JP2020198680A - Charger for portable terminal - Google Patents

Charger for portable terminal Download PDF

Info

Publication number
JP2020198680A
JP2020198680A JP2019102657A JP2019102657A JP2020198680A JP 2020198680 A JP2020198680 A JP 2020198680A JP 2019102657 A JP2019102657 A JP 2019102657A JP 2019102657 A JP2019102657 A JP 2019102657A JP 2020198680 A JP2020198680 A JP 2020198680A
Authority
JP
Japan
Prior art keywords
voltage
solar cell
charger
power conversion
conversion means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019102657A
Other languages
Japanese (ja)
Other versions
JP6745948B1 (en
Inventor
徳嘉 菊池
Noriyoshi Kikuchi
徳嘉 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikusui Electronics Corp
Original Assignee
Kikusui Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikusui Electronics Corp filed Critical Kikusui Electronics Corp
Priority to JP2019102657A priority Critical patent/JP6745948B1/en
Application granted granted Critical
Publication of JP6745948B1 publication Critical patent/JP6745948B1/en
Publication of JP2020198680A publication Critical patent/JP2020198680A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

To realize a charger for a portable terminal capable of utilizing a charging current limiting function of the portable terminal to enable using a small sized solar cell.SOLUTION: A charger is provided with: power conversion means for converting a power supplied from a solar cell into a voltage of an apparatus to be charged; voltage change detection means for detecting a change amount of an input voltage of the power conversion means; and output voltage decreasing means for decreasing an output voltage of the power conversion means. The charger detects the decrease of a voltage of the solar cell to decrease the output voltage of the power conversion means.SELECTED DRAWING: Figure 3

Description

本発明は充電器に関し、より詳細には、太陽電池から供給された電力によって携帯端末などの被充電機器を充電する携帯端末用充電器に関する。 The present invention relates to a charger, and more particularly to a charger for a mobile terminal that charges a device to be charged such as a mobile terminal with electric power supplied from a solar cell.

従来、災害などで発生した停電時の携帯端末の充電、屋外での充電、山奥など商用電源網の無い場所での充電、電力料金の節約を目的とした充電等のために、太陽電池で携帯端末を充電する充電器があった。 Conventionally, it is carried with a solar cell for charging mobile terminals in the event of a power outage caused by a disaster, charging outdoors, charging in places without a commercial power network such as in the mountains, charging for the purpose of saving electricity charges, etc. There was a charger to charge the terminal.

近年、地震・台風・集中豪雨など自然災害時に、情報を入手するための携帯電話・スマートフォン・タブレット端末などの情報端末(以下「携帯端末」)の重要性が高まっている。しかし災害時には多くの場合停電が発生し、携帯端末のバッテリー残量不足が発生し、必要な時に使えない事態が発生している。 In recent years, the importance of information terminals such as mobile phones, smartphones, and tablet terminals (hereinafter referred to as "mobile terminals") for obtaining information during natural disasters such as earthquakes, typhoons, and torrential rains has increased. However, in the event of a disaster, power outages often occur, the battery level of mobile terminals becomes insufficient, and situations occur in which the mobile terminal cannot be used when necessary.

そのため停電時でも使用できる太陽光発電設備、蓄電池に電力を貯めておく蓄電システム、電気自動車から電力を給電するV2H(Vehicle to Home)システムなど、停電時に電気を使えるようなものが普及してきている。しかしそれらは家に備え付けた設備であり、洪水等での水没や家屋の倒壊などで使えなくなる。また自宅から避難所などに避難しても使えない。 Therefore, solar power generation equipment that can be used even during a power outage, a power storage system that stores electric power in a storage battery, a V2H (Vehicle to Home) system that supplies electric power from an electric vehicle, and other systems that can use electricity during a power outage are becoming widespread. .. However, these are facilities installed in the house and cannot be used due to flooding or collapse of the house. Also, even if you evacuate from your home to a shelter, you cannot use it.

携帯端末用の予備バッテリーも普及しているが、満充電された大容量の予備バッテリーでも数回の充電で貯蔵電力は底をつく。 Spare batteries for mobile terminals are also widespread, but even with a fully charged large-capacity spare battery, the stored power will run out after a few charges.

そこで、自然エネルギーである太陽電池を使用した充電器が考えられるが、自然エネルギーの常として発電量の変動が大きいため、発電量に余裕を持った大型の太陽電池でないと使用できない。太陽電池は負荷電流が増えると出力電圧が低下してしまい、携帯端末の充電電力より小さな電力しか発生できない小型の太陽電池では、携帯端末を充電できなくなる。 Therefore, a charger that uses a solar cell that is a natural energy can be considered, but since the amount of power generation fluctuates greatly as usual with natural energy, it cannot be used unless it is a large solar cell that has a margin in the amount of power generation. The output voltage of a solar cell decreases as the load current increases, and a small solar cell that can generate less power than the charging power of the mobile terminal cannot charge the mobile terminal.

太陽電池の発電電力に応じた出力電力を設定可能な充電器を使用すれば、この問題は解決できるが、日照量や気温による発電量の変化に出力電流の設定を対応させることは、操作の難しさや煩雑さなどの理由で困難である。また、出力電力を低めに設定した充電器では大きな太陽電池を接続しても、設定した低い電力でしか充電ができず、太陽電池の使用効率が悪い。 This problem can be solved by using a charger that can set the output power according to the power generated by the solar cell, but making the output current setting correspond to the change in the amount of power generated due to the amount of sunshine and temperature is an operation. It is difficult because of difficulty and complexity. In addition, even if a large solar cell is connected to a charger with a low output power, it can be charged only with the set low power, and the usage efficiency of the solar cell is poor.

