JP2020194189A - 移動体装置、露光装置、及びフラットパネルディスプレイ製造方法 - Google Patents

移動体装置、露光装置、及びフラットパネルディスプレイ製造方法 Download PDF

Info

Publication number
JP2020194189A
JP2020194189A JP2020138776A JP2020138776A JP2020194189A JP 2020194189 A JP2020194189 A JP 2020194189A JP 2020138776 A JP2020138776 A JP 2020138776A JP 2020138776 A JP2020138776 A JP 2020138776A JP 2020194189 A JP2020194189 A JP 2020194189A
Authority
JP
Japan
Prior art keywords
substrate
heads
axis direction
head
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020138776A
Other languages
English (en)
Other versions
JP7028289B2 (ja
Inventor
青木 保夫
Yasuo Aoki
保夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JP2020194189A publication Critical patent/JP2020194189A/ja
Application granted granted Critical
Publication of JP7028289B2 publication Critical patent/JP7028289B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70975Assembly, maintenance, transport or storage of apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

【課題】露光装置における基板の位置計測精度を向上する。【解決手段】 基板Pを走査露光する露光装置は、基板Pを保持し、X軸及びY軸方向へ移動可能な基板ホルダ32と、Y軸方向へ移動可能なY粗動ステージ24と、基板ホルダ32の位置情報を、基板ホルダ32に設けられたヘッド74x、74yと、Y粗動ステージ24に設けられたスケール72とによって取得する第1計測系と、Y粗動ステージ24の位置情報を、Y粗動ステージ24に設けられたヘッド80x、80yと、スケール78とによって取得する第2計測系と、第1及び第2計測系により取得された位置情報に基づいて、基板ホルダ32の位置を制御する制御系と、を備え、第1計測系はヘッド74x、74yをスケール72に対してX軸方向へ移動させながら計測ビームを照射し、第2計測系はヘッド80x、80yをスケール78に対してY軸方向へ移動させながら計測ビームを照射する。【選択図】図3

Description

本発明は、移動体装置、露光装置、及びフラットパネルディスプレイ製造方法に関する。
従来、液晶表示素子、半導体素子(集積回路等)等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、投影光学系(レンズ)を介して照明光(エネルギビーム)で感光性のガラスプレート又はウエハ(以下、「基板」と総称する)を露光することによって、該基板にマスク(フォトマスク)又はレチクル(以下、「マスク」と総称する)が有する所定のパターンを転写する露光装置が用いられている。
この種の露光装置としては、投影光学系に対する基板の位置制御を高精度で行う必要があることから、基板の位置計測系として、エンコーダシステムを用いるものが知られている(例えば、特許文献1参照)。
ここで、光干渉計システムを用いて基板の位置情報を求める場合、バーミラーへのレーザの光路長が長くなりいわゆる空気揺らぎの影響を無視することができない。
米国特許出願公開第2010/0266961号明細書
本発明の第1の態様によれば、物体を保持する物体保持部と、前記物体保持部を支持する第1ベースと、前記物体保持部を、互いに交差する第1方向と第2方向と移動させる駆動部と、前記第1ベースとは離間して設けられ、前記駆動部を支持する第2ベースと、前記駆動部による前記物体保持部の移動の基準となる基準部材と、前記駆動部に対する前記物体保持部の位置情報を、前記物体保持部と前記駆動部との一方に設けられた複数の第1ヘッドと、前記物体保持部と前記駆動部との他方に設けられ、前記第1方向と前記第2方向との計測成分を有し、前記第1方向に関して互いに離れて配置される複数の格子領域により前記物体保持部の前記第1方向に関する移動範囲を計測可能な第1格子部材とによって取得する第1計測系と、前記基準部材に対する前記駆動部の位置情報を、前記駆動部と前記基準部材との一方に設けられた第2ヘッドと、前記駆動部と前記基準部材との他方に設けられ、前記第1方向と前記第2方向の計測成分を有し、前記物体保持部の前記第2方向に関する移動範囲を計測可能な第2格子部材とによって取得する第2計測系と、前記第1計測系および前記第2計測系のそれぞれの計測系から取得された位置情報に基づいて、前記基準部材に対する前記第1方向と前記第2方向の前記物体保持部の位置を計測する計測部と、を備え、前記駆動部は、前記第2ベース上を前記第1方向と前記第2方向とへ移動し、前記計測部の計測結果に基づいて、前記物体保持部を前記第1ベース上で移動させる移動体装置が、提供される。
本発明の第2の態様によれば、第1の態様に係る移動体装置と、前記物体に対してエネルギビームを照射し、前記物体を露光する光学系と、を備える露光装置が、提供される。
本発明の第3の態様によれば、フラットパネルディスプレイ製造方法であって、第2の態様に係る露光装置を用いて基板を露光することと、露光された基板を現像することと、を含むフラットパネルディスプレイ製造方法が、提供される。
第1の実施形態に係る液晶露光装置の構成を概略的に示す図である。 図1の液晶露光装置が有する基板ステージ装置を示す図である。 図1の液晶露光装置が有する基板計測系の概念図である。 基板ステージ装置の動作を説明するための図(その1)である。 基板ステージ装置の動作を説明するための図(その2)である。 液晶露光装置の制御系を中心的に構成する主制御装置の入出力関係を示すブロック図である。 第2の実施形態に係る基板ステージ装置を示す平面図である。 図7の基板ステージ装置の断面図である。 図7の基板ステージ装置の第2の系を示す図である。 図7の基板ステージ装置の第1の系を示す図である。 第3の実施形態に係る基板ステージ装置を示す平面図である。 図11の基板ステージ装置の断面図である。 図11の基板ステージ装置の第2の系を示す図である。 図11の基板ステージ装置の第1の系を示す図である。 第4の実施形態に係る基板ステージ装置を示す平面図である。 図15の基板ステージ装置の断面図である。 図15の基板ステージ装置の第2の系を示す図である。 図15の基板ステージ装置の第1の系を示す図である。 第5の実施形態に係る基板ステージ装置を示す平面図である。 図19の基板ステージ装置の断面図である。 図19の基板ステージ装置の第2の系を示す図である。 図19の基板ステージ装置の第1の系を示す図である。 第6の実施形態に係る基板ステージ装置を示す図である。 図23の基板ステージ装置の一部である基板ホルダを示す図である。 図23の基板ステージ装置の一部である基板テーブルを含む系を示す図である。 第6の実施形態に係る基板計測系の構成を説明するための図である。 図26の基板計測系の動作を説明するための図である。 第7の実施形態に係る基板ステージ装置を示す図である。 図28の基板ステージ装置の一部である基板ホルダを示す図である。 図28の基板ステージ装置の一部である基板テーブルを含む系を示す図である。 第7の実施形態に係る基板計測系の構成を説明するための図である。 第8の実施形態に係る基板ステージ装置を示す図である。 図32の基板ステージ装置の一部である基板ホルダを示す図である。 図32の基板ステージ装置の一部である基板テーブルを含む系を示す図である。 第8の実施形態に係る基板計測系の構成を説明するための図である。 第9の実施形態に基板ステージ装置の一部である基板ホルダを示す図である。 第9の実施形態に基板ステージ装置の一部である基板テーブルを含む系を示す図である。 第9の実施形態に係る基板計測系の構成を説明するための図である。 第10の実施形態に係る基板ステージ装置の一部である基板ホルダを示す図である。 第10の実施形態に係る基板ステージ装置の一部である基板テーブルを含む系を示す図である。 第10の実施形態に係る基板計測系の構成を説明するための図である。 第10の実施形態に係る基板ステージ装置の断面図(その1)である。 第10の実施形態に係る基板ステージ装置の断面図(その2)である。 第11の実施形態に係る基板ステージ装置を示す図である。 図44の基板ステージ装置の一部である基板ホルダを示す図である。 図44の基板ステージ装置の一部である基板テーブルを含む系を示す図である。 第11の実施形態に係る基板計測系の構成を説明するための図である。 第12の実施形態に係る基板ステージ装置を示す図である。 図48の基板ステージ装置の一部である基板ホルダを示す図である。 図48の基板ステージ装置の一部である重量キャンセル装置を含む系を示す図である。 図48の基板ステージ装置の一部であるY粗動ステージを含む系を示す図である。 図48の基板ステージ装置の一部である基板テーブルを含む系を示す図である。 第12の実施形態に係る基板計測系の構成を説明するための図である。 図53の基板計測系の動作を説明するための図である。 第13の実施形態に係る基板ステージ装置を示す図である。 図55の基板ステージ装置の一部である基板ホルダを示す図である。 図55の基板ステージ装置の一部である基板テーブルを含む系を示す図である。 第13の実施形態に係る基板計測系の構成を説明するための図である。 第14の実施形態に係る基板ステージ装置を示す図である。 第15の実施形態に係る基板ステージ装置を示す図である。 図60の基板ステージ装置の動作を説明するための図である。 図60の基板ステージ装置の一部である基板ホルダを示す図である。 図60の基板ステージ装置の一部である基板テーブルを含む系を示す図である。 第16の実施形態に係る基板ステージ装置を示す図である。 第17の実施形態に係る基板ステージ装置を示す図である。 第18の実施形態に係る基板ステージ装置を示す図である。 第18の実施形態に係る基板計測系の構成を説明するための図である。 第18の実施形態に係る基板計測系の概念図である。 第19の実施形態に係る基板ステージ装置を示す図である。 第19の実施形態に係る基板計測系の概念図である。 第20の実施形態に係る液晶露光装置が有する基板ホルダ及び基板計測系の一対のヘッドベースを、投影光学系とともに示す平面図である。 図71(A)及び図71(B)は、基板ホルダの位置計測が行われる際の基板ホルダのX軸方向の移動範囲を説明するための図である。 図73(A)〜図73(D)は、第20の実施形態において、基板ホルダがX軸方向に移動する過程における一対のヘッドベースとスケールとの位置関係の状態遷移のうちの第1の状態〜第4の状態を説明するための図である。 図74(A)〜図74(C)は、第20の実施形態に係る液晶露光装置で行われる、基板ホルダの位置情報を計測する、基板エンコーダシステムのヘッドの切り換え時におけるつなぎ処理について説明するための図である。 第21の実施形態に係る液晶露光装置が有する基板ホルダ及び基板エンコーダシステムの一対のヘッドベースを、投影光学系とともに示す平面図である。 第22の実施形態に係る液晶露光装置の特徴的構成について説明するための図である。
《第1の実施形態》
以下、第1の実施形態について、図1〜図6を用いて説明する。
図1には、第1の実施形態に係る露光装置(ここでは液晶露光装置10)の構成が概略的に示されている。液晶露光装置10は、物体(ここではガラス基板P)を露光対象物とするステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。ガラス基板P(以下、単に「基板P」と称する)は、平面視矩形(角型)に形成され、液晶表示装置(フラットパネルディスプレイ)などに用いられる。
液晶露光装置10は、照明系12、回路パターンなどが形成されたマスクMを保持するマスクステージ装置14、投影光学系16、装置本体18、表面(図1で+Z側を向いた面)にレジスト(感応剤)が塗布された基板Pを保持する基板ステージ装置20、及びこれらの制御系等を有している。以下、露光時にマスクMと基板Pとが投影光学系16に対してそれぞれ相対走査される方向をX軸方向とし、水平面内でX軸に直交する方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向(投影光学系16の光軸方向と平行な方向)とし、X軸、Y軸、及びZ軸回りの回転方向をそれぞれθx、θy、及びθz方向として説明を行う。また、X軸、Y軸、及びZ軸方向に関する位置をそれぞれX位置、Y位置、及びZ位置として説明を行う。
照明系12は、米国特許第5,729,331号明細書などに開示される照明系と同様に構成されており、図示しない光源(水銀ランプ、あるいはレーザダイオードなど)から射出された光を、それぞれ図示しない反射鏡、ダイクロイックミラー、シャッター、波長選択フィルタ、各種レンズなどを介して、露光用照明光(照明光)ILとしてマスクMに照射する。照明光ILとしては、i線(波長365nm)、g線(波長436nm)、h線(波長405nm)などの光(あるいは、上記i線、g線、h線の合成光)が用いられる。
マスクステージ装置14が保持するマスクMとしては、透過型のフォトマスクが用いられている。マスクMの下面(図1では−Z側を向いた面)には、所定の回路パターンが形成されている。マスクMは、リニアモータ、ボールねじ装置などのアクチュエータを含むマスク駆動系102を介して主制御装置100(それぞれ図1では不図示。図6参照)によって走査方向(X軸方向)に所定の長ストロークで駆動されるとともに、Y軸方向、及びθz方向に適宜微少駆動される。マスクMのXY平面内の位置情報(θz方向の回転量情報も含む。以下同じ)は、エンコーダシステム、あるいは干渉計システムなどの計測システムを含むマスク計測系104を介して主制御装置100(それぞれ図1では不図示。図6参照)によって求められる。
投影光学系16は、マスクステージ装置14の下方に配置されている。投影光学系16は、米国特許第6,552,775号明細書などに開示される投影光学系と同様な構成の、いわゆるマルチレンズ投影光学系であり、両側テレセントリックな等倍系で正立正像を形成する複数のレンズモジュールを備えている。
液晶露光装置10では、照明系12からの照明光ILによってマスクM上の照明領域が照明されると、マスクMを通過(透過)した照明光ILにより、投影光学系16を介してその照明領域内のマスクMの回路パターンの投影像(部分正立像)が、基板P上の照明領域に共役な照明光の照射領域(露光領域)に形成される。そして、照明領域(照明光IL)に対してマスクMが走査方向に相対移動するとともに、露光領域(照明光IL)に対して基板Pが走査方向に相対移動することで、基板P上の1つのショット領域の走査露光が行われ、そのショット領域にマスクMに形成されたパターンが転写される。
装置本体18は、マスクステージ装置14、及び投影光学系16を支持しており、防振装置19を介してクリーンルームの床F上に設置されている。装置本体18は、米国特許出願公開第2008/0030702号明細書に開示される装置本体と同様に構成されており、上架台部18a、一対の中架台部18b、及び下架台部18cを有している。上架台部18aは、投影光学系16を支持する部材であることから、以下、本明細書では、上架台部18aを「光学定盤18a」と称して説明する。ここで、本実施形態の液晶露光装置10を用いた走査露光動作において、基板Pは、投影光学系16を介して照射される照明光ILに対して位置制御されることから、投影光学系16を支持する光学定盤18aは、基板Pの位置制御を行う際の基準部材として機能する。
基板ステージ装置20は、基板Pを投影光学系16(照明光IL)に対して高精度で位置制御するための装置であり、基板Pを水平面(X軸方向、及びY軸方向)に沿って所定の長ストロークで駆動するとともに、6自由度方向に微少駆動する。液晶露光装置10で用いられる基板ステージ装置の構成は、特に限定されないが、本第1の実施形態では、一例として米国特許出願公開第2012/0057140号明細書などに開示されるような、ガントリタイプの2次元粗動ステージと、該2次元粗動ステージに対して微少駆動される微動ステージとを含む、いわゆる粗微動構成の基板ステージ装置20が用いられている。
基板ステージ装置20は、微動ステージ22、Y粗動ステージ24、X粗動ステージ26、支持部(ここでは自重支持装置28)、一対のベースフレーム30(図1では一方は不図示。図4参照)、及び基板ステージ装置20を構成する各要素を駆動するための基板駆動系60(図1では不図示、図6参照)、上記各要素の位置情報を計測するための基板計測系70(図1では不図示、図6参照)などを備えている。
図2に示されるように、微動ステージ22は、基板ホルダ32とステージ本体34とを備えている。基板ホルダ32は、平面視矩形(図4参照)の板状(あるいは箱形)に形成され、その上面(基板載置面)に基板Pが載置される。基板ホルダ32の上面のX軸及びY軸方向の寸法は、基板Pと同程度に(実際には幾分短く)設定されている。基板Pは、基板ホルダ32の上面に載置された状態で基板ホルダ32に真空吸着保持されることによって、ほぼ全体(全面)が基板ホルダ32の上面に沿って平面矯正される。ステージ本体34は、基板ホルダ32よりもX軸及びY軸方向の寸法が短い平面視矩形の板状(あるいは箱形)の部材から成り、基板ホルダ32の下面に一体的に接続されている。
図1に戻り、Y粗動ステージ24は、微動ステージ22の下方(−Z側)であって、一対のベースフレーム30上に配置されている。Y粗動ステージ24は、図4に示されるように、一対のXビーム36を有している。Xビーム36は、X軸方向に延びるYZ断面矩形(図2参照)の部材から成る。一対のXビーム36は、Y軸方向に所定間隔で平行に配置されている。一対のXビーム36は、機械的なリニアガイド装置を介して一対のベースフレーム30上に載置されており、該一対のベースフレーム30上でY軸方向に移動自在となっている。
図1に戻り、X粗動ステージ26は、Y粗動ステージ24の上方(+Z側)であって、微動ステージ22の下方に(微動ステージ22とY粗動ステージ24との間に)配置されている。X粗動ステージ26は、平面視矩形の板状の部材であって、Y粗動ステージ24が有する一対のXビーム36(図4参照)上に複数の機械的なリニアガイド装置38(図2参照)を介して載置されており、Y粗動ステージ24に対してX軸方向に関して移動自在であるのに対し、Y軸方向に関しては、Y粗動ステージ24と一体的に移動する。
図6に示されるように、基板駆動系60は、微動ステージ22を光学定盤18a(それぞれ図1参照)に対して6自由度方向(X軸、Y軸、Z軸、θx、θy、及びθzの各方向)に微少駆動するための第1駆動系62、Y粗動ステージ24をベースフレーム30(それぞれ図1参照)上でY軸方向に長ストロークで駆動するための第2駆動系64、及びX粗動ステージ26をY粗動ステージ24(それぞれ図1参照)上でX軸方向に長ストロークで駆動するための第3駆動系66を備えている。第2駆動系64、及び第3駆動系66を構成するアクチュエータの種類は、特に限定されないが、一例として、リニアモータ、あるいはボールねじ駆動装置などを使用することが可能である(図1などではリニアモータが図示されている)。
第1駆動系62を構成するアクチュエータの種類も特に限定されないが、図2などでは、一例としてX軸、Y軸、Z軸の各方向へ推力を発生する複数のリニアモータ(ボイスコイルモータ)40が図示されている(図1及び図2ではXリニアモータは不図示)。各リニアモータ40は、固定子がX粗動ステージ26に取り付けられるとともに、可動子が微動ステージ22のステージ本体34に取り付けられており、微動ステージ22は、X粗動ステージ26に対して、各リニアモータ40を介して6自由度方向に推力が付与される。上記第1〜第3駆動系62、64、66の詳細な構成に関しては、一例として米国特許出願公開第2010/0018950号明細書などに開示されているので、説明を省略する。
主制御装置100は、第1駆動系62を用いて微動ステージ22とX粗動ステージ26(それぞれ図1参照)との相対位置がX軸及びY軸方向に関して所定範囲内に収まるように微動ステージ22に推力を付与する。ここで、「位置が所定範囲内に収まる」とは、微動ステージ22をX軸又はY軸方向に長ストロークで移動させる際に、X粗動ステージ26(微動ステージ22をY軸方向に移動させる場合にはX粗動ステージ26及びY粗動ステージ24)と微動ステージ22とをほぼ同速度で且つ同方向に移動させるという程度の意味であり、微動ステージ22とX粗動ステージ26とが厳密に同期して移動する必要はなく、所定の相対移動(相対位置ずれ)が許容される。
図2に戻り、自重支持装置28は、微動ステージ22の自重を下方から支持する重量キャンセル装置42と、該重量キャンセル装置42を下方から支持するYステップガイド44とを備えている。
重量キャンセル装置42(心柱などとも称される)は、X粗動ステージ26に形成された開口部に挿入されており、その重心高さ位置において、X粗動ステージ26に対して複数の連結部材46(フレクシャ装置とも称される)を介して機械的に接続されている。X粗動ステージ26と重量キャンセル装置42とは、複数の連結部材46により、Z軸方向、θx方向、θy方向に関して振動的(物理的)に分離した状態で連結されている。重量キャンセル装置42は、X粗動ステージ26に牽引されることによって、該X粗動ステージ26と一体的にX軸、及び/又はY軸方向に移動する。
重量キャンセル装置42は、レベリング装置48と称される疑似球面軸受装置を介して微動ステージ22の自重を下方から非接触で支持してしている。これにより、微動ステージ22の重量キャンセル装置42に対するX軸、Y軸、及びθz方向への相対移動、及び水平面に対する揺動(θx、θy方向への相対移動)が許容される。重量キャンセル装置42、レベリング装置48の構成及び機能に関しては、一例として米国特許出願公開第2010/0018950号明細書などに開示されているので、説明を省略する。
Yステップガイド44は、X軸に平行に延びる部材から成り、Y粗動ステージ24が有する一対のXビーム36間に配置されている(図4参照)。Yステップガイド44の上面は、XY平面(水平面)と平行に設定されており、重量キャンセル装置42は、Yステップガイド44上にエアベアリング50を介して非接触で載置されている。Yステップガイド44は、重量キャンセル装置42(すなわち微動ステージ22及び基板P)がX軸方向(走査方向)へ移動する際の定盤として機能する。Yステップガイド44は、下架台部18c上に機械的なリニアガイド装置52を介して載置されており、下架台部18cに対してY軸方向に移動自在であるのに対し、X軸方向に関する相対移動が制限されている。
Yステップガイド44は、その重心高さ位置において、Y粗動ステージ24(一対のXビーム36)に対して複数の連結部材54を介して機械的に接続されている(図4参照)。連結部材54は、上述した連結部材46と同様の、いわゆるフレクシャ装置であり、Y粗動ステージ24とYステップガイド44とを、6自由度方向のうちY軸方向を除く5自由度方向に関して振動的(物理的)に分離した状態で連結している。Yステップガイド44は、Y粗動ステージ24に牽引されることによって、Y粗動ステージ24と一体的にY軸方向に移動する。
一対のベースフレーム30は、図4に示されるように、それぞれY軸に平行に延びる部材から成り、互いに平行に床F(図1参照)上に設置されている。ベースフレーム30は、装置本体18とは、物理的(あるいは振動的)に分離されている。
次に、基板P(実際には、基板Pを保持した微動ステージ22)の6自由度方向の位置情報を求めるための基板計測系70について説明する。
図3には、基板計測系70の概念図が示されている。基板計測系70は、Y粗動ステージ24が有する(Y粗動ステージ24に関連付けられた)第1スケール(ここでは上向きスケール72)と、微動ステージ22が有する第1ヘッド(ここでは下向きXヘッド74x、下向きYヘッド74y)とを含む第1計測系(ここでは微動ステージ計測系76(図6参照))、及び、光学定盤18a(図2参照)が有する第2スケール(ここでは下向きスケール78)と、Y粗動ステージ24が有する第2ヘッド(ここでは上向きXヘッド80x、上向きYヘッド80y)とを含む第2計測系(ここでは粗動ステージ計測系82(図6参照))を備えている。なお、図3では、微動ステージ22は、基板Pを保持する部材として、模式化して図示されている。また、各スケール72、78が有する回折格子の格子間の間隔(ピッチ)も、実際よりも格段に広く図示されている。その他の図も同様である。また、各ヘッドと各スケールとの距離が従来の光干渉計システムのレーザ光源とバーミラーとの距離よりも格段に短いため、光干渉計システムよりも空気ゆらぎの影響が少なく、高精度で基板Pの位置制御が可能であり、これによって、露光精度を向上することができる。
