JP2020196685A - Catalyst system for benzene production and method for producing benzene using the same - Google Patents

Catalyst system for benzene production and method for producing benzene using the same Download PDF

Info

Publication number
JP2020196685A
JP2020196685A JP2019104157A JP2019104157A JP2020196685A JP 2020196685 A JP2020196685 A JP 2020196685A JP 2019104157 A JP2019104157 A JP 2019104157A JP 2019104157 A JP2019104157 A JP 2019104157A JP 2020196685 A JP2020196685 A JP 2020196685A
Authority
JP
Japan
Prior art keywords
benzene
catalyst
phase
catalyst system
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019104157A
Other languages
Japanese (ja)
Inventor
啓介 荒木
Keisuke Araki
啓介 荒木
善全 渡部
Yoshimasa Watabe
善全 渡部
知一 大橋
Tomokazu Ohashi
知一 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute, Tosoh Corp filed Critical Sagami Chemical Research Institute
Priority to JP2019104157A priority Critical patent/JP2020196685A/en
Publication of JP2020196685A publication Critical patent/JP2020196685A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a catalyst system for benzene production that makes it possible to produce benzene from an aliphatic hydrocarbon with high selectivity and high efficiency, and a method for producing benzene with a high benzene selectivity and good energy efficiency by converting an aliphatic hydrocarbon into benzene efficiently using the catalyst system for benzene production.SOLUTION: A catalyst system for benzene production being a two-phase separation catalyst system, a first phase being a phase including a catalyst for aromatization reaction, and a second phase being a phase including a catalyst for hydrogenation dealkylation.SELECTED DRAWING: Figure 1

Description

本発明は、ベンゼンを製造するためのベンゼン製造用触媒システム及びベンゼンの製造方法に関するものであり、さらに詳細には、芳香族化反応用触媒を含む第1相及び水素化脱アルキル化反応用触媒を含む第2相からなる2相分離触媒システムとすることにより、パラフィン、オレフィン及びナフテン等の脂肪族炭化水素から優れた収率でベンゼンを効率的に製造することが出来るベンゼン製造用触媒システムおよびそれを用いたベンゼンの製造方法に関するものである。 The present invention relates to a benzene production catalyst system for producing benzene and a method for producing benzene, and more particularly, a first phase including a catalyst for an aromatication reaction and a catalyst for a hydrocarbon dealkylation reaction. A catalyst system for benzene production capable of efficiently producing benzene from aliphatic hydrocarbons such as paraffin, olefin and naphthene in an excellent yield by using a two-phase separation catalyst system consisting of a second phase containing It relates to a method for producing benzene using it.

ベンゼンやトルエン、キシレン等の芳香族化合物は、多くの場合、石油精製により得られた原料油(例えばナフサなど)を、熱分解反応装置にて分解し、得られた熱分解生成物から蒸留又は抽出によって分離精製することで得られる。これらの芳香族化合物の製造方法では、芳香族化合物以外の熱分解生成物として、脂肪族炭化水素(パラフィン系、オレフィン系、アセチレン系、脂環系の炭化水素)が副生する。そのため、芳香族化合物の製造に伴って、脂肪族炭化水素が同時に製造されるため、芳香族化合物の生産量は脂肪族炭化水素の生産量に見合って調整がなされ、おのずと生産量が制限されるものであった。一方、脂肪族炭化水素は、細孔径約5〜6オングストロームの細孔を有する中細孔径ゼオライトを主に含んだ触媒と400℃〜800℃程度の温度で接触させることにより、芳香族化合物に転化製造することができることが報告されている(例えば非特許文献1〜4参照。)。該製造方法は、原料油の熱分解による芳香族化合物の製造方法と比較して、脂肪族炭化水素から有用な芳香族化合物が製造できる利点がある。そのため、このような、脂肪族炭化水素からの芳香族化合物を製造可能な触媒の開発が行われている。例えば、パラフィン、オレフィン及びナフテンを含有する脂肪族炭化水素を原料とした芳香族化合物製造用触媒として、亜鉛含有量を抑制した亜鉛担持中細孔径ゼオライト系触媒(例えば特許文献1参照。)、パラフィン、オレフィン、アセチレン系炭化水素、環状パラフィン、環状オレフィンを原料とした芳香族化合物製造に用いられる触媒として、L型ゼオライトに白金及びハロゲン成分を担持させてなる触媒(例えば特許文献2参照。)、等が提案されている。 Aromatic compounds such as benzene, toluene, and xylene are often obtained by decomposing raw material oil (such as naphtha) obtained by petroleum refining with a pyrolysis reactor and distilling or distilling from the obtained pyrolysis product. It is obtained by separating and purifying by extraction. In the methods for producing these aromatic compounds, aliphatic hydrocarbons (paraffin-based, olefin-based, acetylene-based, and alicyclic hydrocarbons) are by-produced as thermal decomposition products other than the aromatic compounds. Therefore, since the aliphatic hydrocarbon is produced at the same time as the production of the aromatic compound, the production amount of the aromatic compound is adjusted according to the production amount of the aliphatic hydrocarbon, and the production amount is naturally limited. It was a thing. On the other hand, aliphatic hydrocarbons are converted into aromatic compounds by contacting them with a catalyst mainly containing medium pore size zeolite having pores having pore diameters of about 5 to 6 angstroms at a temperature of about 400 ° C. to 800 ° C. It has been reported that it can be produced (see, for example, Non-Patent Documents 1 to 4). The production method has an advantage that a useful aromatic compound can be produced from an aliphatic hydrocarbon as compared with a method for producing an aromatic compound by thermal decomposition of a raw material oil. Therefore, a catalyst capable of producing such an aromatic compound from an aliphatic hydrocarbon is being developed. For example, as a catalyst for producing an aromatic compound using an aliphatic hydrocarbon containing paraffin, olefin and naphthene as a raw material, a zinc-supported medium pore diameter zeolite catalyst having a suppressed zinc content (see, for example, Patent Document 1), paraffin As a catalyst used for producing aromatic compounds using olefins, acetylene hydrocarbons, cyclic paraffins, and cyclic olefins as raw materials, a catalyst obtained by supporting platinum and halogen components in L-type zeolite (see, for example, Patent Document 2). Etc. have been proposed.