太陽電池でバッテリーを一旦充電し、その充電されたバッテリーで携帯端末を充電する方法も考えられ、実現されているが、バッテリーと太陽電池の両方が必要となり、重量が重くコストがかさみ、可搬性の課題も残る。 A method of charging the battery once with a solar cell and then charging the mobile terminal with the charged battery has been considered and realized, but both the battery and the solar cell are required, which is heavy, costly, and portable. The problem remains.

また、太陽電池とバッテリーを一体化した小型品などでは、バッテリーが太陽電池からの充電で温度上昇し、バッテリー寿命を著しく低下させてしまう欠点がある。Li−ion(リチウムイオン)バッテリーを使用した場合は、氷点下などの極寒状態でのリチウムイオンの充電で、バッテリー内部の短絡などの危険もある。バッテリーを持たずに直接太陽電池から充電可能であれば、バッテリーの保守メンテナンスが不要になり、安全性・信頼性も向上する。 Further, in a small product in which a solar cell and a battery are integrated, there is a drawback that the temperature of the battery rises due to charging from the solar cell and the battery life is significantly shortened. When a Li-ion battery is used, there is a risk of a short circuit inside the battery due to the charging of lithium ions in extremely cold conditions such as below freezing. If it is possible to charge directly from a solar cell without having a battery, maintenance of the battery becomes unnecessary, and safety and reliability are improved.

特開平11−46457号公報Japanese Unexamined Patent Publication No. 11-46457 特開2013−48532号公報Japanese Unexamined Patent Publication No. 2013-48532

しかしながら、図1に示すように、太陽電池の出力電圧V(図1横軸)は、出力電流I(図1左の縦軸)が0の時に最大電圧Voc(開放電圧)であり、出力電流Iが増えるに従い電圧は低下して、出力電流Iscが短絡電流として上限となり、このとき出力電圧V=0となる。 However, as shown in FIG. 1, the output voltage V of the solar cell (horizontal axis in FIG. 1) is the maximum voltage Voc (open circuit voltage) when the output current I (vertical axis on the left in FIG. 1) is 0, and the output current. As I increases, the voltage decreases, and the output current Isc becomes the upper limit as the short-circuit current, and at this time, the output voltage V = 0.

太陽電池の出力(発電量)は、出力電圧Vと出力電流Iの積の電力として、図1に示す右上がりの山形の出力特性p(I,V)となり、出力電圧Vpmax、出力電流Ipmaxにおいて、最大電力pmax(図1右の縦軸)となるが、これは日照や温度により大幅に変化する。そのため、太陽電池をそのまま携帯端末の充電端子に接続することは出来ず、図2に示す従来の充電器10では、太陽電池4の出力をDCDCコンバータなどの電力変換手段1を介して充電器の出力電圧を安定化し、携帯端末などの被充電機器5に接続して充電する。 The output (power generation amount) of the solar cell has the chevron-shaped output characteristic p (I, V) shown in FIG. 1 as the power of the product of the output voltage V and the output current I, and at the output voltage Vpmax and the output current Ipmax. , The maximum power pmax (vertical axis on the right side of FIG. 1), which changes significantly depending on the sunshine and temperature. Therefore, the solar cell cannot be directly connected to the charging terminal of the mobile terminal, and in the conventional charger 10 shown in FIG. 2, the output of the solar cell 4 is output from the charger via a power conversion means 1 such as a DCDC converter. The output voltage is stabilized, and the battery is charged by connecting to a charged device 5 such as a mobile terminal.

このような従来の充電器では、日照や温度などの条件が良く太陽電池の発電量が十分あれば充電動作に問題はないが、条件が悪く携帯端末の最大充電電力を賄うだけの発電量を持たない場合や、小型の太陽電池では、発電量が不足して電圧が低下してしまう。前述のような太陽電池の特性上、最大発電電力は電圧が低下し始めたところにあるため、その点を越えると、一気に電圧が低下し、電力変換手段が動作できない電圧まで下がってしまい、充電できなくなってしまう。 With such a conventional charger, if the conditions such as sunshine and temperature are good and the amount of power generated by the solar cell is sufficient, there is no problem with the charging operation, but the conditions are bad and the amount of power generated is sufficient to cover the maximum charging power of the mobile terminal. If you do not have it, or if you use a small solar cell, the amount of power generated will be insufficient and the voltage will drop. Due to the characteristics of the solar cell as described above, the maximum generated power is at the point where the voltage starts to decrease, so if it exceeds that point, the voltage will drop at once, and the voltage will drop to the voltage at which the power conversion means cannot operate, and charging will occur. You will not be able to do it.

このメカニズムを説明するために、充電開始からの電力変換手段1の動作を説明する。電力変換手段1は、電力変換手段1の入力電圧や電力変換手段1の出力負荷電流が変化しても、電力変換手段1の出力に一定の電圧を供給し続けるように動作(定電圧動作)をしている。電力変換手段1の入力電圧が下がると、出力を確保するため逆に電力変換手段1の入力電流が増える。 In order to explain this mechanism, the operation of the power conversion means 1 from the start of charging will be described. The power conversion means 1 operates so as to continue supplying a constant voltage to the output of the power conversion means 1 even if the input voltage of the power conversion means 1 or the output load current of the power conversion means 1 changes (constant voltage operation). I am doing. When the input voltage of the power conversion means 1 decreases, the input current of the power conversion means 1 increases in order to secure the output.

太陽電池4の側から見ると図1に示すように、電流が流れたので電圧が低下し、それによりさらに電流が増加するため、電圧低下は加速される。ここで正帰還動作となり、一気に電圧が低下してしまう。正帰還が働き始める点が最大電力発電量の点pmaxであるので、これよりも電圧が高い場所(V>Vpmax)で動作させる必要があるが、前述のように条件が悪いとこれは実現できない。 When viewed from the side of the solar cell 4, as shown in FIG. 1, since the current flows, the voltage drops, which further increases the current, so that the voltage drop is accelerated. Here, the positive feedback operation is performed, and the voltage drops at once. Since the point where positive feedback starts to work is the point pmax of the maximum power generation amount, it is necessary to operate in a place where the voltage is higher than this (V> Vpmax), but as mentioned above, this cannot be realized if the conditions are bad. ..