上向きスケール72は、スケールベース84の上面に固定されている。スケールベース84は、図4に示されるように、微動ステージ22の+Y側、及び−Y側にそれぞれ1つ配置されている。スケールベース84は、図2に示されるように、X軸方向から見てL字状に形成されたアーム部材86を介してY粗動ステージ24のXビーム36に固定されている。従って、スケールベース84(及び上向きスケール72)は、Y粗動ステージ24と一体的にY軸方向に所定の長ストロークで移動可能となっている。アーム部材86は、図4に示されるように、1つのXビーム36につき、X軸方向に離間して2つ配置されているが、アーム部材86の数は、これに限定されず、適宜増減が可能である。
スケールベース84は、X軸に平行に延びる部材であって、そのX軸方向の長さは、基板ホルダ32(すなわち基板P(図4では不図示))のX軸方向の長さの2倍程度(Yステップガイド44と同程度)に設定されている。スケールベース84は、セラミックスなどの熱変形が生じにくい素材で形成することが好ましい。後述する他のスケールベース92、ヘッドベース88、96も同様である。
上向きスケール72は、X軸方向に延びる板状(帯状)の部材であって、その上面(+Z側(上側)を向いた面)には、互いに直交する2軸方向(本実施形態ではX軸及びY軸方向)を周期方向とする反射型の2次元回折格子(いわゆるグレーティング)が形成されている。
基板ホルダ32の+Y側、及び−Y側の側面中央部には、上述したスケールベース84に対応して、それぞれヘッドベース88がアーム部材90を介して固定されている(図2参照)。各下向きヘッド74x、74y(図3参照)は、ヘッドベース88の下面に固定されている。
本実施形態の微動ステージ計測系76(図6参照)では、図3に示されるように、1つのヘッドベース88に対して、下向きXヘッド74x、及び下向きYヘッド74yが、それぞれX軸方向に離間して2つ配置されている。各ヘッド74x、74yは、対応する上向きスケール72に対して計測ビームを照射するとともに、該上向きスケール72からの光(ここでは回折光)を受光する。上向きスケール72からの光は、不図示のディテクタへ供給され、ディテクタの出力は、主制御装置100(図6参照)に供給される。主制御装置100は、ディテクタの出力の基づいて、各ヘッド74x、74yのスケール72に対する相対移動量を求める。なお、本明細書において、「ヘッド」とは、回折格子へ計測ビームを出射するとともに、回折格子からの光が入射する部分という程度の意味であり、各図に図示されたヘッド自体は、光源、及びディテクタを有していなくても良い。
このように、本実施形態の微動ステージ計測系76(図6参照)では、合計で4つ(基板Pの+Y側及び−Y側それぞれに2つ)の下向きXヘッド74xと、対応する上向きスケール72とによって、4つのXリニアエンコーダシステムが構成されるとともに、合計で4つ(基板Pの+Y側及び−Y側それぞれに2つ)の下向きYヘッド74yと、対応する上向きスケール72とによって、4つのYリニアエンコーダシステムが構成されている。主制御装置100(図6参照)は、上記4つのXリニアエンコーダシステム、及び4つのYリニアエンコーダシステムの出力を適宜用いて、微動ステージ22(基板P)のX軸方向、Y軸方向、及びθz方向の位置情報(以下、「第1情報」と称する)を求める。
ここで、上向きスケール72は、X軸方向に関する計測可能距離が、Y軸方向に関する計測可能距離よりも長く設定されている。具体的には、図4に示されるように、上向きスケール72のX軸方向の長さは、スケールベース84と同程度の長さであって、微動ステージ22のX軸方向の移動可能範囲をカバーできる程度の長さに設定されている。これに対し、上向きスケール72の幅方向(Y軸方向)寸法(及びY軸方向に隣接する一対のヘッド74x、74y間の間隔)は、微動ステージ22を上向きスケール72に対してY軸方向へ微少駆動しても、各ヘッド74x、74yからの計測ビームが対応する上向きスケール72の格子面(被計測面)から外れない程度の長さに設定されている。
次に、微動ステージ計測系76(図6参照)の動作を図4及び図5を用いて説明する。図4及び図5は、微動ステージ22がX軸及びY軸方向に長ストロークで移動する前後の基板ステージ装置20を示している。図4には、微動ステージ22が、X軸及びY軸方向に関する移動可能範囲のほぼ中央に位置した状態が示され、図5には、微動ステージ22が、X軸方向に関する移動可能範囲の+X側のストロークエンド、且つY軸方向に関する−Y側のストロークエンドに位置した状態が示されている。
図4及び図5から分かるように、微動ステージ22のY軸方向の位置に関わらず、微動ステージ22に取り付けられた各下向きヘッド74x、74yからの計測ビームは、微動ステージ22がY軸方向に微少駆動される場合も含み、上向きスケール72の格子面から外れることがない。また、微動ステージ22がX軸方向に長ストロークで移動する際にも同様に、各下向きヘッド74x、74yからの計測ビームが上向きスケール72の格子面から外れることがない。
次に、粗動ステージ計測系82(図6参照)について説明する。本実施形態の粗動ステージ計測系82は、図1及び図4から分かるように、投影光学系16(図1参照)の+Y側、及び−Y側それぞれに、X軸方向に離間した2つの下向きスケール78を(すなわち合計で4つの下向きスケール78を)有している。下向きスケール78は、光学定盤18aの下面にスケールベース92(図2参照)を介して固定されている。スケールベース92は、Y軸方向に延びる板状の部材であって、そのY軸方向の長さは、微動ステージ22(すなわち基板P(図4では不図示))のY軸方向に関する移動可能距離と同程度に(実際には幾分長く)設定されている。
下向きスケール78は、Y軸方向に延びる板状(帯状)の部材であって、その下面(−Z側(下側)を向いた面)には、上記上向きスケール72の上面と同様に、互いに直交する2軸方向(本実施形態ではX軸及びY軸方向)を周期方向とする反射型の2次元回折格子(いわゆるグレーティング)が形成されている。なお、下向きスケール78が有する回折格子の格子ピッチは、上向きスケール72が有する回折格子の格子ピッチと同じであっても良いし、異なっていても良い。
Y粗動ステージ24が有する一対のスケールベース84それぞれには、図2に示されるように、X軸方向から見てL字状に形成されたアーム部材94を介してヘッドベース96が固定されている。ヘッドベース96は、図4に示されるように、スケールベース84の+X側の端部近傍、及び−X側の端部近傍に配置されている。各上向きヘッド80x、80yは、図3に示されるように、ヘッドベース96の上面に固定されている。従って、合計で4つのヘッドベース96(及び上向きヘッド80x、80y)は、Y粗動ステージ24と一体的にY軸方向に移動可能となっている。
本実施形態の粗動ステージ計測系82(図6参照)では、図3に示されるように、1つのヘッドベース96に対して、上向きXヘッド80x、及び上向きYヘッド80yが、それぞれY軸方向に離間して2つ配置されている。各ヘッド80x、80yは、対応する下向きスケール78に対して計測ビームを照射するとともに、該下向きスケール78からの光(ここでは回折光)を受光する。下向きスケール78からの光は、不図示のディテクタへ供給され、ディテクタの出力は、主制御装置100(図6参照)に供給される。主制御装置100は、ディテクタの出力の基づいて、各ヘッド80x、80yのスケール78に対する相対移動量を求める。このように、本実施形態の粗動ステージ計測系82では、合計で8つの上向きXヘッド80xと、対応する下向きスケール78とによって、8つのXリニアエンコーダシステムが構成されるとともに、合計で8つの上向きYヘッド80yと、対応する下向きスケール78とによって、8つのYリニアエンコーダシステムが構成されている。主制御装置100(図6参照)は、上記8つのXリニアエンコーダシステム、及び8つのYリニアエンコーダシステムの出力を適宜用いて、Y粗動ステージ24のX軸方向、Y軸方向、及びθz方向の位置情報(以下、「第2情報」と称する)を求める。
また、スケールベース84に固定された上向きスケール72と、スケールベース84にヘッドベース96を介して一体的に固定された各上向きヘッド80x、80yとは、互いの位置関係が不変となるように配置され、且つ互いの位置関係は、既知であるものとする。以下、上向きスケール72と、これに一体的に固定された各上向きヘッド80x、80yとの相対位置関係に関する情報を「第3情報」と称する。なお、上向きスケール72と上向きヘッド80x、80yとの位置関係は不変となるように配置されていると説明したが、両者の位置関係を計測する計測系を液晶露光装置10が備えているようにしても良い。後述する各実施例においても同様である。
主制御装置100(図6参照)は、上記第1〜第3情報に基づいて、光学定盤18a(投影光学系16)を基準とする微動ステージ22(基板P)のXY平面内の位置情報を求め、上記基板駆動系60(図6参照)を用いて、投影光学系16(照明光IL)に対する基板Pの位置制御を行う。
このように、本実施形態の基板計測系70では、X軸方向よりもY軸方向の計測可能距離が長い(Y軸方向を主計測方向とする)下向きスケール78を含む粗動ステージ計測系82によって、Y軸方向に長ストロークで移動するY粗動ステージ24の位置情報が求められるとともに、Y軸方向よりもX軸方向の計測可能距離が長い(X軸方向を主計測方向とする)上向きスケール72を含む微動ステージ計測系76によって、X軸方向に長ストロークで移動する微動ステージ22の位置情報が求められる。すなわち、粗動ステージ計測系82、及び微動ステージ計測系76では、各エンコーダヘッド(74x、74y、80x、80y)の移動方向と、対応するスケール(72、78)の主計測方向とが、それぞれ一致している。
また、微動ステージ22(基板P)のZ軸、θx、及びθyの各方向(以下、「Zチルト方向」と称する)の位置情報は、Zチルト位置計測系98を用いて主制御装置100(それぞれ図6参照)により求められる。Zチルト位置計測系98の構成は、特に限定されないが、一例として米国特許出願公開第2010/0018950号明細書などに開示されるような、微動ステージ22に取り付けられた変位センサを用いた計測系を用いることが可能である。
なお、不図示であるが、基板計測系70は、X粗動ステージ26の位置情報を求めるための計測系も有している。本実施形態では、微動ステージ22(基板P)のX軸方向の位置情報がY粗動ステージ24を介して光学定盤18aを基準に求められることから、X粗動ステージ26自体の計測精度を、微動ステージ22と同等の精度とする必要がない。X粗動ステージ26の位置計測は、上記微動ステージ計測系76の出力と、X粗動ステージ26と微動ステージ22との相対位置を計測する計測系(不図示)の出力とに基づいて行っても良いし、独立した計測系を用いて行っても良い。
上述のようにして構成された液晶露光装置10(図1参照)では、主制御装置100(図6参照)の管理の下、不図示のマスクローダによって、マスクステージ装置14上へのマスクMのロードが行われるとともに、不図示の基板ローダによって、基板ホルダ32上への基板Pのロードが行なわれる。その後、主制御装置100により、不図示のアライメント検出系を用いてアライメント計測が実行され、そのアライメント計測の終了後、基板P上に設定された複数のショット領域に逐次ステップ・アンド・スキャン方式の露光動作が行なわれる。この露光動作は従来から行われているステップ・アンド・スキャン方式の露光動作と同様であるので、その詳細な説明は省略するものとする。上記アライメント計測動作、及びステップ・アンド・スキャン方式の露光動作において、基板計測系70によって微動ステージ22の位置情報が計測される。
以上説明した本実施形態の液晶露光装置10によれば、微動ステージ22(基板P)の位置を、エンコーダシステムを含む基板計測系70を用いて計測するので、従来の光干渉計システムを用いた計測に比べ、空気ゆらぎの影響が少なく、高精度で基板Pの位置制御が可能であり、これによって、露光精度を向上することができる。
また、基板計測系70は、光学定盤18a(装置本体18)に固定された下向きスケール78を基準に(上向きスケール72を介して)基板Pの位置計測を行うので、実質的に投影光学系16を基準とした基板Pの位置計測を行うことができる。これによって、基板Pの位置制御を、照明光ILを基準に行うことができるので、露光精度を向上することができる。
なお、以上説明した基板計測系70の構成は、微動ステージ22(基板P)の移動可能範囲において、微動ステージ22の位置情報を所望の精度で求めることができれば、適宜変更が可能である。
すなわち、上記実施形態では、上向きスケール72として、スケールベース84と同程度の長さの長尺スケールが用いられたが、これに限られず、米国特許国際公開第2015/147319号に開示されるエンコーダシステムと同様に、よりX軸方向の長さが短いスケールをX軸方向に所定間隔で配置しても良い。この場合には、X軸方向に隣り合う一対のスケール間に隙間が形成されるため、X軸方向に隣り合う一対のヘッド74x、74yそれぞれのX軸方向の間隔を、上記隙間よりも広くすることによって、常に一方のヘッド74x、74yがスケールに対向するように配置すると良い。下向きスケール78と上向きヘッド80x、80yとの関係においても同様である。
また、上向きスケール72が微動ステージ22の+Y側、及び−Y側にそれぞれ配置されたが、これに限られず、一方のみ(+Y側、又は−Y側のみ)に配置されても良い。上向きスケール72が1つのみで、且つ上述したように複数のスケールをX軸方向に所定間隔で配置する(スケール間に隙間がある)場合には、微動ステージ22のθz方向の位置計測を常時行うことができるように、常に少なくとも2つの下向きXヘッド74x(あるいは下向きYヘッド74y)がスケールに対向するように、各ヘッド74x、74yの数、及び配置を設定すると良い。下向きスケール78に関しても同様に、Y粗動ステージ24のX軸、Y軸、及びθz方向の位置計測を常時行うことでできれば、下向きスケール78、及び上向きヘッド80x、80yの数、及び配置は、適宜変更が可能である。
また、上向きスケール72、及び下向きスケール78には、X軸、及びY軸方向を周期方向とする2次元回折格子が形成されたが、X軸方向を周期方向とするX回折格子とY軸方向を周期方向とするY回折格子とがそれぞれ個別にスケール72、78上に形成されても良い。また、本実施形態の2次元回折格子は、X軸、及びY軸方向を周期方向としたが、基板PのXY平面内の位置計測を所望の精度で行うことが可能であれば、回折格子の周期方向は、これに限定されず、適宜変更が可能である。
また、基板PのZチルト位置情報は、ヘッドベース88に下向きの変位センサを取り付けるとともに、該変位センサを用いてスケールベース84(あるいは上向きスケール72の反射面)を基準にして計測しても良い。また、複数の下向きヘッド74x、74yのうちの少なくとも3つのヘッドを、水平面に平行な方向の位置計測と併せて、鉛直方向の計測が可能な2次元ヘッド(いわゆるXZヘッド、あるいはYZヘッド)とし、該2次元ヘッドにより、上向きスケール72の格子面を用いることにより、基板PのZチルト位置情報を求めても良い。同様に、Y粗動ステージ24のZチルト情報をスケールベース92(あるいは下向きスケール78)を基準にして計測しても良い。XZヘッド、あるいはYZヘッドとしては、例えば米国特許第7,561,280号明細書に開示される変位計測センサヘッドと同様の構成のエンコーダヘッドを用いることができる。
《第2の実施形態》
次に第2の実施形態に係る液晶露光装置について、図7〜図10を用いて説明する。第2の実施形態に係る液晶露光装置の構成は、基板ステージ装置220(計測系を含む)の構成が異なる点を除き、上記第1の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第1の実施形態と同じ構成又は機能を有する要素については、上記第1の実施形態と同じ符号を付して適宜その説明を省略する。
本第2の実施形態に係る基板ステージ装置220は、第1移動体(ここでは基板ホルダ32)を含む第1の系と、第2移動体(ここではX粗動ステージ222)を含む第2の系とを有している。図9、図10は、それぞれ第2の系、第1の系のみを示す平面図である。
図9に示されるように、X粗動ステージ222は、上記第1の実施形態のY粗動ステージ24(図1参照)と同様に、床F(図8参照)上に設置された一対のベースフレーム224上に機械式のリニアガイド装置(図8参照)を介して、X軸方向に移動自在な状態で載置されている。X粗動ステージ222のX軸方向に関する両端部近傍それぞれには、Y固定子226が取り付けられている。Y固定子226は、Y軸方向に延びる部材から成り、その長手方向両端部近傍には、X可動子228が取り付けられている。各X可動子228は、X固定子230(図8では不図示)と協働してXリニアモータを構成し、X粗動ステージ222は、合計で4つのXリニアモータによってX軸方向に所定の長ストロークで駆動される。X固定子230は、装置本体18(図1参照)とは物理的に分離した状態で床F上に設置されている。
図8に示されるように、基板ホルダ32は、Yビームガイド232上にYテーブル234を介して載置されている。Yビームガイド232は、図10に示されるように、Y軸方向に延びる部材から成り、その下面における長手方向両端部近傍には、Xスライド部材236が取り付けられている。各Xスライド部材236は、下架台部18c(図8参照)に固定されたXガイド部材238に対してX軸方向に移動自在な状態で係合している。また、Yビームガイド232の長手方向両端部近傍には、X可動子240が取り付けられている。各X可動子240は、X固定子230(図9参照)と協働してXリニアモータを構成し、Yビームガイド232は、合計で2つのXリニアモータによってX軸方向に所定の長ストロークで駆動される。
図8に示されるように、Yテーブル234は、断面逆U字状の部材から成り、一対の対向面間に揺動自在に取り付けられたエアベアリング242を介してYビームガイド232が挿入されている。また、Yテーブル234は、Yビームガイド232の上面に不図示のエアベアリングから加圧気体を噴出することにより、Yビームガイド232上に微少な隙間を介して載置されている。これにより、Yテーブル234は、Yビームガイド232に対し、Y軸方向に関しては長ストロークで移動自在、且つθz方向には微少角度で回転自在となっている。また、Yテーブル234は、X軸方向に関しては、上記エアベアリング242によって形成される気体膜の剛性によってYビームガイド232と一体的に移動する。Yテーブル234のX軸方向の両端部近傍それぞれには、Y可動子244が取り付けられている。Y可動子244は、Y固定子226と協働してYリニアモータを構成し、Yテーブル234は、合計で2つのYリニアモータによってY軸方向にYビームガイド232に沿って所定の長ストロークで駆動されるとともに、θz方向に微少駆動される。
基板ステージ装置220では、X粗動ステージ222が4つのXリニアモータ(X可動子228、X固定子230)によってX軸方向に駆動されると、X粗動ステージ222に取り付けられた2つのY固定子226もX軸方向に移動する。不図示の主制御装置は、X粗動ステージ222と所定の位置関係が維持されるように、2つのXリニアモータ(X可動子240、X固定子230)によってYビームガイド232をX軸方向に駆動する。これによって、Yビームガイド232と一体的にYテーブル234(すなわち基板ホルダ32)がX軸方向へ移動する。すなわち、X粗動ステージ222は、基板ホルダ32とX軸方向に関する位置が所定範囲内に収まるように移動可能な部材である。また、主制御装置は、上記基板ホルダ32のX軸方向への移動と並行して、あるいは独立に、2つのYリニアモータ(Y可動子244、Y固定子226)を用いて基板ホルダ32をY軸方向、及びθz方向に適宜駆動する。
次に第2の実施形態に係る基板計測系250について説明する。基板計測系250は、上向きスケール252、及び下向きスケール254それぞれの延びる方向(計測範囲の広い方向)が上記第1の実施形態とはZ軸回りに90°異なっているが、計測系の概念としては、第1移動体(ここでは基板ホルダ32)の位置情報を第2移動体(ここではX粗動ステージ222)を介して、光学定盤18a(図1参照)を基準に求める点において、上記第1の実施形態と概ね同じである。
すなわち、図7に示されるように、一対のY固定子226それぞれの上面には、Y軸方向に延びる上向きスケール252が固定されている。また、基板ホルダ32のX軸方向に関する両側面それぞれには、Y軸方向に離間した一対のヘッドベース256が固定されている。ヘッドベース256には、上記第1の実施形態と同様に、2つの下向きXヘッド74xと、2つの下向きYヘッド74yと(図10参照)が、対応する上向きスケール252に対向するように取り付けられている。基板ホルダ32のX粗動ステージ222に対するXY平面内の位置情報は、合計で8つのXリニアエンコーダと、合計で8つのYリニアエンコーダとを用いて主制御装置(不図示)により求められる。
また、Y固定子226のY軸方向の両端部近傍それぞれには、ヘッドベース258が固定されている。ヘッドベース258には、上記第1の実施形態と同様に、2つの上向きXヘッド80xと、2つの上向きYヘッド80yと(図9参照)が、光学定盤18a(図1参照)の下面に固定された対応する下向きスケール254に対向するように取り付けられている。上向きスケール252と各ヘッド80x、80yとの相対位置関係は、既知である。X粗動ステージ222の光学定盤18aに対するXY平面内の位置情報は、合計で8つのXリニアエンコーダと、合計で8つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。
なお、本第2の実施形態の基板計測系250では、上向きスケール252がX粗動ステージ222に2つ、下向きスケール254が光学定盤18a(図1参照)に4つ、それぞれ取り付けられているが、各スケール252、254の数及び配置は、これに限られず、適宜増減が可能である。同様に、各スケール252、254に対向する各ヘッド74x、74y、80x、80yの数及び配置も、これに限られず、適宜増減が可能である。後述する第3〜第17の実施形態に関しても同様である。
《第3の実施形態》
次に第3の実施形態に係る液晶露光装置について、図11〜図14を用いて説明する。第3の実施形態に係る液晶露光装置の構成は、基板ステージ装置320(計測系を含む)の構成が異なる点を除き、上記第2の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第2の実施形態と同じ構成又は機能を有する要素については、上記第2の実施形態と同じ符号を付して適宜その説明を省略する。
第3の実施形態に係る基板ステージ装置320は、上記第2の実施形態と同様に、基板ホルダ32を含む第1の系(図14参照)と、X粗動ステージ222を含む第2の系(図13参照)とを有している。基板ホルダ32、X粗動ステージ222の構成(駆動系を含む)は、上記第2の実施形態と同じであるので、説明を省略する。
第3の実施形態の基板計測系350も、概念的には、上記第1及び第2の実施形態と同様であり、第1移動体(ここでは基板ホルダ32)の位置情報を、第2移動体(ここではYビームガイド232)を介して光学定盤18a(図1参照)を基準に求める。Yビームガイド232は、基板ホルダ32とX軸方向に関する位置が所定範囲内に収まるように移動可能な部材である。以下、基板計測系350について具体的に説明する。
図14に示されるように、Yビームガイド232の上面には、上向きスケール352が固定されている。また、Yテーブル234(図14では不図示。図12参照)のY軸方向に関する両側面には、それぞれヘッドベース354が固定されている。各ヘッドベース354には、上記第1及び第2の実施形態と同様に、2つの下向きXヘッド74xと、2つの下向きYヘッド74yとが、上向きスケール352に対向するように取り付けられている。基板ホルダ32のYビームガイド232に対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。
また、Yビームガイド232のY軸方向に関する両端部近傍には、それぞれヘッドベース356が固定されている。ヘッドベース356には、上記第1の実施形態と同様に、2つの上向きXヘッド80xと、2つの上向きYヘッド80yとが、光学定盤18a(図1参照)の下面に固定された対応する下向きスケール358に対向するように取り付けられている。上向きスケール352とヘッドベース356に取り付けられた各ヘッド80x、80yとの相対位置関係は、既知である。Yビームガイド232の光学定盤18aに対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。本第3の実施形態は、上記第2の実施形態に比べて上向きスケール352、下向きスケール358それぞれの数が少なく、構成が簡単である。