特開1998−33987公報JP-A-1998-33987 特許第3264447号公報Japanese Patent No. 3264447

Industrial & Engineering Chemistry Research 第31巻、995頁(1992年)Industrial & Engineering Chemistry Research Vol. 31, p. 995 (1992) Industrial & Engineering Chemistry Research 第26巻、647頁(1987年)Industrial & Engineering Chemistry Research Vol. 26, p. 647 (1987) Applied Catalysis 第78巻、15頁(1991年)Applied Catalysis Vol. 78, p. 15 (1991) Microporous and Mesoporous Materials 第47巻、253頁(2001年)Microporous and Mesoporous Materials, Vol. 47, pp. 253 (2001) 石油学会誌 第9巻、643項(1966年)Journal of the Petroleum Society, Vol. 9, Section 643 (1966)

特許文献1〜2で提案された触媒を用いた場合、芳香族化合物の製造の際に生成物中にメタン、エチレン、エタン、プロピレン、プロパン等の非芳香族化合物を生成し、芳香族化合物の選択率、特にベンゼン選択率が必ずしも高いものではなく、ベンゼンの製造方法としては課題を有するものであった。特に、特許文献2で示されたL型ゼオライトに白金及びハロゲン成分を同時に担持させてなる触媒においては、原料の炭素数が7以上の場合、トルエンやキシレン等のアルキル化芳香族化合物が生成し易い傾向にあり、その結果ベンゼン選択率が抑制されるという課題を有するものであった。 When the catalysts proposed in Patent Documents 1 and 2 are used, non-aromatic compounds such as methane, ethylene, ethane, propylene, and propane are produced in the product during the production of the aromatic compound, and the aromatic compound is produced. The selectivity, particularly the selectivity of benzene, was not always high, and there was a problem as a method for producing benzene. In particular, in the catalyst in which platinum and halogen components are simultaneously supported on the L-type zeolite shown in Patent Document 2, an alkylated aromatic compound such as toluene or xylene is produced when the raw material has 7 or more carbon atoms. It tends to be easy, and as a result, there is a problem that the benzene selectivity is suppressed.

また、非特許文献5においては、芳香族化反応で得られた生成物を熱分解反応することでベンゼンの収率が増加することが報告されている。しかし、その際の熱分解反応温度は、750℃と極めて高いものであり、該方法はエネルギー多消費型のプロセスであるため多大の制約を受ける可能性の高いものであった。 Further, in Non-Patent Document 5, it is reported that the yield of benzene is increased by thermally decomposing the product obtained by the aromatization reaction. However, the thermal decomposition reaction temperature at that time is extremely high at 750 ° C., and since the method is an energy-intensive process, there is a high possibility that it will be greatly restricted.

そこで、本発明は、脂肪族炭化水素、好ましくは炭素数が10以下、特に好ましくは6〜8の脂肪族炭化水素を原料として、ベンゼンを選択的かつ効率よく製造することが可能となるベンゼン製造用触媒システム及びそれを用いたベンゼンの製造方法を提供するものである。 Therefore, the present invention makes it possible to selectively and efficiently produce benzene from an aliphatic hydrocarbon, preferably an aliphatic hydrocarbon having 10 or less carbon atoms, particularly preferably 6 to 8 carbon atoms. A catalyst system for use and a method for producing benzene using the same are provided.

本発明者らは、上記の課題を解決するため鋭意検討を行った結果、触媒システムとして特定の触媒の組合せによる2相分離触媒システムとすることにより、脂肪族炭化水素からベンゼンを製造する際に、選択的かつ効率よくベンゼンを製造することが可能となることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have made a two-phase separation catalyst system by combining a specific catalyst as a catalyst system, and when producing benzene from an aliphatic hydrocarbon. , It has been found that benzene can be produced selectively and efficiently, and the present invention has been completed.