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、太陽電池の発電量に応じた電力で充電できる充電器を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a charger that can be charged with electric power according to the amount of power generated by a solar cell.

従来の充電器の構成では、上述のように、太陽電池の発電容量が十分でないと充電機能が起動しないという問題がある。 As described above, the conventional charger configuration has a problem that the charging function does not start unless the power generation capacity of the solar cell is sufficient.

そこで、本発明では、携帯端末がもつ被充電機器としての以下の機能を利用する。すなわち、近年の携帯端末には、被充電機器として充電器の電力容量に見合った電力で携帯端末の電池を充電する充電電流制限機能がある。この充電電流制限機能の動作は、充電開始時に携帯端末が充電電流を徐々に上昇させてゆき、充電電流が充電器の定格電流まで達すると充電器の充電電圧が低下することを検出する。携帯端末は充電器の充電電圧が低下することを検出すると、その時の充電電流値以下に充電電流を制限して充電動作を継続するものである。 Therefore, in the present invention, the following functions of the mobile terminal as a charged device are used. That is, recent mobile terminals have a charging current limiting function that charges the battery of the mobile terminal with electric power corresponding to the electric power capacity of the charger as a device to be charged. The operation of this charging current limiting function detects that the mobile terminal gradually increases the charging current at the start of charging, and when the charging current reaches the rated current of the charger, the charging voltage of the charger drops. When the mobile terminal detects that the charging voltage of the charger drops, the charging current is limited to the charging current value or less at that time and the charging operation is continued.

従来の充電器では、太陽電池から充電器への入力電圧が低下しても、充電器の電力変換手段は出力電圧を一定に保とうとするが、本発明の充電器は、充電器の電力変換手段への入力電圧の低下の変化を検出して、電力変換手段の出力電圧を低下させる。 In a conventional charger, even if the input voltage from the solar cell to the charger drops, the power conversion means of the charger tries to keep the output voltage constant, but the charger of the present invention converts the power of the charger. The change in the decrease in the input voltage to the means is detected to reduce the output voltage of the power conversion means.

このようにすると、上述の携帯端末が持っている充電電流制限機能が起動し、携帯端末が充電電流をそれ以上増やさないようにする。その結果、太陽電池の発電電力量が十分でない場合であっても電力変換手段が起動し、充電動作を行うことが可能となる。 In this way, the charging current limiting function of the above-mentioned mobile terminal is activated, and the mobile terminal does not increase the charging current any more. As a result, even when the amount of power generated by the solar cell is not sufficient, the power conversion means is activated and the charging operation can be performed.

本発明の一態様は、このような目的を達成するために、以下のような構成を備えることを特徴とする。 One aspect of the present invention is characterized by providing the following configurations in order to achieve such an object.

(構成1)
太陽電池から供給された電力を被充電機器の電圧に変換する電力変換手段と、
前記電力変換手段の入力電圧の変化分を検出する電圧変化検出手段と、
前記電力変換手段の出力電圧を低下させる出力電圧低下手段とを備え、
前記出力電圧低下手段は、前記電圧変化検出手段により検出された入力電圧の変化分に応じて前記電力変換手段の出力電圧を低下させ、前記被充電機器の充電電流制限機能を起動させる
ことを特徴とする充電器。
(Structure 1)
A power conversion means that converts the power supplied from the solar cell into the voltage of the device to be charged,
A voltage change detecting means for detecting a change in the input voltage of the power conversion means, and
It is provided with an output voltage lowering means for lowering the output voltage of the power conversion means.
The output voltage lowering means lowers the output voltage of the power conversion means according to the change in the input voltage detected by the voltage change detecting means, and activates the charging current limiting function of the device to be charged. Charger.

(構成2)
前記電圧変化検出手段をコンデンサによる微分器で構成し、電圧変化検出信号を発生する
ことを特徴とする構成1に記載の充電器。
(Structure 2)
The charger according to the first configuration, wherein the voltage change detecting means is composed of a differentiator using a capacitor to generate a voltage change detecting signal.

(構成3)
前記出力電圧低下手段を比較器で構成し、前記比較器が前記電力変換手段の出力電圧と比較する基準電圧を前記電圧変化検出信号により変化させる
ことを特徴とする構成2に記載の充電器。
(Structure 3)
The charger according to the second configuration, wherein the output voltage lowering means is composed of a comparator, and the comparator changes a reference voltage to be compared with the output voltage of the power conversion means by the voltage change detection signal.

(構成4)
前記出力電圧低下手段を比較器で構成し、前記比較器が基準電圧と比較する前記電力変換手段の出力電圧を前記電圧変化検出信号により変化させる
ことを特徴とする構成2に記載の充電器。
(Structure 4)
The charger according to the second configuration, wherein the output voltage lowering means is composed of a comparator, and the comparator changes the output voltage of the power conversion means to be compared with a reference voltage by the voltage change detection signal.

(構成5)
前記出力電圧低下手段が、スイッチング方式の前記電力変換手段のスイッチングパルス幅またはスイッチング周波数を変化させる
ことを特徴とする構成1に記載の充電器。
(Structure 5)
The charger according to configuration 1, wherein the output voltage lowering means changes the switching pulse width or the switching frequency of the power conversion means of the switching method.

(構成6)
前記電圧変化検出手段を、前記太陽電池の電圧とあらかじめ設定しておいた太陽電池のV−I特性とを比較して、前記太陽電池の前記電圧が最大電力点になったことを検出し、該最大電力点からの電圧変化を検出する電圧変化検出手段とした
ことを特徴とする構成1に記載の充電器。
(Structure 6)
The voltage change detecting means compares the voltage of the solar cell with the VI characteristic of the solar cell set in advance, and detects that the voltage of the solar cell has reached the maximum power point. The charger according to configuration 1, wherein the voltage change detecting means is used to detect a voltage change from the maximum power point.

