JP2020195406A - Levee-shaping machine - Google Patents

Levee-shaping machine Download PDF

Info

Publication number
JP2020195406A
JP2020195406A JP2020148036A JP2020148036A JP2020195406A JP 2020195406 A JP2020195406 A JP 2020195406A JP 2020148036 A JP2020148036 A JP 2020148036A JP 2020148036 A JP2020148036 A JP 2020148036A JP 2020195406 A JP2020195406 A JP 2020195406A
Authority
JP
Japan
Prior art keywords
ridge
movable
compression
region
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020148036A
Other languages
Japanese (ja)
Inventor
功 皆川
Isao Minagawa
功 皆川
俊男 皆川
Toshio Minagawa
俊男 皆川
貴行 飯岡
Takayuki Iioka
貴行 飯岡
田中 雅文
Masafumi Tanaka
雅文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Trailer Co Ltd
Original Assignee
Fuji Trailer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Trailer Co Ltd filed Critical Fuji Trailer Co Ltd
Priority to JP2020148036A priority Critical patent/JP2020195406A/en
Publication of JP2020195406A publication Critical patent/JP2020195406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soil Working Implements (AREA)

Abstract

To provide a levee-shaping machine capable of suppressing influence on a levee finish state by a farm field, levee soil properties, and a weather condition during levee-shaping work, and of excellently performing levee-shaping work.SOLUTION: A machine frame is connected by a connection mechanism to a traveling machine body. The machine frame is provided with an earthing-up mechanism earthing up on old levees and with a levee-shaping mechanism 12 which has a rotary levee-shaping body 13 that can shape levees at a rear position in an advancing direction of the earthing-up mechanism. An outer peripheral part of the rotary levee-shaping body 13 is formed in a pressing area where it can rotate and shape the levee surface. The pressing area is zoned in a fixed pressure clamping area and a movable pressing area in a rotary peripheral direction of the rotary levee-shaping body 13.SELECTED DRAWING: Figure 7

Description

本発明は畦の造成作業や修復作業等に用いられる整畦機に関するものである。 The present invention relates to a ridge preparation machine used for ridge creation work, repair work, and the like.

従来、この種の整畦機として、特許第4154545号の如く、走行機体に連結機構により機枠を連結し、該機枠に旧畦上に土を盛り上げる盛土機構を設け、該盛土機構の進行方向後方位置に畦面を圧接回転により回転整畦可能な回転整畦体をもつ整畦機構を設け、上記回転整畦体の外周部分に複数個の圧締面体を間隔を置いて配設すると共に各々の圧締面体に回転方向前方位置の圧締面体側から隣り合う後方位置の圧締面体の圧締面部に至る可撓弾性をもつ圧締板体を配設した構造のものが知られている。 Conventionally, as this type of ridge preparation machine, as in Patent No. 4154545, a machine frame is connected to a traveling machine by a connecting mechanism, and the machine frame is provided with a filling mechanism for raising soil on old ridges, and the traveling direction of the filling mechanism A ridge adjusting mechanism having a rotating ridge body capable of rotating and arranging the ridge surface by pressure welding is provided at the rear position, and a plurality of compression surface bodies are arranged at intervals on the outer peripheral portion of the rotary ridge body. It is known that each compression surface body is provided with a compression plate body having flexible elasticity from the compression surface body side at the front position in the rotation direction to the compression surface portion of the adjacent compression surface body at the rear position. There is.

一方、特許第3622164号及び特許第3493612号の如く、上記回転整畦体の外周部分に金属材や樹脂材により形成されて全表面が連続平滑面に形成された円錐状面や円筒状面をもつ固定面板体を配設した構造のものも知られている。 On the other hand, as in Patent No. 3622164 and Patent No. 34936112, a conical surface or a cylindrical surface formed of a metal material or a resin material on the outer peripheral portion of the rotary ridge body and the entire surface of which is formed as a continuous smooth surface is formed. There is also known a structure in which a fixed face plate is arranged.

特許第4154545号Patent No. 4154545 特許第3622164号Patent No. 3622164 特許第3493612号Patent No. 3493612

一般的に、畦の造成や畦の修復などの整畦作業においては、例えば、粘土質、砂質、間隙比率、含水比率、粒度などの圃場及び畦の土質性状や例えば、晴天、雨天などの整畦作業時の気象条件などによって畦の仕上状態に影響を及ぼすことが分かっている。 Generally, in ridge preparation work such as ridge preparation and ridge restoration, for example, the soil properties of the field and ridge such as clay, sand, gap ratio, water content ratio, particle size, etc., and for example, fine weather, rainy weather, etc. It is known that the finish condition of the ridges is affected by the weather conditions during the ridge preparation work.

例えば、複数個の圧締板体をもつ回転整畦体による整畦作業の場合には、比較的土質性状が砂質の土壌であって気象条件は乾き状態においての整畦作業に適することになり、一方、上記回転整畦体の外周部分に金属材や樹脂材により形成されて全表面が連続平滑面に形成された固定面板体をもつ回転整畦体による整畦作業の場合には、比較的粘土質の土壌であって濡れ状態での整畦作業に適するということが判明している。 For example, in the case of ridge preparation work using a rotary ridge preparation body having a plurality of compression plates, the soil is relatively sandy and the weather conditions are suitable for ridge preparation work in a dry state. On the other hand, in the case of ridge preparation work by a rotary ridge having a fixed surface plate body formed of a metal material or a resin material on the outer peripheral portion of the rotary ridge and having a continuous smooth surface on the entire surface. It has been found that the soil is relatively clayey and suitable for ridge preparation work in a wet state.

すなわち、上記比較的粘土質の土壌であって濡れ状態において、上記複数個の圧締板体をもつ回転整畦体により整畦作業を行った場合、仕上状態において、畦の表面が波打ったり、畦の表皮土の部分剥離により凹凸を呈したりして、表土が比較的に崩れ易く、畦土の内部の圧締状態が低下することがあるという不都合を有している。 That is, when the ridges are trimmed by the rotary ridges having a plurality of compression plates in the relatively clay soil and in a wet state, the surface of the ridges may undulate in the finished state. There is a disadvantage that the surface soil is relatively liable to collapse due to partial peeling of the epidermis soil of the ridges, and the compression state inside the ridges may be lowered.

本発明はこのような不都合を解決することを目的とするもので、本発明のうちで、請求項1記載の発明は、走行機体に連結機構により機枠を連結し、該機枠に旧畦上に土を盛り上げる盛土機構を設け、該盛土機構の進行方向後方位置に畦面を圧接回転により回転整畦可能な回転整畦体をもつ整畦機構を設けてなり、上記回転整畦体の外周部分は上記畦面を回転整畦可能な圧締領域に形成され、該圧締領域は該回転整畦体の回転周方向に固定圧締領域及び可動圧締領域に区画形成され、該可動圧締領域は該圧締領域中の単数又は複数の区画とされ、該固定圧締領域は固定面板体から構成され、該可動圧締領域は可動面板体から構成され、該可動圧締領域に区画された該回転整畦体の外周部分に通穴が形成され、該固定圧締領域は該可動圧締領域の区画より大きな可動圧締領域の残余の区画とされていることを特徴とする整畦機にある。 The present invention aims to solve such inconveniences, and in the present invention, the invention according to claim 1 connects a machine frame to a traveling machine body by a connecting mechanism, and the old ridge is connected to the machine frame. An embankment mechanism for raising soil is provided in the ridge, and a ridge mechanism having a rotary ridge capable of rotating the ridge surface by pressure welding rotation is provided at a position rearward in the traveling direction of the fill mechanism. The portion is formed on the ridge surface in a compression region capable of rotationally adjusting the ridge, and the compression region is divided into a fixed compression region and a movable compression region in the rotational circumferential direction of the rotary ridge, and the movable pressure is formed. The tightening region is a single or a plurality of compartments in the compression region, the fixed compression region is composed of a fixed face plate body, the movable compression region is composed of a movable face plate body, and is divided into the movable compression region. A through hole is formed in the outer peripheral portion of the rotary ridge, and the fixed compression region is a remaining compartment of the movable compression region larger than the division of the movable compression region. It is on the ridge.

