storage device by minimizing the phase delay of the power transmitted to the power system (power after smoothing) with respect to the output of the renewable energy power generation. It is an object of the present invention to provide an output stabilizer that minimizes the rated output. Another object of the present invention is to provide an output stabilizer that can be easily mounted with a simple control system when minimizing the phase lag.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、再生可能エネルギー発電装置と電力貯蔵装置とを協調的に利用して電力系統に出力される電力を平滑化する場合、再生可能エネルギー発電の出力に対する、電力系統に送電される電力(平滑化後の電力)の位相遅れを小さくすればするほど、電力貯蔵装置の所要定格出力を小さくできることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have made a case where the power output to the power system is smoothed by using the renewable energy power generation device and the power storage device in a coordinated manner. We have found that the smaller the phase lag of the electric power transmitted to the electric power system (electric power after smoothing) with respect to the output of possible energy power generation, the smaller the required rated output of the electric power storage device can be, and to complete the present invention. I arrived.

本発明の一観点に係る出力安定化装置は、再生可能エネルギー発電装置を接続した電力系統に設置され、電力貯蔵装置の貯蔵電力を交直変換器を介して電力系統とやり取りすることにより再生可能エネルギー発電装置の出力変動を抑制する出力安定化装置において、交直変換器が、少なくとも再生可能エネルギー発電装置の出力変動を検知する検知回路と、検知回路の出力信号を処理する高域通過フィルタとを有することを特徴とするものである。 The output stabilizer according to one aspect of the present invention is installed in a power system to which a renewable energy power generation device is connected, and renewable energy is obtained by exchanging the stored power of the power storage device with the power system via an AC / DC converter. In the output stabilizer that suppresses the output fluctuation of the power generation device, the AC / DC converter has at least a detection circuit that detects the output fluctuation of the renewable energy power generation device and a high frequency pass filter that processes the output signal of the detection circuit. It is characterized by that.

さらに、高域通過フィルタの伝達関数K(s)が、
(ただし、Kpはゲイン、b、bは定数、sはラプラス演算子)
で表されることを特徴とするものである。
Further, the transfer function K (s) of the high frequency pass filter is
(However, Kp is the gain, b 0 , b 1 is the constant, and s is the Laplace operator)
It is characterized by being represented by.

さらに、再生可能エネルギー発電装置が、風力発電装置又は太陽光発電装置であることを特徴とするものである。 Further, the renewable energy power generation device is characterized by being a wind power generation device or a solar power generation device.

本発明によれば、再生可能エネルギー発電装置と電力貯蔵装置とを協調的に利用して、電力系統に出力される電力を平滑化する構成において、再生可能エネルギー発電の出力に対する、電力系統に送電される電力(平滑化後の電力)の位相遅れを最小化して、電力貯蔵装置の所要定格出力を最小化できる利点がある。その結果、電力貯蔵装置の小型化が可能になるとともに、低コスト化できる利点がある。また、位相遅れの最小化に際して、高域通過フィルタ等を設ける簡単な制御系で、容易に実装できる利点もある。 According to the present invention, in a configuration in which a renewable energy power generation device and a power storage device are used cooperatively to smooth the power output to the power system, power is transmitted to the power system with respect to the output of the renewable energy power generation. There is an advantage that the phase delay of the generated power (power after smoothing) can be minimized to minimize the required rated output of the power storage device. As a result, there is an advantage that the power storage device can be miniaturized and the cost can be reduced. Further, when minimizing the phase lag, there is an advantage that it can be easily implemented with a simple control system provided with a high frequency pass filter or the like.

実施形態に係る再生可能エネルギー発電装置における出力安定化装置の概要を示す構成図である。It is a block diagram which shows the outline of the output stabilization device in the renewable energy power generation device which concerns on embodiment. 図1のブロック線図を示す図である。It is a figure which shows the block diagram of FIG. 実施形態に係るウインドファームの出力電力(PWF)と電力貯蔵装置(ESS)の出力電力(P)と電力系統に送電される電力(P)とを示すイメージ図である。It is an image diagram which shows the output power (P WF ) of the wind farm which concerns on embodiment, the output power (P b ) of a power storage device (ESS), and the power (P g ) transmitted to a power system. 実施例に係る制御系のブロック線図を示す図である。It is a figure which shows the block diagram of the control system which concerns on Example. 実施例に係るウインドファーム(WF)の出力電力(PWF)と電力系統に送電される電力(P)とを示す図である。It is a diagram showing a power (P g) which is the transmission to the output power (P WF) and the power system of the wind farm (WF) according to the embodiment.