(構成7)
前記電圧変化検出手段を、前記太陽電池の電圧と日照または温度などの周囲状況により予測した太陽電池のV−I特性とを比較して、前記太陽電池の前記電圧が最大電力点になったことを検出し、該最大電力点からの電圧変化を検出する電圧変化検出手段とした
ことを特徴とする構成1に記載の充電器。
(Structure 7)
The voltage change detecting means compares the voltage of the solar cell with the VI characteristics of the solar cell predicted by the ambient conditions such as sunshine or temperature, and the voltage of the solar cell reaches the maximum power point. The charger according to the configuration 1, wherein the charger is used as a voltage change detecting means for detecting a voltage change from the maximum power point.

(構成8)
前記電圧変化検出手段を、前記太陽電池の電圧と発電電圧・電流の実績値から予測した太陽電池のV−I特性とを比較して、前記太陽電池の前記電圧が最大電力点になったことを検出し、該最大電力点からの電圧変化を検出する電圧変化検出手段とした
ことを特徴とする構成1に記載の充電器。
(Structure 8)
The voltage change detecting means compares the voltage of the solar cell with the VI characteristics of the solar cell predicted from the actual values of the generated voltage and current, and the voltage of the solar cell reaches the maximum power point. The charger according to the configuration 1, wherein the voltage change detecting means is used to detect a voltage change from the maximum power point.

以上記載したように、本発明によれば、太陽電池から携帯端末へ充電するとき、発電量に余裕のある太陽電池が必要で、太陽電池が大型になり、コスト・設置場所・保管場所・移動・取り扱いなど困難があるという課題を解決できる。 As described above, according to the present invention, when charging a mobile terminal from a solar cell, a solar cell with a sufficient amount of power generation is required, the solar cell becomes large, and the cost, installation location, storage location, and movement・ It is possible to solve the problem of difficulty in handling.

そして、本発明によれば、太陽電池のI−V特性による電圧変化を検出し、携帯端末への供給電圧を一時的に低下させることで、携帯端末の充電器に応じた電流で充電する充電電流制限機能を利用することができ、小型の太陽電池を使用可能な携帯端末用充電器を実現することができる。 According to the present invention, the voltage change due to the IV characteristic of the solar cell is detected, and the supply voltage to the mobile terminal is temporarily lowered to charge the battery with a current corresponding to the charger of the mobile terminal. A current limiting function can be used, and a charger for a mobile terminal that can use a small solar cell can be realized.

太陽電池のV−I特性および電力特性を説明する図である。It is a figure explaining the VI characteristic and the electric power characteristic of a solar cell. 従来の充電器の構成を説明する図である。It is a figure explaining the structure of the conventional charger. 本発明の充電器の第1の実施形態の構成を説明する図である。It is a figure explaining the structure of the 1st Embodiment of the charger of this invention. 本発明の充電器の第2の実施形態の構成を説明する図である。It is a figure explaining the structure of the 2nd Embodiment of the charger of this invention. 本発明の充電器の第3の実施形態の構成を説明する図である。It is a figure explaining the structure of the 3rd Embodiment of the charger of this invention. 本発明の充電器の第4の実施形態の構成を説明する図である。It is a figure explaining the structure of the 4th Embodiment of the charger of this invention.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図3は、本発明の第1の実施形態にかかる充電器100の構成を説明する図である。図3の実施形態1は、太陽電池4から供給された電力を携帯端末(被充電機器)5への出力電圧に変換する電力変換手段1と、電力変換手段1の入力電圧の変化分を検出する電圧変化検出手段2と、電圧変化検出手段2からの検出信号に応じた制御信号により電力変換手段1の出力電圧を低下させる出力電圧低下手段3を持ち、太陽電池4の出力電圧が低下したことを検出し、電力変換手段1の出力電圧を低下させるようにした充電器100である。
(Embodiment 1)
FIG. 3 is a diagram illustrating the configuration of the charger 100 according to the first embodiment of the present invention. In the first embodiment of FIG. 3, the power conversion means 1 that converts the power supplied from the solar cell 4 into the output voltage to the mobile terminal (charged device) 5 and the change in the input voltage of the power conversion means 1 are detected. The voltage change detecting means 2 and the output voltage lowering means 3 for lowering the output voltage of the power conversion means 1 by the control signal corresponding to the detection signal from the voltage change detecting means 2 are provided, and the output voltage of the solar cell 4 is lowered. The charger 100 detects this and lowers the output voltage of the power conversion means 1.

このような構成により、太陽電池4の出力電圧が低下した場合に電力変換手段1の出力電圧を低下させ、被充電機器である携帯端末5が持っている充電電流制限機能を起動させ、携帯端末5が充電電流をそれ以上増やさないようにする。その結果、太陽電池4の発電容量が十分でない場合であっても充電器の電力変換手段1が起動し、充電動作を行うことが可能となる。 With such a configuration, when the output voltage of the solar cell 4 is lowered, the output voltage of the power conversion means 1 is lowered, the charging current limiting function of the mobile terminal 5 as the device to be charged is activated, and the mobile terminal is activated. 5 prevents the charging current from increasing any further. As a result, even when the power generation capacity of the solar cell 4 is not sufficient, the power conversion means 1 of the charger is activated and the charging operation can be performed.