又、請求項2記載の発明は、上記可動面板体は可撓弾性を有する圧締板体からなり、該圧締板体の回転方向前方端部は上記回転整畦体の外周部分の取付部に固定される固定端部に形成されると共に回転方向後方端部は該回転整畦体の外周部分から離反可能な遊離端部に形成され、該回転整畦体の外周部分の該圧締板体の遊離端部の内面対向位置に圧締面部を設けてなることを特徴とするものである。 Further, in the invention according to claim 2, the movable face plate body is made of a compression plate body having flexible elasticity, and the front end portion of the compression plate body in the rotation direction is a mounting portion of an outer peripheral portion of the rotation ridge body. The rear end in the rotation direction is formed at the free end that can be separated from the outer peripheral portion of the rotary ridge, and the compression plate of the outer peripheral portion of the rotary ridge is formed at the fixed end. It is characterized in that a compression surface portion is provided at a position facing the inner surface of the free end portion of the body.

本発明は上述の如く、請求項1記載の発明にあっては、走行機体を旧畦に沿って走行させ、一方では盛土機構が畦際の圃場泥土を旧畦上に連続的に盛り上げ、他方では整畦機構が駆動されて上記回転整畦体は回転し、上記回転整畦体の外周部分は上記畦面を回転整畦可能な圧締領域に形成され、圧締領域は回転整畦体の回転周方向に固定圧締領域及び可動圧締領域に区画形成され、可動圧締領域は圧締領域中の単数又は複数の区画とされ、固定圧締領域は可動圧締領域の区画より大きな可動圧締領域の残余の区画とされているので、上記畦面は回転整畦体の外周部分の圧締領域としての固定圧締領域及び可動圧締領域により回転整畦されることになり、固定圧締領域による固定圧締作用及び可動圧締領域による可動圧締作用の異なる二種類の圧締作用をなす圧締領域により畦面を圧締することができると共に土質性状や整畦作業時の気象条件などに対する融通性を得ることができ、それだけ、整畦作業を良好に行うことができ、かつ、上記固定圧締領域は固定面板体から構成され、上記可動圧締領域は可動面板体から構成されているから、固定圧締領域においては固定面板体の連続する平滑な固定表面による圧接回転接触により整畦作業がなされ、可動圧締領域においては可動面板体の可動な表面による圧接回転接触により整畦作業がなされ、固定圧締領域の固定面板体及び可動圧締領域の可動面板体による固定及び可動の二種類の圧締により畦面を圧締することができ、固定及び可動の異なる圧締作用により畦面を圧締することができ、土質性状や整畦作業時の気象条件などに対する融通性を得ることができ、それだけ、整畦作業を良好に行うことができ、さらに、可動圧締領域に区画された回転整畦体の外周部分に通穴が形成されてなるから、通穴の存在により圧締板体は平ら状から内方へ湾曲状に撓み動作しつつ盛土を徐々に締圧することができ、圧締板体の内方へ湾曲状の撓み動作により盛土を掴持することになって盛土を確実に締圧することができ、一層堅牢な畦を得ることができると共に圧締板体への土の付着現象を抑制することができ、良好な整畦作業を行うことができる。 As described above, in the invention according to claim 1, the present invention causes the traveling machine to travel along the old ridge, while the embankment mechanism continuously raises the field mud on the ridge on the old ridge, and on the other hand. The ridge adjustment mechanism is driven to rotate the rotary ridge, the outer peripheral portion of the rotary ridge is formed in a compression region capable of rotating the ridge surface, and the compression region is the rotary ridge of the rotary ridge. A compartment is formed in a fixed compression region and a movable compression region in the circumferential direction of rotation, the movable compression region is defined as one or more compartments in the compression region, and the fixed compression region is larger than the compartment of the movable compression region. Since it is the remaining section of the compression region, the ridge surface is rotationally adjusted by the fixed compression region and the movable compression region as the compression region of the outer peripheral portion of the rotary ridge, and is fixed. The ridge surface can be squeezed by the ridge surface, which has two types of squeezing action, which are different from the fixed squeezing action by the squeezing area and the movable squeezing action by the movable squeezing area, as well as during soil properties and ridge preparation work. Flexibility to weather conditions and the like can be obtained, and the ridge adjustment work can be performed satisfactorily, and the fixed compression region is composed of a fixed face plate body, and the movable compression region is made of a movable face plate body. Since it is configured, the ridge adjustment work is performed by pressure welding rotation contact by the continuous smooth fixed surface of the fixed surface plate in the fixed compression region, and pressure welding rotation contact by the movable surface of the movable surface plate in the movable compression region. The ridges are adjusted by the method, and the ridges can be compressed by two types of compression, fixed and movable by the fixed surface plate in the fixed compression region and the movable surface plate in the movable compression region. The ridge surface can be squeezed by the squeezing action, and the flexibility to the soil properties and the weather conditions at the time of ridge preparation work can be obtained, so that the ridge preparation work can be performed well and it is movable. Since a through hole is formed in the outer peripheral portion of the rotary ridges partitioned in the compression region, the compression plate gradually bends inward from a flat shape due to the presence of the through hole and gradually bends the embankment. It is possible to tighten the embankment to the inside, and the embankment can be gripped by the bending motion of the curved shape inward, so that the embankment can be reliably pressed, and more robust ridges can be obtained. It is possible to suppress the phenomenon of soil adhering to the compression plate body, and it is possible to perform good ridge preparation work.

又、請求項2記載の発明にあっては、上記可動面板体は可撓弾性を有する圧締板体からなり、圧締板体の回転方向前方端部は上記回転整畦体の外周部分の取付部に固定される固定端部に形成されると共に回転方向後方端部は回転整畦体の外周部分から離反可能な遊離端部に形成され、回転整畦体の外周部分の圧締板体の遊離端部の内面対向位置に圧締面部を設けてなるから、回転整畦体の回転に伴い、圧締板体は自己の可撓弾性により畦面の圧接位置と復元位置との間でフラップ動作して徐々に盛土を締圧すると共に回転整畦体の外周部分の圧締板体の遊離端部の内面対向位置の圧締面部の存在により盛土を強く締圧し、圧締板体は可撓弾性を有しているので、圧締板体は平ら状から撓み動作しつつフラップ動作して盛土を徐々に締圧することができ、盛土を確実に締圧することができ、一層堅牢な畦を得ることができる。 Further, in the invention according to claim 2, the movable face plate body is made of a compression plate body having flexible elasticity, and the front end portion of the compression plate body in the rotation direction is an outer peripheral portion of the rotation ridge body. The rear end in the rotational direction is formed at the free end that can be separated from the outer peripheral portion of the rotary ridge, and is formed at the fixed end that is fixed to the mounting portion. Since the compression surface portion is provided at the position facing the inner surface of the free end portion of the free end portion, the compression plate body moves between the pressure contact position and the restoration position of the ridge surface due to its own flexible elasticity as the rotary ridge body rotates. The flap operation gradually tightens the filling, and the filling is strongly pressed due to the presence of the compression surface at the position facing the inner surface of the free end of the compression plate on the outer periphery of the rotary ridge, and the compression plate is acceptable. Since it has flexural elasticity, the compression plate body can flex from a flat state and flap to gradually tighten the filling, and the filling can be reliably tightened, resulting in more robust ridges. Obtainable.