《第4の実施形態》
次に第4の実施形態に係る液晶露光装置について、図15〜図18を用いて説明する。第4の実施形態に係る液晶露光装置の構成は、基板ステージ装置420(計測系を含む)の構成が異なる点を除き、上記第2の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第2の実施形態と同じ構成又は機能を有する要素については、上記第2の実施形態と同じ符号を付して適宜その説明を省略する。
第4の実施形態に係る基板ステージ装置420は、上記第2の実施形態と同様に、基板ホルダ32を含む第1の系(図18参照)と、X粗動ステージ222を含む第2の系(図17参照)とを有している。
図16に示されるように、X粗動ステージ222の下面には、X可動子422が固定されている。X可動子422は、一対のベースフレーム224に一体的に取り付けられたX固定子424と協働して、X粗動ステージ222をX軸方向へ所定の長ストロークで駆動するためのXリニアモータを構成している。X粗動ステージ222のX軸方向に関する両端部近傍それぞれには、XY固定子426が取り付けられている。
Yビームガイド232は、4つの連結部材428(図15参照)によってX粗動ステージ222に対して機械的に連結されている。連結部材428の構成は、上述した連結部材46、54(図2参照)と同様である。これにより、X粗動ステージ222がXリニアモータによってX軸方向に駆動されると、Yビームガイド232がX粗動ステージ222に牽引されることにより、該X粗動ステージ222と一体的にX軸方向へ移動する。
Yビームガイド232上には、Yテーブル430が非接触状態で載置されている。Yテーブル430上には、基板ホルダ32が固定されている。Yテーブル430のX軸方向の両端部近傍それぞれには、XY可動子432が取り付けられている。XY可動子432は、XY固定子426と協働してXY2DOFモータを構成し、Yテーブル430は、合計で2つのXY2DOFモータによってY軸方向に所定の長ストロークで駆動されるとともに、X方向およびθz方向に微少駆動される。また、X粗動ステージ222(及びYビームガイド232)がX軸方向に長ストロークで移動する際、不図示の主制御装置は、合計で2つのXY2DOFモータを用いて、Yテーブル430(すなわち基板ホルダ32)がYビームガイド232とX軸方向に関して所定の位置関係が維持されるように、X軸方向に推力を作用させる。すなわち、X粗動ステージ222は、基板ホルダ32とX軸方向に関する位置が所定範囲内に収まるように移動可能な部材である。なお、上記第2の実施形態と異なり、Yテーブル430は、揺動可能なエアベアリング242(図8参照)を有しておらず、本実施形態のYビームガイド232は、実際にはYテーブル430のY軸方向への移動をガイドしない。
第4の実施形態の基板計測系450も、概念的には、上記第1〜第3の実施形態と同様であり、第1移動体(ここでは基板ホルダ32)の位置情報を、第2移動体(ここではX粗動ステージ222)を介して光学定盤18a(図1参照)を基準に求める。以下、基板計測系450について具体的に説明する。
図17に示されるように、一対のXY固定子426のうち、一方(ここでは−X側)のXY固定子426の上面には、上向きスケール452が固定されている。また、図18に示されるように、基板ホルダ32の−X側の側面には、一対のヘッドベース454がY軸方向に離間した状態で固定されている。各ヘッドベース454には、上記第1〜第3の実施形態と同様に、2つの下向きXヘッド74xと、2つの下向きYヘッド74yとが、上向きスケール452に対向するように取り付けられている(図16参照)。基板ホルダ32のX粗動ステージ222に対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。
また、図17に示されるように、−X側のXY固定子426には、Y軸方向に離間して一対のヘッドベース456が固定されている。ヘッドベース456には、上記第1の実施形態と同様に、2つの上向きXヘッド80xと、2つの上向きYヘッド80yとが、光学定盤18a(図1参照)の下面に固定された対応する下向きスケール458に対向するように取り付けられている(図15参照)。上向きスケール452とヘッドベース456に取り付けられた各ヘッド80x、80yとの相対位置関係は、既知である。X粗動ステージ222の光学定盤18aに対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。なお、一対のXY固定子426の他方のみに、あるいは両方に上向きスケール452を取り付けても良い。+X側のXY固定子426に上向きスケール452を取り付ける場合には、該上向きスケール452に対応して、ヘッドベース454、456、下向きスケール458を追加的に配置すると良い。
《第5の実施形態》
次に第5の実施形態に係る液晶露光装置について、図19〜図22を用いて説明する。第5の実施形態に係る液晶露光装置の構成は、基板計測系550の構成が異なる点を除き、上記第4の実施形態と概ね同じである。また、基板計測系550の構成は、上記第3の実施形態の基板計測系350(図11など参照)と概ね同じである。以下、相違点についてのみ説明し、上記第3又は第4の実施形態と同じ構成又は機能を有する要素については、上記第3又は第4の実施形態と同じ符号を付して適宜その説明を省略する。
第5の実施形態に係る基板ステージ装置520の構成(計測系を除く)は、上記第4の実施形態に係る基板ステージ装置420(図15参照)と実質的に同じである。すなわち、基板ステージ装置520は、基板ホルダ32を含む第1の系(図22参照)と、X粗動ステージ222を含む第2の系(図21参照)とを有し、X粗動ステージ222とYビームガイド232とがX軸方向に一体的に移動する。基板ホルダ32が固定されたYテーブル430は、2つの2DOFモータによってX粗動ステージ222に対してY軸方向に長ストロークで駆動されるとともに、X軸方向及びθz方向に微少駆動される。従来の粗動ステージは計測精度が低いエンコーダの計測結果に基づいて駆動していたが、本実施形態では高精度な2次元エンコーダの計測結果に基づいてX粗動ステージ222を駆動制御することが可能である。よって、従来の微動ステージよりも高精度な位置決めが可能となるが、X粗動ステージ222は位置制御に関して微動ステージ(本実施形態では基板ホルダ32)ほどの応答性があるわけではない。よって、基板ホルダ32のX位置は、スキャン動作中はX粗動ステージ222の位置に関係なく、一定速度で精密な位置決めをしながら移動するように制御したい。よって、応答性の低いラフな位置決め制御しながら移動するX粗動ステージ222に対してX軸方向に相対的に微少駆動されることになる。このとき、X粗動ステージ222が加速してしまうと、上向きスケール452に対するエンコーダ読み取り誤差が生じかねない。よって、X粗動ステージ222は、むしろ緩い位置決め(低い応答性)で動くように制御した方がよい。後述する各実施形態うち、スキャン動作に粗動ステージが駆動する実施形態では、同様に粗動ステージを制御すると良い。
また、第5の実施形態に係る基板計測系550の構成は、上記第3の実施形態に係る基板計測系350(図11参照)と実質的に同じであり、第1移動体(ここでは基板ホルダ32)の位置情報は、第2移動体(ここではYビームガイド232)を介して光学定盤18a(図1参照)を基準に求められる。具体的には、Yテーブル430(図20参照)に固定された一対のヘッドベース354には、2つの下向きXヘッド74xと、2つの下向きYヘッド74yとが、Yビームガイド232の上面に固定された上向きスケール352に対向するように取り付けられ(それぞれ図22参照)、基板ホルダ32のYビームガイド232に対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。また、Yビームガイド232に固定された一対のヘッドベース356には、2つの上向きXヘッド80xと、2つの上向きYヘッド80yとが、光学定盤18a(図1参照)の下面に固定された対応する下向きスケール358に対向するように取り付けられている(図19参照)。Yビームガイド232の光学定盤18aに対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。
《第6の実施形態》
次に第6の実施形態に係る液晶露光装置について、図23〜図27を用いて説明する。第6の実施形態に係る液晶露光装置の構成は、基板ステージ装置620、及びその計測系の構成が異なる点を除き、上記第1の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第1の実施形態と同じ構成又は機能を有する要素については、上記第1の実施形態と同じ符号を付して適宜その説明を省略する。
図23に示されるように、基板ステージ装置620は、第1移動体(ここでは基板ホルダ622)、第2移動体(ここでは計測テーブル624)を含む基板計測系680、基板テーブル626、及びX粗動ステージ628などを備えている。
図24に示されるように、基板ホルダ622は、Y軸方向に延びる一対の部材とX軸方向に延びる一対の部材とを組み合わせた平面視矩形の枠状(額縁状)の部材であって、基板Pは、基板ホルダ622の開口内に配置される。基板ホルダ622の内壁面からは、4つの吸着パッド630が突き出しており、基板Pは、これらの吸着パッド630上に載置される。各吸着パッド630は、基板Pの下面における外周縁部に設定された非露光領域(本実施形態では、4隅部近傍)を吸着保持する。
基板Pのうち、中央部を含む露光領域(外周縁部以外の領域)は、図26に示されるように、基板テーブル626によって下方から非接触支持される。上記第1〜第5の実施形態における基板ホルダ32(図2など参照)は、基板Pを吸着保持することによって平面矯正を行ったのに対し、本第6の実施形態に係る基板テーブル626は、基板Pの下面に対する加圧気体の噴出と、基板Pと基板テーブル626上面との間の気体の吸引を並行して行うことによって、基板Pの平面矯正を非接触状態で行う。また、基板ホルダ622と基板テーブル626とは、物理的に分離して配置されている。従って、基板ホルダ622に保持された基板Pは、該基板ホルダ622と一体的に基板テーブル626に対してXY平面内で相対移動可能な状態となっている。基板テーブル626の下面には、図23に示されるように、上記第1の実施形態と同様にステージ本体632が固定されている。
X粗動ステージ628は、基板テーブル626をX軸方向に長ストロークで移動させるための部材であり、床F上に下架台部18cと物理的に分離された状態で設置された一対のベースフレーム634上に、機械的なリニアガイド装置636を介してX軸方向に移動自在な状態で載置されている。X粗動ステージ628は、不図示のアクチュエータ(リニアモータ、あるいはボールねじ装置など)によって、一対のベースフレーム634上でX軸方向に長ストロークで駆動される。
X粗動ステージ628のX軸方向に関する両端部近傍には、Y固定子638が固定されている(図23では一方は不図示)。Y固定子638は、Y可動子640と協働してYリニアモータを構成している。Y可動子640は、Y固定子638がX軸方向に移動すると、一体的にX軸方向に移動するように機械的に拘束されている。Y可動子640には、基板ホルダ622に取り付けられた可動子642(図24参照)と協働してXY2DOFモータを構成する固定子644が取り付けられている。
図25に示されるように、基板テーブル626は、ステージ本体632(図25では不図示。図23参照)を介して、X粗動ステージ628(図25では不図示)に対して(図25ではY固定子638に対して)、複数の連結部材646を介して機械的に連結されている。連結部材646の構成は、上述した連結部材46、54(図2参照)と同様である。これにより、X粗動ステージ628がX軸方向に長ストロークで移動すると、基板テーブル626がX粗動ステージ628に牽引されることにより、該X粗動ステージ628と一体的にX軸方向へ移動する。上記第1〜第5の実施形態では、基板ホルダ32が、投影光学系16に対してX軸、及びY軸方向に長ストロークで移動する(図5など参照)のに対し、本第6の実施形態の基板テーブル626は、X軸方向にのみ長ストロークで移動可能に構成され、Y軸方向には移動不可となっている。なお、図25は、理解を容易にするため、図23と異なり、Y固定子638、Y可動子640、固定子644が平面的(同一高さ位置)に配置されているが、Y固定子638の高さ位置を基板ホルダ622と同等にすることによって、実際に図25に示されるような配置とすることが可能である。
図23に戻り、ステージ本体632は、上記第1実施形態と同様の疑似球面軸受装置(図23ではY可動子640などの紙面奥側に隠れて不図示)を介して、X粗動ステージ628の中央部に形成された開口部(不図示)内に配置された重量キャンセル装置42によって下方から支持されている。重量キャンセル装置42の構成は、上記第1の実施形態と同様であり、X粗動ステージ628に不図示の連結部材を介して連結されており、X粗動ステージ628と一体的にX軸方向にのみ長ストロークで移動する。重量キャンセル装置42は、Xガイド648上に載置されている。本実施形態の重量キャンセル装置42は、X軸方向にのみ移動する構成であるため、上記第1の実施形態におけるYステップガイド44(図2参照)と異なり、Xガイド648は、下架台部18cに固定されている。ステージ本体632が複数のリニアコイルモータ(図23ではY固定子638の紙面奥側に隠れている)により、X粗動ステージ628に対してZ軸、θx、θyの各方向に微少駆動される点は、上記第1の実施形態と同様である。
また、ステージ本体632のY軸方向の両側面には、支持部材650を介して複数のエアガイド652が取り付けられている。エアガイド652は、図25に示されるように、平面視矩形の部材であって、本実施形態では、基板テーブル626の+Y側、及び−Y側のそれぞれに4つ配置されている。4つのエアガイド652によって形成されるガイド面のY軸方向の長さは、基板テーブル626と同等に設定され、該ガイド面の高さ位置は、基板テーブル626の上面と同等に(あるいは幾分低く)設定されている。
基板ステージ装置620(図23参照)では、スキャン露光時などにX粗動ステージ628がX軸方向に長ストロークで移動すると、該X粗動ステージ628に牽引されて基板テーブル626(及び複数のエアガイド652)が一体的にX軸方向に長ストロークで移動する。また、X粗動ステージ628に固定されたY固定子638がX軸方向に移動することにより、Y可動子640に取り付けられた2DOFモータの固定子644(図25参照)もX軸方向に移動する。不図示の主制御装置は、基板テーブル626と基板ホルダ622とのX軸方向に関する位置が所定範囲内となるように、2DOFモータを制御して、基板ホルダ622にX軸方向の推力を付与する。また、主制御装置は、2DOFモータを制御して、基板ホルダ622を基板テーブル626に対してX軸、Y軸、及びθz方向に適宜微少駆動する。このように、本実施形態において、基板ホルダ622は、いわゆる微動ステージとしての機能を有する。
これに対し、ショット領域(露光領域)間移動時などに基板PをY軸方向に移動させる必要がある場合には、図27に示されるように、主制御装置は、YリニアモータによってY可動子640をY軸方向に移動させるとともに、2DOFモータを用いて基板ホルダ622にY軸方向の推力を作用させることによって、基板ホルダ622を基板テーブル626に対してY軸方向に移動させる。基板Pのうち、投影光学系16(図23参照)を介してマスクパターンが投影される領域(露光領域)は、常に基板テーブル626によって平面矯正が行われるように、基板テーブル626のY軸方向の寸法が設定されている。各エアガイド652は、基板ホルダ622と基板テーブル626とのY軸方向への相対移動を阻害しない(基板ホルダ622と接触しない)ように配置されている。各エアガイド652は、基板Pの下面に加圧気体を噴出することによって、基板テーブル626と協働して基板Pのうち、基板テーブル626からはみ出した部分を下方から支持する。なお、各エアガイド652は、基板テーブル626と異なり基板Pの平面矯正は行わない。基板ステージ装置620では、図27に示されるように、基板Pが基板テーブル626とエアガイド652とによって支持された状態で、基板テーブル626、及び基板ホルダ622がそれぞれ投影光学系16(図23参照)に対してX軸方向に駆動されることによって、スキャン露光が行われる。なお、エアガイド652は、ステージ本体632と一体的にX軸方向へ駆動しても良いし、駆動しなくても良い。エアガイド652がX軸方向に駆動しない場合は、X軸方向の寸法を基板PのX軸方向の駆動範囲と同程度とすると良い。それにより、基板テーブル626に支持されていない基板の一部領域が支持されないことを防ぐことができる。
次に第6の実施形態に係る基板計測系680の構成及び動作について説明する。上記第1の実施形態(図2など参照)では、第1移動体(第1実施形態では微動ステージ22)の位置情報を、微動ステージ22を駆動するための部材であるY粗動ステージ24を介して光学定盤18aを基準に求めたのに対し、本第6の実施形態(図23参照)では、第1移動体(ここでは基板ホルダ622)の位置情報を、基板ホルダ622とは独立に配置された第2移動体(ここでは計測テーブル624)を介して光学定盤18aを基準に求める。本第6の実施形態において、計測テーブル624は、投影光学系16の+Y側、及び−Y側にそれぞれX軸方向に離間して2つ(合計で4つ)配置されている(図23、図26など参照)が、計測テーブル624の数、及び配置は、適宜変更が可能であり、これに限定されない。
計測テーブル624は、図23に示されるように、光学定盤18aの下面に吊り下げ状態で固定されたYリニアアクチュエータ682によってY軸方向に所定の(基板ホルダ622のY軸方向への移動可能距離と同等の)ストロークで駆動される。Yリニアアクチュエータ682の種類は特に限定されず、リニアモータ、あるいはボールねじ装置などを用いることができる。
上記第1の実施形態のヘッドベース96(図2、図3など参照)と同様に、各計測テーブル624の上面には、図26に示されるように、2つの上向きXヘッド80xと、2つの上向きYヘッド80yとが取り付けられている。
また、図23に示されるように、光学定盤18aの下面には、各計測テーブル624に対応して(すなわち4つの)、Y軸方向に延びる下向きスケール684が、上記第1の実施形態の下向きスケール78(図2、図3など参照)と同様に固定されている(図26参照)。下向きスケール684は、計測テーブル624のY軸方向に関する計測範囲がX軸方向に関する計測範囲よりも広く(長く)なるように、その下面に2次元回折格子を有している。本実施形態では、各計測テーブル624が有する2つの上向きXヘッド80xと、対応する下向きスケール684(固定スケール)とによって、2つのXリニアエンコーダシステムが構成されるとともに、各計測テーブル624が有する2つの上向きYヘッド80yと、対応する下向きスケール684(固定スケール)とによって、2つのYリニアエンコーダシステムが構成される。
主制御装置(不図示)は、図27に示されるように、基板ホルダ622をY軸方向に長ストロークで駆動する際、該基板ホルダ622に対するY軸方向の位置が所定範囲内に収まるように、各計測テーブル624のY軸方向の位置を制御する。従って、合計で4つの計測テーブル624は、実質的に同じ動作を行う。なお、4つの計測テーブル624は、それぞれが厳密に同期して移動する必要はなく、基板ホルダ622と厳密に同期して移動する必要もない。主制御装置は、上述した2つのXリニアエンコーダシステム、及び2つのYリニアエンコーダシステムの出力を適宜用いて、各計測テーブル624のX軸方向、Y軸方向、及びθz方向の位置情報を独立して求める。
図26に戻り、+Y側の2つの計測テーブル624の下面には、X軸方向に延びる下向きスケール686が取り付けられている(図23参照)。すなわち、2つの計測テーブル624が、協働して下向きスケール686を吊り下げ支持している。−Y側の2つの計測テーブル624の下面にも、同様にX軸方向に延びる下向きスケール686が取り付けられている。下向きスケール686は、基板ホルダ622のX軸方向に関する計測範囲がY軸方向に関する計測範囲よりも広く(長く)なるように、その下面に2次元回折格子を有している。計測テーブル624に固定された各上向きヘッド80x、80yと、下向きスケール686との相対位置関係は、既知である。
図24に示されるように、基板ホルダ622の上面には、合計で2つの下向きスケール684(図26参照)に対応して、2つのヘッドベース688が固定されている。ヘッドベース688は、基板ホルダ622に基板Pが保持された状態で、基板Pの+Y側、−Y側それぞれに基板Pの中央部を挟んで配置されている。ヘッドベース688の上面には、2つの上向きXヘッド80xと、2つの上向きYヘッド80yとが取り付けられている。
上述したように、基板ホルダ622と各計測テーブル624(すなわち2つの下向きスケール686)とは、Y軸方向の位置が所定範囲内に収まるように位置制御される。具体的には、各計測テーブル624は、基板ホルダ622に取り付けられた各ヘッド80x、80yからの計測ビームが、下向きスケール686の格子面から外れないようにY軸方向の位置が制御される。すなわち、基板ホルダ622と各計測テーブル624とは、ヘッドベース688と下向きスケール686との対向状態が常に保たれるように、同方向に概ね同速度で移動する。
このように、本第6の実施形態では、基板ホルダ622が有する4つの上向きXヘッド80xと、対応する下向きスケール686(可動スケール)とによって、4つのXリニアエンコーダシステムが構成されるとともに、基板ホルダ622が有する4つの上向きYヘッド80yと、対応する下向きスケール686(可動スケール)とによって、4つのYリニアエンコーダシステムが構成される。主制御装置(不図示)は、上記4つのXリニアエンコーダシステム、及び4つのYリニアエンコーダの出力に基づいて、合計で4つの計測テーブル624に対する、基板ホルダ622のXY平面内の位置情報を求める。主制御装置は、基板ホルダ622の各計測テーブル624に対する位置情報(第1情報)、各計測テーブル624の光学定盤18aに対する位置情報(第2情報)、及び各計測テーブル624における上向きヘッド80x、80yと下向きスケール686との位置情報(第3情報)に基づいて、基板ホルダ622(基板P)の位置情報を光学定盤18aを基準に求める。
《第7の実施形態》
次に第7の実施形態に係る液晶露光装置について、図28〜図31を用いて説明する。第7の実施形態に係る液晶露光装置の構成は、基板ステージ装置720、及びその計測系の構成が異なる点を除き、上記第6の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第6の実施形態と同じ構成又は機能を有する要素については、上記第6の実施形態と同じ符号を付して適宜その説明を省略する。
本第7の実施形態においても、基板ステージ装置720は、第1移動体(ここでは一対の基板ホルダ722)、及び第2移動体(ここでは計測テーブル624)を含む基板計測系780などを備えている。
上記第6の実施形態(図26など参照)において、基板ホルダ622は、基板Pの外周全体を囲む矩形の枠状に形成されたのに対し、本第7の実施形態に係る一対の基板ホルダ722は、互いに物理的に分離されており、一方の基板ホルダ722が基板Pの+X側の端部近傍を吸着保持するとともに、他方の基板ホルダ722が基板Pの−X側の端部近傍を吸着保持する点が異なる。基板テーブル626の構成、及び機能、並びに基板テーブル626を駆動するための駆動系(X粗動ステージ628などを含む)に関しては、上記第6の実施形態と同じであるので、説明を省略する。
図29に示されるように、各基板ホルダ722は、基板PのY軸方向に関する中央部を下面から吸着保持する吸着パッド726を有している。なお、−X側の基板ホルダ722は、上面に計測プレート728が取り付けられていることから、+X側の基板ホルダ722に比べてY軸方向に関する長さが長く設定されているが、基板Pを保持する機能、及び基板Pの位置制御動作等に関しては、一対の基板ホルダ722で共通しているため、本実施形態では、便宜上一対の基板ホルダ722に共通の符号を付して説明する。計測プレート728には、投影光学系16(図1参照)の光学特性(スケーリング、シフト、ローテーション等)に関するキャリブレーションなどに用いられる指標が形成されている。