(実施形態2)
図4は、本発明の第2の実施形態にかかる充電器200の構成を説明する図である。
図4の実施形態2は、図3の実施形態1において、電力変換手段1の入力電圧の変化分を検出する電圧変化検出手段2をコンデンサ6による微分器で構成した充電器である。コンデンサは電流の積分作用を有するから、電圧信号の変化を検出する微分器として使用して電圧変化検出信号を発生することができる。
(Embodiment 2)
FIG. 4 is a diagram illustrating the configuration of the charger 200 according to the second embodiment of the present invention.
The second embodiment of FIG. 4 is a charger in which the voltage change detecting means 2 for detecting the change in the input voltage of the power conversion means 1 is composed of a differentiator by a capacitor 6 in the first embodiment of FIG. Since the capacitor has a current integrating action, it can be used as a differentiator for detecting a change in a voltage signal to generate a voltage change detection signal.

(実施形態3)
図5は、本発明の第3の実施形態にかかる充電器300の構成を説明する図である。
図5の実施形態3は、図4の実施形態2において、検出手段2からの検出信号に応じて電力変換手段1の出力電圧を低下させる出力電圧低下手段3を、電力変換手段1の出力電圧を制御する制御信号を発生する比較器7で構成した充電器である。比較器7の−側入力には電力変換手段1の出力電圧をフィードバック電圧として加え、比較器7の+側入力には基準電圧とともにコンデンサ6による微分信号(電圧変化検出信号)を加えて比較し、電力変換手段1の出力電圧を制御する制御信号を発生する。電力変換手段1の出力電圧と比較する基準電圧を、電圧変化検出信号により変化させる出力電圧低下手段である。
(Embodiment 3)
FIG. 5 is a diagram illustrating a configuration of a charger 300 according to a third embodiment of the present invention.
In the third embodiment of FIG. 5, in the second embodiment of FIG. 4, the output voltage lowering means 3 for lowering the output voltage of the power conversion means 1 in response to the detection signal from the detection means 2 is used as the output voltage of the power conversion means 1. It is a charger composed of a comparator 7 that generates a control signal for controlling. The output voltage of the power conversion means 1 is applied as a feedback voltage to the negative side input of the comparator 7, and the differential signal (voltage change detection signal) by the capacitor 6 is added to the positive side input of the comparator 7 together with the reference voltage for comparison. , A control signal for controlling the output voltage of the power conversion means 1 is generated. This is an output voltage lowering means for changing a reference voltage to be compared with the output voltage of the power conversion means 1 by a voltage change detection signal.

図5において、制御信号を発生する比較器7の−側入力にコンデンサ6による微分信号の反転信号を加え、比較器が基準電圧と比較する電力変換手段のフィードバック出力電圧を電圧変化検出信号により変化させる出力電圧低下手段としてもよい。 In FIG. 5, the inverted signal of the differential signal by the capacitor 6 is added to the negative side input of the comparator 7 that generates the control signal, and the feedback output voltage of the power conversion means that the comparator compares with the reference voltage is changed by the voltage change detection signal. It may be used as a means for lowering the output voltage.

あるいは、電力変換手段1をスイッチング方式の電力変換手段1として、スイッチングパルス幅またはスイッチング周波数を変化させる出力電圧低下手段3としてもよい。 Alternatively, the power conversion means 1 may be used as the switching type power conversion means 1 and the output voltage lowering means 3 for changing the switching pulse width or the switching frequency.

さらに電圧変化検出手段2についても、太陽電池の出力電圧を、あらかじめ設定しておいた太陽電池のV−I特性と比較して、電圧が最大電力点になったことを検出し、該最大電力点からの電圧変化を検出する電圧変化検出手段とすることができる。 Further, the voltage change detecting means 2 also compares the output voltage of the solar cell with the VI characteristic of the solar cell set in advance, detects that the voltage reaches the maximum power point, and detects the maximum power. It can be used as a voltage change detecting means for detecting a voltage change from a point.

また、さらには日照または温度などの周囲状況により予測した太陽電池のV−I特性や、発電電圧・電流の実績値から予測した太陽電池のV−I特性と太陽電池の出力電圧とを比較して、太陽電池の出力電圧が最大電力点になったことを検出し、該最大電力点からの電圧変化を検出する電圧変化検出手段とすることもできる。 Furthermore, the VI characteristics of the solar cell predicted by the ambient conditions such as sunshine or temperature, and the VI characteristics of the solar cell predicted from the actual values of the generated voltage and current are compared with the output voltage of the solar cell. Therefore, it can be used as a voltage change detecting means for detecting that the output voltage of the solar cell has reached the maximum power point and detecting the voltage change from the maximum power point.

(実施形態4)
図6は、本発明の第4の実施形態にかかる充電器400の構成を詳細に説明する図である。
(Embodiment 4)
FIG. 6 is a diagram for explaining in detail the configuration of the charger 400 according to the fourth embodiment of the present invention.

図6の実施形態4の充電器の回路は、自励式の非絶縁コンバータであり、太陽電池4側の左上端の入力端子の+極が、携帯端末(被充電機器)5側の、右上から2番目の出力端子の−極となっている。自励発振のスイッチング周波数を変化させることにより、充電器の出力電圧を制御する。 The circuit of the charger of the fourth embodiment of FIG. 6 is a self-excited non-insulated converter, and the + pole of the input terminal at the upper left end on the solar cell 4 side is from the upper right on the mobile terminal (charged device) 5 side. It is the negative pole of the second output terminal. The output voltage of the charger is controlled by changing the switching frequency of self-excited oscillation.

図6の図示しない左の太陽電池4側から入力電圧が印加されると、スイッチングトランジスタ(FET)Q1のゲートに起動抵抗R3を介して電圧が印加され、Q1がONしQ1のドレインに接続されたトランスT1の上側巻線に電圧が印加される。そのときトランスT1の下側巻線にも電圧が発生し、電流制限抵抗R5を介してつながっているQ1のゲートに電圧が加わり、Q1のON状態は正帰還がかかって持続する。 When an input voltage is applied from the left solar cell 4 side (not shown) in FIG. 6, a voltage is applied to the gate of the switching transistor (FET) Q1 via the starting resistor R3, and Q1 is turned on and connected to the drain of Q1. A voltage is applied to the upper winding of the transformer T1. At that time, a voltage is also generated in the lower winding of the transformer T1, a voltage is applied to the gate of Q1 connected via the current limiting resistor R5, and the ON state of Q1 is maintained by positive feedback.