以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。 Hereinafter, embodiments of the present invention will be described. The scope of the present invention is not limited to these explanations, and other than the following examples, the scope of the present invention can be appropriately modified and implemented without impairing the gist of the present invention.

図1は、本実施形態の再生可能エネルギー発電装置における出力安定化装置の概要を示す構成図である。再生可能エネルギー発電装置として、ウインドファーム2を構成する複数の風力発電装置1を系統電源に連系させた電力系統5に設け、電力貯蔵装置3の貯蔵電力を交直変換器4を介して電力系統5とやり取りすることにより、ウインドファーム2の出力変動を抑制する出力安定化装置6を示す。すなわち、出力安定化装置6は、ウインドファーム2からの出力電力が所定値以上ならば、ウインドファーム2からの出力電力の一部を電力貯蔵装置3に充電し、ウインドファーム2からの出力電力が所定値以下ならば、電力貯蔵装置3の貯蔵電力の一部を電力系統5に放電することで、ウインドファーム2に出力変動が生じても、電力系統5の出力変動を抑制する構成である。そして、電力貯蔵装置3への充放電は、制御系を内蔵した交直変換器4によって制御されている。 FIG. 1 is a configuration diagram showing an outline of an output stabilizing device in the renewable energy power generation device of the present embodiment. As a renewable energy power generation device, a plurality of wind power generation devices 1 constituting the wind farm 2 are provided in the power system 5 connected to the system power supply, and the stored power of the power storage device 3 is transferred to the power system via the AC / DC converter 4. An output stabilizer 6 that suppresses output fluctuations of the wind farm 2 by interacting with 5 is shown. That is, if the output power from the wind farm 2 is equal to or higher than a predetermined value, the output stabilizer 6 charges the power storage device 3 with a part of the output power from the wind farm 2, and the output power from the wind farm 2 becomes the output power. If it is equal to or less than a predetermined value, a part of the stored power of the power storage device 3 is discharged to the power system 5, so that even if the output fluctuation occurs in the window farm 2, the output fluctuation of the power system 5 is suppressed. The charge / discharge to the power storage device 3 is controlled by the AC / DC converter 4 having a built-in control system.

なお、本実施形態において再生可能エネルギー発電装置は、石油や石炭、天然ガスなどの化石エネルギーとは違い、太陽光や風力、地熱といった地球資源の一部など自然界に常に存在するエネルギーを利用した発電装置であって、例えば太陽光発電装置、風力発電装置、バイオマス発電装置、地熱発電装置等を採用することができる。そして、本実施形態においては風力発電装置を採用した。 In the present embodiment, the renewable energy power generation device is different from fossil energy such as oil, coal, and natural gas, and generates power using energy that always exists in the natural world such as a part of earth resources such as solar power, wind power, and geothermal power. As the device, for example, a solar power generation device, a wind power generation device, a biomass power generation device, a geothermal power generation device, or the like can be adopted. Then, in this embodiment, a wind power generation device is adopted.

また、電力貯蔵装置は、電力を貯蔵できるとともに電力を充放電できる限りにおいて限定されるわけではないが、蓄電池、フライホイール等を採用することができる。 Further, the electric power storage device is not limited as long as it can store electric power and charge / discharge electric power, but a storage battery, a flywheel, or the like can be adopted.