即ち、本発明は、2相分離触媒システムであって、第1相が芳香族化反応用触媒を含む相であり、第2相が水素化脱アルキル化用触媒を含む相であることを特徴とするベンゼン製造用触媒システム及びそれを用いて脂肪族炭化水素と接触することを特徴とするベンゼンの製造方法に関するものである。 That is, the present invention is a two-phase separation catalyst system, characterized in that the first phase is a phase containing an aromatization reaction catalyst and the second phase is a phase containing a hydrogenation dealkylation catalyst. The present invention relates to a catalyst system for producing benzene, and a method for producing benzene, which comprises contacting with an aliphatic hydrocarbon using the same.

以下に、本発明について詳細に説明する。 The present invention will be described in detail below.

本発明における触媒システムとは、目的とする化合物を効率よく製造するために、反応管内に複数の種類の触媒が充填されたものをいう。 The catalyst system in the present invention refers to a system in which a plurality of types of catalysts are filled in a reaction tube in order to efficiently produce a target compound.

本発明のベンゼン製造用触媒システムは、第1相が芳香族化反応用触媒を含む相であり、第2相が水素化脱アルキル化用触媒を含む相である2相分離触媒システムである。該芳香族化反応用触媒は、脂肪族炭化水素を芳香族化合物に転化する作用を有するものであり、その際の生成物である芳香族化合物はベンゼンを含有するものである。また、該水素化脱アルキル化用触媒とは、該芳香族化合物中に副生物として含まれるメチルベンゼン、エチルベンゼン等のアルキル化芳香族化合物の脱アルキル化を行いベンゼンに転化する作用を有するものである。 The catalyst system for benzene production of the present invention is a two-phase separation catalyst system in which the first phase is a phase containing an aromatization reaction catalyst and the second phase is a phase containing a hydrogenation dealkylation catalyst. The aromatization reaction catalyst has an action of converting an aliphatic hydrocarbon into an aromatic compound, and the aromatic compound which is a product at that time contains benzene. Further, the hydrogenation dealkylation catalyst has an action of dealkylating an alkylated aromatic compound such as methylbenzene or ethylbenzene contained as a by-product in the aromatic compound and converting it into benzene. is there.

該芳香族化反応用触媒としては、芳香族化反応用触媒として知られているものを用いることができ、例えばクロミア−アルミナ触媒、白金−アルミナ触媒、白金−L型ゼオライト触媒、L型ゼオライトに白金及びハロゲン成分を同時に担持させてなる触媒を挙げることができ、中でも芳香族化合物選択性及び触媒寿命に優れ、ベンゼンの選択性及び生産効率に優れる触媒システムとなることからL型ゼオライトに白金及びハロゲン成分を担持した芳香族化反応用触媒が好ましい。なお、ここで言うハロゲン成分とは、塩素、臭素、ヨウ素等のハロゲン単体はもとより、これらハロゲンを含むハロゲン化合物をも含むものである。 As the aromatization reaction catalyst, a catalyst known as an aromatization reaction catalyst can be used, and for example, a chromaa-alumina catalyst, a platinum-alumina catalyst, a platinum-L type zeolite catalyst, and an L type zeolite can be used. Examples of catalysts in which platinum and halogen components are simultaneously supported can be mentioned. Among them, L-type zeolite is composed of platinum and L-type zeolite because it provides a catalyst system having excellent aromatic compound selectivity and catalyst life, and excellent benzene selectivity and production efficiency. A catalyst for an aromatization reaction carrying a halogen component is preferable. The halogen component referred to here includes not only halogens such as chlorine, bromine, and iodine, but also halogen compounds containing these halogens.

該水素化脱アルキル化用触媒としては、水素化脱アルキル化用触媒として知られているものを用いることができ、中でも脱アルキル化反応性及び触媒寿命に優れ、ベンゼンの選択性及び生産効率に優れる触媒システムとなることから、シリカやアルミナ等の担体に、モリブデン、ニッケル、クロム、ロジウム、白金等の金属及び/又はそれらを含む金属化合物を担持した水素化脱アルキル化用触媒が好ましく、特にモリブデン系、ニッケル系を担持したものが好ましい。その際に、モリブデン系を用いる場合の担持量は1〜10重量%が好ましく、ニッケル系を用いる場合の担持量は0.1〜2重量%が好ましい。 As the hydrogenation dealkylation catalyst, a catalyst known as a hydrogenation dealkylation catalyst can be used, and among them, excellent dealkylation reactivity and catalyst life, and benzene selectivity and production efficiency. A catalyst for hydrogenation dealkylation in which a metal such as molybdenum, nickel, chromium, rhodium, platinum, and / or a metal compound containing them is supported on a carrier such as silica or alumina is preferable because it provides an excellent catalyst system. Those supporting molybdenum or nickel are preferable. At that time, the supported amount when the molybdenum type is used is preferably 1 to 10% by weight, and the supported amount when the nickel type is used is preferably 0.1 to 2% by weight.