本発明の実施の第一形態例の全体側面図である。It is an overall side view of the 1st Embodiment example of embodiment of this invention. 本発明の実施の第一形態例の部分拡大側面図である。It is a partially enlarged side view of the 1st Embodiment of this invention. 本発明の実施の第一形態例の部分平面図である。It is a partial plan view of the first embodiment example of the embodiment of the present invention. 本発明の実施の第一形態例の部分後面図である。It is a partial rear view of the first embodiment of the present invention. 本発明の実施の第一形態例の前断面図である。It is a front sectional view of the 1st Embodiment of this invention. 本発明の実施の第一形態例の部分拡大断面図である。It is a partially enlarged sectional view of the 1st Embodiment of this invention. 本発明の実施の第一形態例の部分拡大分解斜視図である。FIG. 5 is a partially enlarged exploded perspective view of an example of the first embodiment of the present invention. 本発明の実施の第一形態例の使用状態の部分拡大断面図である。It is a partially enlarged sectional view of the use state of the 1st Embodiment of this invention. 本発明の実施の第一形態例の使用状態の部分拡大断面図である。It is a partially enlarged sectional view of the use state of the 1st Embodiment of this invention. 本発明の実施の第二形態例の部分拡大分解斜視図である。It is a partially enlarged exploded perspective view of the 2nd Embodiment of this invention. 本発明の実施の第二形態例の使用状態の部分拡大断面図である。It is a partially enlarged sectional view of the use state of the 2nd Embodiment of this invention. 本発明の実施の第三形態例の部分拡大分解斜視図である。It is a partially enlarged exploded perspective view of the third embodiment of the present invention. 本発明の実施の第三形態例の使用状態の部分拡大断面図である。It is a partially enlarged sectional view of the use state of the 3rd Embodiment of this invention.

図1乃至図13は本発明の実施の形態例を示し、図1乃至図9は第一形態例、図10、図11は第二形態例、図12、図13は第三形態例である。 1 to 13 show examples of embodiments of the present invention, FIGS. 1 to 9 show examples of the first form, FIGS. 10 and 11 show examples of the second form, and FIGS. ..

図1乃至図9の第一形態例において、1は走行機体であって、この場合、図1、図2、図3の如く、トラクタが用いられ、走行機体1の後部に三点リンク式の連結機構2により機枠3を上下動可能に連結している。 In the first embodiment of FIGS. 1 to 9, reference numeral 1 denotes a traveling machine, in which case a tractor is used as shown in FIGS. 1, 2 and 3, and a three-point link type is attached to the rear part of the traveling machine 1. The machine frame 3 is movably connected by the connecting mechanism 2.

4は盛土機構であって、この場合、図3、図4の如く、盛土ロータ5からなり、盛土ロータ5はロータ胴5aの外周に複数個の掻上刃5b・・を突設すると共にロータ胴5aに取付軸5cを突設してなり、上記機枠3に整畦機体6を突設し、整畦機体6に盛土ロータ5の上方及び畦Wの上方を覆う形状のカバー部材6aが取り付けられ、機枠3に走行機体1に設けられた動力取出軸1aにより回転する主軸7を軸受し、整畦機体6に中間軸8を畦造成方向と平行にして回転自在に設け、中間軸8に取付軸5cを連結し、主軸7の回転によりギヤ列9、自在継手10、ギヤ列11、中間軸8を経て盛土ロータ5を回転させ、盛土ロータ5の回転により畦W際の圃場Mの土を削出軌跡Nをもって削出して旧畦Wに向けて跳ね上げて盛り上げるように構成している。 Reference numeral 4 denotes a filling mechanism. In this case, as shown in FIGS. 3 and 4, the filling rotor 5 is composed of a filling rotor 5, and the filling rotor 5 projects a plurality of raising blades 5b ... On the outer periphery of the rotor body 5a and the rotor. The mounting shaft 5c is projected from the body 5a, the ridge-adjusting machine 6 is projected from the machine frame 3, and the ridge-adjusting machine 6 is provided with a cover member 6a having a shape that covers the upper part of the filling rotor 5 and the upper part of the ridge W. The main shaft 7 that is attached and rotates by the power take-out shaft 1a provided on the traveling machine body 1 is supported on the machine frame 3, and the intermediate shaft 8 is rotatably provided on the ridge-adjusting machine body 6 in parallel with the ridge-building direction. The mounting shaft 5c is connected to 8, and the filling rotor 5 is rotated through the gear row 9, the universal joint 10, the gear row 11, and the intermediate shaft 8 by the rotation of the spindle 7, and the field M at the ridge W is rotated by the rotation of the filling rotor 5. The soil is carved out with a carving locus N and flipped up toward the old ridge W to raise it.

12は整畦機構であって、この場合、図2、図4、図6、図7、図8、図9の如く、畦W面を外周部分の圧接回転により回転整畦可能な回転整畦体13と回転機構14とからなり、回転整畦体13の外周部分は上記畦W面を回転整畦可能な圧締領域Eに形成され、図8の如く、圧締領域Eは回転整畦体13の回転周方向に固定圧締領域E及び可動圧締領域Eに区画形成され、可動圧締領域Eは圧締領域E中の一つ又は二つの区画とされ、この場合、一つの区画とされ、固定圧締領域Eは可動圧締領域Eの区画より大きな可動圧締領域Eの残余の区画とされている。 Reference numeral 12 denotes a ridge adjusting mechanism. In this case, as shown in FIGS. 2, 4, 6, 7, 8 and 9, the ridge W surface can be rotationally adjusted by pressure welding of the outer peripheral portion. It is composed of a body 13 and a rotation mechanism 14, and the outer peripheral portion of the rotary ridge body 13 is formed in a compression region E capable of rotating the ridge W surface, and as shown in FIG. 8, the compression region E is a rotation ridge. is defined and formed in the circumferential direction of rotation of the body 13 to the fixing pressure clamping regions E F and the movable squeezing region E M, the movable squeezing region E M is one or two compartments in the squeezing region E, in this case, to be one of the compartments, fixed pressure clamping region E F is the partition of the remaining large movable squeezing region E M than Lot movable squeezing region E M.