各基板ホルダ722は、Y可動子640が有する固定子730(それぞれ図30参照)と、各基板ホルダ722が有する可動子732(それぞれ図29参照)とにより構成される3DOFモータによって、対応するY可動子640に対してX、Y、及びθz方向に微少駆動される。本実施形態では、3DOFモータとして、2つのXリニアモータと1つのYリニアモータとが組み合わされたものが用いられているが、3DOFモータの構成は、特に限定されず、適宜変更が可能である。本第7の実施形態において、各基板ホルダ722は、互いに3DOFモータによって独立に駆動されるが、基板Pの動作自体は、上記第6の実施形態と同様である。
図28に戻り、各基板ホルダ722は、Y軸方向に延びるエアガイド734によって下方から非接触支持されている(−X側の基板ホルダ722に関しては図31参照)。エアガイド734の上面の高さ位置は、基板テーブル626、及びエアガイド652の上面の高さ位置よりも低く設定されている。エアガイド734の長さは、基板ホルダ722のY軸方向の移動可能距離と同等に(あるいは幾分長く)設定されている。エアガイド734も、エアガイド652と同様にステージ本体632に固定されており、該ステージ本体632と一体的にX軸方向に長ストロークで移動する。なお、エアガイド734は、上記第6の実施形態の基板ステージ装置620に適用しても良い。
次に第7の実施形態に係る基板計測系780について説明する。本第7の実施形態に係る基板計測系780は、基板P側のヘッドの配置、計測テーブル624の数及び配置などが異なる点を除き、概念的には、上記第6の実施形態に係る基板計測系680(図26参照)と概ね同じである。すなわち、基板計測系780では、第1移動体(ここでは各基板ホルダ722)の位置情報を、計測テーブル624を介して光学定盤18aを基準に求める。以下、具体的に説明する。
基板計測系780が有する計測テーブル624の構成は、配置を除き上記第6の実施形態と同じである。上記第6の実施形態では、図23に示されるように、計測テーブル624は、投影光学系16の+Y側、及び−Y側に配置されたのに対し、本第7の実施形態に係る計測テーブル624は、図28に示されるように、Y軸方向に関する位置が投影光学系16と重複しており、一方の計測テーブル624(図28参照)が投影光学系16の+X側、他方の計測テーブル624(図28では不図示)が投影光学系16の−X側に配置されている(図31参照)。本第7の実施形態においても、上記第6の実施形態と同様に、計測テーブル624は、Yリニアアクチュエータ682によってY軸方向に所定のストロークで駆動される。また、各計測テーブル624のXY平面内の位置情報は、計測テーブル624に取り付けられた上向きヘッド80x、80y(図31参照)と、光学定盤18aの下面に固定された対応する下向きスケール684とによって構成されるエンコーダシステムを用いて不図示の主制御装置によりそれぞれ独立に求められる。
2つの計測テーブル624の下面には、それぞれ下向きスケール782が固定されている(図31参照)。すなわち、上記第6の実施形態(図27参照)では、2つの計測テーブル624によって1つの下向きスケール686が吊り下げ支持されていたのに対し、本第7の実施形態では、1つの計測テーブル624に1つの下向きスケール782が吊り下げ支持されている。下向きスケール782は、各基板ホルダ722のX軸方向に関する計測範囲がY軸方向に関する計測範囲よりも広く(長く)なるように、その下面に2次元回折格子を有している。計測テーブル624に固定された各上向きヘッド80x、80yと、下向きスケール782との相対位置関係は、既知である。
また、各基板ホルダ722には、ヘッドベース784が固定されている。各ヘッドベース784の上面には、2つの上向きXヘッド80xと、2つの上向きYヘッド80y(それぞれ図29参照)とが、対応する下向きスケール782に対向するように取り付けられている(図31参照)。本第7の実施形態における基板Pの位置制御時における基板Pの位置計測動作に関しては、上記第6の実施形態と概ね同じであるので、説明を省略する。
《第8の実施形態》
次に第8の実施形態に係る液晶露光装置について、図32〜図35を用いて説明する。第8の実施形態に係る液晶露光装置の構成は、基板ステージ装置820、及びその計測系の構成が異なる点を除き、上記第6の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第6の実施形態と同じ構成又は機能を有する要素については、上記第6の実施形態と同じ符号を付して適宜その説明を省略する。
本第8の実施形態の基板ステージ装置820は、第1移動体(ここでは基板ホルダ822)、第2移動体(ここではX粗動ステージ628)、及び基板計測系880などを備えている。
本第8の実施形態において、基板Pを保持する基板ホルダ822は、上記第6の実施形態(図26など参照)と同様に、基板Pの外周全体を囲む矩形の枠状に形成されている。基板ホルダ822、基板テーブル626を駆動するための駆動系に関しては、上記第6の実施形態と同じであるので、説明を省略する。なお、本第8の実施形態の基板ステージ装置820は、上記第7の実施形態(図30参照)と同様に、基板ホルダ822を下方から非接触支持するエアガイド734を有している。
次に基板計測系880について説明する。上記第6の実施形態(図23、図26など参照)において、基板ホルダ622の位置情報は、計測テーブル624を介して光学定盤18aを基準に求められたのに対し、本第8の実施形態において、基板ホルダ822の位置情報は、基板テーブル626をX軸方向へ駆動するためのX粗動ステージ628を介して光学定盤18aを基準に求められる。この点に関しては、基板計測系880は、上記第2の実施形態に係る基板計測系250(図8など参照)と、概念的には共通している。なお、本第8の実施形態におけるX粗動ステージ628は、一対のベースフレーム634に対応して配置されたX軸方向に延びる一対の平板状(帯状)の部材から成る(図34参照)が、機能的に同じであることから、便宜上第6の実施形態のX粗動ステージ628と同じ符号を付して説明する。
図34に示されるように、X粗動ステージ628に固定された一対のY固定子638それぞれの上面には、上記第2の実施形態(図9参照)と同様に、上向きスケール882が固定されている。上向きスケール882の構成及び機能は、上記第2の実施形態の上向きスケール252(図9参照)と同じであるので、ここでは説明を省略する。
図33に示されるように、基板ホルダ822の+X側、及び−X側の端部近傍には、それぞれY軸方向に離間した一対のヘッドベース884が固定されている。合計で4つのヘッドベース884のそれぞれには、上向きスケール882(図34参照)に対向するように、下向きXヘッド74x、下向きYヘッド74y、及び下向きZヘッド74zが、それぞれ1つ取り付けられている(図33参照)。Xヘッド74x、Yヘッド74yの構成、及び機能は、上記第1の実施形態のXヘッド74x、Yヘッド74y(それぞれ図3など参照)と同じであるので、ここでは説明を省略する。本第8の実施形態では、合計で4つの下向きXヘッド74xと、対応する上向きスケール882とによって、4つのXリニアエンコーダシステム(図35参照)が構成されるとともに、合計で4つの下向きYヘッド74yと、対応する上向きスケール882とによって、4つのYリニアエンコーダシステム(図35参照)が構成されている。主制御装置(不図示)は、上記4つのXリニアエンコーダシステム、及び4つのYリニアエンコーダシステムの出力を適宜用いて、基板ホルダ822のX軸方向、Y軸方向、及びθz方向の位置情報(第1情報)をX粗動ステージ628を基準に求める。
下向きZヘッド74zの構成は、特に限定されないが、公知のレーザ変位センサなどを用いることが可能である。Zヘッド74zは、対応する上向きスケール882の格子面(反射面)を用いて(図35参照)、ヘッドベース884のZ軸方向の変位量を計測する。主制御装置(不図示)は、合計で4つのZヘッド74zの出力に基づいて、基板ホルダ822(すなわち基板P)のX粗動ステージ628に対するZチルト方向の変位量情報を求める。
図34に戻り、Y固定子638の+Y側、及び−Y側の端部近傍には、それぞれX軸方向に離間した一対のヘッドベース886が固定されている。合計で8つのヘッドベース886のそれぞれには、上向きXヘッド80x、上向きYヘッド80y、及び上向きZヘッド80zが、それぞれ1つ取り付けられている。Xヘッド80x、Yヘッド80yの構成、及び機能は、上記第1の実施形態のXヘッド80x、Yヘッド80y(それぞれ図3など参照)と同じであるので、ここでは説明を省略する。各ヘッド80x、80y、80zと上述した上向きスケール882との相対位置関係に関する情報(第3情報)は、既知である。
光学定盤18a(図32参照)の下面には、上述した一対のヘッドベース884に対応して、1つの下向きスケール888が固定されている。すなわち、図35に示されるように、光学定盤18aの下面には、合計で4つの下向きスケール888が固定されている。下向きスケール888の構成及び機能は、上記第2の実施形態の下向きスケール254(図8参照)と同じであるので、ここでは説明を省略する。本第8の実施形態では、合計で8つの上向きXヘッド80xと、対応する下向きスケール888とによって、8つのXリニアエンコーダシステム(図35参照)が構成されるとともに、合計で8つの上向きYヘッド80yと、対応する下向きスケール888とによって、8つのYリニアエンコーダシステム(図35参照)が構成されている。主制御装置(不図示)は、上記8つのXリニアエンコーダシステム、及び8つのYリニアエンコーダシステムの出力を適宜用いて、X粗動ステージ628のX軸方向、Y軸方向、及びθz方向の位置情報(第2情報)を光学定盤18aを基準に求める。
上向きZヘッド80zとしては、上述した下向きZヘッド74zと同様の変位センサが用いられる。主制御装置(不図示)は、合計で8つのZヘッド74zの出力に基づいて、X粗動ステージ628の光学定盤18aに対するZチルト方向の変位量情報を求める。
本第8の実施形態では、基板P(基板ホルダ822)の位置情報が、X粗動ステージ628を介して光学定盤18aを基準に(上記第1〜第3情報に基づいて)求められるのに加え、基板P(基板ホルダ822)のZチルト方向の位置情報も、X粗動ステージ628を介して光学定盤18aを基準に求められる。
《第9の実施形態》
次に第9の実施形態に係る液晶露光装置について、図36〜図38を用いて説明する。第9の実施形態に係る液晶露光装置の構成は、基板ステージ装置920(図38参照)、及びその計測系の構成が異なる点を除き、上記第8の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第8の実施形態と同じ構成又は機能を有する要素については、上記第8の実施形態と同じ符号を付して適宜その説明を省略する。
図38に示されるように、本第9の実施形態に係る基板ステージ装置920は、上記第7の実施形態(図29参照)と同様に、物理的に分離して配置された一対の基板ホルダ922を備えている。一方の基板ホルダ922が基板Pの+X側の端部近傍を保持するとともに、他方の基板ホルダ922が基板Pの−X側の端部近傍を保持する点、及び一対の基板ホルダ922が3DOFモータによってX粗動ステージ628に対して独立に駆動される点も上記第7の実施形態と同様である。
本第9の実施形態に係る基板計測系980(図38参照)の構成、及び動作は、一対の基板ホルダ922それぞれの位置情報が独立に求められる点を除き、上記第8の実施形態と同じである。すなわち、図36に示されるように、各基板ホルダ922には、Y軸方向に離間した一対のヘッドベース884が固定されている。ヘッドベース884には、Y固定子638の上面に固定された上向きスケール882(それぞれ図37参照)に対向するように(図38参照)、下向きヘッド74x、74y、74zが取り付けられている。X粗動ステージ628の光学定盤18a(図28など参照)を基準とする位置計測系の構成、及び動作は、上記第7の実施形態と同じであるので説明を省略する。
《第10の実施形態》
次に第10の実施形態に係る液晶露光装置について、図39〜図43を用いて説明する。第10の実施形態に係る液晶露光装置の構成は、基板ステージ装置1020(図41など参照)、及びその計測系の構成が異なる点を除き、上記第9の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第9の実施形態と同じ構成又は機能を有する要素については、上記第9の実施形態と同じ符号を付して適宜その説明を省略する。
上記第9の実施形態(図38参照)において、基板Pは、X軸方向に関する両端部近傍が、それぞれ基板ホルダ922に保持されたのに対し、図39に示されるように、本第10の実施形態において、基板Pは、X軸方向に関する一方側(本実施形態では−X側)の端部近傍のみが基板ホルダ922に吸着保持される点が異なる。基板ホルダ922に関しては、上記第9の実施形態と同じであるので、ここでは説明を省略する。また、本第10の実施形態に係る基板計測系1080(図41参照)の構成、及び動作に関しても、上記第9の実施形態と同じであるので、ここでは説明を省略する。
本第10の実施形態では、基板Pの+X側の端部近傍を保持する部材(上記第9の実施形態における+X側の基板ホルダ922に相当する部材)がないため、図40に示されるように、Y固定子638は、基板テーブル626の−X側にのみ配置されている。このため基板ステージ装置1020では、上記第9の実施形態に係る基板ステージ装置920(図38参照)の比べてベースフレーム1024が短く、全体的にコンパクトである。なお、Y固定子638とエアガイド734とを連結する連結部材1022は、本実施形態では、X軸方向にも剛性を有しており、Y固定子638は、基板テーブル626の押圧、又は牽引(押し引き)が可能となっている。また、基板Pの+X側の端部近傍を保持する部材がないため、基板Pの交換動作を容易に行うことが可能である。なお、図42及び図43に示されるように、重量キャンセル装置42を支持するXガイド648は、下架台部18c上に固定されているが、これに限られず、装置本体18と物理的に分離した状態で床F上に設置しても良い。
《第11の実施形態》
次に第11の実施形態に係る液晶露光装置について、図44〜図47を用いて説明する。第11の実施形態に係る液晶露光装置の構成は、基板ステージ装置1120、及びその計測系の構成が異なる点を除き、上記第10の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第10の実施形態と同じ構成又は機能を有する要素については、上記第10の実施形態と同じ符号を付して適宜その説明を省略する。
本第11の実施形態に係る基板ステージ装置1120において、基板Pは、上記第10の実施形態(図41など参照)と同様に、X軸方向に関する一方側(本実施形態では−X側)の端部近傍のみが基板ホルダ1122に保持される(図47参照)。
基板ホルダ1122は、図45に示されるように、幅方向(X軸方向)の寸法が、上記第10の実施形態に係る基板ホルダ922(図39参照)に比べて幾分長く設定されている。基板ホルダ1122は、図44に示されるように、エアガイド1124に下方から非接触支持されている。エアガイド1124の構成、及び機能は、上記第7〜第10の各実施形態に係るエアガイド734(図30など参照)と概ね同じであるが、基板ホルダ1122に対応して、X軸方向の寸法が幾分長く設定されている点が異なる。
次に基板計測系1180について説明する。基板計測系1180は、図44に示されるように、基板ホルダ1122の位置情報をX粗動ステージ628を介して光学定盤18aを基準に求めるという点では、上記第10の実施形態(図41参照)と同様であるが、上向きスケール882、及び下向きヘッド74x、74y(図45参照)の配置が異なる。
上向きスケール882は、図44に示されるように、基板ホルダ1122を浮上支持するエアガイド1124に固定されている。エアガイド1124の上面(ガイド面)の高さ位置と上向きスケール882の格子面(被計測面)の高さ位置とは、ほぼ同じに設定されている。エアガイド1124は、ステージ本体632に固定されていることから、上向きスケール882は、基板Pに対してXY平面内の位置が所定範囲内に収まるように移動する。基板ホルダ1122には、下方に開口した凹部が形成されており、該凹部内に各下向きヘッド74x、74y、74z(それぞれ図45参照)がそれぞれ一対、上向きスケール882に対向するように取り付けられている。基板ホルダ1122の位置計測動作に関しては、上記第10の実施形態と同じであるので、説明を省略する。
また、上記第10の実施形態では、Y固定子638にヘッドベース886(それぞれ図41など参照)が固定されていたのに対し、本第11の実施形態では、図46に示されるように、エアガイド1124にヘッドベース886が固定されている。ヘッドベース886は、エアガイド1124の長手方向の両端部近傍にそれぞれ一対配置されている。光学定盤18a(図44参照)に固定された下向きスケール888を用いたX粗動ステージ628の位置計測動作に関しては、上記第10の実施形態と同じであるので、説明を省略する。
本第11の実施形態では、基板ホルダ1122の位置情報は、エアガイド1124を介して光学定盤18aを基準に求められる。エアガイド1124は、ステージ本体632に固定されているので、外乱の影響を受け難く、露光精度を向上することができる。また、上記第10の実施形態などと比較し、上向きスケール882、及び下向きスケール888の位置が投影光学系16の中心位置に接近するので、誤差が小さくなり、露光精度を向上することができる。
《第12の実施形態》
次に第12の実施形態に係る液晶露光装置について、図48〜図54を用いて説明する。第12の実施形態に係る液晶露光装置の構成は、基板ステージ装置1220、及びその計測系の構成が異なる点を除き、上記第7の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第7の実施形態と同じ構成又は機能を有する要素については、上記第7の実施形態と同じ符号を付して適宜その説明を省略する。
図31などに示されるように、上記第7の実施形態において、基板Pは、Y軸方向に長ストロークで移動する一対の基板ホルダ722によってX軸方向に関する両端部近傍が保持されたのに対し、本第12の実施形態において、基板Pは、図53に示されるように、X軸方向に長ストロークで移動する一対の基板ホルダ1222によって、Y軸方向に関する両端部近傍が保持される点が異なる。基板ステージ装置1220では、スキャン露光動作時において、一対の基板ホルダ1222のみが投影光学系16(図48参照)に対してX軸方向に駆動されることによって、基板Pに対する走査露光動作が行われる。また、露光領域間移動時には、一対の基板ホルダ1222と基板テーブル626を含む系とが一体的にY軸方向に移動する。すなわち、基板ステージ装置1220は、上記第7の実施形態に係る基板ステージ装置720(図31など参照)を投影光学系16に対してZ軸回りに90°回転させたような構造になっている。以下、基板ステージ装置1220の構成について説明する。
図50に示されるように、下架台部18c上には、Y軸方向に伸びる定盤1224がX軸方向に所定間隔で3つ固定されている。中央の定盤1224上には、リニアガイド装置1226を介して重量キャンセル装置42が載置されている。また、+X側、及び−X側の定盤1224上には、リニアガイド装置1226を介してZアクチュエータ1228が載置されている。重量キャンセル装置42がステージ本体632を介して基板テーブル626(それぞれ図48参照)を下方から支持する点は、上記第6の実施形態(図23など参照)などと同様である。
図51に示されるように、Y粗動ステージ1230は、Y軸方向に延びる一対のベースフレーム1232上に載置されており、不図示のYリニアアクチュエータによってY軸方向に長ストロークで駆動される。上述した重量キャンセル装置42、及び2つのZアクチュエータ1228(それぞれ図50参照)は、それぞれY粗動ステージ1230に対して連結部材46により連結されており(図48参照)、Y粗動ステージ1230と一体的にY軸方向に移動する。ステージ本体632も、Y粗動ステージ1230に対して連結部材46により連結されており(図48参照)、Y粗動ステージ1230と一体的にY軸方向に移動する。Y粗動ステージ1230のY軸方向の両端部近傍には、X軸方向に延びる固定子1234が取り付けられている。
図52に示されるように、基板テーブル626の+Y側、及び−Y側には、それぞれ一対の基板ホルダ1222(図53参照)に対応してエアガイド1236が配置されている。エアガイド1236は、支持部材1238(図48参照)を介してステージ本体632に固定されている。エアガイド1236の上面のZ位置は、基板テーブル626の上面のZ位置よりも低い位置に設定されている。
基板テーブル626の+X側、及び−X側には、基板Pを下方から支持するための複数(本実施形態では、それぞれ4つ)のエアガイド1240が配置されている。エアガイド1240の上面のZ位置は、基板テーブル626の上面のZ位置と概ね同じに設定されている。エアガイド1240は、スキャン露光動作時など、基板Pが基板テーブル626に対してX軸方向に相対移動する際、基板テーブル626と協働して基板Pを下方から支持する(図54参照)。
4つのエアガイド1240の+Y側、及び−Y側には、それぞれ一対の基板ホルダ1222に対応してエアガイド1242が配置されている。エアガイド1242は、上述したエアガイド1236と同様の部材であり、その上面のZ位置は、エアガイド1236と概ね同じに設定されている。エアガイド1242は、エアガイド1236と協働して基板ホルダ1222が基板テーブル626に対してX軸方向に相対移動する際、基板ホルダ1222を下方から支持する(図54参照)。エアガイド1240、1242は、共通のベース部材を介して上述したZアクチュエータ1228(図50参照)上に載置されている。Zアクチュエータ1228と重量キャンセル装置42(図50参照)とが一体的にY軸方向に移動することから、エアガイド1240、1242、1236、及び基板テーブル626は、一体的にY軸方向へ移動する。
図49に示されるように、一対の基板ホルダ1222は、基板Pの中央部(重心位置)を挟んで配置されており、吸着パッド1244を用いて基板Pの下面を吸着保持している。また、各基板ホルダ1222には、上述した固定子1234(図51参照)と協働して2DOFモータを構成する可動子1246が取り付けられている。不図示の主制御装置は、各基板ホルダ1222を、対応する2DOFモータを介して、基板テーブル626(図52参照)に対してX軸方向に長ストロークで駆動するとともに、基板テーブル626、Y粗動ステージ1230(図51参照)などとY軸方向の位置関係が所定範囲内に収まるように基板ホルダ1222にY軸方向の推力を付与する。
上述したように、基板ステージ装置1220では、図54に示されるように、スキャン露光動作時などには、一対の基板ホルダ1222がエアガイド1236、1242上で2DOFモータによってX軸方向に駆動されることによって、基板Pに対する走査露光動作が行われる。また、露光領域間移動時には、一対の基板ホルダ1222と基板テーブル626を含む系(基板テーブル626、Y粗動ステージ1230、固定子1234、エアガイド1236、1240、1242など)とが一体的にY軸方向に移動する。
次に本第12の実施形態に係る基板計測系1280(図53参照)について説明する。基板計測系1280は、概念的には第1の実施形態に係る基板計測系70(図4参照)に類似している。すなわち、基板Pを保持する部材(本実施形態では一対の基板ホルダ1222それぞれ)にヘッドベース1282を介して下向きヘッド74x、74y(それぞれ図49参照)が一対取り付けられ、該下向きヘッド74x、74yは、固定子1234の上面に取り付けられた対応する上向きスケール1284に対向している。不図示の主制御装置は、2つのXリニアエンコーダシステム、及び2つのYリニアエンコーダシステムの出力を適宜用いて、各基板ホルダ1222のY粗動ステージ1230に対するX軸方向、Y軸方向、及びθz方向の位置情報(第1情報)を独立に求める。
また、図51に示されるように、固定子1234の長手方向中央部には、ヘッドベース1286が固定されている。ヘッドベース1286には、上向きヘッド80x、80yが一対取り付けられ、該上向きヘッド80x、80yは、光学定盤18a(図48参照)の下面に固定された対応する下向きスケール1288とXリニアエンコーダシステム、Yリニアエンコーダシステムを構成している。上向きスケール1284と各上向きヘッド80x、80yの位置関係(第3情報)は既知である。不図示の主制御装置は、4つのXリニアエンコーダシステム、及び4つのYリニアエンコーダシステムの出力を適宜用いて、Y粗動ステージ1230の水平面内の位置情報(第2情報)を求める。
《第13の実施形態》
次に第13の実施形態に係る液晶露光装置について、図55〜図58を用いて説明する。第13の実施形態に係る液晶露光装置の構成は、基板ステージ装置1320、及びその計測系の構成が異なる点を除き、上記第12の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第12の実施形態と同じ構成又は機能を有する要素については、上記第12の実施形態と同じ符号を付して適宜その説明を省略する。