本発明のベンゼン製造用触媒システムは、該芳香族化反応用触媒を含む第1相と該水素化脱アルキル化用触媒を含む第2相とが相分離をした2相分離触媒システムであり、該2相分離は、第1相と第2相とが同一装置内に連続した2相分離、第1相と第2相とがそれぞれ独立した2相分離のいずれでもよく、特にシステム的効率に優れることから図1に示す同一装置内に連続した2相分離の触媒システムであることが好ましい。ここで、芳香族化反応用触媒、水素化脱アルキル化用触媒のそれぞれ単独、又は相分離のない混合したシステムである場合、ベンゼンを製造した際の選択性、効率に劣るものとなる。 The catalyst system for benzene production of the present invention is a two-phase separation catalyst system in which a first phase containing the aromaticization reaction catalyst and a second phase containing the hydrogenation dealkylation catalyst are phase-separated. The two-phase separation may be either a two-phase separation in which the first phase and the second phase are continuous in the same apparatus, or a two-phase separation in which the first phase and the second phase are independent of each other, particularly for system efficiency. It is preferable to use a continuous two-phase separation catalyst system in the same apparatus shown in FIG. 1 because of its superiority. Here, in the case of a system in which the catalyst for aromatization reaction and the catalyst for hydrogenation dealkylation are used alone or mixed without phase separation, the selectivity and efficiency at the time of producing benzene are inferior.

本発明のベンゼン製造用触媒システムによるベンゼンの製造方法としては、ベンゼンの製造が可能であれば如何なる方法を用いてもよく、例えば該ベンゼン製造用触媒システムに脂肪族炭化水素を接触する方法を挙げることが出来る。中でも、ベンゼンの選択性に優れると共に、生産効率、エネルギー効率に優れる製造方法となることから、脂肪族炭化水素を供給する際に芳香族化反応用触媒を含む第1相を上流側として供給する製造方法であることが好ましい。このような製造方法とすることにより、芳香族化反応用触媒との接触により芳香族化合物を生成した後、連続して生成物を水素化脱アルキル化用触媒に接触することにより該芳香族化合物中に含まれるアルキル化ベンゼン等をベンゼンに転化することが可能となり、効率に優れるものとなる。 As a method for producing benzene by the benzene production catalyst system of the present invention, any method may be used as long as benzene can be produced, and examples thereof include a method of contacting an aliphatic hydrocarbon with the benzene production catalyst system. Can be done. Above all, since it is a production method excellent in benzene selectivity, production efficiency and energy efficiency, the first phase containing an aromatization reaction catalyst is supplied as the upstream side when supplying an aliphatic hydrocarbon. It is preferably a manufacturing method. By adopting such a production method, an aromatic compound is produced by contact with a catalyst for an aromatization reaction, and then the product is continuously contacted with a catalyst for hydrogenation / dealkylation to form the aromatic compound. Alkylated benzene and the like contained therein can be converted to benzene, resulting in excellent efficiency.

該脂肪族炭化水素とは、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等のパラフィン系;エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン等のオレフィン系;アセチレン等のアセチレン系;シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン等の脂環系等の脂肪族炭化水素と称される範疇に属するものであり、中でも選択的に効率よくベンゼンを製造できることから炭素数6〜8の脂肪族炭化水素が好ましく、具体的にはヘキサン、ヘプタン、オクタン等のパラフィン系;ヘキセン、ヘプテン、オクテン等のオレフィン系;メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環系及びそれらの混合物等を挙げることができる。 The aliphatic hydrocarbons are paraffinic compounds such as methane, ethane, propane, butane, pentane, hexane, heptane and octane; olefinic compounds such as ethylene, propylene, butene, penten, hexene, heptene and octene; and acetylene such as acetylene. System: It belongs to the category called aliphatic hydrocarbons such as alicyclics such as cyclopropane, cyclobutane, cyclopentane, and cyclohexane, and among them, it has 6 to 8 carbon atoms because it can selectively and efficiently produce benzene. Aliphatic hydrocarbons are preferable, and specifically, paraffinic systems such as hexane, heptane, and octane; olefins such as hexene, heptene, and octene; alicyclic systems such as methylcyclopentane, cyclohexane, and methylcyclohexane, and mixtures thereof. Can be mentioned.

ベンゼンを製造する際の反応温度は、ベンゼンの製造が可能であれば制限は無く、中でも芳香族化反応における高級パラフィンや高級オレフィンの副生を抑制し、芳香族化反応と水素化脱アルキル化反応を連続して進行することが可能となることから400〜600℃の範囲であることが好ましい。また、反応圧力にも制限はなく、例えば0.05MPa〜5MPa程度の圧力範囲で製造が可能である。反応原料である脂肪族炭化水素の供給速度は、触媒量、反応条件に応じて適宜選択すればよく、例えば0.1h−1〜10h−1程度の空間速度を挙げることができる。脂肪族炭化水素を原料として供給する際には、単一、混合、およびこれらを窒素等の不活性ガス、水素、一酸化炭素、二酸化炭素から選ばれる単一または混合ガスにより希釈したものとして用いることもでき、中でも水素により希釈して原料を供給することが好ましい。 The reaction temperature at the time of producing benzene is not limited as long as benzene can be produced. Among them, the by-production of higher paraffins and higher olefins in the aromatization reaction is suppressed, and the aromatization reaction and hydrogenation dealkylation are performed. The temperature is preferably in the range of 400 to 600 ° C. because the reaction can proceed continuously. Further, the reaction pressure is also not limited, and can be produced in a pressure range of, for example, about 0.05 MPa to 5 MPa. The supply rate of the aliphatic hydrocarbon as the reaction raw material may be appropriately selected depending on the amount of catalyst and the reaction conditions, and for example, a space rate of about 0.1h -1 to 10h -1 can be mentioned. When supplying an aliphatic hydrocarbon as a raw material, it is used as a single, mixed, and diluted with an inert gas such as nitrogen, hydrogen, carbon monoxide, or a mixed gas selected from carbon dioxide. It is also possible to supply the raw material by diluting it with hydrogen.