この場合、図8、図9の如く、上記固定圧締領域Eは固定面板体FPから構成され、上記可動圧締領域Eは可動面板体MPから構成され、かつ、この場合、図6、図7、図8の如く、上記可動面板体MPは可撓弾性を有する圧締板体Gからなり、圧締板体Gの回転方向前方端部は上記回転整畦体13の外周部分の取付部13aに固定される固定端部Gに形成されると共に回転方向後方端部は回転整畦体13の外周部分から離反可能な遊離端部Gに形成され、回転整畦体13の外周部分の圧締板体Gの遊離端部Gの内面対向位置としての固定面板体FPの表面の一部に圧締面部Kを設けてなり、この場合、その裏面に圧締面部Kの受圧強度を補強する桟材Kが溶接され、更に、この場合、図6、図7、図8、図9の如く、上記回転整畦体13の外周部分の取付部13aと上記圧締面部Kとの間に通穴Fを設けて構成している。 In this case, FIG. 8, as shown in FIG. 9, the fixing pressure clamping region E F is composed of a fixed surface plate body FP, the movable squeezing region E M consists moving surface plate body MP, and, in this case, FIG. 6 As shown in FIGS. 7 and 8, the movable surface plate body MP is composed of a compression plate body G having flexible elasticity, and the front end portion of the compression plate body G in the rotation direction is an outer peripheral portion of the rotation ridge body 13. the rotation direction rear end portion is formed into a fixed end portion G 1 which is fixed to the mounting portion 13a is formed on the free end G 2 can be separated from the outer peripheral portion of the rotary Seiaze body 13, the rotating Seiaze 13 A compression surface portion K is provided on a part of the surface of the fixed surface plate body FP as an inner surface facing position of the free end portion G 2 of the compression plate body G on the outer peripheral portion. In this case, the compression surface portion K is provided on the back surface thereof. crosspieces K 1 for reinforcing the pressure intensity is welded, further, in this case, 6, 7, 8, as shown in FIG. 9, the mounting portion 13a and the clamping surface of the outer peripheral portion of the rotary Seiaze 13 A through hole F is provided between the K and the K.

又、この場合、図6、図7、図8の如く、上記回転整畦体13は畦Wの一方側面W2を整畦可能な側面整畦体15及び畦Wの上面W1を整畦可能な上面整畦体16からなり、かつ、回転整畦体13はその回転軸線Oを角度θの斜め上向き方向に配置され、回転整畦体13を回転機構14により回転軸線Oを中心として図中、矢印方向Vに強制回転され、さらに、側面整畦体15及び上面整畦体16は互いに着脱自在に設けられ、上記側面整畦体15及び上記上面整畦体16の各々の外周部分は上記畦W面を回転整畦可能な圧締領域Eに形成され、側面整畦体15及び上面整畦体16の圧締領域Eは回転整畦体13の回転周方向に固定圧締領域E及び可動圧締領域Eに区画形成され、可動圧締領域Eは圧締領域E中の一つ又は二つの区画とされ、この場合、各々一つの区画とされ、固定圧締領域Eは可動圧締領域Eの区画より大きな可動圧締領域Eの残余の区画とされている。 Further, in this case, as shown in FIGS. 6, 7, and 8, the rotary ridge 13 prepares the side ridge 15 capable of arranging one side surface W 2 of the ridge W and the upper surface W 1 of the ridge W. The rotary ridges 13 are composed of possible upper surface ridges 16, and the rotation axis O of the rotary ridges 13 is arranged diagonally upward at an angle θ, and the rotary ridges 13 are centered on the rotation axis O by the rotation mechanism 14. In the middle, it is forcibly rotated in the direction V of the arrow, and further, the side surface ridge 15 and the top surface ridge 16 are detachably provided from each other, and the outer peripheral portions of the side surface ridge 15 and the top surface ridge 16 are respectively. The ridge W surface is formed in a compression region E capable of rotational ridges, and the compression regions E of the side ridges 15 and the upper surface ridges 16 are fixed compression regions E in the rotational circumferential direction of the rotary ridges 13. are defined and formed on the F and the movable squeezing region E M, the movable squeezing region E M is one or two compartments in the squeezing region E, in this case, it is a respective one of the compartments, fixed pressure clamping region E F is the partition of the remaining large movable squeezing region E M than Lot movable squeezing region E M.

この場合、上記側面整畦体15にあっては、図6、図7、図8の如く、中心筒軸15aに四個の桟材15b・・を放射状に突設し、四個の桟材15b・・の先端部に略円錐形状の固定面板体FPを圧締領域Eの固定圧締領域Eに対応して固定すると共に固定面板体FPの内周面に補強リング材15cを固定し、整畦機体6に駆動軸17を回転軸線Oを角度θの斜め上向き方向にして配置し、上記回転機構14として、駆動軸17を上記ギア列11を介して回転させ、駆動軸17は六角軸状に形成され、駆動軸17に挿通可能な六角穴をもつ上記中心筒軸15aを挿通し、中心筒軸15aを固定ピン15dにより駆動軸17に固定し、かつ、この場合、図8、図9の如く、上記可動面板体MPとしての可撓弾性を有する圧締板体Gの回転方向前方端部の固定端部Gを上記側面整畦体15の外周部分の取付部15eにリベット15fにより固定すると共に側面整畦体15の外周部分の圧締板体Gの回転方向後方端部の側面整畦体15の外周部分から離反可能な遊離端部Gの内面対向位置としての固定面板体FPの表面の一部に圧締面部Kを設けて構成され、この場合、その裏面に圧締面部Kの受圧強度を補強する桟材Kが溶接され、更に、この場合、上記側面整畦体15の外周部分の取付部15eと上記圧締面部Kとの間に通穴Fを形成して構成している。 In this case, in the side ridged body 15, as shown in FIGS. 6, 7, and 8, four crosspieces 15b ... Are radially projected from the central cylinder shaft 15a, and the four crosspieces are projected. the reinforcing ring member 15c is fixed to the inner peripheral surface of the fixing surface plate body FP with a fixed surface plate body FP of substantially conical shape tip of 15b · · to fix in response to fixing pressure clamping region E F of the clamping region E The drive shaft 17 is arranged on the ridge-adjusting machine 6 with the rotation axis O oriented diagonally upward at an angle θ, the drive shaft 17 is rotated via the gear train 11 as the rotation mechanism 14, and the drive shaft 17 is hexagonal. The central cylinder shaft 15a formed in a shaft shape and having a hexagonal hole that can be inserted into the drive shaft 17 is inserted, and the central cylinder shaft 15a is fixed to the drive shaft 17 by a fixing pin 15d, and in this case, FIG. as shown in FIG. 9, rivets fixed end G 1 of the rotation direction front end of the clamping plate member G having a flexible elasticity as the movable surface plate member MP to the mounting portion 15e of the outer peripheral portion of the side surface Seiaze 15 Fixed by 15f and fixed as an inner surface facing position of the free end portion G 2 which can be separated from the outer peripheral portion of the side ridged body 15 at the rear end in the rotation direction of the compression plate body G on the outer peripheral portion of the side ridged body 15. part of the surface of the face plate member FP to be configured to provide a clamping surface portion K, in this case, crosspieces K 1 for reinforcing the pressure strength of the clamping surface K on the rear surface is welded, further, in this case, the side surface A through hole F is formed between the mounting portion 15e of the outer peripheral portion of the ridge 15 and the compression surface portion K.