上記第12の実施形態に係る基板ステージ装置1220(図53など参照)と同様に、基板ステージ装置1320において、基板Pは、図58に示されるように、Y軸方向の両端部近傍が一対の基板ホルダ1322に保持される。一対の基板ホルダ1322が2DOFモータによってX軸方向に長ストロークで駆動されるとともに、Y軸及びθz方向に微少駆動される点は上記第12の実施形態と同様である。ここで、上記第12の実施形態において、基板ホルダ1222(図53など参照)は、X軸方向の位置に応じて、互いに分離して配置されたエアガイド1236、及び一対のエアガイド1242(それぞれ図53など参照)の何れかによって下方から支持されたのに対し、本第13の実施形態における基板ホルダ1322は、X軸方向に関する移動可能領域の全範囲をカバー可能な長さに設定された単一のエアガイド1324によって下方から支持されている。エアガイド1324は、図55に示されるように、ステージ本体632に接続されており、基板テーブル626と一体的にY軸方向に移動可能となっている。
次に第13の実施形態に係る基板計測系1380の構成、及び動作について説明する。基板計測系1380は、概念的には、上記第11の実施形態に係る基板計測系1180(図44など参照)をZ軸回りに90°回転させたような構造になっている。すなわち、本第13の実施形態おいて、エアガイド1324の上面には、図57に示されるように、上向きスケール1382が固定されている。上記第11の実施形態では、上向きスケール882(図46など参照)は、X軸方向よりもY軸方向に関する位置情報の計測範囲が広くなるように(Y軸方向が長手方向となるように)配置されたのに対し、本実施形態の上向きスケール1382は、Y軸方向よりもX軸方向に関する位置情報の計測範囲が広くなるように(X軸方向が長手方向となるように)配置されている。
基板ホルダ1322は、図55に示されるように、上記第11の実施形態に係る基板ホルダ1122(図44など参照)と同様に、下方に開口した凹部が形成されており、該凹部内に下向きヘッド74x、74y、74z(それぞれ図56参照)がそれぞれ一対、上向きスケール1382に対向するように取り付けられている(図58参照)。
図57に示されるように、エアガイド1324の長手方向両端部近傍には、それぞれヘッドベース1384が固定されており、各ヘッドベース1384には、上向きヘッド80x、80y、80zがそれぞれ2つ、光学定盤18a(図55参照)の下面に固定された対応する下向きスケール1386に対向するように取り付けられている。本第13の実施形態に係る基板計測系1380も、上記第12の実施形態の基板計測系1280(図53など参照)と同様に、基板P(一対の基板ホルダ1322)の位置情報が、Y粗動ステージ1230を介して光学定盤18aを基準に求められる。
《第14の実施形態》
次に第14の実施形態に係る液晶露光装置について、図59を用いて説明する。第14の実施形態に係る液晶露光装置の構成は、基板ステージ装置1420、及びその計測系の構成が異なる点を除き、上記第13の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第13の実施形態と同じ構成又は機能を有する要素については、上記第13の実施形態と同じ符号を付して適宜その説明を省略する。
上記第13の実施形態(図58参照)において、基板Pは、Y軸方向に関する両端部近傍が、それぞれ基板ホルダ1322に保持されたのに対し、図59に示されるように、本第14の実施形態において、基板Pは、Y軸方向に関する一方側(本実施形態では+Y側)の端部近傍のみが基板ホルダ1422に吸着保持される点が異なる。基板ホルダ1422に関しては、固定子1424に対して3DOFモータにより駆動される点を除き、上記第12の実施形態と同じであるので、ここでは説明を省略する。固定子1424とエアガイド1324とを連結する連結部材1426は、Y軸方向にも剛性を有しており、固定子1424は、基板テーブル626の押圧、又は牽引(押し引き)が可能となっている。本第14の実施形態に係る基板計測系1480の構成、及び動作に関しては、上記第13の実施形態と同じであるので、ここでは説明を省略する。
《第15の実施形態》
次に第15の実施形態に係る液晶露光装置について、図60〜図63を用いて説明する。第15の実施形態に係る液晶露光装置の構成は、基板ステージ装置1520の構成が異なる点を除き、上記第1又は第6の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第1又は第6の実施形態と同じ構成又は機能を有する要素については、上記第1又は第6の実施形態と同じ符号を付して適宜その説明を省略する。
図60に示されるように、基板ステージ装置1520は、第1移動体(ここでは基板ホルダ1522)と第2移動体(ここではY粗動ステージ24)とを備えている。
図62に示されるように、基板ホルダ1522は、上記第6の実施形態(図26など参照)の基板ホルダ622と同様に、平面視矩形の枠状(額縁状)に形成され、基板Pは、基板ホルダ1522の開口内に配置される。基板ホルダ1522は、4つの吸着パッド1524を有しており、基板Pの4辺それぞれの中央部近傍を下方から吸着保持する。
基板Pのうち、中央部を含む露光領域は、図60に示されるように、基板テーブル626によって下方から非接触支持される。基板テーブル626は、上記第6の実施形態(図26など参照)と同様に、基板Pの平面矯正を非接触状態で行う。また、図60などでは不図示であるが、基板テーブル626の下面には、上記第6の実施形態と同様に、ステージ本体632(図23参照)が固定されている。不図示のステージ本体632は、図63に示されるように、複数の連結部材1526を介して、Zチルト方向の相対移動が許容された状態でX粗動ステージ26に連結されている、従って、基板テーブル626は、X粗動ステージ26と一体的にX軸、及びY軸方向に長ストロークで移動する。X粗動ステージ26、Y粗動ステージ24などの構成及び動作は、上記第1の実施形態(図4など参照)と概ね同じであるので、説明を省略する。
また、図63に示されるように、ステージ本体632(図63では不図示。図23参照)からは、±Y方向、及び±X方向の合計4方向にテーブル部材1528が突き出している。図60に示されるように、基板ホルダ1522は、4つのテーブル部材1528上に不図示のエアベアリングを介して非接触状態で載置されている。また、基板ホルダ1522は、基板ホルダ1522に取り付けられた複数の可動子1530(図62参照)とステージ本体632に取り付けられた複数の固定子1532(図63参照)とによって構成される複数のリニアモータによって基板テーブル626に対してX軸、Y軸、及びθz方向に微少ストロークで駆動される。
上記第6の実施形態の基板ホルダ622は、基板テーブル626から分離してY軸方向に長ストロークで相対移動可能であった(図27参照)のに対し、本第15の実施形態において、不図示の主制御装置は、図61に示されるように、X軸、及びY軸方向に関して、基板ホルダ1522と基板テーブル626との位置が所定範囲内に収まるように、上記複数のリニアモータを用いて基板ホルダ1522に推力を付与する。従って、基板Pは、露光領域の全体が常に基板テーブル626により下方から支持される。
次に第15の実施形態に係る基板計測系1580について説明する。基板計測系1580は、概念的には、上記第1の実施形態に係る基板計測系70と概ね同じであり、基板ホルダ1522の水平面内の位置情報を、Y粗動ステージ24を介して光学定盤18a(図1など参照)を基準に求める。
すなわち、基板ホルダ1522には、図62に示されるように、一対のヘッドベース88が固定されており、各ヘッドベース88には、下向きXヘッド74xと下向きYヘッド74yとが各2つ取り付けられている(図62参照)。また、図63に示されるように、Y粗動ステージ24には、アーム部材86を介して一対のスケールベース84が取り付けられており、各スケールベース84の上面には、X軸方向に延びる(X軸方向の計測可能範囲がY軸方向の計測可能範囲よりも長い)上向きスケール72が固定されている。基板ホルダ1522のY粗動ステージ24に対する位置情報は、上記各ヘッド74x、74yと、これに対応するスケール72とによって構成されるエンコーダシステムによって求められる。
また、Y粗動ステージ24に取り付けられた一対のスケールベース84それぞれには、ヘッドベース96が固定されており、各ヘッドベース96には、上向きXヘッド80xと上向きYヘッド80yとが各2つ取り付けられている(図63参照)。光学定盤18a(図1など参照)の下面には、各ヘッドベース96に対応して、Y軸方向に延びる(Y軸方向の計測可能範囲がX軸方向の計測可能範囲よりも長い)下向きスケール78(図60参照)が固定されている。光学定盤18aに対するY粗動ステージ24の位置情報は、上記各ヘッド80x、80yと、これに対応するスケール78とによって構成されるエンコーダシステムによって求められる。
《第16の実施形態》
次に第16の実施形態に係る液晶露光装置について、図64を用いて説明する。第16の実施形態に係る液晶露光装置の構成は、基板ステージ装置1620、及びその計測系の構成が異なる点を除き、上記第6又は第15の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第6又は第15の実施形態と同じ構成又は機能を有する要素については、上記第6又は第15の実施形態と同じ符号を付して適宜その説明を省略する。
第16の実施形態に係る基板ステージ装置1620が有する基板ホルダ1522、基板テーブル626などの構成(駆動系を含む)は、上記第15の実施形態(図60など参照)と概ね同じである。上記第15の実施形態の基板計測系1580(図60など参照)は、基板ホルダ1522の位置情報をY粗動ステージ24を介して光学定盤18aを基準に求めた(すなわち第1の実施形態に係る基板計測系70と同様の構成であった)のに対し、本第16の実施形態に係る基板計測系1680は、基板ホルダ1522の位置情報を、上記第6の実施形態と同様に、計測テーブル624を介して光学定盤18aを基準に求める点が異なる。
すなわち、第16の実施形態に係る基板ホルダ1522には、上記第6の実施形態(図24参照)と同様に、一対のヘッドベース688が固定されるとともに、各ヘッドベース688には、上向きXヘッド80xと上向きYヘッド80yとが各2つ取り付けられている。また、光学定盤18aの下面には、基板ホルダ1522に対するY軸方向の位置が所定範囲に収まるように移動可能な計測テーブル624が、一対のヘッドベース688に対応して取り付けられている。基板ホルダ1522の位置情報は、上記各ヘッド80x、80yと、対応する計測テーブル624の下面に固定された、X軸方向に延びる下向きスケール686とにより構成されるリニアエンコーダシステムによって求められる。また、計測テーブル624の位置情報は、計測テーブル624に取り付けられた上向きXヘッド80x、上向きYヘッド80yと、光学定盤18aの下面に固定された、Y軸方向に延びる下向きスケール684とにより構成されるリニアエンコーダシステムによって求められる。
《第17の実施形態》
次に第17の実施形態に係る液晶露光装置について、図65を用いて説明する。第17の実施形態に係る液晶露光装置の構成は、基板ステージ装置1720、及びその計測系の構成が異なる点を除き、上記第15又は第16の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第15又は第16の実施形態と同じ構成又は機能を有する要素については、上記第15又は第16の実施形態と同じ符号を付して適宜その説明を省略する。
第17の実施形態に係る基板ステージ装置1720が有する基板ホルダ1522、基板テーブル626などの構成(駆動系を含む)は、上記第15の実施形態(図60など参照)と概ね同じである。上記第15の実施形態の基板計測系1580(図60など参照)は、基板ホルダ1522の位置情報をY粗動ステージ24を介して光学定盤18aを基準に求めた(すなわち第1の実施形態に係る基板計測系70と同様の構成であった)のに対し、本第17の実施形態に係る基板計測系1780は、基板ホルダ1522の位置情報を、Y粗動ステージ24、及び計測テーブル1782を介して光学定盤18aを基準に求める点が異なる。
第17の実施形態に係る基板ステージ装置1720において、Y粗動ステージ24には、上記第15の実施形態(図63など参照)と同様に、アーム部材86を介してスケールベース1784が固定されている。なお、図65では不図示であるが、スケールベース1784は、上記第15の実施形態と同様に、基板ホルダ1522の+Y側、及び−Y側にそれぞれ1つ配置されている。計測テーブル1782も不図示であるが同様に、スケールベース1784に対応して、投影光学系16の+Y側、及び−Y側にそれぞれ1つ配置されている。
スケールベース1784の上面には、基板ホルダ1522の位置計測用に用いられる上向きスケール1786と、計測テーブル1782の位置計測用に用いられる上向きスケール1788とがY軸方向に所定間隔で取り付けられている。上向きスケール1786、1788は、Y軸方向よりもX軸方向に関する位置情報の計測範囲が広くなるように(X軸方向が長手方向となるように)、その上面に2次元回折格子を有している。上向きスケール1786と、上向きスケール1788との位置関係は、既知であるものとする。なお、上向きスケール1786、1788に形成される2次元回折格子のピッチは同じであっても良いし、異なっていても良い。また、スケールベース1784は、2つの上向きスケール1786,1788に換えて、基板ホルダ1522の位置計測用と計測テーブル1782の位置計測用とを兼用する広幅の1つの上向きスケールを有していても良い。
基板ホルダ1522には、上記第15の実施形態(図63など参照)と同様に、ヘッドベース88を介して下向きヘッド74x、74yがそれぞれ2つ取り付けられている。基板ホルダ1522のY粗動ステージ24に対するXY平面内の位置情報が、下向きヘッド74x、74yと、対応する上向きスケール1786とによって構成されるエンコーダシステムによって求められる点は、上記第15の実施形態(すなわち第1の実施形態)と同様であるので、説明を省略する。
計測テーブル1782は、上記第16の実施形態(図64参照)の計測テーブル624と同様に、Yリニアアクチュエータ682によってY軸方向に所定のストロークで駆動される。計測テーブル1782には、上記第16の実施形態と同様に、上向きヘッド80x、80yがそれぞれ2つ取り付けられている。計測テーブル1782の光学定盤18aに対するXY平面内の位置情報が、上向きヘッド80x、80yと、対応する下向きスケール984とによって構成されるエンコーダシステムによって求められる点は、上記第16の実施形態(すなわち第6の実施形態)と同様であるので、説明を省略する。
Y粗動ステージ24のXY平面内の位置情報は、計測テーブル1782を介して光学定盤18aを基準に求められる。Y粗動ステージ24の位置情報を求めるための計測系は、概念的には、基板ホルダ1522のY粗動ステージ24に対する位置情報を求めるための計測系(エンコーダシステム)と同じである。すなわち、計測テーブル1782には、下向きXヘッド74xと、下向きYヘッド74yとがそれぞれ2つ取り付けられており、これら下向きヘッド74x、74と、上向きスケール1788とによって構成されるエンコーダシステムによって、計測テーブル1782に対するY粗動ステージ24のXY平面内の位置情報が求められる。不図示の主制御装置は、上述した光学定盤18aに対する計測テーブル1782の位置情報、計測テーブル1782に対するY粗動ステージ24の位置情報、及びY粗動ステージ24に対する基板ホルダ1522の位置情報に基づいて、基板ホルダ1522の位置情報を光学定盤18aを基準に求める。
《第18の実施形態》
次に第18の実施形態に係る液晶露光装置について、図66〜図68用いて説明する。第18の実施形態に係る液晶露光装置の構成は、基板ステージ装置1820、及びその計測系の構成が異なる点を除き、上記第1の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第1の実施形態と同じ構成又は機能を有する要素については、上記第1の実施形態と同じ符号を付して適宜その説明を省略する。
上記第1の実施形態(図2など参照)では、微動ステージ22の位置情報を求めるための上向きスケール72、及び上向きスケール72の位置情報を求めるための上向きヘッド80x、80yが、それぞれY粗動ステージ24に固定されていたのに対し、本第18の実施形態では、図67に示されるように、上向きスケール72、及び上向きヘッド80x、80yが、自重支持装置28が備えるYステップガイド44に固定されている点が異なる。
上向きスケール72は、スケールベース84の上面に固定されている。スケールベース84は、図66に示されるように、微動ステージ22の+Y側、及び−Y側にそれぞれ1つ配置されている。スケールベース84は、図67に示されるように、X軸方向から見てL字状に形成されたアーム部材1886を介してYステップガイド44に固定されている。従って、スケールベース84(及び上向きスケール72)は、Yステップガイド44、及びY粗動ステージ24と一体的にY軸方向に所定の長ストロークで移動可能となっている。上述したように、Yステップガイド44は、Y粗動ステージ24が有する一対のXビーム36の間に配置されている(Xビーム36のZ位置とYステップガイド44のZ位置とが一部重複している)ことから、Xビーム36には、アーム部材1886を通過させるため(アーム部材86とXビーム36との接触を防止するため)の貫通穴45が形成されている。
下向きヘッド74x、74y、及び上向きスケール72を含む微動ステージ計測系76(図6参照)の構成、及び動作は、上記第1の実施形態と同じであるので説明を省略する。また、下向きスケール78、及び上向きヘッド80x、80yを含む粗動ステージ計測系82(図6参照)の構成、及び動作も、上記第1の実施形態と同じであるので説明を省略する。ただし、本実施形態において、粗動ステージ計測系82が計測するのは、実際には、Yステップガイド44の位置情報である点が上記第1の実施形態と異なる。このように、本実施形態の基板計測系1870は、微動ステージ22(基板P)の位置情報を、Yステップガイド44を介して光学定盤18aを基準に求める。
本第18の実施形態によれば、微動ステージ22を支持する(微動ステージ22と同じ系に含まれる)Yステップガイド44に上向きスケール72が固定されているので、上記第1の実施形態に比べ、粗動ステージ24、26の動作の影響を抑制することができ、微動ステージ22の位置計測精度をより向上することができる。
《第19の実施形態》
次に第19の実施形態に係る液晶露光装置について、図69、図70用いて説明する。第19の実施形態に係る液晶露光装置の構成は、装置本体1918、及び基板計測系1970(図70参照)の構成が異なる点を除き、上記第18の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第18の実施形態と同じ構成又は機能を有する要素については、上記第18の実施形態と同じ符号を付して適宜その説明を省略する。
上記第18の実施形態(図66参照)において、装置本体18は、光学定盤18a、中架台部18b、及び下架台部18cが一体的に組み立てられた状態で防振装置19を介して床F上に設置されたのに対し、本第19の実施形態において、装置本体1918は、図69に示されるように、投影光学系16を支持する部分(以下、「第1の部分」と称する)と、Yステップガイド44を支持する部分(以下、「第2の部分」と称する)とが、互いに物理的に分離した状態で床F上に設置されている点が異なる。
装置本体1918のうち、投影光学系16を支持する第1の部分は、光学定盤18a、一対の中架台部18b、及び一対の第1下架台部18dを備え、正面視で(X軸方向から見て)門型(逆U字型)に形成されている。第1の部分は、複数の防振装置19を介して床F上に設置されている。これに対し装置本体1918のうち、Yステップガイド44を支持する第2の部分は、第2下架台部18eを備えている。第2下架台部18eは、平板状の部材から成り、一対の第1下架台部18dの間に挿入されている。第2下架台部18eは、上記第1の部分を支持する複数の防振装置19とは別の複数の防振装置19を介して床F上に設置されている。一対の第1下架台部18dと第2下架台部18eとの間には、隙間が形成されており、第1の部分と第2の部分とは、振動的に分離(絶縁)されている。第2下架台部18e上に機械的なリニアガイド装置52を介してYステップガイド44が載置されている点は、上記第18の実施形態と同様である。
図69では、図示が一部省略されているが、一対のベースフレーム30の構成は、上記第18(第1)の実施形態と同様である。一対のベースフレーム30は、第2下架台部18eを含み、装置本体218とは振動的に分離された状態で床F上に設置されている。一対のベースフレーム30上にY粗動ステージ24、及びX粗動ステージ26が載置されている点、並びにYステップガイド44上に自重支持装置28を介して微動ステージ22が載置されている点は、上記第18の実施形態と同じである。
次に第19の実施形態に係る基板計測系1970の構成、及び動作について説明する。なお、計測系を除く基板ステージ装置1920の構成、及び動作は、上記第18の実施形態と同じであるので、説明を省略する。
図70には、第19の実施形態に係る基板計測系1970の概念図が示されている。基板計測系1970のうち、微動ステージ22(実際には基板ホルダ32)のXY平面内の位置情報を求めるための微動ステージ計測系76(図6参照)の構成は、上記第18(第1)の実施形態と同じであるので、説明を省略する。本第19の実施形態に係る基板計測系1970は、基板ホルダ32の水平面に対して交差する方向の位置情報を求めるためのZチルト位置計測系1998の構成が上記第18(第1)の実施形態と異なる。
Zチルト位置計測系1998は、図70に示されるように、基板ホルダ32のZチルト方向の位置情報を、微動ステージ計測系76と同様に、Y粗動ステージ24を介して光学定盤18a(図69参照)を基準に求める。
図69に示されるように、基板ホルダ32の+Y側及び−Y側の側面に固定されたヘッドベース1988のそれぞれには、2つの下向きXヘッド74x、及び2つの下向きYヘッド74yと併せて、2つの下向きZヘッド74zがX軸方向に離間して取り付けられている(図70参照)。下向きZヘッド74zとしては、上向きスケール72に対して計測ビームを照射する公知のレーザ変位計が用いられている。不図示の主制御装置は、合計で4つの下向きZヘッド74z(図9参照)の出力に基づいて、微動ステージ22のY粗動ステージ24に対するZチルト方向の変位量情報を求める。
また、Yステップガイド44の+Y側及び−Y側の側面に固定された一対のスケールベース84のそれぞれには、上記第1の実施形態のヘッドベース96と同様に(図4参照)、ヘッドベース1996が2つ固定されている。また、図70に示されるように、ヘッドベース1996には、2つの上向きXヘッド84x、及び2つの上向きYヘッド80yと併せて、1つの上向きZヘッド80zが取り付けられている。上向きZヘッド80zも下向きZヘッド74zと同様のレーザ変位計が用いられているが、各Zヘッド74z、80zの種類は、異なっていても良い。不図示の主制御装置は、合計で4つの上向きZヘッド80z(図70参照)の出力に基づいて、Y粗動ステージ24の光学定盤18a(図69参照)に対するZチルト方向の変位量情報を求める。
以上説明した第19の実施形態では、基板PのZチルト方向の位置情報を、光学定盤18a(すなわち投影光学系16)を基準に求めることが可能であるので、基板PのXY平面内の位置情報と併せて、基板PのZチルト方向の位置情報を高精度で取得することができる。すなわち、一例として国際公開第2015/147319号に開示されるように、重量キャンセル装置42を基準に基板PのZチルト方向の位置情報を求める場合には、重量キャンセル装置42がYステップガイド44上に載置されていることから、Yステップガイド44の移動時における振動などに起因して、基板Pの位置計測に誤差が発生する可能性がある。これに対し、本実施形態では、仮にYステップガイド44の移動時に振動などが発生したとしても、Yステップガイド44の位置情報が光学定盤18aを基準に常時計測されているため、Yステップガイド44を介して基板Pの位置情報を計測しても、該Yステップガイド44の位置ズレが、基板Pの計測結果に反映されない。従って、基板Pの位置情報を高精度で計測することができる。
また、装置本体1980のうち、Yステップガイド44を支持する第2の部分(第2下架台部18e)が、投影光学系16を支持する第1の部分と振動的に分離しているので、Yステップガイド44が基板PのY軸方向への移動に伴ってY軸方向へ移動する際、該移動に起因する振動、変形などの投影光学系16に対する影響を抑制することができ、これにより露光精度を向上することができる。