また、交直変換器4は、電力貯蔵装置3及び電力系統5の一方が交流、他方が直流の場合に設けるものであって、電力貯蔵装置3及び電力系統5の両方が交流又は両方が直流の場合、電力貯蔵装置3の充放電を制御できる他の構成でもよい。すなわち、電力貯蔵装置3及び電力系統5の両方が交流の場合、交直変換器に代えてAC-ACコンバータが適しており、電力貯蔵装置3及び電力系統5の両方が直流の場合、交直変換器に代えてDC-DCコンバータが適している。 Further, the AC / DC converter 4 is provided when one of the power storage device 3 and the power system 5 is AC and the other is DC, and both the power storage device 3 and the power system 5 are AC or both are DC. In this case, another configuration that can control the charge / discharge of the power storage device 3 may be used. That is, when both the power storage device 3 and the power system 5 are AC, an AC-AC converter is suitable instead of the AC / DC converter, and when both the power storage device 3 and the power system 5 are DC, the AC / DC converter is suitable. A DC-DC converter is suitable instead.

次に、交直変換器4に内蔵された制御系について説明する。制御系は、ウインドファーム2の出力変動成分を検知する検知回路を有し、この検知回路の出力信号を処理する高域通過フィルタを有する構成で、高域通過フィルタの出力信号に基づいて、ウインドファーム2の出力変動を抑制する電力を出力安定化装置6が入出力するものである。 Next, the control system built in the AC / DC converter 4 will be described. The control system has a detection circuit that detects the output fluctuation component of the wind farm 2, and has a configuration having a high frequency pass filter that processes the output signal of this detection circuit. The control system has a window based on the output signal of the high frequency pass filter. The output stabilizer 6 inputs and outputs the electric power that suppresses the output fluctuation of the farm 2.

なお、ウインドファーム2の出力変動成分を検知する検知回路の構成として、ウインドファーム2の出力電気信号(出力電圧、出力電流、出力電力等)を検知してもよいし、出力変動に依存する風速や風向き又はその両者を検知する構成でもよい。また、ウインドファーム以外の再生可能エネルギー発電装置の場合も同様であり、出力電気信号(出力電圧、出力電流、出力電力等)を検知してもよいし、出力変動に依存する太陽光の強度、地熱の強度等を検知する構成でもよい。 As a configuration of the detection circuit for detecting the output fluctuation component of the wind farm 2, the output electric signal (output voltage, output current, output power, etc.) of the wind farm 2 may be detected, or the wind speed depends on the output fluctuation. It may be configured to detect wind direction, wind direction, or both. The same applies to renewable energy power generation devices other than wind farms, and output electric signals (output voltage, output current, output power, etc.) may be detected, and the intensity of sunlight depending on output fluctuations, It may be configured to detect the intensity of geothermal heat or the like.

図2に、図1のブロック線図を示す。PWF(s)はウインドファーム2の出力、Ggrid(s)はPWF(s)と出力安定化装置6の出力P(s)の合計値P(s)から系統周波数変動Δf(s)までの伝達関数、GPE(s)は出力安定化装置6の出力指令値からP(s)までの伝達関数、E(s)は電力貯蔵装置3の残存容量である。なお、電力貯蔵装置3の応答速度は十分速いので、GPE(s)=1とする。また、出力安定化装置6の充電方向の出力を正とし、放電方向の出力を負としている。なお、K(s)は制御器である。 FIG. 2 shows a block diagram of FIG. P WF (s) is the output of the wind farm 2, and G grid (s) is the system frequency fluctuation Δf (s) from the total value P g (s) of the P WF (s) and the output P b (s) of the output stabilizer 6. The transfer function up to s), GPE (s) is the transfer function from the output command value of the output stabilizer 6 to P b (s), and E (s) is the remaining capacity of the power storage device 3. Since the response speed of the power storage device 3 is sufficiently fast, G PE (s) = 1. Further, the output in the charging direction of the output stabilizing device 6 is positive, and the output in the discharging direction is negative. Note that K (s) is a controller.