又、この場合、上記上面整畦体16にあっては、図6、図7、図8の如く、中心筒軸16aに四個の桟材16b・・を放射状に突設し、四個の桟材16b・・の先端部に略円錐形状の固定面板体FPを圧締領域Eの固定圧締領域Eに対応して固定し、上記回転機構14として、上記駆動軸17に挿通可能な六角穴をもつ上記中心筒軸16aを挿通し、中心筒軸16aを固定ピン16cにより駆動軸17に固定し、かつ、この場合、図6、図7、図8、図9の如く、上記可動面板体MPとしての可撓弾性を有する圧締板体Gの回転方向前方端部の固定端部Gを上記上面整畦体16の外周部分の取付部16dにリベット16eにより固定すると共に上面整畦体16の外周部分の圧締板体Gの回転方向後方端部の上面整畦体16の外周部分から離反可能な遊離端部Gの内面対向位置としての固定面板体FPの表面の一部に圧締面部Kを設けて構成され、この場合、その裏面に圧締面部Kの受圧強度を補強する桟材Kが溶接され、更に、この場合、上記上面整畦体16の外周部分の取付部16dと上記圧締面部Kとの間に通穴Fを形成して構成している。 Further, in this case, in the upper surface ridge 16, as shown in FIGS. 6, 7, and 8, four crosspieces 16b ... Are radially projected from the central cylinder shaft 16a, and the four crosspieces 16b ... crosspieces 16b · · of the tip of the fixed surface plate body FP of generally conical shape and fixed in correspondence with the fixing pressure clamping region E F of the clamping region E, as the rotation mechanism 14, which can be inserted into the drive shaft 17 The central cylinder shaft 16a having a hexagonal hole is inserted, and the central cylinder shaft 16a is fixed to the drive shaft 17 by a fixing pin 16c, and in this case, the movable is as shown in FIGS. 6, 7, 8 and 9. top integer with a fixed end G 1 of the rotation direction front end of the clamping plate member G having a flexible elasticity as a plane plate member MP are fixed by rivets 16e to the mounting portion 16d of the outer peripheral portion of the upper surface Seiaze 16 One of the surfaces of the fixed surface plate body FP as the inner surface facing position of the free end portion G 2 that can be separated from the outer peripheral portion of the upper surface adjusting body 16 of the rear end portion in the rotation direction of the compression plate body G of the outer peripheral portion of the ridge body 16. parts to be formed by providing a clamping surface portion K, in this case, crosspieces K 1 for reinforcing the pressure strength of the clamping surface K on the rear surface is welded, further, in this case, the outer peripheral portion of the upper surface Seiaze 16 A through hole F is formed between the mounting portion 16d of the above and the compression surface portion K.

この場合、上記圧締板体Gは可撓弾性を有するナイロン樹脂や塩化ビニール樹脂等の合成樹脂板により製作され、無負荷時には板状に略平らとなり、外的負荷により弧状に撓み得ると共に負荷解除により自己弾性により略平らに復元変形する材質が用いられている。尚、圧締板体Gは板バネに用いられるバネ鋼製等の金属板材や他の樹脂板材を用いることもある。 In this case, the compression plate body G is made of a synthetic resin plate such as nylon resin or vinyl chloride resin having flexible elasticity, becomes substantially flat in a plate shape when no load is applied, and can be bent in an arc shape by an external load and is loaded. A material that is restored and deformed to be substantially flat by self-elasticity when released is used. As the compression plate body G, a metal plate material such as spring steel used for a leaf spring or another resin plate material may be used.

18は削土機構であって、この場合、図3、図5の如く、上記中間軸8に保持枠19の基部を中間軸8と同心上に枢着し、保持枠19の先端部にロータ軸20を回転自在に取付け、ロータ軸20に複数個のナギナタ状の刃体をもつ削土ロータ21を取付け、削土ロータ21の上部にカバー22を配置し、中間軸8とロータ軸20との間にチェーン機構23を架設し、上記盛土機構4の盛土ロータ5の進行方向前方位置の旧畦Wの上面W部分を削土ロータ21によって削出軌跡Sをもって回転削土するように構成したものである。 Reference numeral 18 denotes a soil cutting mechanism. In this case, as shown in FIGS. 3 and 5, the base of the holding frame 19 is pivotally attached to the intermediate shaft 8 concentrically with the intermediate shaft 8, and the rotor is attached to the tip of the holding frame 19. The shaft 20 is rotatably attached, the earth cutting rotor 21 having a plurality of naginata-shaped blades is attached to the rotor shaft 20, the cover 22 is arranged on the upper part of the earth cutting rotor 21, and the intermediate shaft 8 and the rotor shaft 20 are attached. configured bridged chain mechanism 23, rotates Kezudo with a former ridge W upper surface W 1 moiety cutting out path S by Kezudo rotor 21 of traveling forward position of the embankment rotor 5 of the embankment mechanism 4 between It was done.

この実施の第一形態例は上記構成であるから、図1、図2、図3、図8、図9の如く、走行機体1を旧畦Wに沿って図中、矢印方向Qに走行させると共に動力取出軸1aを回転すると、一方では盛土機構4の盛土ロータ5が畦W際の圃場M泥土を旧畦W上に連続的に跳ね上げて盛り上げ、カバー部材6aは盛土ロータ5の上方及び畦W側方への泥土飛散を防止し、跳ね上げられた泥土は外方飛散を防がれて自重落下し、他方では走行機体1の動力取出軸1aを駆動源として整畦機構12が駆動され、上記回転整畦体13は矢印方向Vに回転し、上記回転整畦体13の外周部分は上記畦W面を回転整畦可能な圧締領域Eに形成され、圧締領域Eは固定圧締領域E及び可動圧締領域Eに区画形成され、可動圧締領域Eは圧締領域中の一つの区画とされ、固定圧締領域Eは可動圧締領域Eの区画より大きな可動圧締領域Eの残余の区画とされているので、上記畦W面は回転整畦体13の外周部分の圧締領域Eとしての固定圧締領域E及び可動圧締領域Eにより回転整畦されることになり、固定圧締領域Eによる固定圧締作用及び可動圧締領域Eによる可動圧締作用の異なる二種類の圧締作用をなす圧締領域Eにより畦W面を圧締することができると共に土質性状や整畦作業時の気象条件などに対する融通性を得ることができ、それだけ、整畦作業を良好に行うことができる。 Since the first embodiment of this embodiment has the above configuration, as shown in FIGS. 1, 2, 3, 8, and 9, the traveling machine body 1 is traveled along the old ridge W in the arrow direction Q in the drawing. When the power take-out shaft 1a is rotated together with the above, the filling rotor 5 of the filling mechanism 4 continuously flips up the field M mud at the ridge W onto the old ridge W to raise it, and the cover member 6a is above the filling rotor 5 and raised. The ridge W side is prevented from scattering the mud, and the spattered mud is prevented from scattering outward and falls by its own weight. On the other hand, the ridge adjusting mechanism 12 is driven by the power extraction shaft 1a of the traveling machine body 1. The rotary ridge 13 is rotated in the arrow direction V, and the outer peripheral portion of the rotary ridge 13 is formed in a compression region E capable of rotationally rectifying the ridge W surface, and the compression region E is fixed. It is defined and formed on the squeezing region E F and the movable squeezing region E M, the movable clamping region E M is one of the compartments in the clamping region, a fixed pressure clamping region E F is partitioned in the movable clamping region E M because they are more residual Lot large movable squeezing region E M, the ridge W surface fixed pressure clamping regions E F and the movable squeezing region E as squeezing region E of the outer peripheral portion of the rotary Seiaze 13 It would be rotated Seiaze by M, furrow by pressing region E which forms the clamping action of the two kinds of movable clamping action by a fixed pressure clamping region E F by fixing pressure clamping action and the movable squeezing region E M The W surface can be compressed, and flexibility with respect to soil properties and weather conditions during ridge preparation work can be obtained, so that ridge preparation work can be performed satisfactorily.

