JP2020197311A - Heat exchanger and refrigeration cycle device provided with the same - Google Patents

Heat exchanger and refrigeration cycle device provided with the same Download PDF

Info

Publication number
JP2020197311A
JP2020197311A JP2019101916A JP2019101916A JP2020197311A JP 2020197311 A JP2020197311 A JP 2020197311A JP 2019101916 A JP2019101916 A JP 2019101916A JP 2019101916 A JP2019101916 A JP 2019101916A JP 2020197311 A JP2020197311 A JP 2020197311A
Authority
JP
Japan
Prior art keywords
heat exchanger
fluid
flow path
protrusion
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019101916A
Other languages
Japanese (ja)
Other versions
JP7129602B2 (en
Inventor
一貴 小石原
Kazutaka Koishihara
一貴 小石原
町田 和彦
Kazuhiko Machida
和彦 町田
由樹 山岡
Yoshiki Yamaoka
由樹 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019101916A priority Critical patent/JP7129602B2/en
Priority to EP20158255.8A priority patent/EP3754284B1/en
Publication of JP2020197311A publication Critical patent/JP2020197311A/en
Application granted granted Critical
Publication of JP7129602B2 publication Critical patent/JP7129602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

To provide a heat exchanger suppressing deposition of a local scale with a simple means and also having high heat exchange efficiency.SOLUTION: A heat exchanger includes an inner pipe 1, an insertion body 2 inserted into the inner pipe 1, and at least one outer pipe 3 which is fitted on the outer periphery of the inner pipe 1 and through which a second fluid is flown. The insertion body 2 is composed of an axis part 21 and a projection part 22 formed on the outer surface of the axis part 21. A first fluid flows through a spiral flow passage 23 composed of at least the inner surface of the inner pipe 1 and the projection part 22. The spiral flow passage 23 is provided with a thick projection part 22b reducing the area of the flow passage at every prescribed interval in the flow direction of the first fluid.SELECTED DRAWING: Figure 3

Description

本発明は、低温流体と高温流体とが熱交換する熱交換器に関するものである。 The present invention relates to a heat exchanger in which a low temperature fluid and a high temperature fluid exchange heat.

従来、この種の熱交換器は、水を冷媒により加熱し、高温水を生成する場合が多い。なお、水が高温になると水に溶存している気体(酸素、窒素など)の溶解度が低下し、気泡として水中に析出することが知られている。 Conventionally, in this type of heat exchanger, water is often heated by a refrigerant to generate high-temperature water. It is known that when water becomes hot, the solubility of gas (oxygen, nitrogen, etc.) dissolved in water decreases, and it precipitates in water as bubbles.

そして、この析出した気泡が伝熱面に付着すると、水と冷媒との熱交換を阻害するため、熱交換器の熱交換効率が低下してしまう。 When the precipitated bubbles adhere to the heat transfer surface, the heat exchange between the water and the refrigerant is hindered, so that the heat exchange efficiency of the heat exchanger is lowered.

また、気泡が伝熱面に付着した場合、気泡と伝熱面との界面には、イオン濃縮が発生するマイクロ層が形成され、気泡が付着していない面に比べて、スケールの起点となるスケール核が局所的に多く析出する。 Further, when bubbles adhere to the heat transfer surface, a microlayer in which ion concentration occurs is formed at the interface between the bubbles and the heat transfer surface, which serves as a starting point of scale as compared with the surface to which no bubbles adhere. Many scale nuclei are locally precipitated.

このようにして析出されたスケールは、せん断応力を印加することによって除去することができる。 The scale thus precipitated can be removed by applying shear stress.

そこで、スケールの成長を抑制するように、予め設定された圧力を付与した2次側被加熱液体を予め設定されたタイミングで、熱交換器に流入させることにより、熱交換器における2次側被加熱液体との接触面に析出したスケールを除去可能なせん断応力を与えるようにしている(例えば、特許文献1参照)。 Therefore, in order to suppress the growth of the scale, a liquid to be heated on the secondary side to which a preset pressure is applied is made to flow into the heat exchanger at a preset timing, so that the secondary side cover in the heat exchanger is covered. Shear stress that can remove the scale deposited on the contact surface with the heating liquid is applied (see, for example, Patent Document 1).

国際公開第2017/158938号International Publication No. 2017/158938

しかしながら、前記従来の構成では、圧力センサ、電磁弁等の部品が必要であり、流路構成が複雑になり、また、コストがアップしてしまうという課題を有していた。 However, the conventional configuration requires parts such as a pressure sensor and a solenoid valve, which has a problem that the flow path configuration becomes complicated and the cost increases.

本発明は、上記従来の課題を解決するもので、簡素な手段で局所的なスケールの析出を抑制するとともに、熱交換効率の高い熱交換器を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a heat exchanger having high heat exchange efficiency while suppressing local scale precipitation by simple means.

前記従来の課題を解決するために、本発明の熱交換器は、内管と、前記内管に挿入される挿入体と、前記内管の外周に設けられ、第2流体が流れる少なくとも1本以上の外管と、を備え、前記挿入体は、軸部とその軸部の外表面に形成された突部とから形成され、第1流体は、少なくとも前記内管の内面と前記突部とで形成される螺旋状流路を流れるとともに、前記螺旋状流路には、第1流体の流れ方向の所定間隔毎に、流路面積を小さくする肉厚突部が設けられていることを特徴とするものである。 In order to solve the above-mentioned conventional problems, the heat exchanger of the present invention is provided on an inner pipe, an insert body inserted into the inner pipe, and at least one provided on the outer periphery of the inner pipe through which a second fluid flows. With the above outer tube, the insert is formed of a shaft portion and a protrusion formed on the outer surface of the shaft portion, and the first fluid is at least the inner surface of the inner pipe and the protrusion. In addition to flowing through the spiral flow path formed by the above, the spiral flow path is characterized in that a thick protrusion portion for reducing the flow path area is provided at predetermined intervals in the flow direction of the first fluid. Is to be.

これにより、螺旋状流路において、所定間隔毎に第1流体の流速、および、第1流体のせん断応力を大きくできるので、螺旋状流路の壁面に、析出、付着した気泡を押し流し易くできる。 As a result, the flow velocity of the first fluid and the shear stress of the first fluid can be increased at predetermined intervals in the spiral flow path, so that the bubbles deposited and adhering to the wall surface of the spiral flow path can be easily washed away.