また、ベンゼンを製造する際の芳香族化反応用触媒または水素化脱アルキル化反応用触媒と脂肪族炭化水素との接触形式に制限はなく、固定床、流動床、さらにはその組み合わせであってもよい。また、反応器は単管式でも多管式反応器でもよい。 Further, there is no limitation on the contact type between the catalyst for aromatization reaction or the catalyst for hydrogenation dealkylation reaction and the aliphatic hydrocarbon in the production of benzene, and it is a fixed bed, a fluidized bed, or a combination thereof. May be good. Further, the reactor may be a single-tube reactor or a multi-tube reactor.

本発明は、ベンゼンを高い選択率、収率、効率で得ることができる新規なベンゼン製造用触媒システムおよびそれを用いたベンゼンの製造方法を提供するものであり、工業的にも非常に有用なものである。 The present invention provides a novel catalyst system for producing benzene capable of obtaining benzene with high selectivity, yield and efficiency, and a method for producing benzene using the same, which is very useful industrially. It is a thing.

以下に、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.

なお、実施例で用いたベンゼン製造装置及びベンゼン製造方法の評価方法を以下に示す。 The benzene production apparatus and the evaluation method of the benzene production method used in the examples are shown below.

〜ベンゼン製造装置〜
ステンレス製反応管(内径16mm、長さ300mm)を備えた固定床気相流通式反応装置を用いた。
~ Benzene production equipment ~
A fixed-floor gas-phase flow reactor equipped with a stainless steel reaction tube (inner diameter 16 mm, length 300 mm) was used.

〜反応生成物の分析〜
反応生成物中の水素、メタン、エタン、プロパン及びブタンは、ガスクロマトグラフカラム充填剤(Waters社製、PorapakQ(商品名)またはGLサイエンス社製、MS−5A(商品名))を充填したカラムを備えたガスクロマトグラフ(島津製作所製、(商品名)GC−14B)により各成分を分離させ、TCD検出器により定量をおこなった。
~ Analysis of reaction products ~
For hydrogen, methane, ethane, propane and butane in the reaction product, a column packed with a gas chromatograph column packing material (Waters, PorapakQ (trade name) or GL Science, MS-5A (trade name)) is used. Each component was separated by a provided gas chromatograph (manufactured by Shimadzu Corporation, (trade name) GC-14B), and quantification was performed by a TCD detector.

反応生成物中のベンゼン、トルエン、キシレン、ヘキサン、メチルシクロヘキサン及びペンタンはキャピラリーカラム(GLサイエンス社製、(商品名)TC−1)を備えたガスクロマトグラフ(島津製作所製、(商品名)GC−2015)により各成分を分離させ、FID検出器により定量をおこなった。 Benzene, toluene, xylene, hexane, methylcyclohexane and pentane in the reaction products are gas chromatographs (manufactured by Shimadzu Corporation, (trade name) GC-2015) equipped with a capillary column (manufactured by GL Science, Inc. (trade name) TC-1). ), And quantification was performed by a FID detector.

〜ベンゼン収率〜
ベンゼン収率=ベンゼン生成重量/供給原料重量×100 として求めた。
~ Benzene yield ~
It was determined as benzene yield = benzene production weight / feed raw material weight x 100.

参考例1
フッ化アンモニウム0.21gと塩化テトラアンミン白金0.37gを水16.5gに溶解させた溶液をL型ゼオライト(東ソー(株)製、(商品名)TSZ−500KOA)46.6gに加えて混練し、110℃で12時間乾燥した後、300℃で3時間焼成することで芳香族化反応用触媒を調製した。芳香族化反応には、調製した触媒粉末を油圧プレスで400kgf/cmで1分間圧縮成型した後に粉砕し、目開き2mmの篩を通過し、目開き850μmの篩上に堆積したペレットを用いた。
Reference example 1
A solution prepared by dissolving 0.21 g of ammonium fluoride and 0.37 g of tetraammine platinum chloride in 16.5 g of water was added to 46.6 g of L-type zeolite (manufactured by Toso Co., Ltd., (trade name) TSZ-500KOA) and kneaded. After drying at 110 ° C. for 12 hours, a catalyst for an aromatization reaction was prepared by firing at 300 ° C. for 3 hours. For the aromatization reaction, the prepared catalyst powder was compression-molded at 400 kgf / cm 2 for 1 minute with a hydraulic press, pulverized, passed through a sieve with a mesh size of 2 mm, and pellets deposited on a sieve with a mesh size of 850 μm were used. There was.