Q1のドレイン側のトランス巻線には電流が流れるが、巻線のインダクタンスにより電流は徐々に増える。この電流が電流検出抵抗R4に流れて、R4の両端に電圧が発生し、制御トランジスタQ2のベースに電流制限抵抗R2を通して電圧が伝わり、Q2がONする電圧約0.6Vまで達すると、Q2がONしてQ1のゲートが閾値以下に低下し、Q1がOFFする。 A current flows through the transformer winding on the drain side of Q1, but the current gradually increases due to the inductance of the winding. This current flows through the current detection resistor R4, a voltage is generated across R4, the voltage is transmitted to the base of the control transistor Q2 through the current limiting resistor R2, and when the voltage at which Q2 turns on reaches about 0.6V, Q2 becomes When it is turned on, the gate of Q1 drops below the threshold value, and Q1 is turned off.

それまで流れていた電流はトランスT1にエネルギーとして蓄えられ、Q1がOFFすると、Q1のドレインの巻線電圧が反転し整流ダイオードCR1を通して平滑コンデンサC1を充電する。トランスに蓄えられたエネルギーが全てC1に移動すると、また最初の動作に戻り、Q1がONして自励発振が継続をする。 The current flowing up to that point is stored in the transformer T1 as energy, and when Q1 is turned off, the winding voltage of the drain of Q1 is inverted and the smoothing capacitor C1 is charged through the rectifier diode CR1. When all the energy stored in the transformer moves to C1, the operation returns to the initial operation, Q1 is turned on, and self-excited oscillation continues.

シャントレギュレータIC:U1は、充電器の出力端子の電圧が電圧検出抵抗R7、R8で分圧されて、U1の制御端子に加わっている。U1は、この制御端子電圧がU1の内部基準値と同じになるように動作し、制御端子電圧が高い時は、U1のカソード側からアノード側に電流を流し、制御端子電圧が低い時は電流を流さない。 In the shunt regulator IC: U1, the voltage of the output terminal of the charger is divided by the voltage detection resistors R7 and R8, and is applied to the control terminal of U1. The U1 operates so that the control terminal voltage becomes the same as the internal reference value of the U1. When the control terminal voltage is high, a current flows from the cathode side to the anode side of the U1, and when the control terminal voltage is low, the current flows. Do not shed.

この結果、シャントレギュレータU1は、充電器の出力電圧が高い時はフォトカプラPC1の一次側(発光側、図6の右側)に電流を流し、PC1の二次側(受光側、図6の左側)に電流が流れる。これにより制御トランジスタQ2のベースに電流制限抵抗R4を介して電流が供給され、Q2のベース電圧はPC1からの電流と電流検出抵抗R1からの電流の加算となり、Q2がONするタイミングがU1によって制御される。これにより常態では、充電器の出力端子の電圧を一定に保つ動作をしている。 As a result, when the output voltage of the charger is high, the shunt regulator U1 allows a current to flow through the primary side (light emitting side, right side in FIG. 6) of the photocoupler PC1 and the secondary side (light receiving side, left side in FIG. 6) of the PC1. ) Flows current. As a result, a current is supplied to the base of the control transistor Q2 via the current limiting resistor R4, the base voltage of Q2 is the sum of the current from the PC1 and the current from the current detection resistor R1, and the timing at which Q2 is turned on is controlled by U1. Will be done. As a result, in the normal state, the voltage of the output terminal of the charger is kept constant.

ここで、太陽電池4の電圧が低下し充電器の入力端子電圧が急激に低下した時を考える。すると、入力電圧変化検出コンデンサC2を介して、U1の制御端子電圧が上昇する。U1は電圧が上がりすぎたと判断し、フォトカプラPC1に電流を流し、Q2のベース電圧を上昇させる方向、すなわち電力変換手段1の出力電圧を下げる方向に動く。これにより電力変換手段1の出力電圧が低下するが、C2は微分コンデンサであるので、入力電圧の変化が無くなると、出力電圧の低下は回復する。 Here, consider a case where the voltage of the solar cell 4 drops and the input terminal voltage of the charger drops sharply. Then, the control terminal voltage of U1 rises via the input voltage change detection capacitor C2. U1 determines that the voltage has risen too much, passes a current through the photocoupler PC1, and moves in the direction of raising the base voltage of Q2, that is, in the direction of lowering the output voltage of the power conversion means 1. As a result, the output voltage of the power conversion means 1 decreases, but since C2 is a differential capacitor, the decrease in the output voltage recovers when the change in the input voltage disappears.

充電器の出力電圧の低下を検出した被充電機器(携帯端末)は、充電電流制限機能が起動し、それ以上充電電流を増やさずに、その時点の電流以下で充電を継続する。 The device to be charged (mobile terminal) that detects a decrease in the output voltage of the charger activates the charging current limiting function and continues charging below the current current without further increasing the charging current.

このような構成により、太陽電池4の電圧が低下した場合に電力変換手段1の出力電圧を低下させ、被充電機器である携帯端末5が持っている充電電流制限機能を起動させ、携帯電話が充電電流をそれ以上増やさないようにする。その結果、太陽電池4の発電容量が十分でない場合であっても電力変換手段1が起動し、充電動作を行うことが可能となる。 With such a configuration, when the voltage of the solar cell 4 drops, the output voltage of the power conversion means 1 is lowered, the charging current limiting function of the mobile terminal 5 which is the device to be charged is activated, and the mobile phone is activated. Do not increase the charging current any more. As a result, even when the power generation capacity of the solar cell 4 is not sufficient, the power conversion means 1 is activated and the charging operation can be performed.