加えて、螺旋状流路を流れる第1流体には、遠心力が作用するので、第1流体よりも密度の小さい気泡は、相対的に軸部側に押し流されることで、内管の内面(伝熱面)への再付着を抑制できる。 In addition, since centrifugal force acts on the first fluid flowing through the spiral flow path, bubbles having a density lower than that of the first fluid are swept relatively toward the shaft portion, so that the inner surface of the inner pipe ( Reattachment to the heat transfer surface) can be suppressed.

このため、内管の内面(伝熱面)への気泡付着による局所的なスケールの析出を抑制できるとともに、スケールによる熱交換の阻害も防止できる
また、螺旋状流路において、所定間隔毎に第1流体の流速を大きくでき、遠心力による攪拌効果も向上できるので、第1流体の流れを乱流化でき、熱交換器の熱交換効率も向上できる。
Therefore, local scale precipitation due to bubble adhesion to the inner surface (heat transfer surface) of the inner tube can be suppressed, heat exchange can be prevented from being hindered by the scale, and in the spiral flow path, the first step is made at predetermined intervals. Since the flow velocity of one fluid can be increased and the stirring effect due to centrifugal force can be improved, the flow of the first fluid can be turbulent and the heat exchange efficiency of the heat exchanger can be improved.

本発明によれば、簡素な手段で局所的なスケールの析出を抑制するとともに、熱交換効率の高い熱交換器を提供できる。 According to the present invention, it is possible to provide a heat exchanger having high heat exchange efficiency while suppressing local scale precipitation by simple means.

本発明の実施の形態1における熱交換器を用いた冷凍サイクル装置の回路図Circuit diagram of a refrigeration cycle apparatus using a heat exchanger according to the first embodiment of the present invention. 本発明の実施の形態1における熱交換器の斜視図Perspective view of the heat exchanger according to the first embodiment of the present invention. (a)本発明の実施の形態1における熱交換器のA面断面図(b)同熱交換器のB面断面図(A) A-plane sectional view of the heat exchanger according to the first embodiment of the present invention (b) B-plane sectional view of the heat exchanger (a)本発明の実施の形態1における熱交換器のA面断面図での第1流体の流速分布の概念図(b)同熱交換器のB面断面図での第1流体の流速分布の概念図(A) Conceptual diagram of the flow velocity distribution of the first fluid in the A-plane sectional view of the heat exchanger according to the first embodiment of the present invention (b) The flow velocity distribution of the first fluid in the B-plane sectional view of the heat exchanger. Conceptual diagram of (a)本発明の実施の形態1における内管が溝付き管である内面に付着した気泡の概念図(b)内管が平滑管である内面に付着した気泡の概念図(A) Conceptual diagram of bubbles attached to the inner surface of the inner tube of the first embodiment of the present invention, which is a grooved tube (b) Conceptual diagram of bubbles attached to the inner surface of the inner tube of a smooth tube.

第1の発明は、内管と、前記内管に挿入される挿入体と、前記内管の外周に設けられ、第2流体が流れる少なくとも1本以上の外管と、を備え、前記挿入体は、軸部とその軸部の外表面に形成された突部とから形成され、第1流体は、少なくとも前記内管の内面と前記突部とで形成される螺旋状流路を流れるとともに、前記螺旋状流路には、第1流体の流れ方向の所定間隔毎に、流路面積を小さくする肉厚突部が設けられていることを特徴とする熱交換器である。 The first invention includes an inner tube, an insert body inserted into the inner tube, and at least one outer tube provided on the outer periphery of the inner tube and through which a second fluid flows, and the insert body. Is formed from a shaft portion and a protrusion formed on the outer surface of the shaft portion, and the first fluid flows through at least a spiral flow path formed by the inner surface of the inner pipe and the protrusion. The spiral flow path is a heat exchanger characterized in that a thick protrusion for reducing the flow path area is provided at predetermined intervals in the flow direction of the first fluid.

これにより、螺旋状流路において、所定間隔毎に、第1流体の流速、および、第1流体のせん断応力を大きくできるので、螺旋状流路の壁面に、析出、付着した気泡を押し流し易くできる。 As a result, in the spiral flow path, the flow velocity of the first fluid and the shear stress of the first fluid can be increased at predetermined intervals, so that the bubbles deposited and adhering to the wall surface of the spiral flow path can be easily washed away. ..

加えて、螺旋状流路を流れる第1流体には、遠心力が作用するので、第1流体よりも密度の小さい気泡は、相対的に軸部側に押し流されることで、内管の内面(伝熱面)への再付着を抑制できる。 In addition, since centrifugal force acts on the first fluid flowing through the spiral flow path, bubbles having a density lower than that of the first fluid are swept relatively toward the shaft portion, so that the inner surface of the inner pipe ( Reattachment to the heat transfer surface) can be suppressed.

このため、内管の内面(伝熱面)への気泡付着による局所的なスケールの析出を抑制できるとともに、スケールによる熱交換の阻害も防止できる
また、螺旋状流路において、所定間隔毎に第1流体の流速を大きくでき、遠心力による攪拌効果も向上できるので、第1流体の流れを乱流化でき、熱交換器の熱交換効率も向上できる。
Therefore, local scale precipitation due to bubble adhesion to the inner surface (heat transfer surface) of the inner tube can be suppressed, heat exchange can be prevented from being hindered by the scale, and in the spiral flow path, the first step is made at predetermined intervals. Since the flow velocity of one fluid can be increased and the stirring effect due to centrifugal force can be improved, the flow of the first fluid can be turbulent and the heat exchange efficiency of the heat exchanger can be improved.

第2の発明は、特に、第1の発明において、前記肉厚突部は、周方向の所定間隔毎に、前記突部の軸方向の厚みを、他の部位よりも厚くすることで形成されていることを特徴とするものである。 The second invention, in particular, in the first invention, is formed by making the thickness of the protrusion in the axial direction thicker than that of other portions at predetermined intervals in the circumferential direction. It is characterized by being.

これにより、簡素な手段で、螺旋状流路において、所定間隔毎に、第1流体の流速、および、第1流体のせん断応力を大きくできるので、螺旋状流路の壁面に、析出、付着した気泡を押し流し易くできる。 As a result, the flow velocity of the first fluid and the shear stress of the first fluid can be increased at predetermined intervals in the spiral flow path by a simple means, so that they are deposited and adhered to the wall surface of the spiral flow path. It is possible to easily flush out air bubbles.