低コスト化のためには如何に小さい定格出力の電力貯蔵装置3でウインドファーム2の出力を平滑化するかが重要となる。図3にウインドファームの出力電力(PWF)と電力貯蔵装置(ESS)の出力電力(P)と電力系統に送電される電力(P)とのイメージ図を示す。本発明と背景技術とで平滑化後の電力系統に送電される電力(P)の変動幅(平滑化の程度)を同じにする条件で比較した。本発明の電力貯蔵装置(ESS)の出力電力(P)の振幅aと、背景技術の電力貯蔵装置(ESS)の出力電力(P)の振幅bとを比較すると、図3が示すように、ウインドファームの出力変動を位相遅れなしで補償すること(本発明)により電力貯蔵装置(ESS)の所要定格出力を低減できる。以下では所要定格出力を低減するESS制御系を導出する。 In order to reduce the cost, it is important how to smooth the output of the wind farm 2 with the power storage device 3 having a small rated output. FIG. 3 shows an image diagram of the output power (P WF ) of the wind farm, the output power (P b ) of the power storage device (ESS), and the power (P g ) transmitted to the power system. The present invention and the background technology were compared under the condition that the fluctuation range (degree of smoothing) of the electric power (P g ) transmitted to the smoothed electric power system was the same. And amplitude a of the output power of the power storage device of the present invention (ESS) (P b), is compared with the amplitude b of the output power of the power storage device of the background art (ESS) (P b), as shown in FIG. 3 In addition, the required rated output of the power storage device (ESS) can be reduced by compensating for the output fluctuation of the wind farm without phase delay (the present invention). In the following, an ESS control system that reduces the required rated output is derived.

はじめに、図2よりE(s)およびP(s)を制御器K(s)の関数として記述すると、下記の数式1、数式2となる。 First, if E (s) and P g (s) are described as functions of the controller K (s) from FIG. 2, the following equations 1 and 2 are obtained.

ここで、(1)式より明らかなように、ESSの残存容量がウインドファーム出力の直流成分に対して、有界かつ定常偏差を持たないための条件は、制御器K(s)が原点に零点を2つ以上(伝達関数の分子が2次以上)持つことである。したがって、K(s)のプロパー性(分母の次数≧分子の次数)を考えると制御器の分母の次数は2次以上でなければならない。本条件を踏まえ下記の数式3の制御器K(s)を考える。 Here, as is clear from Eq. (1), the control K (s) is the origin of the condition that the remaining capacity of the ESS is bounded and does not have a steady-state deviation with respect to the DC component of the wind farm output. It has two or more zeros (the molecule of the transfer function is second or higher). Therefore, considering the properness of K (s) (denominator order ≥ numerator order), the denominator order of the controller must be second or higher. Based on this condition, consider the controller K (s) of the following equation 3.

なお、Kp(0<Kp≦1)はゲイン、s/(s+bs+b)は高域通過フィルタ(HPF)で、bおよびbは非零の定数である。そして、(2)式に(3)式を代入すると、下記の数式4となる。 Kp (0 <Kp ≦ 1) is a gain, s 2 / (s 2 + b 1 s + b 0 ) is a high-pass filter (HPF), and b 0 and b 1 are non-zero constants. Then, when the equation (3) is substituted into the equation (2), the following equation 4 is obtained.

(4)式から明らかなように、ウインドファーム出力の短周期成分(右辺第1項)は(1−Kp)倍に抑制され、長周期成分(右辺第2項)は抑制されず電力系統に送電される。この時、ウインドファーム出力の短周期変動P WF(t)に対するESSの出力P(t)は、下記の数式5となる。 As is clear from Eq. (4), the short-period component (first term on the right side) of the wind farm output is suppressed by (1-Kp) times, and the long-period component (second term on the right side) is not suppressed in the power system. It will be transmitted. At this time, the output P b (t) of the ESS with respect to the short-period fluctuation P H WF (t) of the wind farm output is given by the following mathematical formula 5.

よって、ウインドファームの変動出力を位相遅れなしで平滑化できることがわかる。したがって、本制御系により電力貯蔵装置(ESS)の所要kW容量を低減、引いてはエネルギー容量を削減し、低コスト化を実現できる。 Therefore, it can be seen that the fluctuating output of the wind farm can be smoothed without phase delay. Therefore, this control system can reduce the required kW capacity of the power storage device (ESS), and thus the energy capacity, and can realize cost reduction.