又、この場合、図6、図7、図8、図9の如く、上記固定圧締領域Eは固定面板体FPから構成され、上記可動圧締領域Eは可動面板体MPから構成されているから、固定圧締領域Eにおいては固定面板体FPの連続する平滑な固定表面による圧接回転接触により整畦作業がなされ、可動圧締領域Eにおいては可動面板体MPの可動な表面による圧接回転接触により整畦作業がなされ、固定圧締領域Eの固定面板体FP及び可動圧締領域Eの可動面板体MPによる固定及び可動の二種類の圧締により畦W面を圧締することができ、固定及び可動の異なる圧締作用により畦W面を圧締することができ、土質性状や整畦作業時の気象条件などに対する融通性を得ることができ、それだけ、整畦作業を良好に行うことができ、又、この場合、図6、図7、図8、図9の如く、上記可動面板体MPは可撓弾性を有する圧締板体Gからなり、圧締板体Gの回転方向前方端部は上記回転整畦体13の外周部分の取付部13aに固定される固定端部Gに形成されると共に回転方向後方端部は回転整畦体13の外周部分から離反可能な遊離端部Gに形成され、回転整畦体13の外周部分の圧締板体Gの遊離端部Gの内面対向位置に圧締面部Kを設けてなるから、回転整畦体13の回転に伴い、図8、図9の如く、圧締板体Gは自己の可撓弾性により畦W面の圧接位置と復元位置との間でフラップ動作して徐々に盛土を締圧すると共に回転整畦体13の外周部分の圧締板体Gの遊離端部Gの内面対向位置の圧締面部Kの存在により盛土を強く締圧し、圧締板体Gは可撓弾性を有しているので、圧締板体Gは平ら状から撓み動作しつつフラップ動作して盛土を徐々に締圧することができ、盛土を確実に締圧することができ、一層堅牢な畦Wを得ることができ、又、この場合、図8、図9の如く、上記回転整畦体13の外周部分の取付部13aと上記圧締面部Kとの間に通穴Fを設けてなるから、図8及び図9の如く、通穴Fの存在により圧締板体Gは平ら状から内方へ湾曲状に撓み動作しつつ盛土を徐々に締圧することができ、圧締板体Gの内方へ湾曲状の撓み動作により盛土を掴持することになって盛土を確実に締圧することができ、一層堅牢な畦Wを得ることができると共に圧締板体Gへの土の付着現象を抑制することができ、良好な整畦作業を行うことができる。 Further, in this case, FIG. 6, as shown in FIG. 7, 8, 9, the fixing pressure clamping region E F is composed of a fixed surface plate body FP, the movable squeezing region E M consists moving surface plate body MP since it has, fixed pressure in the clamping region E F Seiaze work done by pressure rolling contact by successive smooth fixing surface of the fixing surface plate body FP, movable surface of the movable surface plate body MP in the movable clamping region E M by Seiaze work done by pressure rolling contact, a fixed pressure clamping region E F of the pressure fixing and ridges W surface by two kinds of pressing the movable by the movable surface plate body MP fixed surface plate body FP and the movable squeezing region E M It can be tightened, and the ridge W surface can be squeezed by different squeezing actions of fixed and movable, and it is possible to obtain flexibility for soil properties and weather conditions during ridge preparation work. The work can be performed satisfactorily, and in this case, as shown in FIGS. 6, 7, 8 and 9, the movable face plate MP is composed of a compression plate body G having flexible elasticity, and is a compression plate. the outer peripheral portion of the rotation direction rear end rotating Seiaze body 13 with the rotation direction front end of the body G is formed in the fixed end portion G 1 which is fixed to the mounting portion 13a of the outer peripheral portion of the rotary Seiaze 13 Since it is formed at the free end portion G 2 that can be separated from the free end portion G 2 and the compression surface portion K is provided at the position facing the inner surface of the free end portion G 2 of the compression plate body G on the outer peripheral portion of the rotary ridge body 13, the rotation adjustment is performed. As the ridge 13 rotates, as shown in FIGS. 8 and 9, the compression plate body G flaps between the pressure contact position and the restoration position of the ridge W surface due to its own flexible elasticity to gradually tighten the embankment. While pressing, the embankment is strongly compressed by the presence of the compression surface portion K at the position facing the inner surface of the free end portion G 2 of the compression plate body G on the outer peripheral portion of the rotary ridge body 13, and the compression plate body G has flexible elasticity. Since the embankment G has, the embankment G can flex from a flat state and flap to gradually compress the embankment, and the embankment can be reliably compressed to obtain a more robust ridge W. In this case, as shown in FIGS. 8 and 9, a through hole F is provided between the mounting portion 13a of the outer peripheral portion of the rotary ridge 13 and the compression surface portion K. As shown in 8 and 9, the presence of the through hole F allows the compaction plate body G to flex from a flat shape to an inward curved shape while gradually compressing the embankment, and the inside of the compression plate body G. The embankment can be gripped by the curved bending motion, so that the embankment can be reliably pressed, a more robust ridge W can be obtained, and the phenomenon of soil adhesion to the pressing plate body G is suppressed. And good ridge preparation work can be done.

又、この場合、図6、図7、図8の如く、上記回転整畦体13は畦Wの一方側面Wを整畦可能な側面整畦体15及び畦Wの上面Wを整畦可能な上面整畦体16からなり、上記側面整畦体15及び上記上面整畦体16の各々の外周部分は上記畦W面を回転整畦可能な圧締領域Eに形成され、側面整畦体15及び上面整畦体16の圧締領域Eは固定圧締領域E及び可動圧締領域Eからなるので、上記畦W面は回転整畦体13の外周部分の圧締領域Eとしての固定圧締領域E及び可動圧締領域Eにより回転整畦されることになり、固定圧締領域E及び可動圧締領域Eの固定及び可動の二種類の圧締により畦W面を圧締することができ、固定及び可動の異なる圧締作用により畦W面を圧締することができ、土質性状や整畦作業時の気象条件などに対する融通性を得ることができ、それだけ、整畦作業を良好に行うことができる。 Further, in this case, as shown in FIGS. 6, 7, and 8, the rotary ridge 13 prepares the side ridge 15 capable of arranging one side surface W 2 of the ridge W and the upper surface W 1 of the ridge W. It is composed of a possible upper surface ridge 16, and the outer peripheral portions of each of the side ridge 15 and the upper surface ridge 16 are formed in a compression region E capable of rotating the ridge W surface, and the side ridges are formed. since clamping region of the body 15 and the upper surface Seiaze body 16 E consists of a fixed pressure clamping regions E F and the movable squeezing region E M, the ridge W surface as squeezing region E of the outer peripheral portion of the rotary Seiaze 13 fixing pressure by tightening region E F and the movable squeezing region E M would be rotated Seiaze, fixed pressure clamping regions E F and the movable squeezing region E M ridge W by fixed and movable two kinds of pressing of The surface can be squeezed, and the ridge W surface can be squeezed by different squeezing actions of fixed and movable, and it is possible to obtain flexibility to soil properties and weather conditions during ridge preparation work. , The ridge preparation work can be performed well.