第3の発明は、特に、第1または第2の発明において、複数の前記肉厚突部の周方向の長さの中心部を結ぶラインは、前記挿入体の軸方向の中心線と並行であることを特徴とするものである。 A third invention, particularly in the first or second invention, is that the line connecting the central portions of the plurality of thick protrusions in the circumferential direction is parallel to the axial center line of the insert. It is characterized by being.

これにより、螺旋状流路に設けられている肉厚突部は、軸方向にて対向することになるため、螺旋状流路において、流路面積を特に小さくすることができる。 As a result, the thick protrusions provided in the spiral flow path face each other in the axial direction, so that the flow path area can be particularly reduced in the spiral flow path.

これにより、螺旋状流路において、所定間隔毎に、第1流体の流速、および、第1流体のせん断応力を大きくできるので、螺旋状流路の壁面に、析出、付着した気泡を押し流し易くできる。 As a result, in the spiral flow path, the flow velocity of the first fluid and the shear stress of the first fluid can be increased at predetermined intervals, so that the bubbles deposited and adhering to the wall surface of the spiral flow path can be easily washed away. ..

第4の発明は、特に、第1〜第3のいずれかの発明において、前記肉厚突部は、高さ方向において先端部よりも根元部の方が、軸方向の厚みが厚いことを特徴とするものである。 The fourth invention, in particular, in any one of the first to third inventions, is characterized in that the thick protrusion portion is thicker in the axial direction at the root portion than at the tip portion in the height direction. Is to be.

これにより、第1流体側の伝熱面積、すなわち、内管と第1流体との伝熱面積を減少させることなく、所定間隔毎に第1流体の流速を大きくできるので、熱交換器の性能を維持しつつ、局所的なスケール成長を抑制できる。 As a result, the flow velocity of the first fluid can be increased at predetermined intervals without reducing the heat transfer area on the first fluid side, that is, the heat transfer area between the inner pipe and the first fluid, and thus the performance of the heat exchanger. Can suppress local scale growth while maintaining.

第5の発明は、特に、第1〜第4のいずれかの発明において、前記肉厚突部は、根元部の周方向の長さの中心部が、軸方向の厚みが最も厚いことを特徴とするものである。 The fifth invention is characterized in that, in particular, in any one of the first to fourth inventions, the thick protrusion has the thickest axial thickness at the center of the circumferential length of the root portion. Is to be.

これにより、螺旋状流路において、所定間隔毎に、第1流体の流速、および、第1流体のせん断応力を大きくできるので、螺旋状流路の壁面に、析出、付着した気泡を押し流し易くできる。 As a result, in the spiral flow path, the flow velocity of the first fluid and the shear stress of the first fluid can be increased at predetermined intervals, so that the bubbles deposited and adhering to the wall surface of the spiral flow path can be easily washed away. ..

それとともに、できるだけ第1流体の流速の急激な変化を抑えることで、流動音の上昇を極力抑えることができる。 At the same time, by suppressing a sudden change in the flow velocity of the first fluid as much as possible, it is possible to suppress an increase in the flow noise as much as possible.

第6の発明は、特に、第1〜第5のいずれかの発明において、前記内管が、内面溝付き管であることを特徴とするものである。 The sixth invention is characterized in that, in any one of the first to fifth inventions, the inner pipe is an inner grooved pipe.

これにより、内管が内面溝付き管であるため、内管の管壁と、析出、付着する気泡との接触面積が、平滑管の場合と比べて減少し、内管の内面に付着した気泡は、管壁からより離脱しやすくなるので、内管の管壁に付着した気泡をより押し流し易くでき、局所的なスケールの成長を抑制できる。 As a result, since the inner tube is a tube with an inner surface groove, the contact area between the inner tube wall and the bubbles that precipitate and adhere is reduced as compared with the case of the smooth tube, and the bubbles attached to the inner surface of the inner tube. Is easier to separate from the tube wall, so that air bubbles adhering to the tube wall of the inner tube can be more easily washed away, and local scale growth can be suppressed.

加えて、内管の内表面積が平滑管に比べて増大するため、第1流体側の伝熱面積、すなわち、内管の内面と第1流体との伝熱面積が増加するとともに、螺旋状に流れる第1流体である水の流れを、内面溝によってさらに乱流化できるため、熱交換器の性能をより向上できる。 In addition, since the inner surface area of the inner tube is larger than that of the smooth tube, the heat transfer area on the first fluid side, that is, the heat transfer area between the inner surface of the inner tube and the first fluid is increased and spirally formed. Since the flow of water, which is the first fluid to flow, can be further turbulent by the inner groove, the performance of the heat exchanger can be further improved.

第7の発明は、圧縮機、第1〜第6のいずれかの発明の熱交換器、減圧装置、蒸発器を環状に接続して形成した冷凍サイクル装置である。 A seventh invention is a refrigeration cycle device formed by connecting a compressor, a heat exchanger of any one of the first to sixth aspects, a decompression device, and an evaporator in a ring shape.

これにより、簡素な手段で局所的なスケールの析出を抑制するとともに、高い熱交換効
率を実現できる熱交換器を搭載した冷凍サイクル装置を提供できる。
This makes it possible to provide a refrigeration cycle apparatus equipped with a heat exchanger that can suppress local scale precipitation by simple means and realize high heat exchange efficiency.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器を用いた冷凍サイクル装置の回路図である。
(Embodiment 1)
FIG. 1 is a circuit diagram of a refrigeration cycle device using a heat exchanger according to the first embodiment of the present invention.

第2流体である冷媒を圧縮する圧縮機31、圧縮機31で圧縮された高温の第2流体である冷媒が放熱し、低温の第1流体である水を加熱する熱交換器32、圧縮機31で圧縮された高圧の第2流体である冷媒を低圧まで減圧する減圧装置33、送風装置35が発生させる空気流より吸熱する蒸発器34を環状に接続して冷凍サイクル装置36は形成されている。 A compressor 31 that compresses the refrigerant that is the second fluid, a heat exchanger 32 that heats the water that is the low-temperature first fluid by radiating heat from the refrigerant that is the high-temperature second fluid compressed by the compressor 31, and the compressor. The refrigeration cycle device 36 is formed by cyclically connecting a decompression device 33 that decompresses the refrigerant, which is a high-pressure second fluid compressed in 31, to a low pressure, and an evaporator 34 that absorbs heat from the air flow generated by the blower 35. There is.