以上のような構成の本実施形態においては、再生可能エネルギー発電装置を接続した電力系統に設置され、電力貯蔵装置の貯蔵電力を交直変換器を介して電力系統とやり取りすることにより再生可能エネルギー発電装置の出力変動を抑制する出力安定化装置において、交直変換器が、少なくとも再生可能エネルギー発電装置の出力変動を検知する検知回路と、検知回路の出力信号を処理する高域通過フィルタとを有する構成で、再生可能エネルギー発電装置の出力に対する、電力系統に送電される電力(平滑化後の電力)の位相遅れを最小化して、電力貯蔵装置の所要定格出力を最小化できる。そのため、電力貯蔵装置の小型化が可能になるとともに、低コスト化できる効果がある。また、位相遅れの最小化に際して、高域通過フィルタ等を設ける簡単な制御系で、容易に実装できる効果もある。 In the present embodiment having the above configuration, the power system is installed in the power system to which the renewable energy power generation device is connected, and the stored power of the power storage device is exchanged with the power system via the AC / DC converter to generate the renewable energy power generation. In the output stabilizer that suppresses the output fluctuation of the device, the AC / DC converter has at least a detection circuit that detects the output fluctuation of the renewable energy power generation device and a high frequency pass filter that processes the output signal of the detection circuit. Therefore, the phase delay of the power transmitted to the power system (power after smoothing) with respect to the output of the renewable energy power generation device can be minimized, and the required rated output of the power storage device can be minimized. Therefore, the power storage device can be miniaturized and the cost can be reduced. Further, when minimizing the phase lag, there is an effect that it can be easily implemented by a simple control system provided with a high frequency pass filter or the like.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

本発明の電力貯蔵装置の制御系は、分母2次以上および零点2個以上(分子2次以上)の制御器にゲインKpを加えた構成であり、一例として、図4に分母2次および零点2個の制御器にゲインKpを有する制御器構造を示す。この制御器を図1に示す再生可能エネルギーの変動電力を平滑化する電力貯蔵装置の制御系に実装する。具体的には、交直変換器4に実装することが望ましい。以上の制御系を実装することにより、図3の本発明Pおよび本発明Pに示すように再生可能エネルギー発電の出力(PWF)に対して電力系統に送電される電力Pの位相遅れを抑えることができる。また、本発明は単純な制御器構造で位相遅れを抑えることができる。結果として、図3に示すように電力貯蔵装置の出力(P)が著しく低下するため、電力貯蔵装置の低コスト化を実現できる。 The control system of the power storage device of the present invention has a configuration in which a gain Kp is added to a controller having a denominator secondary or higher and two or more zeros (molecular secondary or higher). As an example, FIG. 4 shows the denominator secondary and zeros. A controller structure having a gain Kp in two controllers is shown. This controller is mounted on the control system of the power storage device for smoothing the fluctuating power of the renewable energy shown in FIG. Specifically, it is desirable to mount it on the AC / DC converter 4. By implementing the above control system, as shown in P g of the present invention and P b of the present invention of FIG. 3, the phase of the power P g transmitted to the power system with respect to the output ( PWF ) of the renewable energy power generation. The delay can be suppressed. Further, the present invention can suppress the phase lag with a simple controller structure. As a result, as shown in FIG. 3, the output (P b ) of the power storage device is significantly reduced, so that the cost of the power storage device can be reduced.

本発明の制御系の有効性を検討するため、実風速データに基づくウインドファーム出力を用いて背景技術(LPFを用いた制御系)とシミュレーションにより比較を行った。本発明の制御系のパラメータはKp=0.474、b=4×10−6、b=4×10−3とした。なお、Kpはシミュレーションを用いて系統の周波数変動の最大値が0.2Hzとなる値に設定した。同様な理由で背景技術のLPF時定数は7.19sとした。 In order to examine the effectiveness of the control system of the present invention, a comparison was made by simulation with the background technology (control system using LPF) using the wind farm output based on the actual wind speed data. The parameters of the control system of the present invention were Kp = 0.474, b 0 = 4 × 10 -6 , and b 1 = 4 × 10 -3 . Kp was set to a value at which the maximum value of the frequency fluctuation of the system was 0.2 Hz by using a simulation. For the same reason, the LPF time constant of the background technology was set to 7.19 s.