なお、上記第1の実施形態では、一対のヘッドベース88が、それぞれ微動ステージ22(基板ホルダ32)の位置を計測するための4つのヘッド(各一対の下向きXヘッド74x及び下向きYヘッド74y)を有し、合計で8つの基板ホルダ位置計測用のヘッドが設けられた場合について説明したが、基板ホルダ位置計測用のヘッドの数は、8つより少なくても良い。以下では、このような実施形態について説明する。
《第20の実施形態》
次に、第20の実施形態について図71〜図74(C)に基づいて説明する。本第20の実施形態に係る液晶露光装置の構成は、基板計測系2070の一部の構成を除き、前述の第1の実施形態と同じなので、以下、相違点についてのみ説明し、第1の実施形態と同じ構成及び機能を有する要素については、第1の実施形態と同じ符号を付してその説明を省略する。
図71には、本第20の実施形態に係る基板ホルダ32及び基板計測系2070の一対のヘッドベース88が、投影光学系16とともに平面図にて示されている。図71では、説明をわかり易くするため、Y粗動ステージ24等の図示が省略されている。また、図71では、ヘッドベース88が点線で図示されている。
本第20の実施形態に係る液晶露光装置では、図71に示されるように、基板ホルダ32の基板載置領域を挟む+Y側、及び−Y側の領域に、それぞれスケールベース84が配置されている。各スケールベース84の上面には、エンコーダスケール2072(以下、単にスケール2072と称する)がX軸方向に関して格子領域が互いに離れて配置されるようにX軸方向に所定間隔で、例えば5つ配置されている。
複数のスケール2072はそれぞれ、反射型の2次元格子が形成される格子領域(格子部)を有している。なお、スケール2072の全域に渡って格子を形成しても良いが、スケール2072の端部で精度良く格子を形成するのが困難であるため、本実施形態ではスケール2072において格子領域の周囲が余白部となるように格子を形成する。このため、X軸方向に関して隣接する一対のスケール2072の間隔よりも格子領域の間隔の方が広くなっており、計測ビームが格子領域外に照射されている間は位置計測が不能な非計測期間(非計測区間とも呼ぶが、以下では非計測期間と総称する)となる。
基板ホルダ32の+Y側に配置された5つのスケール2072と、−Y側に配置された5つのスケール2072では、隣接するスケール2072(格子領域)間の間隔は、同じであるが、その配置位置が、+Y側の5つのスケール2072に対して、−Y側の5つのスケール2072が全体的に、所定距離D(隣接するスケール2072(格子領域)の間隔より幾分大きな距離)+X側にずれて配置されている。これは、基板ホルダ32の位置情報を計測する後述する2つのXヘッド74x及び2つのYヘッド74yの合計4つのヘッドのうちの2つ以上がいずれのスケールにも対向しない状態が発生しない(すなわち、4つのヘッドで計測ビームがスケールから外れる非計測期間が重ならない)ようにするためである。
各スケール2072は、例えば石英ガラスにより形成されたX軸方向に延びる平面視矩形の板状(帯状)の部材から成る。各スケール2072の上面には、X軸方向及びY軸方向を周期方向とする所定ピッチ(例えば1μm)の反射型の2次元回折格子(2次元グレーティング)RGが形成されている。以下では、前述の格子領域を単に2次元グレーティングRGとも呼ぶ。なお、図71では、図示の便宜上、2次元グレーティングRGの格子線間の間隔(ピッチ)は、実際よりも格段に広く図示されている。以下で説明するその他の図においても同様である。以下では、基板ホルダ32の+Y側の領域に配置された5つのスケール2072を、第1格子群と称し、基板ホルダ32の−Y側の領域に配置された5つのスケール2072を、第2格子群と称するものとする。
+Y側に位置する一方のヘッドベース88の下面(−Z側の面)には、スケール2072にそれぞれ対向する状態で、Xヘッド74xとYヘッド74yがX軸方向に所定間隔(隣接するスケール2072の間隔より大きな距離)離れて固定されている。同様に、−Y側に位置する他方のヘッドベース88の下面(−Z側の面)には、スケール2072にそれぞれ対向する状態で、Yヘッド74yとXヘッド74xがX軸方向に所定間隔離れて固定されている。すなわち、第1格子群と対向するXヘッド74xおよびYヘッド74yと、第2格子群と対向するXヘッド74xおよびYヘッド74yはそれぞれ、隣接するスケール2072の格子領域の間隔よりも広い間隔で計測ビームをスケール2072に照射する。以下では、説明の便宜上、一方のヘッドベース88が有するXヘッド74x、Yヘッド74yを、それぞれヘッド74a、ヘッド74bと呼び、他方のヘッドベース88が有するYヘッド74y、Xヘッド74xを、それぞれヘッド74c、ヘッド74dとも呼ぶものとする。
この場合、ヘッド74aとヘッド74cが、同一のX位置(Y軸方向と平行な同一直線上)に配置され、ヘッド74bとヘッド74dが、ヘッド74aとヘッド74cのX位置と異なる、同一のX位置(Y軸方向と平行な同一直線上)に配置されている。ヘッド74a、74dとそれぞれ対向する2次元グレーティングRGとによって、一対のXリニアエンコーダが構成され、ヘッド74b、74cとそれぞれ対向する2次元グレーティングRGとによって、一対のYリニアエンコーダが構成されている。
本第20の実施形態に係る液晶露光装置では、ヘッドベース88の残りの部分を含み、その他の部分の構成は、主制御装置100の基板計測系2070を用いた基板ホルダ32の駆動制御(位置制御)を除き、前述した第1の実施形態に係る液晶露光装置10と同様になっている。
本第20の実施形態に係る液晶露光装置では、図72(A)に示される、スケールベース84の+X端部近傍に一対のヘッドベース88が対向する第1位置と、図72(B)に示される、スケールベース84の−X端部近傍に一対のヘッドベース88が対向する第2位置との間で、基板ホルダ32がX軸方向に移動する範囲内で、一対のヘッドベース88のヘッド74a〜74d、すなわち一対のXリニアエンコーダ及び一対のYリニアエンコーダによる基板ホルダ32の位置計測が可能である。図72(A)は、ヘッド74bのみがいずれのスケール2072にも対向していない状態を示し、図72(B)は、ヘッド74cのみがいずれのスケール2072にも対向していない状態を示している。
図72(A)に示される第1位置と図72(B)に示される第2位置との間で基板ホルダ32がX軸方向に移動する過程で、一対のヘッドベース88とスケール2072との位置関係は、図73(A)〜図73(D)にそれぞれ示される第1の状態〜第4の状態と、4つのヘッド74a〜74dの全てが、いずれかのスケール2072の2次元グレーティングRGに対向する(すなわち、4つのヘッド74a〜74dの全てで計測ビームが2次元グレーティングRGに照射される)第5の状態との5つの状態の間で遷移する。以下では、ヘッドがスケール2072の2次元グレーティングRGに対向する、あるいは計測ビームがスケール2072の2次元グレーティングRGに照射されると言う代わりに、単にヘッドがスケールに対向すると表現する。
ここでは、説明の便宜上、6つのスケール2072を取り上げ、各スケールにそれぞれ識別のための記号a〜fを付して、スケール2072a〜2072fと表記する(図73(A)参照)。
図73(A)の第1の状態は、ヘッド74aがスケール2072bに対向し、且つヘッド74c、74dがスケール2072eに対向し、ヘッド74bのみが、いずれのスケールにも対向しない状態を示し、図73(B)の第2の状態は、図73(A)の状態から基板ホルダ32が−X方向に所定距離移動してヘッド74a、74bがスケール2072bに対向し、且つヘッド74dがスケール2072eに対向し、ヘッド74cのみがいずれのスケールにも対向しなくなった状態を示す。図73(A)の状態から図73(B)の状態に遷移する過程で、ヘッド74a、74bがスケール2072bに対向し、且つヘッド74c,74dが、スケール2072eに対向する第5の状態を経由する。
図73(C)の第3の状態は、図73(B)の状態から基板ホルダ32が−X方向に所定距離移動してヘッド74aのみがいずれのスケールにも対向しなくなった状態を示す。図73(B)の状態から図73(C)の状態に遷移する過程で、ヘッド74a、74bがスケール2072bに対向し、且つヘッド74cがスケール2072dに対向し、且つヘッド74dがスケール2072eに対向する第5の状態を経由する。
図73(D)の第4の状態は、図73(C)の状態から基板ホルダ32が−X方向に所定距離移動してヘッド74dのみがいずれのスケールにも対向しなくなった状態を示す。図73(C)の状態から図73(D)の状態に遷移する過程で、ヘッド74aがスケール2072aに対向し、且つヘッド74bがスケール2072bに対向し、且つヘッド74cがスケール2072dに対向し、且つヘッド74dがスケール2072eに対向する第5の状態を経由する。
図73(D)の状態から、基板ホルダ32が所定距離−X方向に移動すると、ヘッド74aがスケール2072aに対向し、且つヘッド74bがスケール2072bに対向し、且つヘッド74c、74dがスケール2072dに対向する第5の状態を経由した後、ヘッド74aがスケール2072aに対向し、且つヘッド74c、74dがスケール2072dに対向し、ヘッド74bのみが、いずれのスケールにも対向しない第1の状態となる。
以上は、基板ホルダ32の±Y側にそれぞれ5つ配置されたスケール2072のうちの各3つのスケール2072と、一対のヘッドベース88との間の状態(位置関係)の遷移についての説明であるが、10のスケール2072と一対のヘッドベース88との間でも、基板ホルダ32の±Y側にそれぞれ配置された5つのスケールのうちの隣接する各3つのスケール2072について見れば、一対のヘッドベース88との位置関係は、上述と同様の順序で遷移する。
このように、本第20の実施形態では、基板ホルダ32がX軸方向に移動されても、2つのXヘッド74x、すなわちヘッド74a、74dと2つのYヘッド74y、すなわちヘッド74b、74cとの合計4つのうちの少なくとも3つが、常にいずれかのスケール2072(2次元グレーティングRG)に対向する。さらに、基板ホルダ32がY軸方向に移動されても、4つのヘッドともY軸方向に関して計測ビームがスケール2072(2次元グレーティングRG)から外れないようにスケール2072の格子領域の幅が設定されているため、4つのヘッドの少なくとも3つが常にいずれかのスケール2072に対向する。したがって、主制御装置100は、常時、ヘッド74a〜74dのうちの3つを用いて、基板ホルダ32のX軸方向、Y軸方向及びθz方向の位置情報を管理することが可能である。以下、この点についてさらに説明する。
Xヘッド74x、Yヘッド74yの計測値を、それぞれCX、CYとすると、計測値C,Cは、それぞれ、次式(1a)、(1b)で表すことができる。
= (p−X)cosθz+(q−Y)sinθz ……(1a)
=−(p−X)sinθz+(q−Y)cosθz ……(1b)
ここで、X、Y、θzは、それぞれ基板ホルダ32のX軸方向、Y軸方向及びθz方向の位置を示す。また、pi、は、ヘッド74a〜74dそれぞれのX位置(X座標値)、Y位置(Y座標値)である。本実施形態では、ヘッド74a、74b、74c、74dそれぞれのX座標値p及びY座標値q(i=1、2、3、4)は、各一対のXヘッド80x及びYヘッド80yとそれに対向するスケール78から出力される計測結果、及び、ヘッドベース1996とスケール72との相対位置関係により算出される。
したがって、基板ホルダ32と一対のヘッドベース88とが図72(A)に示されるような位置関係にあり、このとき基板ホルダ32のXY平面内の3自由度方向の位置が(X、Y、θz)であるものとすると、3つのヘッド74a、74c、74dの計測値は、理論上、次の式(2a)〜(2c)(アフィン変換の関係とも呼ぶ)で表すことができる。
= (p−X)cosθz+(q−Y)sinθz ……(2a)
=−(p−X)sinθz+(q−Y)cosθz ……(2b)
= (p−X)cosθz+(q−Y)sinθz ……(2c)
基板ホルダ32が座標原点(X,Y、θz)=(0,0,0)にある基準状態では、連立方程式(2a)〜(2c)より、C=p,C=q,C=pとなる。基準状態は、例えば投影光学系16による投影領域の中心に、基板ホルダ32中心(基板Pの中心にほぼ一致)が一致し、θz回転がゼロの状態である。したがって、基準状態では、ヘッド74bによる基板ホルダ32のY位置の計測も可能となっており、ヘッド74bによる計測値Cは、式(1b)に従い、C=qとなる。
従って、基準状態において、3つのヘッド74a、74c、74dの計測値を、それぞれp,q,pと初期設定すれば、以降基板ホルダ32の変位(X,Y,θz)に対して、3つのヘッド74a、74c、74dは、式(2a)〜(2c)で与えられる理論値を提示することになる。
なお、基準状態において、ヘッド74a、74c、74dのいずれか1つ、例えばヘッド74cに代えて、ヘッド74bの計測値Cを、qに初期設定しても良い。
この場合には、以降基板ホルダ32の変位(X,Y,θz)に対して、3つのヘッド74a、74b、74dは、式(2a)、(2c)、(2d)で与えられる理論値を提示することになる。
= (p−X)cosθz+(q−Y)sinθz ……(2a)
= (p−X)cosθz+(q−Y)sinθz ……(2c)
=−(p−X)sinθz+(q−Y)cosθz ……(2d)
連立方程式(2a)〜(2c)及び連立方程式(2a)、(2c)、(2d)では、変数が3つ(X,Y,θz)に対して3つの式が与えられている。従って、逆に、連立方程式(2a)〜(2c)における従属変数C,C,C、あるいは連立方程式(2a)、(2c)、(2d)における従属変数C,C,Cが与えられれば、変数X,Y,θzを求めることができる。ここで、近似sinθz≒θzを適用すると、あるいはより高次の近似を適用しても、容易に方程式を解くことができる。従って、ヘッド74a、74c、74d(又はヘッド74a、74b、74d)の計測値C,C,C(又はC,C,C)より基板ホルダ32の位置(X,Y,θz)を算出することができる。
次に、本第20の実施形態に係る液晶露光装置で行われる、基板ホルダ32の位置情報を計測する、基板計測系2070のヘッドの切り換え時におけるつなぎ処理、すなわち計測値の初期設定について、主制御装置100の動作を中心として説明する。
本第20の実施形態では、前述の如く、基板ホルダ32の有効ストローク範囲では常に3つのエンコーダ(Xヘッド及びYヘッド)が基板ホルダ32の位置情報を計測しており、エンコーダ(Xヘッド又はYヘッド)の切り換え処理を行う際には、例えば図74(B)に示されるように、4つのヘッド74a〜74dのそれぞれが、いずれかのスケール2072に対向し、基板ホルダ32の位置を計測可能な状態(前述の第5の状態)となる。図74(B)は、図74(A)に示されるように、ヘッド74a、74b及び74dで基板ホルダ32の位置を計測していた状態から、基板ホルダ32が−X方向に移動して、図74(C)に示されるように、ヘッド74b、74c、74dで基板ホルダ32の位置を計測する状態に遷移する途中で出現する第5の状態の一例を示す。すなわち、図74(B)は、基板ホルダ32の位置情報の計測に用いられる3つのヘッドが、ヘッド74a、74b、74dからヘッド74b、74c、74dに切り換えられている最中の状態を示す。
基板ホルダ32のXY平面内の位置制御(位置情報の計測)に用いられるヘッド(エンコーダ)の切り換え処理(つなぎ)を行おうとする瞬間において、図74(B)に示されるように、ヘッド74a、74b、74c及び74dが、それぞれスケール2072b、2072b、2072d、2072eに対向している。図74(A)から図74(C)を一見すると、図74(B)においてヘッド74aからヘッド74cに切り換えようとしているように見えるが、ヘッド74aとヘッド74cとでは、計測方向が異なることからも明らかなように、つなぎを行おうとするタイミングにおいてヘッド74aの計測値(カウント値)をそのままヘッド74cの計測値の初期値として与えても何の意味もない。
そこで、本実施形態では、主制御装置100が、3つのヘッド74a、74b及び74dを用いる基板ホルダ32の位置情報の計測(及び位置制御)から、3つのヘッド74b、74c、74dを用いる基板ホルダ32の位置情報の計測(及び位置制御)に切り換えるようになっている。すなわち、この方式は通常のエンコーダつなぎの概念とは異なり、あるヘッドから別のヘッドにつなぐというのではなく、3つのヘッド(エンコーダ)の組み合わせから別の3つのヘッド(エンコーダ)の組み合わせにつなぐものである。
主制御装置100は、まず、ヘッド74a、74d及び74bの計測値C,C,Cに基づいて、連立方程式(2a)、(2c)、(2d)を解き、基板ホルダのXY平面内の位置情報(X,Y,θz)を算出する。
次に、主制御装置100は、次式(3)のアフィン変換の式に、上で算出したX,θzを代入して、ヘッド74cの計測値の初期値(ヘッド74cが計測すべき値)を求める。
=−(p−X)sinθz+(q−Y)cosθz ……(3)
上式(3)において、p,qは、ヘッド74cの計測点のX座標値、Y座標値である。本実施形態では、X座標値p及びY座標値qは、前述した通り、各一対のXヘッド80x及びYヘッド80yとそれに対向するスケール78から出力される計測結果、及び、ヘッドベース1996とスケール72との相対位置関係により算出される。
上記初期値Cをヘッド74cの初期値として与えることで、基板ホルダ32の3自由度方向の位置(X,Y,θz)を維持したまま、矛盾なくつなぎが完了することになる。それ以降は、切り換え後に使用するヘッド74b、74c、74dの計測値C,C,Cを用いて、次の連立方程式(2b)〜(2d)を解いて、基板ホルダ32の位置座標(X,Y,θz)を算出する。
=−(p−X)sinθz+(q−Y)cosθz ……(2b)
= (p−X)cosθz+(q−Y)sinθz ……(2c)
=−(p−X)sinθz+(q−Y)cosθz ……(2d)
なお、上では、3つのヘッドから、この3つのヘッドと異なる別のヘッドを1つ含む異なる3つのヘッドへの切り換えについて説明したが、これは切り換え前の3つのヘッドの計測値から求まる基板ホルダ32の位置(X、Y、θz)を用いて、切り換え後に用いられる別のヘッドで計測すべき値を、アフィン変換の原理に基づいて、算出し、その算出した値を、切り換え後に用いられる別のヘッドの初期値として設定しているため、このように説明した。しかしながら、切り換え後に用いられる別のヘッドで計測すべき値の算出等の手順には触れず、切り換え及びつなぎ処理の直接の対象である2つのヘッドにのみ注目すれば、切り換え前に使用している3つのヘッドのうちの1つのヘッドを別の1つのヘッドに切り換えているとも言える。いずれにしても、ヘッドの切り換えは、切り換え前に基板ホルダの位置情報の計測及び位置制御に用いられているヘッドと、切り換え後に用いられるヘッドとが、ともに、いずれかのスケール2072に同時に対向している状態で行われる。
なお、上の説明は、ヘッド74a〜74dの切り換えの一例であるが、いずれの3つのヘッドから別の3つのヘッドへの切り換え、あるいはいずれのヘッドから別のヘッドへの切り換えにおいても、上記の説明と同様の手順でヘッドの切り換えが行われる。
以上説明した本第20の実施形態に係る液晶露光装置は、前述した第1の実施形態と同等の作用効果を奏する。これに加え、本第20の実施形態に係る液晶露光装置によると、基板ホルダ32の駆動中に、基板計測系2070のXヘッド74x(Xリニアエンコーダ)とYヘッド74y(Yリニアエンコーダ)とを少なくとも各1つ含む3つのヘッド(エンコーダ)によりXY平面内における基板ホルダ32の位置情報(θz回転を含む)が計測される。そして、主制御装置100により、XY平面内における基板ホルダ32の位置が切り換えの前後で維持されるように、XY平面内における基板ホルダ32の位置情報の計測に用いるヘッド(エンコーダ)が、切り換え前に基板ホルダ32の位置計測及び位置制御に用いられていた3つのヘッド(エンコーダ)のうちのいずれかのヘッド(エンコーダ)から別のヘッド(エンコーダ)に切り換えられる。このため、基板ホルダ32の位置の制御に用いるエンコーダの切り換えが行われているにもかかわらず、切り換えの前後で基板ホルダ32のXY平面内の位置が維持され、正確なつなぎが可能になる。したがって、複数のヘッド(エンコーダ)間でヘッドの切り換え及びつなぎ(計測値のつなぎ処理)を行いながら、所定の経路に沿って正確に基板ホルダ32(基板P)をXY平面に沿って移動させることが可能になる。
また、本第20の実施形態に係る液晶露光装置によると、例えば基板の露光中、主制御装置100により、基板ホルダ32の位置情報の計測結果と該位置情報の計測に用いられた3つのヘッドのXY平面内における位置情報((X,Y)座標値)とに基づいて、XY平面内で基板ホルダ32が駆動される。この場合、主制御装置100は、アフィン変換の関係を利用してXY平面内における基板ホルダ32の位置情報を算出しながらXY平面内で基板ホルダ32を駆動する。これにより、複数のYヘッド74y又は複数のXヘッド74xをそれぞれ有するエンコーダシステムを用いて基板ホルダ32の移動中に制御に用いるヘッド(エンコーダ)を切り換えながら、基板ホルダ32(基板P)の移動を精度良く制御することが可能になる。
なお、上記第20実施形態において、隣接する一対のスケールの1つから外れて計測ビームが他方のスケールに乗り換えるヘッド(上記別のヘッドに相当)を用いて基板ホルダの移動を制御するための補正情報(前述した別のヘッドの初期値)を、少なくとも1つのスケール2072と対向する3つのヘッドで計測される位置情報に基づいて取得するものとしたが、この補正情報は、別のヘッドの計測ビームが他方のスケールに乗り換えた後で、少なくとも1つのスケール2072と対向する3つのヘッドの1つが2次元グレーティングRGから外れる前までに取得すれば良い。また、少なくとも1つのスケール2072と対向する3つのヘッドを、上記別のヘッドを含む異なる3つのヘッドに切り換えて基板ホルダの位置計測あるいは位置制御を行う場合、その切換は、上記補正情報が取得された後で、少なくとも1つのスケール2072と対向する3つのヘッドの1つが2次元グレーティングRGから外れる前までに行えば良い。なお、補正情報の取得と切換とを実質的に同時に行っても良い。
なお、上記第20の実施形態では、X軸方向(第1方向)に関して、第1格子群の2次元グレーティングRGがない領域(非格子領域)が第2格子群の2次元グレーティングRGがない領域(非格子領域)と重ならないように、言い換えれば、計測ビームが2次元グレーティングRGから外れる非計測期間が4つのヘッドで重ならないように、第1格子群、第2格子群の各5つのスケール2072が基板ホルダ32上に配置されている。この場合、+Y側のヘッドベース88が有するヘッド74a、74bは、X軸方向に関して第1格子群の2次元グレーティングRGのない領域の幅よりも広い間隔で配置され、−Y側のヘッドベース88が有するヘッド74c、74dは、X軸方向に関して第2格子群の2次元グレーティングRGのない領域の幅よりも広い間隔で配置されている。しかしながら、複数の2次元格子を含む格子部とこれに対向可能な複数のヘッドとの組み合わせがこれに限定されるものではない。要は、X軸方向への移動体の移動中、2次元グレーティングRGから計測ビームが外れる(計測不能な)非計測期間が4つのヘッド74a、74b、74c、74dで重ならないように、ヘッド74a、74bの間隔及びヘッド74c、74dの間隔、位置、第1、第2格子群の格子部の位置や長さ又は格子部の間隔やその位置を設定すれば良い。例えば、第1格子群と第2格子群とで、X軸方向に関して非格子領域の位置および幅が同一であっても、第1格子群の少なくとも1つのスケール2072(2次元グレーティングRG)と対向する2つのヘッドと、第2格子群の少なくとも1つのスケール2072(2次元グレーティングRG)と対向する2つのヘッドを、X軸方向に関して非格子領域の幅よりも広い距離だけずらして配置しても良い。この場合、第1格子群と対向する2つのヘッドのうち+X側に配置されるヘッドと、第2格子群と対向する2つのヘッドのうち−X側に配置されるヘッドとの間隔を、非格子領域の幅よりも広い間隔としても良いし、第1格子群と対向する2つのヘッドと、第2格子群と対向する2つのヘッドを、X軸方向に関して交互に配置し、かつ隣接する一対のヘッドの間隔を非格子領域の幅よりも広く設定しても良い。