そして、熱交換器32において、第1流体である水と第2流体である冷媒とは対向に流れて熱交換している。なお、熱交換器32には、第1流体である低温の水が、搬送装置37により熱交換器32に搬送され、第2流体である冷媒により加熱され湯となり、給湯や暖房や貯湯される温水回路38が接続されている。 Then, in the heat exchanger 32, water as the first fluid and the refrigerant as the second fluid flow in opposite directions to exchange heat. In the heat exchanger 32, low-temperature water, which is the first fluid, is conveyed to the heat exchanger 32 by the transport device 37, heated by the refrigerant, which is the second fluid, to become hot water, and is supplied, heated, or stored. The hot water circuit 38 is connected.

図2は、本発明の実施の形態1における熱交換器の斜視図である。 FIG. 2 is a perspective view of the heat exchanger according to the first embodiment of the present invention.

図2において、熱交換器は、内部を第1流体である水が流れる内管1と、内管1の内部に挿入された挿入体2と、内部を第2流体である冷媒(二酸化炭素冷媒)が流れ、かつ、内管1の外周に密着する少なくとも1本以上の外管3とから構成されている。 In FIG. 2, the heat exchanger has an inner pipe 1 through which water, which is the first fluid, flows, an inserter 2 inserted inside the inner pipe 1, and a refrigerant (carbon dioxide refrigerant) which is the second fluid inside. ) Flows through and is composed of at least one outer tube 3 that is in close contact with the outer periphery of the inner tube 1.

そして、外管3は内管1の外周に所定のピッチで、螺旋状に巻き付けられている。 The outer tube 3 is spirally wound around the outer circumference of the inner tube 1 at a predetermined pitch.

挿入体2は、円筒状の軸部21と軸部21の外周に螺旋状に設けられた突部22からなる。第1流体である水は、内管1の内面と軸部21の外面と隣接する突部22とで形成された略矩形断面なる螺旋状流路23を流れる。 The insert body 2 includes a cylindrical shaft portion 21 and a protrusion 22 spirally provided on the outer circumference of the shaft portion 21. Water, which is the first fluid, flows through a spiral flow path 23 having a substantially rectangular cross section formed by an inner surface of the inner pipe 1, an outer surface of the shaft portion 21, and an adjacent protrusion 22.

図3(a)は、本実施の形態1における熱交換器のA面断面図である。A面断面における挿入体の突部22は、標準肉厚で形成されている標準突部22aである。 FIG. 3A is a cross-sectional view taken along the A side of the heat exchanger according to the first embodiment. The protrusion 22 of the insert body in the A-plane cross section is a standard protrusion 22a formed with a standard wall thickness.

図3(b)は、本実施の形態1における熱交換器のB面断面図である。B面断面における挿入体2の突部22は、標準突部22aよりも、軸方向の厚みが厚い肉厚突部22bである。 FIG. 3B is a cross-sectional view of the B-plane of the heat exchanger according to the first embodiment. The protrusion 22 of the insert body 2 in the B-plane cross section is a thick protrusion 22b that is thicker in the axial direction than the standard protrusion 22a.

肉厚突部22bは、周方向の所定間隔毎に、標準突部22aよりも軸方向の厚みを厚くして形成されている
また、複数の肉厚突部22bの周方向の長さの中心部を結ぶラインは、挿入体2の円筒状の軸部21の軸方向の中心線と並行である。
The wall-thick protrusions 22b are formed to be thicker in the axial direction than the standard protrusions 22a at predetermined intervals in the circumferential direction, and are the centers of the lengths of the plurality of thick-walled protrusions 22b in the circumferential direction. The line connecting the portions is parallel to the axial center line of the cylindrical shaft portion 21 of the insert body 2.

このため、螺旋状流路23に設けられている肉厚突部22bは、軸方向にて対向することになるため、螺旋状流路23は、第1流体である水の流れ方向の所定間隔毎に、流路面積を小さくする構成となっている。 For this reason, the thick protrusions 22b provided in the spiral flow path 23 face each other in the axial direction, so that the spiral flow path 23 has a predetermined interval in the flow direction of water, which is the first fluid. Each time, the flow path area is reduced.

なお、肉厚突部22bは、高さ方向において先端部から根元部にかけて、軸方向の厚みが徐々に厚くなっており、さらに、根元部の周方向の長さの中心部が、軸方向の厚みが最
も厚い形状である。
The thickness of the wall thickness protrusion 22b gradually increases in the axial direction from the tip to the root in the height direction, and the central portion of the circumferential length of the root is in the axial direction. It is the thickest shape.

なお、本発明の実施の形態1においては、肉厚突部22bが、周方向に形成されている所定間隔は、挿入体2の円筒状の軸部21の軸心を中心に180°である。 In the first embodiment of the present invention, the predetermined interval in which the thick protrusions 22b are formed in the circumferential direction is 180 ° about the axial center of the cylindrical shaft portion 21 of the insert body 2. ..

すなわち、螺旋状流路23を流れる第1流体である水は、半周毎に肉厚突部22bと衝突することになっている。 That is, water, which is the first fluid flowing through the spiral flow path 23, is supposed to collide with the thick protrusion 22b every half circumference.

これは、挿入体2が樹脂材料から形成されている場合、肉厚突部22bは、根元部の周方向の長さの中心部が、軸方向の厚みが最も厚い形状であるため、複数の肉厚突部22bの根元部の周方向の長さの中心部を結ぶ2ラインを、金型の分割面(PL)として、挿入体2を製造できるからである。 This is because when the insert body 2 is formed of a resin material, the wall-thick protrusion 22b has a shape in which the central portion having a circumferential length at the root portion has the thickest axial thickness. This is because the insert body 2 can be manufactured by using the two lines connecting the central portions of the root portion of the wall-thick protrusion 22b in the circumferential direction as the dividing surface (PL) of the mold.

ここで、固体表面に液体が付着する性質は「濡れ性」と呼ばれるが、第1流体である水が流れる螺旋状流路23の流路断面を形成する内管1の内面の長さを、伝熱面濡れ長さと定義する。 Here, the property that the liquid adheres to the solid surface is called "wetting property", and the length of the inner surface of the inner pipe 1 forming the flow path cross section of the spiral flow path 23 through which water, which is the first fluid flows, is defined. It is defined as the wet length of the heat transfer surface.