図5に電力系統出力(ウインドファームの出力電力(PWF)と電力系統に送電される電力(P))およびその拡大図を示す。図においてウインドファーム定格容量をベース値としている。特に図5(b)の拡大図より、本発明の制御系は位相遅れなしでウインドファーム出力を平滑化できていることがわかる。結果として、本発明の制御系のESS出力の最大値は、背景技術の制御系に比べ42%低減できた。下記の表1にシミュレーションより得られた背景技術に対する本発明のESSの性能指標をまとめる。なお、Cレートは3Cとし背景技術の定格容量を基準としている。この結果から本発明の制御系により大幅なESSの低コスト化が達成できる。 FIG. 5 shows the power system output (the output power of the wind farm ( PWF ) and the power transmitted to the power system (P g )) and an enlarged view thereof. In the figure, the rated capacity of the wind farm is used as the base value. In particular, from the enlarged view of FIG. 5B, it can be seen that the control system of the present invention can smooth the wind farm output without phase delay. As a result, the maximum value of the ESS output of the control system of the present invention could be reduced by 42% as compared with the control system of the background technology. Table 1 below summarizes the performance indexes of the ESS of the present invention for the background technology obtained from the simulation. The C rate is set to 3C and is based on the rated capacity of the background technology. From this result, the control system of the present invention can achieve a significant cost reduction of ESS.

以上、本発明は背景技術に比べて、次の2つの点で優位性がある。1つ目は、電力貯蔵装置の所要定格出力を大幅に低減できる点である。これにより、電力貯蔵装置の低コスト化を実現することが可能である。2つ目は、制御系を非常にシンプルに構成できる点である。これにより、容易に電力貯蔵装置の制御系として実装可能である。 As described above, the present invention is superior to the background art in the following two points. The first is that the required rated output of the power storage device can be significantly reduced. As a result, it is possible to reduce the cost of the power storage device. The second is that the control system can be configured very simply. As a result, it can be easily implemented as a control system for a power storage device.

本発明は、再生可能エネルギー発電装置と電力貯蔵装置とを協調的に利用して電力系統に出力される電力を平滑化する出力安定化装置として産業上利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be industrially used as an output stabilizer for smoothing the electric power output to the electric power system by cooperatively utilizing the renewable energy power generation device and the electric power storage device.

1 風力発電装置
2 ウインドファーム
3 電力貯蔵装置
4 交直変換器
5 電力系統
6 出力安定化装置
1 Wind farm 2 Wind farm 3 Power storage device 4 AC / DC converter 5 Power system 6 Output stabilizer

Claims (3)

再生可能エネルギー発電装置を接続した電力系統に設置され、電力貯蔵装置の貯蔵電力を交直変換器を介して前記電力系統とやり取りすることにより前記再生可能エネルギー発電装置の出力変動を抑制する出力安定化装置において、
前記交直変換器が、少なくとも前記再生可能エネルギー発電装置の出力変動を検知する検知回路と、前記検知回路の出力信号を処理する高域通過フィルタとを有することを特徴とする出力安定化装置。
It is installed in the power system to which the renewable energy power generation device is connected, and the stored power of the power storage device is exchanged with the power system via the AC / DC converter to suppress the output fluctuation of the renewable energy power generation device. In the device
An output stabilizing device, wherein the AC / DC converter has at least a detection circuit for detecting output fluctuations of the renewable energy power generation device and a high frequency pass filter for processing an output signal of the detection circuit.
前記高域通過フィルタの伝達関数K(s)が、
(ただし、Kpはゲイン、b、bは定数、sはラプラス演算子)
で表されることを特徴とする請求項1に記載の出力安定化装置。
The transfer function K (s) of the high frequency pass filter is
(However, Kp is the gain, b 0 , b 1 is the constant, and s is the Laplace operator)
The output stabilizing device according to claim 1, wherein the output stabilizing device is represented by.
前記再生可能エネルギー発電装置が、風力発電装置又は太陽光発電装置であることを特徴とする請求項1又は2に記載の出力安定化装置。 The output stabilizing device according to claim 1 or 2, wherein the renewable energy power generation device is a wind power generation device or a solar power generation device.
JP2019103476A 2019-06-03 2019-06-03 Output stabilizer Active JP6877053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019103476A JP6877053B2 (en) 2019-06-03 2019-06-03 Output stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019103476A JP6877053B2 (en) 2019-06-03 2019-06-03 Output stabilizer