又、この場合、図3、図4、図5の如く、削土機構18により旧畦W面を予め削土でき、この削土された畦W面上に盛土機構4により盛土することになるから、旧畦W土と盛土との結着性を高めることができ、それだけ強固な畦Wを得ることができる。 Further, in this case, as shown in FIGS. 3, 4, and 5, the old ridge W surface can be previously excavated by the soil cutting mechanism 18, and the embankment mechanism 4 is used to embank the excavated ridge W surface. Therefore, the bondability between the old ridge W soil and the embankment can be enhanced, and a stronger ridge W can be obtained.

図10、図11の第二形態例は別例構造を示し、この場合、図11の如く、上記回転整畦体13の外周部分の圧締領域Eは回転整畦体13の回転周方向に固定圧締領域E及び可動圧締領域Eに区画形成され、可動圧締領域Eは圧締領域E中の一つ又は二つの区画とされ、この場合、二つの連続する区画とされ、固定圧締領域Eは可動圧締領域Eの区画より大きな可動圧締領域Eの残余の区画とされている。 The second embodiment of FIGS. 10 and 11 shows another example structure. In this case, as shown in FIG. 11, the compression region E of the outer peripheral portion of the rotary ridge 13 is in the rotational circumferential direction of the rotary ridge 13. fixed pressure clamping regions E F and is partitioned and formed in the movable clamping region E M, the movable squeezing region E M is one or two compartments in the squeezing region E, in this case, it is the two successive compartments , fixed pressure clamping region E F is the partition of the remaining large movable squeezing region E M than Lot movable squeezing region E M.

この第二形態例にあっては、図10、図11の如く、二つの連続する区画の可動圧締領域E及び可動圧締領域Eの区画より大きな可動圧締領域Eの残余の区画の固定圧締領域Eにより畦W面を圧締することができ、固定圧締領域Eによる固定圧締作用及び可動圧締領域Eによる可動圧締作用の異なる二種類の圧締作用をなす圧締領域Eにより畦W面を圧締することができると共に土質性状や整畦作業時の気象条件などに対する融通性を得ることができ、それだけ、整畦作業を良好に行うことができる。 The In the second embodiment, FIG. 10, as shown in FIG. 11, the remaining large movable squeezing region E M than Lot movable squeezing region E M and the movable squeezing region E M of consecutive bins two It can be clamped a ridge W surface by fixing pressure clamping region E F compartments, fixed pressure clamping region E F by fixing pressure clamping action and the movable clamping different movable squeezing action by region E M two kinds of pressing The ridge W surface can be squeezed by the squeezing region E that acts, and flexibility can be obtained for soil properties and weather conditions during ridge preparation work, so that the ridge preparation work can be performed well. it can.

図12、図13の第三形態例は別例構造を示し、この場合、図13の如く、回転整畦体13の外周部分は上記畦W面を回転整畦可能な圧締領域Eに形成され、圧締領域Eは回転整畦体13の回転周方向に固定圧締領域E及び可動圧締領域Eに区画形成され、可動圧締領域Eは圧締領域E中の一つ又は二つの区画とされ、この場合、二つの離間する区画とされ、固定圧締領域Eは可動圧締領域Eの区画より大きな可動圧締領域Eの残余の区画とされている。 The third form example of FIGS. 12 and 13 shows another example structure. In this case, as shown in FIG. 13, the outer peripheral portion of the rotary ridge 13 is formed on the ridge W surface in the compression region E capable of rotary ridge. one in is, clamped area E is partitioned and formed on the fixing pressure clamping regions E F and the movable squeezing region E M in the circumferential direction of rotation of the rotary Seiaze body 13, the movable clamping region E M is squeezing region E or is the two compartments, in this case, is a partition separating two, fixed pressure clamping region E F is the partition of the remaining large movable squeezing region E M than Lot movable squeezing region E M.

この第三形態例にあっては、図12、図13の如く、二つの離間する区画の可動圧締領域E及び可動圧締領域Eの区画より大きな可動圧締領域Eの残余の区画の固定圧締領域Eにより畦W面を圧締することができ、固定圧締領域Eによる固定圧締作用及び可動圧締領域Eによる可動圧締作用の異なる二種類の圧締作用をなす圧締領域Eにより畦W面を圧締することができると共に土質性状や整畦作業時の気象条件などに対する融通性を得ることができ、それだけ、整畦作業を良好に行うことができる。 The In the third embodiment, FIG. 12, as shown in FIG. 13, the remaining large movable squeezing region E M than Lot movable squeezing region E M and the movable squeezing region E M partitions of two spaced It can be clamped a ridge W surface by fixing pressure clamping region E F compartments, fixed pressure clamping region E F by fixing pressure clamping action and the movable clamping different movable squeezing action by region E M two kinds of pressing The ridge W surface can be squeezed by the squeezing region E that acts, and flexibility can be obtained for soil properties and weather conditions during ridge preparation work, so that the ridge preparation work can be performed well. it can.

なお、上記実施の形態例においては、上記回転整畦体13は側面整畦体15及び上面整畦体16からなり、この側面整畦体15及び上面整畦体16のいずれにも、固定圧締領域E及び可動圧締領域Eからなる構造としているが、側面整畦体15又は上面整畦体16のいずれか一方については、固定圧締領域Eのみ、すなわち、固定面板体FPの連続する平滑な固定表面のみによる整畦作業がなされ、又は、側面整畦体15又は上面整畦体16のいずれか一方については、可動圧締領域Eのみ、すなわち、可動面板体MPの可動な表面のみによる整畦作業とすることもできる。 In the above embodiment, the rotary ridge body 13 is composed of a side surface ridge body 15 and an upper surface ridge body 16, and a fixed pressure is applied to both the side surface ridge body 15 and the upper surface ridge body 16. Although a structure composed of a clamping region E F and the movable squeezing region E M, for either side Seiaze member 15 or top Seiaze body 16, a fixed pressure clamping region E F only, i.e., the fixed surface plate body FP only Seiaze work by continuous smooth fixing surface is made, or, for one either side Seiaze member 15 or top Seiaze body 16, only the movable squeezing region E M, i.e., the moving surface plate body MP It is also possible to perform the ridge preparation work using only the movable surface.

尚、本発明は上記実施の形態例に限られるものではなく、例えば、上記回転整畦体13の回転軸線Oを傾けずに水平方向とした構造、回転整畦体13の構造、圧締面体K及び圧締板体Gの個数や形状、圧締板体Gの大きさや材質等は適宜変更して設計される。 The present invention is not limited to the above embodiment, and for example, the structure in which the rotation axis O of the rotary ridge 13 is not tilted in the horizontal direction, the structure of the rotary ridge 13, and the compression surface body. The number and shape of K and the compression plate body G, the size and material of the compression plate body G, and the like are appropriately changed and designed.

以上の如く、所期の目的を充分達成することができる。 As described above, the intended purpose can be sufficiently achieved.