このとき、肉厚突部22bの伝熱面の濡れ長さLbは、標準突部22aの伝熱面濡れ長さLaと同程度確保されていて、内管1は、内面に微細な溝加工が施された内面溝付き管である。 At this time, the wet length Lb of the heat transfer surface of the thick protrusion 22b is secured to be about the same as the wet length La of the heat transfer surface of the standard protrusion 22a, and the inner tube 1 is finely grooved on the inner surface. It is a tube with an inner groove.

以上のように構成された熱交換器32をについて、COヒートポンプ給湯機に搭載した場合について、以下にその動作、作用を説明する。 The operation and operation of the heat exchanger 32 configured as described above will be described below when the heat exchanger 32 is mounted on a CO 2 heat pump water heater.

熱交換器は、外管3の内部を流れる内部を第2流体である高温の二酸化炭素と、内管1と挿入体2の間に形成された螺旋状流路23を流れる第1流体である低温の水とを対向に流して熱交換して、高温湯を生成する。 The heat exchanger is a high-temperature carbon dioxide that flows inside the outer tube 3 as a second fluid, and a first fluid that flows through a spiral flow path 23 formed between the inner tube 1 and the insert 2. Heat is exchanged by flowing low-temperature water in opposition to generate high-temperature hot water.

螺旋状流路23を流れる第1流体には遠心力が作用するため、曲がり管と同様に流れ方向と直行する面に二次流れが発生する。 Since centrifugal force acts on the first fluid flowing through the spiral flow path 23, a secondary flow is generated on the surface perpendicular to the flow direction as in the case of the curved pipe.

これにより、第1流体である水の流れがより乱流化され、流れ方向と直行する面の第1流体である水の温度分布が改善されるため、COヒートポンプ給湯機のように水の流速が遅い場合でも、熱交換器32の熱交換効率を向上できる。 As a result, the flow of water, which is the first fluid, is more turbulent, and the temperature distribution of water, which is the first fluid on the surface perpendicular to the flow direction, is improved. Therefore, water is used like a CO 2 heat pump water exchanger. Even when the flow velocity is slow, the heat exchange efficiency of the heat exchanger 32 can be improved.

前述の通り、第2流体である冷媒として二酸化炭素を用いたCOヒートポンプ式給湯機は水の加熱温度を高くできる。 As described above, the CO 2 heat pump type water heater that uses carbon dioxide as the refrigerant as the second fluid can raise the heating temperature of water.

その一方、第1流体である水の温度が高くなる熱交換器32の出口側では、溶存している気体(酸素、窒素など)の溶解度が低下するため、気泡として螺旋状流路23の壁面に析出し、局所的にスケールの析出や、熱交換を阻害することが懸念される。 On the other hand, on the outlet side of the heat exchanger 32 where the temperature of water, which is the first fluid, becomes high, the solubility of the dissolved gas (oxygen, nitrogen, etc.) decreases, so that the wall surface of the spiral flow path 23 becomes bubbles. There is a concern that it will precipitate in the water and locally inhibit scale precipitation and heat exchange.

本発明の実施の形態1では、図3(a)、図3(b)に示すように、挿入体2の突部22は、所定間隔毎に軸方向の厚みが厚い肉厚突部22bを有している。 In the first embodiment of the present invention, as shown in FIGS. 3A and 3B, the protrusions 22 of the insert body 2 have thick protrusions 22b that are thick in the axial direction at predetermined intervals. Have.

このため、第1流体である水が流れる螺旋状流路23は、図3(a)においては、内管1の内面と、軸部21の外面と、標準突部22aの外面とで形成されている。 Therefore, in FIG. 3A, the spiral flow path 23 through which water, which is the first fluid, flows is formed by the inner surface of the inner pipe 1, the outer surface of the shaft portion 21, and the outer surface of the standard protrusion 22a. ing.

また、図3(b)においては、内管1の内面と、肉厚突部22bの外面とで形成されている。 Further, in FIG. 3B, the inner surface of the inner pipe 1 and the outer surface of the thick protrusion 22b are formed.

このように、突部22の軸方向の厚みが、標準突部22aより肉厚突部22bの方が厚いので、第1流体である水の流れる流路断面積も肉厚突部22bを通過する場合の方が小さくなる。 In this way, since the thickness of the protrusion 22 in the axial direction is thicker in the thick protrusion 22b than in the standard protrusion 22a, the cross-sectional area of the flow path through which water, which is the first fluid, also passes through the thick protrusion 22b. It is smaller when you do.

したがって、螺旋状流路23には、第1流体である水流れ方向の所定間隔毎に、肉厚突部22bが設けられていて、内管1の内面側ではなく、軸部21の外面側の流路幅を狭まることで、流路断面積を小さくする構成としている。 Therefore, the spiral flow path 23 is provided with thick protrusions 22b at predetermined intervals in the water flow direction, which is the first fluid, and is not on the inner surface side of the inner pipe 1 but on the outer surface side of the shaft portion 21. By narrowing the flow path width of, the flow path cross-sectional area is reduced.

すなわち、図3(a)に示すように、第1流体である水が流れる螺旋状流路23が、内管1の内面と、軸部21の外面と、標準突部22aの外面とで形成されている、すなわち、A断面に形成される流路断面積をS1とする。 That is, as shown in FIG. 3A, the spiral flow path 23 through which water, which is the first fluid, flows is formed by the inner surface of the inner pipe 1, the outer surface of the shaft portion 21, and the outer surface of the standard protrusion 22a. That is, the cross-sectional area of the flow path formed in the A cross section is S1.

一方、図3(b)に示すように、第1流体である水が流れる螺旋状流路23が、内管1の内面と、肉厚突部22bの外面とで形成されている、すなわち、B断面に形成される流路断面積をS2とする。 On the other hand, as shown in FIG. 3B, the spiral flow path 23 through which water, which is the first fluid, flows is formed by the inner surface of the inner pipe 1 and the outer surface of the thick protrusion 22b, that is, that is, Let S2 be the cross-sectional area of the flow path formed in the B cross section.

このとき、流路断面積S1と、流路断面積S2の関係は、S1>S2となる。 At this time, the relationship between the flow path cross-sectional area S1 and the flow path cross-sectional area S2 is S1> S2.