参考例2
ヘプタモリブデン酸アンモニウム4水和物0.38gと水10.5gからなる水溶液をシリカゲル(富士シリシア(株)製、(商品名)CARIACT Q−10)10.2gに撹拌しながら徐々に滴下し、110℃で12時間乾燥した後、500℃で2時間焼成することでシリカにモリブデン重量として2%に相当するモリブデン酸化物を担持した水素化脱アルキル化用触媒の前駆体を調製した。
Reference example 2
An aqueous solution consisting of 0.38 g of ammonium heptamolybdate tetrahydrate and 10.5 g of water was gradually added dropwise to 10.2 g of silica gel (manufactured by Fuji Silysia Chemical Ltd., (trade name) CARIACT Q-10) with stirring. After drying at 110 ° C. for 12 hours, calcining at 500 ° C. for 2 hours prepared a precursor of a catalyst for hydrogenation dealkylation in which a molybdenum oxide corresponding to 2% by weight of molybdenum was supported on silica gel.

参考例3
ヘプタモリブデン酸アンモニウム4水和物0.29gと水3.1gからなる水溶液をシリカゲル(富士シリシア(株)製、(商品名)CARIACT Q−10)3.3gに撹拌しながら徐々に滴下し、110℃で12時間乾燥した後、500℃で2時間焼成することでシリカにモリブデン単体換算重量として5%に相当するモリブデン酸化物を担持した水素化脱アルキル化用触媒の前駆体を調製した。
Reference example 3
An aqueous solution consisting of 0.29 g of ammonium heptamolybdate tetrahydrate and 3.1 g of water was gradually added dropwise to 3.3 g of silica gel (manufactured by Fuji Silysia Chemical Ltd., (trade name) CARIACT Q-10) with stirring. After drying at 110 ° C. for 12 hours, calcining at 500 ° C. for 2 hours prepared a precursor of a catalyst for hydrogenation dealkylation in which a molybdenum oxide corresponding to 5% of the weight of molybdenum alone was supported on silica gel.

参考例4
硝酸ニッケル6水和物0.26gと水10.7gからなる水溶液をシリカゲル(富士シリシア(株)製、(商品名)CARIACT Q−10)10.2gに撹拌しながら徐々に滴下し、110℃で12時間乾燥した後、500℃で2時間焼成することでシリカにニッケル単体換算での重量として0.5%に相当するニッケル酸化物を担持した水素化脱アルキル化用触媒の前駆体を調製した。
Reference example 4
An aqueous solution consisting of 0.26 g of nickel nitrate hexahydrate and 10.7 g of water was gradually added dropwise to 10.2 g of silica gel (manufactured by Fuji Silysia Chemical Ltd., (trade name) CARIACT Q-10) at 110 ° C. After drying for 12 hours at 500 ° C., a precursor of a catalyst for hydrogenation dealkylation in which nickel oxide corresponding to 0.5% of the weight of nickel alone is supported on silica gel is prepared by firing at 500 ° C. for 2 hours. did.

実施例1
ステンレス製反応管の中段に、参考例1で得られた芳香族化反応用触媒1.23gと参考例2で得られた水素化脱アルキル化用触媒の前駆体1.23gを芳香族化反応用触媒が脂肪族炭化水素の供給の際の上流側となるようにそれぞれを独立して充填し、窒素30mL/分で流通させながら600℃まで昇温した後、流通ガスを水素20mL/分に切り替えて、30分間水素還元処理を行って、2相分離のベンゼン製造用触媒システムとした。この際の加熱はセラミック製管状炉を用い、触媒システム層の温度を制御した。
Example 1
In the middle stage of the stainless steel reaction tube, 1.23 g of the catalyst for aromatization reaction obtained in Reference Example 1 and 1.23 g of a precursor of the catalyst for hydrogenation dealkylation obtained in Reference Example 2 are subjected to an aromatization reaction. Each catalyst is independently filled so that it is on the upstream side when supplying the aliphatic hydrocarbon, and the temperature is raised to 600 ° C. while circulating at 30 mL / min of nitrogen, and then the flowing gas is reduced to 20 mL / min of hydrogen. It was switched and hydrogenated for 30 minutes to obtain a two-phase separated catalyst system for benzene production. A ceramic tube furnace was used for heating at this time, and the temperature of the catalyst system layer was controlled.

原料である脂肪族炭化水素(ヘキサン65%とメチルシクロヘキサン35%の混合溶液)を0.03mL/分でフィードするとともに水素を15mL/分の流量で供給することで反応を開始させた。生成物の定量は、ガスクロマトグラフにより分析した。 The reaction was started by feeding an aliphatic hydrocarbon (a mixed solution of 65% hexane and 35% methylcyclohexane) as a raw material at 0.03 mL / min and supplying hydrogen at a flow rate of 15 mL / min. The quantification of the product was analyzed by gas chromatography.

原料供給開始3時間後のベンゼン収率は61.9%であった。 The yield of benzene 3 hours after the start of raw material supply was 61.9%.

実施例2
参考例2で得られた水素化脱アルキル化用触媒の前駆体の代わりに参考例3により得られた水素化脱アルキル化用触媒の前駆体を用いた以外は、実施例1と同様の方法によりベンゼン製造用触媒システムを用いたベンゼンの製造を行った。
Example 2
The same method as in Example 1 except that the precursor of the hydrogenation dealkylation catalyst obtained in Reference Example 3 was used instead of the precursor of the hydrogenation dealkylation catalyst obtained in Reference Example 2. Benzene was produced using a catalyst system for producing benzene.