W 畦
E 圧締領域
固定圧締領域
可動圧締領域
FP 固定面板体
MP 可動面板体
K 圧締面部
G 圧締板体
固定端部
遊離端部
F 通穴
1 走行機体
2 連結機構
3 機枠
4 盛土機構
12 整畦機構
13 回転整畦体
13a 取付部
W furrow E squeezing region E F fixed pressure clamping region E M movable squeezing region FP fixed surface plate body MP movable surface plate body K clamping surface G clamping plate member G 1 fixed end G 2 free end F throughbore 1 travel Machine 2 Connection mechanism 3 Machine frame 4 Filling mechanism 12 Ridge mechanism 13 Rotational ridge 13a Mounting part

Claims (2)

走行機体に連結機構により機枠を連結し、該機枠に旧畦上に土を盛り上げる盛土機構を設け、該盛土機構の進行方向後方位置に畦面を圧接回転により回転整畦可能な回転整畦体をもつ整畦機構を設けてなり、上記回転整畦体の外周部分は上記畦面を回転整畦可能な圧締領域に形成され、該圧締領域は該回転整畦体の回転周方向に固定圧締領域及び可動圧締領域に区画形成され、該可動圧締領域は該圧締領域中の単数又は複数の区画とされ、該固定圧締領域は固定面板体から構成され、該可動圧締領域は可動面板体から構成され、該可動圧締領域に区画された該回転整畦体の外周部分に通穴が形成され、該固定圧締領域は該可動圧締領域の区画より大きな可動圧締領域の残余の区画とされていることを特徴とする整畦機。 A machine frame is connected to the traveling machine by a connecting mechanism, an embankment mechanism for raising soil on the old ridges is provided on the machine frame, and a rotary ridge that can rotate and ridge the ridge surface at a position rearward in the traveling direction of the embankment mechanism by pressure welding. A ridge-regulating mechanism having a body is provided, and the outer peripheral portion of the rotary ridge is formed in a compression region capable of rotating the ridge surface, and the compression region is the rotational circumferential direction of the rotary ridge. The movable compression region is formed into a fixed compression region and a movable compression region, the movable compression region is a single or a plurality of compartments in the compression region, and the fixed compression region is composed of a fixed face plate body and is movable. The compression region is composed of a movable face plate, a through hole is formed in the outer peripheral portion of the rotary ridges partitioned in the movable compression region, and the fixed compression region is larger than the division of the movable compression region. A ridge preparation machine characterized in that it is the remaining section of the movable compression area. 上記可動面板体は可撓弾性を有する圧締板体からなり、該圧締板体の回転方向前方端部は上記回転整畦体の外周部分の取付部に固定される固定端部に形成されると共に回転方向後方端部は該回転整畦体の外周部分から離反可能な遊離端部に形成され、該回転整畦体の外周部分の該圧締板体の遊離端部の内面対向位置に圧締面部を設けてなることを特徴とする請求項1記載の整畦機。 The movable surface plate body is made of a compressive plate body having flexible elasticity, and the front end portion of the compression plate body in the rotation direction is formed at a fixed end portion fixed to a mounting portion of an outer peripheral portion of the rotary ridge body. At the same time, the rear end portion in the rotation direction is formed at a free end portion that can be separated from the outer peripheral portion of the rotary ridge body, and is located at a position facing the inner surface of the free end portion of the compression plate body on the outer peripheral portion of the rotary ridge body. The ridge preparation machine according to claim 1, wherein a compression surface portion is provided.
JP2020148036A 2020-09-03 2020-09-03 Levee-shaping machine Pending JP2020195406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020148036A JP2020195406A (en) 2020-09-03 2020-09-03 Levee-shaping machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020148036A JP2020195406A (en) 2020-09-03 2020-09-03 Levee-shaping machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018096172A Division JP6821906B2 (en) 2018-05-18 2018-05-18 Ridge machine

Publications (1)

Publication Number Publication Date
JP2020195406A true JP2020195406A (en) 2020-12-10

Family

ID=73647510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020148036A Pending JP2020195406A (en) 2020-09-03 2020-09-03 Levee-shaping machine

Country Status (1)

Country Link
JP (1) JP2020195406A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238503A (en) * 1996-03-06 1997-09-16 Matsuyama Plow Mfg Co Ltd Balk plastering machine
JP2000037104A (en) * 1998-07-22 2000-02-08 Fuji Trailer Seisakusho:Kk Ridge-forming machine
JP2000060212A (en) * 1998-08-27 2000-02-29 Fuji Trailer Seisakusho:Kk Ridger
JP2001148904A (en) * 2000-10-23 2001-06-05 Matsuyama Plow Mfg Co Ltd Side-repairing body for rigding machine
JP2001275407A (en) * 2000-03-31 2001-10-09 Fuji Trailer Seisakusho:Kk Levee preparation machine
JP2002354904A (en) * 2001-05-31 2002-12-10 Fuji Trailer Manufacturing Co Ltd Levee reshaping machine
JP2003304705A (en) * 2002-04-18 2003-10-28 Fuji Trailer Manufacturing Co Ltd Ridge-leveling machine
KR100842343B1 (en) * 2007-12-10 2008-06-30 김정식 Rice Runner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238503A (en) * 1996-03-06 1997-09-16 Matsuyama Plow Mfg Co Ltd Balk plastering machine
JP2000037104A (en) * 1998-07-22 2000-02-08 Fuji Trailer Seisakusho:Kk Ridge-forming machine
JP2000060212A (en) * 1998-08-27 2000-02-29 Fuji Trailer Seisakusho:Kk Ridger
JP2001275407A (en) * 2000-03-31 2001-10-09 Fuji Trailer Seisakusho:Kk Levee preparation machine
JP2001148904A (en) * 2000-10-23 2001-06-05 Matsuyama Plow Mfg Co Ltd Side-repairing body for rigding machine
JP2002354904A (en) * 2001-05-31 2002-12-10 Fuji Trailer Manufacturing Co Ltd Levee reshaping machine
JP2003304705A (en) * 2002-04-18 2003-10-28 Fuji Trailer Manufacturing Co Ltd Ridge-leveling machine
KR100842343B1 (en) * 2007-12-10 2008-06-30 김정식 Rice Runner

Similar Documents

Publication Publication Date Title
JP2000037104A (en) Ridge-forming machine
JP2020195406A (en) Levee-shaping machine
JP6821906B2 (en) Ridge machine
JP2001275407A (en) Levee preparation machine
JP2001211703A (en) Ridge-arranging machine
JP2000135003A (en) Ridge trimming machine
JP4154546B2 (en) Straightener
JP6332797B2 (en) Straightener
JP6395255B2 (en) Straightener
JP2002209404A (en) Ridge-leveling machine
JP2000060213A (en) Ridger
JP2001095301A (en) Ridge-arranging machine
JP6332796B2 (en) Straightener
JP2000060212A (en) Ridger
JP6395256B2 (en) Straightener
JP2000037105A (en) Ridge-forming machine
JP4436008B2 (en) Straightener
JP2000092905A (en) Ridger
JP6756022B2 (en) Ridge machine
JP2678185B2 (en) Rowing machine
JP4432001B2 (en) Straightener
JP2020188818A (en) Ridge leveling machine
JP2002084808A (en) Ridge trimming implement
JP2000037106A (en) Ridge-forming machine
JP2000060211A (en) Ridger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308