また、肉厚突部22bは、高さ方向において先端部から根元部にかけて、軸方向の厚みが徐々に厚くなっており、さらに、根元部の周方向の長さの中心部が、軸方向の厚みが最も厚い形状である。 Further, the wall thickness protrusion 22b is gradually thickened in the axial direction from the tip portion to the root portion in the height direction, and further, the central portion of the circumferential length of the root portion is in the axial direction. It is the thickest shape.

一方、肉厚突部22bの伝熱面の濡れ長さLbは、標準突部22aの伝熱面濡れ長さLaと同程度確保されている。 On the other hand, the wet length Lb of the heat transfer surface of the thick protrusion 22b is secured to the same extent as the heat transfer surface wet length La of the standard protrusion 22a.

これにより、第1流体である水が流れる螺旋状流路23の流路断面を形成する内管1の内面の長さを変えないで、流路断面積を変化させることができる。 As a result, the cross-sectional area of the flow path can be changed without changing the length of the inner surface of the inner pipe 1 forming the cross-section of the spiral flow path 23 through which water, which is the first fluid, flows.

したがって、第1流体である水と内管1の内面との伝熱面積を同一とし、螺旋状流路23が肉厚突部22bで形成されている場合の方が、螺旋状流路23が標準突部22aで形成されている場合よりも、流路断面積を小さくすることで、第1流体である水の流速を大きくできる。 Therefore, when the heat transfer area between the water as the first fluid and the inner surface of the inner pipe 1 is the same and the spiral flow path 23 is formed by the thick protrusion 22b, the spiral flow path 23 is formed. By making the flow path cross-sectional area smaller than when it is formed by the standard protrusion 22a, the flow velocity of water, which is the first fluid, can be increased.

図4(a)は、本発明の実施の形態1における熱交換器のA面断面図での第1流体の流速分布の概念図である。A面断面における挿入体の突部22は、標準肉厚で形成されている標準突部22aである。 FIG. 4A is a conceptual diagram of the flow velocity distribution of the first fluid in the A-plane cross-sectional view of the heat exchanger according to the first embodiment of the present invention. The protrusion 22 of the insert body in the A-plane cross section is a standard protrusion 22a formed with a standard wall thickness.

図4(b)は、本発明の実施の形態1における熱交換器のB面断面図での第1流体の流速分布の概念図である。B面断面における挿入体2の突部22は、標準突部22aよりも、軸方向の厚みが厚い肉厚突部22bである。 FIG. 4B is a conceptual diagram of the flow velocity distribution of the first fluid in the B-plane cross-sectional view of the heat exchanger according to the first embodiment of the present invention. The protrusion 22 of the insert body 2 in the B-plane cross section is a thick protrusion 22b that is thicker in the axial direction than the standard protrusion 22a.

図4(a)、図4(b)に示すように、第1流体である水の流速は、螺旋状流路23が肉厚突部22bで形成されている場合の流速Ubの方が、螺旋状流路23が標準突部22aで形成されている場合の流速Uaよりも大きいので、螺旋状流路23の壁面近傍の速度勾配は、螺旋状流路23が肉厚突部22bで形成されている場合の方が大きくなる。 As shown in FIGS. 4A and 4B, the flow velocity of water as the first fluid is higher than that of the flow velocity Ub when the spiral flow path 23 is formed by the thick protrusion 22b. Since the flow velocity Ua when the spiral flow path 23 is formed by the standard protrusion 22a is larger than the flow velocity Ua, the velocity gradient near the wall surface of the spiral flow path 23 is formed by the spiral flow path 23 formed by the thick protrusion 22b. If it is, it will be larger.

Figure 2020197311
数1において、τは粘性流体のせん断応力、μは粘性係数、du/dzは流れと垂直な方向の速度勾配を示す。
Figure 2020197311
In Equation 1, τ is the shear stress of the viscous fluid, μ is the viscosity coefficient, and du / dz is the velocity gradient in the direction perpendicular to the flow.

ここで、数1に示すように、粘性流体のせん断応力τは、流れに垂直な方向の速度勾配に比例する。 Here, as shown in Equation 1, the shear stress τ of the viscous fluid is proportional to the velocity gradient in the direction perpendicular to the flow.

このため、螺旋状流路23の壁面近傍の速度勾配が、螺旋状流路23が肉厚突部22bで形成されている場合の方が大きいことから、螺旋状流路23を流れる第1流体である水のせん断応力も、螺旋状流路23が標準突部22aで形成されている場合よりも、螺旋状流路23が肉厚突部22bで形成されている場合の方が大きくなることがわかる。 Therefore, the velocity gradient near the wall surface of the spiral flow path 23 is larger when the spiral flow path 23 is formed by the thick protrusion 22b, so that the first fluid flowing through the spiral flow path 23 The shear stress of the water is also larger when the spiral flow path 23 is formed by the thick protrusion 22b than when the spiral flow path 23 is formed by the standard protrusion 22a. I understand.

したがって、螺旋状流路23が肉厚突部22bで形成されている場合には、螺旋状流路23の壁面に気泡が析出、付着しても、より大きなせん断応力が気泡に作用するため、気泡を壁面から押し流すことができる。 Therefore, when the spiral flow path 23 is formed by the thick protrusion 22b, even if bubbles are deposited and adhered to the wall surface of the spiral flow path 23, a larger shear stress acts on the bubbles. Bubbles can be flushed from the wall.

これにより、気泡を起点としたスケールの局所的な成長を抑制できるうえ、気泡による伝熱阻害も防止することができる。 As a result, local growth of the scale starting from the bubbles can be suppressed, and heat transfer inhibition by the bubbles can also be prevented.

また、螺旋状流路23を流れる第1流体には遠心力が作用するので、螺旋状流路23の壁面から押し流された第1流体である水よりも密度の小さい気泡は、相対的に軸部21側に押し流されるため、内管1の内面(伝熱面)への気泡の再付着も抑制できる。 Further, since centrifugal force acts on the first fluid flowing through the spiral flow path 23, bubbles having a density lower than that of water, which is the first fluid washed away from the wall surface of the spiral flow path 23, are relatively axial. Since it is swept toward the portion 21, reattachment of air bubbles to the inner surface (heat transfer surface) of the inner tube 1 can be suppressed.