原料供給開始3時間後のベンゼン収率は61.1%であった。 The benzene yield 3 hours after the start of raw material supply was 61.1%.

実施例3
参考例2で得られた水素化脱アルキル化用触媒の前駆体の代わりに参考例4により得られた水素化脱アルキル化用触媒の前駆体を用いた以外は、実施例1と同様の方法によりベンゼン製造用触媒システムを用いたベンゼンの製造を行った。
Example 3
The same method as in Example 1 except that the precursor of the hydrogenation dealkylation catalyst obtained in Reference Example 4 was used instead of the precursor of the hydrogenation dealkylation catalyst obtained in Reference Example 2. Benzene was produced using a catalyst system for producing benzene.

原料供給開始3時間後のベンゼン収率は59.5%であった。 The yield of benzene 3 hours after the start of raw material supply was 59.5%.

比較例1
参考例2で得られた水素化脱アルキル化反応触媒の前駆体を用いなかった以外は、実施例1と同様の方法によりベンゼンの製造を行った。
Comparative Example 1
Benzene was produced by the same method as in Example 1 except that the precursor of the hydrogenation dealkylation reaction catalyst obtained in Reference Example 2 was not used.

原料供給開始3時間後のベンゼン収率は55.5%であった。 The yield of benzene 3 hours after the start of raw material supply was 55.5%.

比較例2
参考例1で得られた芳香族化反応用触媒1.23gと参考例2で得られた水素化脱アルキル化用触媒の前駆体1.23gを振とうにより混合した混合触媒系とした後、ステンレス製反応管の中段に充填した以外は、実施例1と同様の方法によりベンゼンの製造を行った。
Comparative Example 2
After preparing a mixed catalyst system in which 1.23 g of the aromatization reaction catalyst obtained in Reference Example 1 and 1.23 g of the precursor of the hydrogenation dealkylation catalyst obtained in Reference Example 2 were mixed by shaking. Benzene was produced by the same method as in Example 1 except that the middle stage of the stainless reaction tube was filled.

原料供給開始3時間後のベンゼン収率は50.4%であった。 The yield of benzene 3 hours after the start of raw material supply was 50.4%.

本発明のベンゼン製造用触媒システムは、脂肪族炭化水素からベンゼンを製造する際に、生産性に優れ、エネルギー消費の抑制されたベンゼンの製造方法を提供することが可能となり、工業的に非常に有用なものとなる。 The catalyst system for benzene production of the present invention makes it possible to provide a method for producing benzene having excellent productivity and suppressed energy consumption when producing benzene from an aliphatic hydrocarbon, which is industrially very high. It will be useful.

;連続2相分離系のベンゼン製造用触媒システムを示す図。The figure which shows the catalyst system for benzene production of the continuous two-phase separation system.

Claims (5)

2相分離触媒システムであって、第1相が芳香族化反応用触媒を含む相であり、第2相が水素化脱アルキル化用触媒を含む相であることを特徴とするベンゼン製造用触媒システム。 A catalyst for benzene production, which is a two-phase separation catalyst system, wherein the first phase is a phase containing an aromatization reaction catalyst and the second phase is a phase containing a hydrogenation dealkylation catalyst. system. 前記芳香族化反応用触媒が、L型ゼオライトに白金及びハロゲン成分を担持した芳香族化反応用触媒であり、該ハロゲン成分がハロゲン単体及び/又はハロゲン化合物であることを特徴とする請求項1に記載のベンゼン製造用触媒システム。 Claim 1 is characterized in that the aromatization reaction catalyst is an aromatization reaction catalyst in which platinum and a halogen component are supported on L-type zeolite, and the halogen component is a halogen alone and / or a halogen compound. Benzene production catalyst system according to. 水素化脱アルキル化反応用触媒が、担体にモリブデン、ニッケル、コバルト、ロジウム及びそれらの化合物から群より選ばれる金属及び/又は金属化合物を担持した水素化脱アルキル化反応用触媒であることを特徴とする請求項1又は2に記載のベンゼン製造用触媒システム。 The catalyst for a hydrogenation dealkylation reaction is a catalyst for a hydrogenation dealkylation reaction in which a carrier carries a metal and / or a metal compound selected from the group from molybdenum, nickel, cobalt, rhodium and compounds thereof. The catalyst system for producing benzene according to claim 1 or 2. 請求項1から3のいずれかに記載のベンゼン製造用触媒システムに脂肪族炭化水素を供給しベンゼンを製造するに際し、第1相を上流側として脂肪族炭化水素を供給することを特徴とするベンゼンの製造方法。 Benzene characterized by supplying an aliphatic hydrocarbon with the first phase as the upstream side when supplying the aliphatic hydrocarbon to the catalyst system for producing benzene according to any one of claims 1 to 3 to produce benzene. Manufacturing method. 脂肪族炭化水素が、炭素数6から8の脂肪族飽和炭化水素であることを特徴とする請求項4に記載のベンゼンの製造方法。 The method for producing benzene according to claim 4, wherein the aliphatic hydrocarbon is an aliphatic saturated hydrocarbon having 6 to 8 carbon atoms.
JP2019104157A 2019-06-04 2019-06-04 Catalyst system for benzene production and method for producing benzene using the same Pending JP2020196685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019104157A JP2020196685A (en) 2019-06-04 2019-06-04 Catalyst system for benzene production and method for producing benzene using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104157A JP2020196685A (en) 2019-06-04 2019-06-04 Catalyst system for benzene production and method for producing benzene using the same