また、上記第20の実施形態では、基板ホルダ32の+Y側の領域に第1格子群が配置され、かつ基板ホルダ32の−Y側の領域に第2格子群が配置される場合について説明したが、第1格子群及び第2格子群の一方、例えば第1格子群に代えて、X軸方向に延びる2次元格子が形成された単一のスケール部材を用いても良い。この場合において、その単一のスケール部材には、1つのヘッドが常時対向することとしても良い。この場合には、第2格子群に対向して3つのヘッドを設け、該3つのヘッドのX軸方向の間隔(計測ビームの照射位置間の間隔)を、隣接するスケール2072上の2次元グレーティングRG間の間隔より広くすることで、基板ホルダ32のX軸方向の位置によらず、第2格子群に対向する3つのヘッドのうちの少なくとも2つが第2格子群の少なくとも1つの2次元グレーティングRGに対向可能な構成としても良い。あるいは、基板ホルダ32のX軸方向の位置によらず、上記の単一のスケール部材に常時少なくとも2つのヘッドが対向可能な構成を採用し、併せて第2格子群の少なくとも1つの2次元グレーティングRGに少なくとも2つのヘッドが対向可能な構成としても良い。この場合には、その少なくとも2つのヘッドはそれぞれ、X軸方向への基板ホルダ32の移動中、計測ビームが複数のスケール2072(2次元グレーティングRG)の1つから外れるととともに、1つのスケール2072(2次元グレーティングRG)に隣接する別のスケール2072(2次元グレーティングRG)に乗り換えることになる。しかしながら、少なくとも2つのヘッドのX軸方向の間隔を、隣接するスケール2072の2次元グレーティングRGの間隔より広くすることで、少なくとも2つのヘッドで非計測期間が重ならない、すなわち常に少なくとも1つのヘッドで計測ビームがスケール2072に照射される。これらの構成では常に少なくとも3つのヘッドが少なくとも1つのスケール2072と対向して3自由度方向の位置情報を計測可能である。
なお、第1格子群と第2格子群とで、スケールの数、隣接するスケールの間隔などが異なっても良い。この場合、第1格子群と対向する少なくとも2つのヘッドと第2格子群と対向する少なくとも2つのヘッドで、ヘッド(計測ビーム)の間隔、位置などが異なっても良い。
なお、上記第20の実施形態では、単一の2次元グレーティングRG(格子領域)がそれぞれ形成された複数のスケール2072を用いることとしたが、これに限らず、2つ以上の格子領域が、X軸方向に離れて形成されたスケール2072を、第1格子群又は第2格子群の少なくとも一方に含んでいても良い。
なお、上記第20の実施形態では、常に3つのヘッドにより基板ホルダ32の位置(X、Y、θz)を計測、制御するため、同一構成の各5つのスケール2072を含む第1格子群と第2格子群とで、X軸方向に関して所定距離ずらして配置する場合について説明したが、これに限らず、第1格子群と第2格子群とで、X軸方向に関してずらすことなく(互いにほぼ完全に対向してスケール2072の列を配置し)、一方のヘッドベース88と他方のヘッドベース88とで、基板ホルダ32の位置計測用のヘッド(ヘッド74x、74y)の配置をX軸方向に関して異ならせても良い。この場合にも、常に3つのヘッドにより基板ホルダ32の位置(X、Y、θz)を計測、制御することが可能になる。
なお、上記第20の実施形態では、ヘッド74a、74bとヘッド74c、74dとの合計4つのヘッドを用いる場合について説明したが、これに限らず、5つ以上のヘッドを用いることとしても良い。すなわち、第1格子群、第2格子群にそれぞれ対向する各2つのヘッドの少なくとも一方に、少なくとも1つの冗長ヘッドを加えても良い。この構成について以下の第21の実施形態で説明する。
《第21の実施形態》
次に、第21の実施形態について図75に基づいて説明する。本第21の実施形態に係る液晶露光装置の構成は、基板計測系2170の一部の構成を除き、前述の第1及び第20の実施形態と同じなので、以下、相違点についてのみ説明し、第1及び第20の実施形態と同じ構成及び機能を有する要素については、第1及び第20の実施形態と同じ符号を付してその説明を省略する。
図75には、本第21の実施形態に係る基板ホルダ32及び基板計測系2170の一対のヘッドベース88が、投影光学系16とともに平面図にて示されている。図75では、説明をわかり易くするため、Y粗動ステージ24等の図示が省略されている。また、図75では、ヘッドベース88が点線で図示されている。
本第21の実施形態に係る液晶露光装置では、図75に示されるように、基板ホルダ32の基板載置領域を挟んで+Y側、及び−Y側の領域に、それぞれスケール2072がX軸方向に所定間隔で、例えば5つ配置されている。基板載置領域の+Y側に配置された5つのスケール2072と、−Y側の領域に配置された5つのスケール2072では、隣接するスケール2072間の間隔は、同じであり、かつ基板載置領域の+Y側、及び−Y側の各5つのスケール2072同士は、互いに対向して同一のX位置に配置されている。したがって、隣接するスケール2072間の隙間の位置が、ほぼ同一のY軸方向の所定線幅の直線上に位置している。
+Y側に位置する一方のヘッドベース88の下面(−Z側の面)には、スケール2072にそれぞれ対向する状態で、Yヘッド74y、Xヘッド74x及びYヘッド74yの合計3つのヘッドが−X側から順にX軸方向に所定間隔(隣接するスケール2072相互の間隔より大きな距離)離れて固定されている。−Y側に位置する他方のヘッドベース88の下面(−Z側の面)には、スケール2072にそれぞれ対向する状態で、Yヘッド74yとXヘッド74xがX軸方向に所定間隔離れて固定されている。以下では、説明の便宜上、一方のヘッドベース88が有する3つのヘッドを、−X側から順にそれぞれヘッド74e、ヘッド74a、ヘッド74bと呼び、他方のヘッドベース88が有するYヘッド74y、Xヘッド74xを、それぞれヘッド74c、ヘッド74dとも呼ぶものとする。
この場合、ヘッド74aとヘッド74cが、同一のX位置(同一のY軸方向の直線上)に配置され、ヘッド74bとヘッド74dが、同一のX位置(同一のY軸方向の直線上)に配置されている。ヘッド74a、74dとそれぞれ対向する2次元グレーティングRGとによって、一対のXリニアエンコーダが構成され、ヘッド74b、74c、74eとそれぞれ対向する2次元グレーティングRGとによって、3つのYリニアエンコーダが構成されている。
本第21の実施形態に係る液晶露光装置では、その他の部分の構成は、前述の第20の実施形態に係る液晶露光装置と同様になっている。
本第21の実施形態では、+Y側と−Y側のスケール2072の列の配置を、X軸方向に関してずらしていないにも拘らず、一対のヘッドベース88が基板ホルダ32に同期してY軸方向に移動している(又は一対のヘッドベース88とスケール2072の列とが対向する位置で基板ホルダ32のY位置が維持されている)限り、ヘッド74a〜74eのうちの3つが、基板ホルダ32のX位置によらず、常にスケール2072(2次元グレーティングRG)に対向する。
以上説明した本第21の実施形態に係る液晶露光装置は、前述した第20の実施形態に係る液晶露光装置と同様の作用効果を奏する。
なお、上記第21の実施形態は、基板ホルダ32の位置情報計測用の複数のヘッドは、ヘッドの切り換えに必要な4つのヘッド、例えばヘッド74e、74b、74c、74dに加え、その4つのヘッドのうちの1つのヘッド74cと非計測期間が一部重なる1つのヘッド74aを含んでいるとも捉えることができる。そして、本第21の実施形態では、基板ホルダ32の位置情報(X、Y、θz)の計測において、4つのヘッド74e、74b、74c、74dと、1つのヘッド74cと、を含む5つのヘッドのうち、計測ビームが複数の格子領域(2次元グレーティングRG)の少なくとも1つに照射される少なくとも3つのヘッドの計測情報が用いられる。
なお、上記第21の実施形態は、複数のヘッドのうち、少なくとも2つのヘッドで非計測期間が重なる場合、例えば2つのヘッドが同時にスケール2072(格子領域、例えば2次元グレーティングRG)から外れ、同時に隣接するスケール2072(格子領域、例えば2次元グレーティングRG)に乗り換える場合の一例である。この場合、少なくとも2つのヘッドの計測が切れても、計測を継続するために少なくとも3つのヘッドが格子部の格子領域(2次元グレーティング)と対向している必要がある。しかも、その少なくとも3つのヘッドは、計測が切れた少なくとも2つのヘッドの1つ以上が隣接する格子領域に乗り換えるまでは計測が切れないことが前提である。すなわち、非計測期間が重なる少なくとも2つのヘッドがあっても、それに加えて少なくとも3つのヘッドがあれば、格子領域が間隔を空けて配置されていても計測を継続できる。
《第22の実施形態》
次に、第22の実施形態について図76に基づいて説明する。本第22の実施形態に係る液晶露光装置の構成は、図76に示されるように、基板ホルダ32の基板載置領域の+Y側と−Y側にそれぞれ配置されたスケール2072の列が、第21の実施形態と同様に対向配置され、且つ−Y側に位置する一方のヘッドベース88が、前述の第1の実施形態と同様に各2つのXヘッド74x、Yヘッド74yを有している点が、前述の第21の実施形態に係る液晶露光装置の構成と相違するが、その他の部分の構成は第21の実施形態に係る液晶露光装置と同様になっている。
一方のヘッドベース88の下面(−Z側の面)には、Yヘッド74y(ヘッド74c)の−Y側に隣接してXヘッド74x(以下、適宜、ヘッド74eと呼ぶ)が設けられるとともに、Xヘッド74x(ヘッド74d)の−Y側に隣接してYヘッド74y(以下、適宜、ヘッド74fと呼ぶ)が設けられている。
本実施形態に係る液晶露光装置では、一対のヘッドベース88がY軸方向に移動している状態(又は一対のヘッドベース88とスケール2072の列とが対向する位置で基板ホルダ32のY位置が維持されている状態)において、基板ホルダ32のX軸方向の移動に伴い、3つのヘッド74a、74c、74e(第1グループのヘッドと称する)及び3つのヘッド74b,74d、74f(第2グループのヘッドと称する)の一方が、いずれのスケールにも対向しなくなる場合があるが、そのときには、必ず第1グループのヘッドと第2グループのヘッドとの他方が、スケール2072(2次元グレーティングRG)に対向する。すなわち、本第22の実施形態に係る液晶露光装置では、+Y側と−Y側のスケール2072の列の配置を、X軸方向に関してずらしていないにも拘らず、基板ホルダ32のX軸方向への移動において、一対のヘッドベース88がY軸方向に移動している(又は一対のヘッドベース88とスケール2072の列とが対向する位置で基板ホルダ32のY位置が維持されている)限り、第1グループのヘッドと第2グループのヘッドの少なくとも一方に含まれる3つのヘッドによって、基板ホルダ32のX位置によらず、基板ホルダ32の位置(X、Y、θz)の計測が可能になっている。
ここで、例えば第1グループのヘッド(ヘッド74a、74c、74e)がいずれのスケールにも対向しなくなって計測不能となった後に、再度、スケール2072に対向した場合に、それらのヘッド74a、74c、74eを復帰させる(計測を再開させる)場合について考える。この場合、第1グループのヘッド(ヘッド74a、74c、74e)による計測が再開される前の時点では、第2グループのヘッド(ヘッド74b,74d、74f)によって、基板ホルダ32の位置(X、Y、θz)の計測、制御が続行されている。そこで、主制御装置100は、図76に示されるように、一対のヘッドベース88が、+Y側、−Y側にそれぞれ配置された隣接する2つのスケール2072を跨ぎ、第1グループのヘッドと第2グループのヘッドとが、隣接する2つのスケール2072の一方と他方に対向した時点で、前述した第21の実施形態で詳述した手法により、第2グループのヘッド(ヘッド74b,74d、74f)の計測値に基づき、基板ホルダの位置(X、Y、θz)を算出し、この算出した基板ホルダの位置(X、Y、θz)を、前述したアフィン変換の式に代入することで、第1のグループのヘッド(ヘッド74a、74c、74e)の初期値を同時に算出して設定する。これにより、簡単に、第1グループのヘッドを復帰させて、これらのヘッドによる基板ホルダ32の位置の計測、制御を再開させることができる。
以上説明した本第22の実施形態に係る液晶露光装置によると、前述した第21の実施形態に係る液晶露光装置と同様の作用効果を奏する。
《第22の実施形態の変形例》
この変形例は、第22の実施形態に係る液晶露光装置において、+Y側に位置する他方のヘッドベース88として、一方のヘッドベース88と同じ構成(又は紙面上下方向に関して対称な構成)のヘッドユニットが用いられる場合である。
この場合、上述と同様に、同一のY軸方向の直線状に配置された各4つのヘッドが属する第1グループのヘッドと、第2グループのヘッドとに8つのヘッドをグループ分けする。
第1グループのヘッドがいずれのスケールにも対向しなくなって計測不能となった後に、再度、スケール2072に対向した場合に、第1グループのヘッドを復帰させ、それらのヘッドによる計測を再開させる場合について考える。
この場合、第1グループのヘッドによる計測が再開される前の時点では、第2グループのヘッドのうちの3つのヘッドによって、基板ホルダ32の位置(X、Y、θz)の計測、制御が続行されている。そこで、主制御装置100は、前述と同様、一対のヘッドベース88が、+Y側、−Y側にそれぞれ配置された隣接する2つのスケール2072を跨ぎ、第1グループのヘッドと第2グループのヘッドとが、隣接する2つのスケール2072の一方と他方に対向した時点で、第1グループのヘッドそれぞれの計測値の初期値を算出するが、この場合は、第1グループの4つのヘッドの全ての初期値を同時に算出することはできない。その理由は、計測に復帰させるヘッドが3つ(XヘッドとYヘッドとを合わせた数)であれば、前述と同様の手順でそれら3つのヘッドの計測値の初期値を設定した場合に、それらの初期値を前述の計測値C、C、C等として、前述の連立方程式を解くことで、基板ホルダの位置(X、Y、θ)が一意に定まるので、特に問題はない。しかし、基板ホルダの位置(X、Y、θ)を一意に定めることのできる、4つのヘッドの計測値を用いる、アフィン変換の関係を利用した連立方程式を観念できないからである。
そこで、本変形例では、復帰させる第1グループを、別のヘッドをそれぞれ含む3つヘッドが属する、2つのグループにグループ分けし、グループ毎に前述と同様の手法で、3つのヘッドについて、初期値を同時に算出して設定する。初期値の設定後は、いずれかのグループの3つのヘッドの計測値を、基板ホルダ32の位置制御に用いれば良い。位置制御に用いない方のグループのヘッドによる基板ホルダ32の位置計測を、基板ホルダ32の位置制御と並行して実行しても良い。なお、復帰させる第1のグループの各ヘッドの初期値を、前述の手法により、順次個別に算出することも可能である。
上述した第20〜第22の実施形態に係るエンコーダの切り換え(エンコーダ出力のつなぎ)処理は、第2〜第19の実施形態において、基板ホルダの位置計測を粗動ステージ、あるいは計測テーブルを基準に行うエンコーダシステムにも適用可能である。また、上述した第20〜第22の実施形態に係るエンコーダの切り換え(エンコーダ出力のつなぎ)は、第1〜第5、第8〜第15、第18、第19の各実施形態において、粗動ステージの位置計測を光学定盤18aを基準に行うエンコーダシステム、あるいは第6、第7、第16、第17の各実施形態において、計測テーブルの位置計測を光学定盤18aを基準に行うエンコーダシステムにも適用可能である。
なお、以上説明した第1〜第22の各実施形態の構成は、適宜変更が可能である。一例として、上記各実施形態における基板計測系(基板計測系70、270など)は、基板ステージ装置の構成を問わず、物体(上記各実施形態では基板P)を保持する移動体の位置計測に用いることができる。すなわち、上記第1〜第5の実施形態に係る基板ホルダ32のような、基板Pのほぼ全面を吸着保持するタイプの基板ホルダを備える基板ステージ装置に対し、上記第6の実施形態に係る基板計測系670のような、計測テーブル624を介して光学定盤18aを基準に基板ホルダの位置情報を求めるタイプの計測系を適用することも可能である。
また、上記各実施形態に係る計測系と同様の構成の計測系を、基板P以外の計測対象物に適用しても良く、一例として、マスクステージ装置14におけるマスクMの位置計測に、上記基板計測系70などと同様の構成の計測系を用いても良い。特に、国際公開第2010/131485号に開示されるような、マスクをスキャン方向と直交する方向に長ストロークでステップ移動させるマスクステージ装置の計測系には、上記各実施形態に係る計測系を好適に用いることができる。
また、上記第1〜第22の実施形態の基板計測系において、エンコーダヘッド、及びスケールの配置は逆であっても良い。すなわち、基板ホルダの位置情報を求めるためのXリニアエンコーダ、Yリニアエンコーダは、基板ホルダにスケールが取り付けられ、粗動ステージ、あるいは計測テーブルにエンコーダヘッドが取り付けられても良い。その場合、粗動ステージ、あるいは計測テーブルに取り付けられるスケールは、例えばX軸方向に沿って複数配置され、相互に切り換え動作可能に構成されると良い。同様に、粗動ステージ、あるいは計測テーブルの位置情報を求めるためのXリニアエンコーダ、Yリニアエンコーダは、計測テーブルにスケールが取り付けられ、光学定盤18aにエンコーダヘッドが取り付けられても良い。その場合、光学定盤18aに取り付けられるエンコーダヘッドは、例えばY軸方向に沿って複数配置され、相互に切り換え動作可能に構成されると良い。基板ホルダ、及び光学定盤18aにエンコーダヘッドが固定される場合、粗動ステージ、あるいは計測テーブルに固定されるスケールを共通化しても良い。
また、基板計測系において、基板ステージ装置側にX軸方向に延びる1つ又は複数のスケールが固定され、装置本体18側にY軸方向に延びる1つ又は複数のスケールが固定される場合について説明したが、これに限られず、基板ステージ装置側にY軸方向に延びる1つ又は複数のスケール、装置本体18側にX軸方向に延びる1つ又は複数のスケールがそれぞれ固定されても良い。この場合、粗動ステージ、あるいは計測テーブルは、基板Pの露光動作などにおける基板ホルダの移動中にX軸方向に駆動される。
また、複数のスケールが離間して配置される場合、スケールの数は、とくに限定されず、例えば基板Pの大きさ、あるいは基板Pの移動ストロークに応じて適宜変更が可能である。また、長さの異なる複数のスケールを用いても良いし、X軸方向又はY軸方向に並んで配置された複数の格子領域をそれぞれの格子部に含むのであれば、格子部を構成するスケールの数は、特に問わない。
また、計測テーブル、及びその駆動系は、装置本体18の上架台部18aの下面に設けるよう構成しているが、下架台部18cや中架台部18bに設けるようにしても良い。
また、上記各実施形態では、2次元グレーティングが形成されたスケールを用いる場合について説明したが、これに限られず、各スケールの表面にXスケールとYスケールとが独立に形成されても良い。この場合、スケール内において、XスケールとYスケールとの長さを互いに異ならせるようにしても良い。また両者をX軸方向に相対的にずらして配置するようにしても良い。また、回折干渉方式のエンコーダシステムを用いる場合について説明したが、これに限られず、いわゆるピックアップ方式、磁気方式などの他のエンコーダも用いることができ、例えば米国特許第6,639,686号明細書などに開示されるいわゆるスキャンエンコーダなども用いることができる。
なお、上記第20〜第22の実施形態及びその変形例(以下、第22の実施形態と略記する)では、ヘッドを少なくとも4つ設ける場合について説明したが、かかる場合、第1方向に関して並んで配置された複数の格子領域を格子部に含むのであれば、格子部を構成するスケール2072の数は、特に問わない。その複数の格子領域は、基板ホルダ32の基板Pを挟むY軸方向の一側及び他側の両方に配置する必要はなく、一方にのみ配置されていても良い。ただし、少なくとも基板Pの露光動作中、基板ホルダ32の位置(X、Y、θz)を継続して制御するためには、以下の条件を満足する必要がある。
すなわち、少なくとも4つのヘッドのうち1つのヘッドで計測ビームが複数の格子領域(例えば、前述の2次元グレーティングRG)から外れている間、残りの少なくとも3つのヘッドは計測ビームが複数の格子領域の少なくとも1つに照射されるとともに、X軸方向(第1方向)への基板ホルダ32の移動によって、上述の少なくとも4つのヘッドの中で計測ビームが複数の格子領域から外れる上記1つのヘッドが切り換わる。この場合において、少なくとも4つのヘッドは、X軸方向(第1方向)に関して互いに計測ビームの位置(照射位置)が異なる2つのヘッドと、Y軸方向(第2方向)に関して前記2つのヘッドの少なくとも一方と計測ビームの位置が異なるととともに、X軸方向に関して互いに計測ビームの位置(照射位置)が異なる2つのヘッドと、を含み、前記2つのヘッドは、X軸方向に関して、複数の格子領域のうち隣接する一対の格子領域の間隔よりも広い間隔で計測ビームを照射する。
なお、X軸方向に並んだ格子領域(例えば2次元グレーティングRG)の列を、Y軸方向に関して3列以上配置しても良い。例えば、上記第22の実施形態では、−Y側の5つのスケール2072に代えて、その5つのスケール2072のそれぞれをY軸方向に2等分したような面積をそれぞれ有する10個の格子領域(例えば2次元グレーティングRG)から成る、Y軸方向に隣接した2つの格子領域(例えば2次元グレーティングRG)の列を設け、一方の列の2次元グレーティングRGにヘッド74e、74fが対向可能、且つ他方の列の2次元グレーティングRGにヘッド74c、74dが対向可能となるような構成を採用しても良い。また、上記第22の実施形態の変形例では、+Y側の5つのスケール2072についても、上述と同様の10個の格子領域から成る、Y軸方向に隣接した2つの格子領域(例えば2次元グレーティングRG)の列を設け、一方の列の2次元グレーティングRGに一対のヘッドが対向可能、且つ他方の列の2次元グレーティングRGに残りの一対のヘッドが対向可能となるような構成を採用しても良い。
なお、上記第20〜第22の実施形態では、X軸方向(第1方向)への基板ホルダ32の移動において、少なくとも4つのヘッド相互間で、いずれの2つのヘッドについてみても、計測ビームがいずれの2次元グレーティングRGにも照射されない(格子領域から外れる)、すなわちヘッドでの計測が不能となる(非計測区間)が重ならないように、スケール及びヘッドの少なくとも一方の位置あるいは間隔、あるいは位置及び間隔などを設定することが重要である。
なお、上記第20ないし第22の実施形態において、基板ホルダ32の位置情報を計測する各Xヘッド74xに代えて、X軸方向及びZ軸方向を計測方向とするエンコーダヘッド(XZヘッド)を用いるとともに、各Yヘッド74yに代えて、Y軸方向及びZ軸方向を計測方向とするエンコーダヘッド(YZヘッド)を用いても良い。これらのヘッドとしては、例えば米国特許第7,561,280号明細書に開示される変位計測センサヘッドと同様の構成のセンサヘッドを用いることができる。かかる場合には、主制御装置100は、前述のヘッドの切り換え及びつなぎ処理に際して、切り換え前に基板ホルダ32の位置制御に用いられる3つのヘッドの計測値を用いて、所定の演算を行うことで、XY平面内の3自由度方向(X、Y、θz)に関する基板ホルダ32の位置の計測結果の連続性を保証するためのつなぎ処理に加えて、前述と同様の手法により、残りの3自由度方向(Z、θx、θy)に関する基板ホルダ32の位置の計測結果の連続性を保証するためのつなぎ処理をも行っても良い。代表的に第20の実施形態を例にとって具体的に説明すると、主制御装置100は、4つのヘッド74a、74b、74c、74dのうち、計測ビームが1つの2次元グレーティングRG(格子領域)から外れて別の2次元グレーティングRG(格子領域)に乗り換える1つのヘッドを用いて残りの3自由度方向(Z、θx、θy)に関する基板ホルダ32の移動を制御するための補正情報を、残りの3つのヘッドによるZ軸方向(第3方向)の計測情報、あるいはその残りの3つのヘッドを用いて計測される残りの3自由度方向(Z、θx、θy)に関する基板ホルダ32の位置情報に基づいて取得することとすれば良い。
なお、上記第20ないし第22の実施形態において、計測ビームが1つのスケールから外れて別のスケールに乗り換える別のヘッドの初期値を設定するものとしたが、これに限らず、別のヘッドの計測値の補正情報など、別のヘッドを用いて基板ホルダの移動を制御するための補正情報を取得しても良い。別のヘッドを用いて基板ホルダの移動を制御するための補正情報には、初期値は勿論含まれるが、これに限らず、その別のヘッドが計測を再開できるための情報であれば良く、計測再開後に計測すべき値からのオフセット値などでも良い。
なお、上記第1〜第22実施形態において、Z・チルト位置計測系及びエンコーダシステムによって基板計測系を構成するものとしたが、例えばX、Yヘッドの代わりにXZ、YZヘッドを用いることで、エンコーダシステムのみで基板計測系を構成しても良い。