本発明により必要最小限の発電量の太陽電池で携帯端末へ充電する充電器を実現でき、太陽電池の寸法・重量を抑えることができる。それにより未使用時の保管場所が少なくて済み、また災害時に避難するときや、屋外で使用するときなどの設置場所・移動・取り扱いが楽になる。太陽電池のコストも抑えることができる。 According to the present invention, it is possible to realize a charger that charges a mobile terminal with a solar cell having a minimum required amount of power generation, and it is possible to reduce the size and weight of the solar cell. As a result, there is less storage space when not in use, and it is easier to install, move, and handle when evacuating in the event of a disaster or when using outdoors. The cost of solar cells can also be reduced.

また、太陽電池の発電量に応じた電力で充電できるので、より大きな太陽電池が使える時はそれに見合った電力で充電でき、曇りなどの日射量が少ない時はそれに応じた電力で充電でき、充電器使用の自由度が増す。 In addition, since it can be charged with the power according to the amount of power generated by the solar cell, it can be charged with the power corresponding to the larger solar cell when it can be used, and when the amount of solar radiation such as cloudiness is small, it can be charged with the power corresponding to it. Increases the degree of freedom in using the vessel.

本発明によれば、太陽電池のI−V特性による電圧変化を検出し、携帯端末への供給電圧を一時的に低下させることで、携帯端末の充電器に応じた電流で充電する機能を利用することができ、小型の太陽電池を使用可能な携帯端末用充電器を実現することができる。 According to the present invention, a function of detecting a voltage change due to the IV characteristic of a solar cell and temporarily lowering the supply voltage to the mobile terminal to charge the battery with a current corresponding to the charger of the mobile terminal is used. It is possible to realize a charger for a mobile terminal that can use a small solar cell.

1 電力変換手段
2 電圧変化検出手段
3 出力電圧低下手段
4 太陽電池
5 携帯端末(被充電機器)
6 (微分)コンデンサ
7 比較器10,100,200,300,400 充電器
Q1:スイッチングトランジスタ(FET)
Q2:制御トランジスタ
R1:電流検出抵抗
R2:ベース抵抗
R3:起動抵抗
R4〜R6:電流制限抵抗
R7、R8:電圧検出抵抗
CR1:整流ダイオード
C1:平滑コンデンサ
C2:入力電圧変化検出コンデンサ
T1:トランス
U1:シャントレギュレータIC
PC1:フォトカプラ
1 Power conversion means 2 Voltage change detection means 3 Output voltage drop means 4 Solar cell 5 Mobile terminal (charged device)
6 (Differential) Capacitor 7 Comparator 10,100,200,300,400 Charger Q1: Switching transistor (FET)
Q2: Control transistor R1: Current detection resistor R2: Base resistor R3: Starting resistor R4 to R6: Current limiting resistor R7, R8: Voltage detection resistor CR1: Rectifier diode C1: Smoothing capacitor C2: Input voltage change detection capacitor T1: Transformer U1 : Shunt regulator IC
PC1: Photocoupler

Claims (8)

太陽電池から供給された電力を被充電機器の電圧に変換する電力変換手段と、
前記電力変換手段の入力電圧の変化分を検出する電圧変化検出手段と、
前記電力変換手段の出力電圧を低下させる出力電圧低下手段とを備え、
前記出力電圧低下手段は、前記電圧変化検出手段により検出された入力電圧の変化分に応じて前記電力変換手段の出力電圧を低下させ、前記被充電機器の充電電流制限機能を起動させる
ことを特徴とする充電器。
A power conversion means that converts the power supplied from the solar cell into the voltage of the device to be charged,
A voltage change detecting means for detecting a change in the input voltage of the power conversion means, and
It is provided with an output voltage lowering means for lowering the output voltage of the power conversion means.
The output voltage lowering means lowers the output voltage of the power conversion means according to the change in the input voltage detected by the voltage change detecting means, and activates the charging current limiting function of the device to be charged. Charger.
前記電圧変化検出手段をコンデンサによる微分器で構成し、電圧変化検出信号を発生する
ことを特徴とする請求項1に記載の充電器。
The charger according to claim 1, wherein the voltage change detecting means is composed of a differentiator using a capacitor, and a voltage change detecting signal is generated.
前記出力電圧低下手段を比較器で構成し、前記比較器が前記電力変換手段の出力電圧と比較する基準電圧を前記電圧変化検出信号により変化させる
ことを特徴とする請求項2に記載の充電器。
The charger according to claim 2, wherein the output voltage lowering means is composed of a comparator, and the comparator changes a reference voltage to be compared with the output voltage of the power conversion means by the voltage change detection signal. ..
前記出力電圧低下手段を比較器で構成し、前記比較器が基準電圧と比較する前記電力変換手段の出力電圧を前記電圧変化検出信号により変化させる
ことを特徴とする請求項2に記載の充電器。
The charger according to claim 2, wherein the output voltage lowering means is composed of a comparator, and the comparator changes the output voltage of the power conversion means to be compared with a reference voltage by the voltage change detection signal. ..
前記出力電圧低下手段が、スイッチング方式の前記電力変換手段のスイッチングパルス幅またはスイッチング周波数を変化させる
ことを特徴とする請求項1に記載の充電器。
The charger according to claim 1, wherein the output voltage lowering means changes the switching pulse width or the switching frequency of the power conversion means of the switching method.
前記電圧変化検出手段を、前記太陽電池の電圧とあらかじめ設定しておいた太陽電池のV−I特性とを比較して、前記太陽電池の前記電圧が最大電力点になったことを検出し、該最大電力点からの電圧変化を検出する電圧変化検出手段とした
ことを特徴とする請求項1に記載の充電器。
The voltage change detecting means compares the voltage of the solar cell with the VI characteristic of the solar cell set in advance, and detects that the voltage of the solar cell has reached the maximum power point. The charger according to claim 1, wherein the voltage change detecting means is used to detect a voltage change from the maximum power point.
前記電圧変化検出手段を、前記太陽電池の電圧と日照または温度などの周囲状況により予測した太陽電池のV−I特性とを比較して、前記太陽電池の前記電圧が最大電力点になったことを検出し、該最大電力点からの電圧変化を検出する電圧変化検出手段とした
ことを特徴とする請求項1に記載の充電器。
The voltage change detecting means compares the voltage of the solar cell with the VI characteristics of the solar cell predicted by the ambient conditions such as sunshine or temperature, and the voltage of the solar cell reaches the maximum power point. The charger according to claim 1, wherein the charger is used as a voltage change detecting means for detecting a voltage change from the maximum power point.
前記電圧変化検出手段を、前記太陽電池の電圧と発電電圧・電流の実績値から予測した太陽電池のV−I特性とを比較して、前記太陽電池の前記電圧が最大電力点になったことを検出し、該最大電力点からの電圧変化を検出する電圧変化検出手段とした
ことを特徴とする請求項1に記載の充電器。
The voltage change detecting means compares the voltage of the solar cell with the VI characteristics of the solar cell predicted from the actual values of the generated voltage and current, and the voltage of the solar cell reaches the maximum power point. The charger according to claim 1, wherein the voltage change detecting means is used to detect a voltage change from the maximum power point.
JP2019102657A 2019-05-31 2019-05-31 Charger for mobile terminal Active JP6745948B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102657A JP6745948B1 (en) 2019-05-31 2019-05-31 Charger for mobile terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102657A JP6745948B1 (en) 2019-05-31 2019-05-31 Charger for mobile terminal