Publications (1)

Publication Number Publication Date
JP2020196685A true JP2020196685A (en) 2020-12-10

Family

ID=73648817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104157A Pending JP2020196685A (en) 2019-06-04 2019-06-04 Catalyst system for benzene production and method for producing benzene using the same

Country Status (1)

Country Link
JP (1) JP2020196685A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549936A (en) * 1991-02-05 1993-03-02 Idemitsu Kosan Co Ltd Catalyst for producing aromatic hydrocarbon and its production by using said catalyst
JPH08157399A (en) * 1994-10-03 1996-06-18 Sanyo Sekiyu Kagaku Kk Production of aromatic hydrocarbon
JPH11169729A (en) * 1997-12-10 1999-06-29 Idemitsu Kosan Co Ltd Catalyst production
JP2009545548A (en) * 2006-08-03 2009-12-24 ポリメーリ エウローパ ソシエタ ペル アチオニ Catalyst composition for highly selective hydrodealkylation of alkyl aromatic hydrocarbons
JP2015182919A (en) * 2014-03-24 2015-10-22 千代田化工建設株式会社 Hydrogen production system and hydrogen production method
WO2017081595A1 (en) * 2015-11-12 2017-05-18 Sabic Global Technologies B.V. Methods for producing aromatics and olefins
JP2017512754A (en) * 2014-02-25 2017-05-25 サウディ ベーシック インダストリーズ コーポレイション Method and apparatus for converting crude oil to petrochemical products with improved ethylene and BTX yields

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549936A (en) * 1991-02-05 1993-03-02 Idemitsu Kosan Co Ltd Catalyst for producing aromatic hydrocarbon and its production by using said catalyst
JPH08157399A (en) * 1994-10-03 1996-06-18 Sanyo Sekiyu Kagaku Kk Production of aromatic hydrocarbon
JPH11169729A (en) * 1997-12-10 1999-06-29 Idemitsu Kosan Co Ltd Catalyst production
JP2009545548A (en) * 2006-08-03 2009-12-24 ポリメーリ エウローパ ソシエタ ペル アチオニ Catalyst composition for highly selective hydrodealkylation of alkyl aromatic hydrocarbons
JP2017512754A (en) * 2014-02-25 2017-05-25 サウディ ベーシック インダストリーズ コーポレイション Method and apparatus for converting crude oil to petrochemical products with improved ethylene and BTX yields
JP2015182919A (en) * 2014-03-24 2015-10-22 千代田化工建設株式会社 Hydrogen production system and hydrogen production method
WO2017081595A1 (en) * 2015-11-12 2017-05-18 Sabic Global Technologies B.V. Methods for producing aromatics and olefins

Similar Documents

Publication Publication Date Title
JP5816088B2 (en) Olefin isomerization and metathesis catalysts
JP6289607B2 (en) Process for converting paraffin to olefin and catalyst for use therein
JP6450230B2 (en) Method for producing diene
KR20160098383A (en) Preparation of butadiene by oxidative dehydrogenation of n-butene after preceding isomerization
US20110257452A1 (en) Regenerable Composite Catalysts for Hydrocarbon Aromatization
US10815162B2 (en) Method for directly preparing aromatics from syngas
AU613528B2 (en) Process for the conversion of a c2-c6 aliphatic hydrocarbon into napthenic hydrocarbons
US7094942B2 (en) Carbon dioxide promoted dehydrogenation process for olefins
CN107847908B (en) Catalyst and hydrocarbon conversion process using said catalyst
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
JP2020196685A (en) Catalyst system for benzene production and method for producing benzene using the same
CN110072613B (en) Catalyst system and process for converting hydrocarbon feedstock using the same
TW201822879A (en) Hydrocarbon conversion catalyst system
US20160368836A1 (en) Process for the aromatization of a methane-containing gas stream using zirconium hydrogen acceptor particles
KR101795851B1 (en) Method for producing aromatics from light hydrocarbons using oxygen using carbon dioxide
WO2016187249A1 (en) A process for the aromatization of a methane-containing gas stream using scandium hydrogen acceptor particles
CN112920006A (en) Method for preparing aromatic hydrocarbon compound from ethanol
Nawaz et al. Light alkane (mixed feed) selective dehydrogenation using bi-metallic zeolite supported catalyst
JP7018174B2 (en) Method for producing aromatic hydrocarbons
JP6977453B2 (en) Method for producing aromatic compounds
KR102624767B1 (en) Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization of ethane, and Method for preparing aromatic compounds using the same
JP2022127708A (en) Method of producing benzene
WO2016195954A1 (en) Process for the selective hydrogenation of acetylene to ethylene
JP4559714B2 (en) Alkene production method, hydrogen sulfide production method, alkane dehydrogenation method, and catalyst
KR20230060032A (en) Process for Selectively Hydrogenating Gas Mixture Having Higher Acetylene Contents

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230919