すなわち、本発明の実施の形態1の熱交換器においては、図3(a)、図3(b)に示すように、標準突部22aよりも軸方向の厚みを厚く形成されている肉厚突部22bが、周方向に形成されている所定間隔は、挿入体2の円筒状の軸部21の軸心を中心に180°である。 That is, in the heat exchanger of the first embodiment of the present invention, as shown in FIGS. 3 (a) and 3 (b), the wall thickness is formed to be thicker in the axial direction than the standard protrusion 22a. The predetermined interval in which the protrusions 22b are formed in the circumferential direction is 180 ° about the axial center of the cylindrical shaft portion 21 of the insert body 2.

そして、複数の肉厚突部22bの周方向の長さの中心部を結ぶラインは、挿入体2の円筒状の軸部21の軸方向の中心線と並行である。 The line connecting the central portions of the plurality of thick protrusions 22b in the circumferential direction is parallel to the axial center line of the cylindrical shaft portion 21 of the insert body 2.

このため、螺旋状流路23に設けられている肉厚突部22bは、軸方向にて対向することになるため、螺旋状流路23は、半周毎に流路面積を小さくする構成となっている。 For this reason, the thick protrusions 22b provided in the spiral flow path 23 face each other in the axial direction, so that the spiral flow path 23 has a configuration in which the flow path area is reduced every half circumference. ing.

これにより、螺旋状流路23を流れる第1流体である水は、少なくとも半周毎に流速が大きくなり、せん断応力も大きくなる。 As a result, the flow velocity of water, which is the first fluid flowing through the spiral flow path 23, increases at least every half circumference, and the shear stress also increases.

したがって、より確実に気泡を押し流すことができるとともに、内管1の内面(伝熱面)への気泡の再付着をより防止できるので、局所的なスケールの成長と、熱交換の阻害を確実に抑制できる。 Therefore, the bubbles can be swept away more reliably, and the reattachment of the bubbles to the inner surface (heat transfer surface) of the inner tube 1 can be prevented, so that local scale growth and inhibition of heat exchange can be ensured. Can be suppressed.

図5(a)は、本発明の実施の形態1における内管が溝付き管である内面に付着した気泡の概念図である。 FIG. 5A is a conceptual diagram of bubbles adhering to the inner surface of the grooved pipe in the first embodiment of the present invention.

また、図5(b)は、図5(a)と比較するための、内管が平滑管である内面に付着した気泡の概念図である。 Further, FIG. 5B is a conceptual diagram of bubbles adhering to the inner surface of which the inner tube is a smooth tube for comparison with FIG. 5A.

本発明の実施の形態1では、内管1を、内面に微細な溝付き加工が施された内面溝付き管としている。 In the first embodiment of the present invention, the inner tube 1 is an inner grooved tube having a fine grooved inner surface.

図5(a)、図5(b)にしめすように、内管1が内面溝付き管である場合の、伝熱面に付着した気泡と伝熱面の接触面積は、内管1が平滑管である場合の、伝熱面に付着した気泡と伝熱面との接触面積よりも小さい。 As shown in FIGS. 5A and 5B, when the inner tube 1 is a tube with an inner groove, the contact area between the air bubbles adhering to the heat transfer surface and the heat transfer surface is smooth on the inner tube 1. In the case of a tube, it is smaller than the contact area between the air bubbles adhering to the heat transfer surface and the heat transfer surface.

これにより、内管1が内面溝付き管であるため、内管1の管壁と、析出、付着する気泡との接触面積が、平滑管の場合と比べて減少し、内管1の内面に付着した気泡は、管壁からより離脱しやすくなるので、内管1の管壁に付着した気泡をより押し流し易くでき、局所的なスケールの成長を抑制できる。 As a result, since the inner pipe 1 is a pipe with an inner surface groove, the contact area between the pipe wall of the inner pipe 1 and the bubbles that precipitate and adhere is reduced as compared with the case of the smooth pipe, and the inner surface of the inner pipe 1 is covered. Since the attached bubbles are more easily separated from the tube wall, the bubbles adhering to the tube wall of the inner tube 1 can be more easily washed away, and the local scale growth can be suppressed.

加えて、内管1の内表面積が平滑管に比べて増大するため、第1流体側の伝熱面積、すなわち、内管1の内面と第1流体との伝熱面積が増加するとともに、螺旋状に流れる第1流体である水の流れを、内面溝によってさらに乱流化できるため、熱交換器の性能をより向上できる。 In addition, since the inner surface area of the inner tube 1 is larger than that of the smooth tube, the heat transfer area on the first fluid side, that is, the heat transfer area between the inner surface of the inner tube 1 and the first fluid is increased, and the spiral Since the flow of water, which is the first fluid flowing in a shape, can be further turbulent by the inner groove, the performance of the heat exchanger can be further improved.

なお、本実施の形態においては、外管3の内部を流れる内部を第2流体である冷媒として、二酸化炭素としたが、ハイドロカーボン系やHFC系(R410A、R32等)の冷媒、あるいは、これらの代替冷媒でも良い。 In the present embodiment, carbon dioxide is used as the refrigerant flowing inside the outer pipe 3 as the second fluid, but hydrocarbon-based or HFC-based (R410A, R32, etc.) refrigerants, or these. It may be an alternative refrigerant of.

また、本実施の形態においては、肉厚突部22bが、周方向に形成されている所定間隔として、挿入体2の円筒状の軸部21の軸心を中心に180°としたが、その他の数値でも同様の効果は得られる。 Further, in the present embodiment, the wall-thick protrusions 22b are formed at a predetermined interval in the circumferential direction at 180 ° around the axial center of the cylindrical shaft portion 21 of the insert body 2. The same effect can be obtained with the numerical value of.

以上のように、本発明にかかる熱交換器は、簡素な手段で局所的なスケールの析出を抑制するとともに、高い熱交換効率を実現できるので、空調機器や給湯機器等に適用できる。 As described above, the heat exchanger according to the present invention can be applied to air-conditioning equipment, hot water supply equipment, and the like because it can suppress local scale precipitation by simple means and realize high heat exchange efficiency.