Publications (2)

Publication Number Publication Date
JP6745948B1 JP6745948B1 (en) 2020-08-26
JP2020198680A true JP2020198680A (en) 2020-12-10

Family

ID=72146123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102657A Active JP6745948B1 (en) 2019-05-31 2019-05-31 Charger for mobile terminal

Country Status (1)

Country Link
JP (1) JP6745948B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109618A (en) * 2004-10-06 2006-04-20 Nec Access Technica Ltd Charge control circuit
JP2008090672A (en) * 2006-10-03 2008-04-17 Nippon Telegr & Teleph Corp <Ntt> Power conversion device and power conversion method
JP2009207239A (en) * 2008-02-26 2009-09-10 Sharp Corp Charging controller for solar cells
JP2013099155A (en) * 2011-11-02 2013-05-20 Sony Corp Control system, control apparatus and control method
JP2013192321A (en) * 2012-03-13 2013-09-26 Omron Corp Charging power control device, charging power control method, program, and photovoltaic power generation system
JP2013223348A (en) * 2012-04-17 2013-10-28 Nec Casio Mobile Communications Ltd Electronic apparatus and charge control method
WO2014203490A1 (en) * 2013-06-18 2014-12-24 三洋電機株式会社 Power feeding apparatus for solar cell, and solar cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109618A (en) * 2004-10-06 2006-04-20 Nec Access Technica Ltd Charge control circuit
JP2008090672A (en) * 2006-10-03 2008-04-17 Nippon Telegr & Teleph Corp <Ntt> Power conversion device and power conversion method
JP2009207239A (en) * 2008-02-26 2009-09-10 Sharp Corp Charging controller for solar cells
JP2013099155A (en) * 2011-11-02 2013-05-20 Sony Corp Control system, control apparatus and control method
JP2013192321A (en) * 2012-03-13 2013-09-26 Omron Corp Charging power control device, charging power control method, program, and photovoltaic power generation system
JP2013223348A (en) * 2012-04-17 2013-10-28 Nec Casio Mobile Communications Ltd Electronic apparatus and charge control method
WO2014203490A1 (en) * 2013-06-18 2014-12-24 三洋電機株式会社 Power feeding apparatus for solar cell, and solar cell system

Also Published As

Publication number Publication date
JP6745948B1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
KR101174891B1 (en) Energy storage system and controlling method of the same
KR101074785B1 (en) A battery management system and control method thereof, and energy storage system including the battery management system
US8963499B2 (en) Battery pack, method of controlling the same, and energy storage system including the battery pack
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
EP2793352B1 (en) Power supply system and power conditioner for charging and discharging
KR101698771B1 (en) temperature controlling system of battery and controlling method thereof
US20150155602A1 (en) Battery system and method for connecting a battery to the battery system
KR20140097628A (en) temperature controlling system of battery and controlling method thereof
KR20110068639A (en) Energy storage system and method for controlling thereof
JPWO2011065375A1 (en) Power converter, power generation system, and charge / discharge control method
JP2019047721A (en) Solar energy auxiliary charging system and control method
CN106160161B (en) A kind of solar energy power source apparatus and control method
JP2005137054A (en) Power source circuit
KR20140115501A (en) Power conversion device having battery heating function
JP2011250608A (en) Solar cell system
KR20160100675A (en) Battery Pack and Driving Method Thereof
US20150263564A1 (en) Energy storage system and method for driving the same
JP2007181263A (en) Charging equipment
CN114899913A (en) Battery charging and discharging current control method under off-grid mode of hybrid energy storage inverter
RU2325749C1 (en) Device and method of power supply source control for fuel element system that is connected to line
JP2017147808A (en) Power storage system and power storage method
JP2004064855A (en) Power supply device using photoelectric cell
JP6745948B1 (en) Charger for mobile terminal
JP5336791B2 (en) Power supply
US10110008B2 (en) Micro grid stabilization device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200804

R150 Certificate of patent or registration of utility model

Ref document number: 6745948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350