Publications (2)

Publication Number Publication Date
JP2020198702A true JP2020198702A (en) 2020-12-10
JP6877053B2 JP6877053B2 (en) 2021-05-26

Family

ID=73649570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019103476A Active JP6877053B2 (en) 2019-06-03 2019-06-03 Output stabilizer

Country Status (1)

Country Link
JP (1) JP6877053B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211551A (en) * 2000-01-26 2001-08-03 Nissin Electric Co Ltd Voltage-compensation device
JP2011092010A (en) * 2006-05-09 2011-05-06 Fuji Electric Systems Co Ltd Power stabilizing system, power stabilization control program, and power stabilization control method
JP2015076907A (en) * 2013-10-07 2015-04-20 富士電機株式会社 Power compensation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211551A (en) * 2000-01-26 2001-08-03 Nissin Electric Co Ltd Voltage-compensation device
JP2011092010A (en) * 2006-05-09 2011-05-06 Fuji Electric Systems Co Ltd Power stabilizing system, power stabilization control program, and power stabilization control method
JP2015076907A (en) * 2013-10-07 2015-04-20 富士電機株式会社 Power compensation device

Also Published As

Publication number Publication date
JP6877053B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
Saxena et al. Implementation of a grid-integrated PV-battery system for residential and electrical vehicle applications
Yang et al. Power control flexibilities for grid‐connected multi‐functional photovoltaic inverters
Lei et al. An MPC-based ESS control method for PV power smoothing applications
JP6510741B1 (en) SYSTEM, CONTROL DEVICE, AND CONTROL METHOD OF SYSTEM
Mishra et al. Voltage control of PV inverter connected to unbalanced distribution system
EP2822163A1 (en) Power supply system
WO2011162238A1 (en) Control system for alternative energy power station group, and control method for same
Sarojini et al. Inertia emulation control technique based frequency control of grid‐connected single‐phase rooftop photovoltaic system with battery and supercapacitor
Gandoman et al. Distributed FACTS stabilization scheme for efficient utilization of distributed wind energy systems
JP7296762B2 (en) power converter
Ahmed et al. Analysis and mitigation of low‐frequency oscillations in hybrid AC/DC microgrids with dynamic loads
Khan et al. Hybrid energy storage system for voltage stability in a DC microgrid using a modified control strategy
KR101753667B1 (en) A Flywheel Energy Storage System Based on Battery for Microgrid Control
Hassan et al. A robust PLL for grid interactive voltage source converters
JP2010071159A (en) Device for smoothing electric power generated by wind power generation using wind mill and storage battery
JP5742591B2 (en) Solar power generation equipment
Mohamed et al. Impact of SMES integration on the digital frequency relay operation considering High PV/Wind penetration in micro-grid
Jewel et al. Power Reaching Law Based Double-Integral Sliding Mode Controller for Mitigating SSR Problems in DFIG Based Wind Farms
JP6877053B2 (en) Output stabilizer
JP2015061331A (en) Voltage fluctuation suppression device
Zhao et al. Control of VSC-HVDC for wind farm integration based on adaptive backstepping method
JP2018152943A (en) Control device, control method and computer program
Jewel et al. A Hybrid Reaching Law Based Double-Integral Sliding Mode Controller Design to Mitigate SSR Effects in a DFIG-Based Wind Farm
Usunariz et al. A modified control scheme of droop-based converters for power stability analysis in microgrids
Rao et al. Comparative analysis of SRF based Shunt Active Filter using Grey Wolf and Eagle Perching Optimization

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210420

R150 Certificate of patent or registration of utility model

Ref document number: 6877053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6877053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250