1 内管
2 挿入体
3 外管
21 軸部
22 突部
22a 標準突部
22b 肉厚突部
23 螺旋状流路
31 圧縮機
32 熱交換器(放熱器)
33 減圧装置
34 蒸発器
36 冷凍サイクル装置
1 Inner pipe 2 Insert 3 Outer pipe 21 Shaft 22 Protrusion 22a Standard protrusion 22b Thick protrusion 23 Spiral flow path 31 Compressor 32 Heat exchanger (radiator)
33 Decompression device 34 Evaporator 36 Refrigeration cycle device

Claims (7)

内管と、
前記内管に挿入される挿入体と、
前記内管の外周に設けられ、第2流体が流れる少なくとも1本以上の外管と、
を備え、
前記挿入体は、軸部とその軸部の外表面に形成された突部とから形成され、
第1流体は、少なくとも前記内管の内面と前記突部とで形成される螺旋状流路を流れるとともに、
前記螺旋状流路には、第1流体の流れ方向の所定間隔毎に、流路面積を小さくする肉厚突部が設けられていることを特徴とする熱交換器。
Inner tube and
The insert inserted into the inner tube and
At least one outer pipe provided on the outer circumference of the inner pipe and through which the second fluid flows, and
With
The insert body is formed of a shaft portion and a protrusion formed on the outer surface of the shaft portion.
The first fluid flows through a spiral flow path formed by at least the inner surface of the inner pipe and the protrusion, and also flows.
A heat exchanger characterized in that the spiral flow path is provided with thick protrusions for reducing the flow path area at predetermined intervals in the flow direction of the first fluid.
前記肉厚突部は、周方向の所定間隔毎に、前記突部の軸方向の厚みを、他の部位よりも厚くすることで形成されていることを特徴とする請求項1に記載の熱交換器。 The heat according to claim 1, wherein the wall-thick protrusions are formed by making the thickness of the protrusions in the axial direction thicker than other parts at predetermined intervals in the circumferential direction. Exchanger. 複数の前記肉厚突部の周方向の長さの中心部を結ぶラインは、前記挿入体の軸方向の中心線と並行であることを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the line connecting the central portions of the circumferential lengths of the plurality of thick protrusions is parallel to the axial center line of the insert. .. 前記肉厚突部は、高さ方向において先端部よりも根元部の方が、軸方向の厚みが厚いことを特徴とする請求項1〜3のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the thick protrusion portion is thicker at the root portion than at the tip portion in the height direction. 前記肉厚突部は、根元部の周方向の長さの中心部が、軸方向の厚みが最も厚いことを特徴とする請求項1〜4のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the thick protrusion has the thickest axial thickness at the center of the root portion in the circumferential direction. 前記内管は、内面溝付き管であることを特徴とする請求項1〜5のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 5, wherein the inner tube is an inner grooved tube. 圧縮機、請求項1〜6のいずれか1項に記載の熱交換器、減圧装置、蒸発器を環状に接続して形成した冷凍サイクル装置。 A refrigeration cycle device formed by connecting a compressor, a heat exchanger according to any one of claims 1 to 6, a decompression device, and an evaporator in a ring shape.
JP2019101916A 2019-05-31 2019-05-31 Heat exchanger and refrigeration cycle device provided with the same Active JP7129602B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019101916A JP7129602B2 (en) 2019-05-31 2019-05-31 Heat exchanger and refrigeration cycle device provided with the same
EP20158255.8A EP3754284B1 (en) 2019-05-31 2020-02-19 Heat exchanger and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019101916A JP7129602B2 (en) 2019-05-31 2019-05-31 Heat exchanger and refrigeration cycle device provided with the same

Publications (2)

Publication Number Publication Date
JP2020197311A true JP2020197311A (en) 2020-12-10
JP7129602B2 JP7129602B2 (en) 2022-09-02

Family

ID=69804386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019101916A Active JP7129602B2 (en) 2019-05-31 2019-05-31 Heat exchanger and refrigeration cycle device provided with the same

Country Status (2)

Country Link
EP (1) EP3754284B1 (en)
JP (1) JP7129602B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944959B (en) * 2021-03-09 2022-05-24 格力电器(武汉)有限公司 Rotational flow disturbance device and heat exchange tube structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171580A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Heat exchanger and sanitary washing apparatus equipped with it
JP2016205764A (en) * 2015-04-28 2016-12-08 パナソニックIpマネジメント株式会社 Heat exchanger and heat pump water heater using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9587888B2 (en) * 2008-07-24 2017-03-07 Mahle International Gmbh Internal heat exchanger assembly
EP3290854B1 (en) * 2015-04-28 2021-12-22 Panasonic Intellectual Property Management Co., Ltd. Heat exchanger and refrigeration cycle device using same
JP6239199B1 (en) 2016-03-16 2017-11-29 三菱電機株式会社 Heat exchange system and method for suppressing scale of heat exchange system
JP2020012619A (en) * 2018-07-20 2020-01-23 株式会社ヴァレオジャパン Double-pipe heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171580A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Heat exchanger and sanitary washing apparatus equipped with it
JP2016205764A (en) * 2015-04-28 2016-12-08 パナソニックIpマネジメント株式会社 Heat exchanger and heat pump water heater using the same

Also Published As

Publication number Publication date
EP3754284A1 (en) 2020-12-23
JP7129602B2 (en) 2022-09-02
EP3754284B1 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
JP6687022B2 (en) Refrigeration cycle equipment
JP4736533B2 (en) Heat exchanger
JP2020197311A (en) Heat exchanger and refrigeration cycle device provided with the same
JP2006349229A (en) Refrigerant flow divider
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2005221087A (en) Heat exchanger
JP2005221172A (en) Heat exchanger for supplying hot water
JP2006145056A (en) Heat exchanger
JP2005009833A (en) Double pipe type heat exchanger
JP2006057998A (en) Heat exchanger
US11098966B2 (en) Header tank for heat exchanger
EP3581868A1 (en) Water heat exchanger and gas cooler
ATE430908T1 (en) HEAT EXCHANGER WITH A MULTIPLE TUBE ELEMENTS
JP2006162165A (en) Heat exchanger
KR101942572B1 (en) Fluid mixing apparatus for heat exchange pipe
JP2018066482A (en) Heat exchanger and water heater including the same
US11768012B2 (en) Hydraulically opened cone vertical tube diffuser with slanted anti-siphon hole
JP2007218461A (en) Double tube type heat exchanger
JP2004340455A (en) Heat exchanger
JP5540683B2 (en) Heat exchanger and water heater provided with the same
JP5533328B2 (en) Heat exchanger
JP2020085334A (en) Blockage prevention mechanism of capillary tube in refrigeration cycle
JP2010091202A (en) Refrigerant piping joint structure
JP2008175450A (en) Heat exchanger
KR20150004531A (en) Heat Exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7129602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151