また、上記第17の実施形態において、一対の計測テーブル1782とは別に、X軸方向に関して計測テーブル1782から離れて配置される少なくとも1つのヘッドを設けても良い。例えば、X軸方向に関して投影光学系16から離れて配置され、基板Pのアライメントマークを検出するマーク検出系(アライメント系)に対して±Y側にそれぞれ計測テーブル1782と同じ可動のヘッドユニットを設け、基板マークの検出動作においてマーク検出系の±Y側に配置される一対のヘッドユニットを用いてY粗動ステージ24の位置情報を計測しても良い。この場合、マーク検出動作において、一対の計測テーブル1782で全ての計測ビームがスケール1788(又は684)から外れても、基板計測系(別の一対のヘッドユニット)によるY粗動ステージ24の位置情報の計測が継続可能となり、マーク検出系の位置など、露光装置の設計の自由度を高められる。なお、Z軸方向に関する基板Pの位置情報を計測する基板計測系をマーク検出系の近傍に配置することで、基板のZ位置の検出動作においても基板計測系によるY粗動ステージ24の位置情報の計測が可能となる。または、基板計測系を投影光学系16の近傍に配置し、基板のZ位置の検出動作において一対の計測テーブル1782でY粗動ステージ24の位置情報を計測しても良い。また、本実施形態では、投影光学系16から離れて設定される基板交換位置にY粗動ステージ24が配置されると、一対の計測テーブル1782の全てのヘッドで計測ビームがスケール1788(又は684)から外れる。そこで、基板交換位置に配置されるY粗動ステージ24の複数のスケール1788(又は684)の少なくとも1つと対向する少なくとも1つのヘッド(可動のヘッド又は固定のヘッドのいずれでも良い)を設け、基板交換動作においても基板計測系によるY粗動ステージ24の位置情報の計測を可能としても良い。ここで、Y粗動ステージ24が基板交換位置に到達する前、言い換えれば、基板交換位置に配置される少なくとも1つのヘッドがスケール1788(又は684)に対向する前に、一対の計測テーブル1782の全てのヘッドで計測ビームがスケール1788(又は684)から外れる場合は、Y粗動ステージ24の移動経路の途中に少なくとも1つのヘッドを追加で配置し、基板計測系による基板ホルダ32の位置情報の計測を継続可能としても良い。なお、一対の計測テーブル1782とは別に設けられる少なくとも1つのヘッドを用いる場合、一対の計測テーブル1782の計測情報を用いて前述のつなぎ処理を行っても良い。
同様に、上記第1〜第22実施形態において、各Xヘッド74xに代えて、前述のXZヘッドを用いるとともに、各Yヘッド74yに代えて、前述のYZヘッドを用いても良い。かかる場合において、一対のXZヘッドと一対のYZヘッドと、これらが対向可能なスケールとを含むエンコーダシステムでは、複数のヘッド74x、74yの回転(θz)と傾斜(θx及びθyの少なくとも一方)との少なくとも一方に関する位置情報を計測することとしても良い。
なお、スケール72,78,2072などでは表面に格子が形成される(表面が格子面である)ものとしたが、例えば格子を覆うカバー部材(ガラス又は薄膜など)を設け、格子面をスケールの内部としても良い。
なお、上記第17の実施形態では、各一対のXヘッド80x及びYヘッド80yが、Y粗動ステージ24の位置を計測するためのヘッドとともに、計測テーブル1782に設けられる場合について説明したが、各一対のXヘッド80x及びYヘッド80yは、計測テーブル1782を介することなく、Y粗動ステージ24の位置を計測するためのヘッドに設けられていても良い。
なお、これまでの説明では、基板エンコーダシステムが備える各ヘッドのXY平面内における計測方向が、X軸方向又はY軸方向である場合について説明したが、これに限らず、2次元グレーティングに代えて、XY平面内で、X軸方向及びY軸方向に交差し、かつ互いに直交する2方向(便宜上、α方向、β方向と呼ぶ)を周期方向とする2次元格子を用いても良く、これに対応して前述の各ヘッドとして、α方向(及びZ軸方向)又はβ方向(及びZ軸方向)をそれぞれの計測方向とするヘッドを用いることとしても良い。また、前述の第1の実施形態では、各Xスケール、Yスケールに代えて、例えばα方向、β方向を周期方向とする1次元格子を用いるとともに、これに対応して前述の各ヘッドとして、α方向(及びZ軸方向)又はβ方向(及びZ軸方向)をそれぞれの計測方向とするヘッドを用いることとしても良い。
なお、上記第20〜第22の実施形態において、第1格子群を前述のXスケールの列で構成し、第2格子群を前述のYスケールの列で構成し、これに対応して、Xスケールの列に対向可能に複数のXヘッド(又はXZヘッド)を所定の間隔(隣接するXスケール間の間隔より大きな間隔)で配置するとともに、Yスケールの列に対向可能に複数のYヘッド(又はYZヘッド)を所定の間隔(隣接するYスケール間の間隔より大きな間隔)で配置することとしても良い。
なお、上記第20〜第22の実施形態において、X軸方向又はY軸方向に並んで配置される各スケールとして、長さの異なる複数のスケールを用いても勿論良い。この場合において、周期方向が同じ、あるいは直交するスケールの列を2列以上、並んで設ける場合には、スケール間のスペースが、お互いに重ならないように設定可能な長さのスケールを選択することとしても良い。すなわち、一列のスケール列を構成するスケール間のスペースの配置間隔は、等間隔でなくても良い。また、例えば、粗動ステージ上のスケール列において、X軸方向における両端部寄りにそれぞれ配置されるスケール(スケール列において、各端部に配置されるスケール)のX軸方向の長さよりも、中央部に配置されるスケールの方を物理的に長くしても良い。
なお、上記第6、第7、第16、第17の各実施形態において、計測テーブル用エンコーダは、少なくとも計測テーブルの移動方向(上記実施形態ではY軸方向)の位置情報を計測すれば良いが、移動方向と異なる少なくとも1つの方向(X、Z、θx、θy、θzの少なくとも1つ)の位置情報も計測して良い。例えば、計測方向がX軸方向のヘッド(Xヘッド)のX軸方向の位置情報も計測し、このX情報とXヘッドの計測情報とでX軸方向の位置情報を求めても良い。ただし、計測方向がY軸方向のヘッド(Yヘッド)では、計測方向と直交するX軸方向の位置情報を用いなくても良い。同様に、Xヘッドでは、計測方向と直交するY軸方向の位置情報を用いなくても良い。要は、ヘッドの計測方向と異なる少なくとも1つの方向の位置情報を計測し、この計測情報とヘッドの計測情報とで計測方向に関する基板ホルダ622などの位置情報を求めても良い。また、例えばX軸方向に関して位置が異なる2本の計測ビームを使って可動ヘッドのθz方向の位置情報(回転情報)を計測し、この回転情報と、Xヘッド、及びYヘッドの計測情報とを用いて基板ホルダ622などのX軸、Y軸方向の位置情報を求めても良い。この場合、XヘッドとYヘッドとの一方を2つ、他方を1つ、計測方向が同じ2つのヘッドが計測方向と直交する方向に関して同一位置とならないように配置することで、X、Y、θz方向の位置情報を計測可能となる。もう1つのヘッドは、2つのヘッドと異なる位置に計測ビームを照射すると良い。さらに、可動ヘッド用エンコーダのヘッドがXZヘッド又はYZヘッドであれば、例えばXZヘッドとYZヘッドの一方を2つ、他方を1つ、同一直線上とならないように配置することで、Z情報だけでなくθx及びθy方向の位置情報(傾斜情報)も計測できる。θx及びθy方向の位置情報の少なくとも一方と、Xヘッド、及びYヘッドの計測情報とでX軸、Y軸方向の位置情報を求めても良い。同様に、XZヘッド又はYZヘッドでも、Z軸方向と異なる方向に関する可動ヘッドの位置情報を計測し、この計測情報とヘッド計測情報とでZ軸方向の位置情報を求めても良い。なお、可動ヘッドの位置情報を計測するエンコーダのスケールが単一のスケール(格子領域)であれば、XYθzもZθxθyも3つのヘッドで計測できるが、複数のスケール(格子領域)が離れて配置される場合は、Xヘッド、及びYヘッドを2つずつ、あるいはXZヘッド、及びYZヘッドを2つずつ配置し、4つのヘッドで非計測期間が重ならないようにX軸方向の間隔を設定すれば良い。この説明は、格子領域がXY平面と平行に配置されるスケールを前提としたが、格子領域がYZ平面と平行に配置されるスケールでも同様に適用できる。
また、上記第6、第7、第16、第17の各実施形態において、計測テーブルの位置情報を計測する計測装置としてエンコーダを用いるものとしたが、エンコーダ以外、例えば干渉計などを用いても良い。この場合、例えば可動ヘッド(又はその保持部)に反射面を設け、Y軸方向と平行に計測ビームを反射面に照射すれば良い。特に可動ヘッドがY軸方向のみに移動される場合は反射面を大きくする必要がなく、空気揺らぎを低減するための干渉計ビームの光路の局所的な空調も容易となる。
また、上記第17の実施形態において、Y粗動ステージ24のスケールに計測ビームを照射する可動ヘッドを、Y軸方向に関して投影系の両側に1つずつ設けるものとしたが、複数ずつ可動ヘッドを設けても良い。例えば、Y軸方向に関して複数の可動ヘッドで計測期間が一部重なるように隣接する可動ヘッド(計測ビーム)を配置すれば、Y粗動ステージ24がY軸方向に移動しても、複数の可動ヘッドによって位置計測を継続できる。この場合、複数の可動ヘッドでつなぎ処理が必要となる。そこで、投影系の±Y側の一方のみに配置され、少なくとも1つのスケールに計測ビームが照射される複数のヘッドの計測情報を用いて、計測ビームがスケールに入る別のヘッドに関する補正情報を取得しても良いし、±Y側の一方だけでなく他側に配置される少なくとも1つのヘッドの計測情報を用いても良い。要は、±Y側にそれぞれ配置される複数のヘッドのうち、スケールに計測ビームが照射されている少なくとも3つのヘッドの計測情報を用いれば良い。
また、上記第20〜第22実施形態の基板計測系において、走査露光において基板Pが移動される走査方向(X軸方向)に関して複数のスケール(格子領域)を互いに離して配置するとともに、複数のヘッドを基板Pのステップ方向(Y軸方向)に移動可能としたが、これとは逆に、ステップ方向(Y軸方向)に関して複数のスケールを互いに離して配置するとともに、複数のヘッドを走査方向(X軸方向)に移動可能としても良い。
また、上記第1〜第22実施形態において、エンコーダシステムのヘッドは、光源からのビームをスケールに照射する光学系の全てを有している必要はなく、光学系の一部、例えば射出部のみを有するものとしても良い。
また、上記第20〜第22実施形態において、一対のヘッドベース88のヘッドは図71の配置(Xヘッド及びYヘッドが±Y側にそれぞれ配置されかつ±Y側の一方と他方とでX軸方向に関してX、Yヘッドの配置が逆)に限られるものではなく、例えばXヘッド及びYヘッドが±Y側にそれぞれ配置され、かつ±Y側の一方と他方とでX軸方向に関してX、Yヘッドの配置が同一でも良い。ただし、2つのYヘッドのX位置が同一であると、2つのXヘッドの一方で計測が切れると、θz情報が計測できなくなるため、2つのYヘッドのX位置を異ならせることが好ましい。
また、上記第1〜第22の実施形態において、エンコーダシステムのヘッドから計測ビームが照射されるスケール(スケール部材、格子部)を、投影光学系16側に設ける場合、投影光学系16を支持する装置本体18(フレーム部材)の一部に限らず、投影光学系16の鏡筒部分に設けても良い。
また、上記第1〜第22の実施形態では、走査露光時のマスクM及び基板Pの移動方向(走査方向)がX軸方向である場合について説明したが、走査方向をY軸方向としても良い。この場合、マスクステージの長ストローク方向をZ軸回りに90度回転させた向きに設定するとともに、投影光学系16の向きもZ軸回りに90度回転させるなどする必要がある。
なお、上記第20〜第22の実施形態において、Y粗動ステージ24上において、X軸方向に複数のスケールが、所定間隔の隙間を介しながら連なって配置されたスケール群(スケール列)を、複数列、互いにY軸方向に離れた異なる位置(例えば投影光学系16に対して一方の側(+Y側)の位置と、他方(−Y側)の位置)に配置する場合に、この複数のスケール群(複数のスケール列)を、基板上におけるショットの配置(ショットマップ)に基づいて使い分け出来るように構成しても良い。たとえば、複数のスケール列の全体としての長さを、スケール列間で互いに異ならせておけば、異なるショットマップに対応でき、4面取りの場合と6面取りの場合など、基板上に形成するショット領域の数の変化にも対応できる。またこのように配置すると共に、各スケール列の隙間の位置をX軸方向において互いに異なる位置にすれば、複数のスケール列にそれぞれ対応するヘッドが同時に計測範囲外になることがないので、繋ぎ処理において不定値とされるセンサの数を減らすことができ、繋ぎ処理を高精度に行うことができる。
また、Y粗動ステージ24上で、X軸方向に複数のスケールが、所定間隔の隙間を介しながら連なって配置されたスケール群(スケール列)において、1つのスケール(X軸計測用のパターン)のX軸方向の長さを、1ショット領域の長さ(基板ホルダ上の基板をX軸方向に移動させながらスキャン露光を行う際に、デバイスパターンが照射されて基板上に形成される長さ)分だけ連続して測定できるような長さにしても良い。このようにすれば、1ショット領域のスキャン露光中に、複数スケールに対するヘッドの乗継制御を行わずに済むため、スキャン露光中の基板P(基板ホルダ)の位置計測(位置制御)を容易にできる。
また、上記第1〜第22の実施形態において、基板計測系は、基板ステージ装置が基板ローダとの基板交換位置まで移動する間の位置情報を取得するために、基板ステージ装置又は別のステージ装置に基板交換用のスケールを設け、下向きのヘッドを使って基板ステージ装置の位置情報を取得しても良い。あるいは、基板ステージ装置又は別のステージ装置に基板交換用のヘッドを設け、スケールや基板交換用のスケールを計測することによって基板ステージ装置の位置情報を取得しても良い。
またエンコーダシステムとは別の位置計測系(たとえばステージ上のマークとそれを観察する観察系)を設けてステージの交換位置制御(管理)を行っても良い。
なお、基板ステージ装置は、少なくとも基板Pを水平面に沿って長ストロークで駆動できれば良く、場合によっては6自由度方向の微少位置決めができなくても良い。このような2次元ステージ装置に対しても上記第1〜第22の実施形態に係る基板エンコーダシステムを好適に適用できる。
また、照明光は、ArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)などの紫外光や、F2レーザ光(波長157nm)などの真空紫外光であっても良い。また、照明光としては、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、エルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、固体レーザ(波長:355nm、266nm)などを使用しても良い。
また、投影光学系16が複数本の光学系を備えたマルチレンズ方式の投影光学系である場合について説明したが、投影光学系の本数はこれに限らず、1本以上あれば良い。また、マルチレンズ方式の投影光学系に限らず、オフナー型の大型ミラーを用いた投影光学系などであっても良い。また、投影光学系16としては、拡大系、又は縮小系であっても良い。
また、露光装置の用途としては角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置に限定されることなく、有機EL(Electro-Luminescence)パネル製造用の露光装置、半導体製造用の露光装置、薄膜磁気ヘッド、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるマスク又はレチクルを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも適用できる。
また、露光対象となる物体はガラスプレートに限られず、ウエハ、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。また、露光対象物がフラットパネルディスプレイ用の基板である場合、その基板の厚さは特に限定されず、フィルム状(可撓性を有するシート状の部材)のものも含まれる。なお、本実施形態の露光装置は、一辺の長さ、又は対角長が500mm以上の基板が露光対象物である場合に特に有効である。
液晶表示素子(あるいは半導体素子)などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたマスク(あるいはレチクル)を製作するステップ、ガラス基板(あるいはウエハ)を製作するステップ、上述した各実施形態の露光装置、及びその露光方法によりマスク(レチクル)のパターンをガラス基板に転写するリソグラフィステップ、露光されたガラス基板を現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ガラス基板上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。
なお、上記各実施形態の複数の構成要件は適宜組み合わせることができる。したがって、上述の複数の構成要件のうちの一部が用いられなくても良い。
なお、上記実施形態で引用した露光装置などに関する全ての公報、国際公開、米国特許出願公開明細書及び米国特許明細書などの開示を援用して本明細書の記載の一部とする。
以上説明したように、本発明の移動体装置及び移動方法は、物体を移動するのに適している。また、本発明の露光装置及び露光方法は、物体を露光するのに適している。また、本発明のフラットパネルディスプレイの製造方法は、フラットパネルディスプレイの製造に適している。また、本発明のデバイス製造方法は、マイクロデバイスの製造に適している。
10…液晶露光装置、20…基板ステージ装置、24…Y粗動ステージ、32…基板ホルダ、70…基板計測系、72…上向きスケール、74x…下向きXヘッド、74y…下向きYヘッド、78…下向きスケール、80x…上向きXヘッド、80y…上向きYヘッド、100…主制御装置、P…基板。

Claims (7)

  1. 物体を保持する物体保持部と、
    前記物体保持部を支持する第1ベースと、
    前記物体保持部を、互いに交差する第1方向と第2方向と移動させる駆動部と、
    前記第1ベースとは離間して設けられ、前記駆動部を支持する第2ベースと、
    前記駆動部による前記物体保持部の移動の基準となる基準部材と、
    前記駆動部に対する前記物体保持部の位置情報を、前記物体保持部と前記駆動部との一方に設けられた複数の第1ヘッドと、前記物体保持部と前記駆動部との他方に設けられ、前記第1方向と前記第2方向との計測成分を有し、前記第1方向に関して互いに離れて配置される複数の格子領域により前記物体保持部の前記第1方向に関する移動範囲を計測可能な第1格子部材とによって取得する第1計測系と、
    前記基準部材に対する前記駆動部の位置情報を、前記駆動部と前記基準部材との一方に設けられた第2ヘッドと、前記駆動部と前記基準部材との他方に設けられ、前記第1方向と前記第2方向の計測成分を有し、前記物体保持部の前記第2方向に関する移動範囲を計測可能な第2格子部材とによって取得する第2計測系と、
    前記第1計測系および前記第2計測系のそれぞれの計測系から取得された位置情報に基づいて、前記基準部材に対する前記第1方向と前記第2方向の前記物体保持部の位置を計測する計測部と、を備え、
    前記駆動部は、前記第2ベース上を前記第1方向と前記第2方向とへ移動し、前記計測部の計測結果に基づいて、前記物体保持部を前記第1ベース上で移動させる移動体装置。
  2. 請求項1に記載の移動体装置と、
    前記物体に対してエネルギビームを照射し、前記物体を露光する光学系と、を備える露光装置。
  3. 前記第1方向は、前記露光時に、前記物体保持部により前記物体が前記光学系に対して相対移動される方向である請求項2に記載の露光装置。
  4. 前記第2方向は、複数の区画領域を有する前記物体が、前記露光の対象領域を変更するよう移動される方向である請求項2又は3に記載の露光装置。
  5. 前記物体は、フラットパネルディスプレイに用いられる基板である請求項2〜4のいずれか一項に記載の露光装置。
  6. 請求項5に記載の露光装置において、
    前記基板は、少なくとも一辺の長さ、または対角長が500mm以上であり、フラットパネルディスプレイ用である露光装置。
  7. フラットパネルディスプレイ製造方法であって、
    請求項2〜6のいずれか一項に記載の露光装置を用いて基板を露光することと、
    前記露光された基板を現像することと、を含むフラットパネルディスプレイ製造方法。
JP2020138776A 2016-09-30 2020-08-19 移動体装置、露光装置、及びフラットパネルディスプレイ製造方法 Active JP7028289B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016195222 2016-09-30
JP2016195222 2016-09-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018542938A Division JP6752450B2 (ja) 2016-09-30 2017-09-29 移動体装置、移動方法、露光装置、露光方法、フラットパネルディスプレイの製造方法、並びにデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2020194189A true JP2020194189A (ja) 2020-12-03
JP7028289B2 JP7028289B2 (ja) 2022-03-02

Family

ID=61759891

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018542938A Active JP6752450B2 (ja) 2016-09-30 2017-09-29 移動体装置、移動方法、露光装置、露光方法、フラットパネルディスプレイの製造方法、並びにデバイス製造方法
JP2020138776A Active JP7028289B2 (ja) 2016-09-30 2020-08-19 移動体装置、露光装置、及びフラットパネルディスプレイ製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018542938A Active JP6752450B2 (ja) 2016-09-30 2017-09-29 移動体装置、移動方法、露光装置、露光方法、フラットパネルディスプレイの製造方法、並びにデバイス製造方法

Country Status (6)

Country Link
US (2) US10782619B2 (ja)
JP (2) JP6752450B2 (ja)
KR (2) KR102472753B1 (ja)
CN (2) CN112965345B (ja)
TW (1) TWI758334B (ja)
WO (1) WO2018062497A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318643B1 (ko) * 2016-09-30 2021-10-27 가부시키가이샤 니콘 이동체 장치, 이동 방법, 노광 장치, 노광 방법, 플랫 패널 디스플레이의 제조 방법, 그리고 디바이스 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131766A (ja) * 2006-03-29 2013-07-04 Plastic Logic Ltd 自己整合電極を有するデバイスの作製方法
WO2015147319A1 (ja) * 2014-03-28 2015-10-01 株式会社ニコン 移動体装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び移動体駆動方法
JP2016014881A (ja) * 2007-07-18 2016-01-28 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729331A (en) 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
JP2001215718A (ja) 1999-11-26 2001-08-10 Nikon Corp 露光装置及び露光方法
US6639686B1 (en) 2000-04-13 2003-10-28 Nanowave, Inc. Method of and apparatus for real-time continual nanometer scale position measurement by beam probing as by laser beams and the like of atomic and other undulating surfaces such as gratings or the like relatively moving with respect to the probing beams
JP4751032B2 (ja) * 2004-04-22 2011-08-17 株式会社森精機製作所 変位検出装置
MX2007003252A (es) 2005-03-29 2007-10-11 Nippon Kogaku Kk Aparato expositor, metodo de produccion del mismo y metodo de produccion del micro-dispositivo.
US7515281B2 (en) * 2005-04-08 2009-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5195417B2 (ja) * 2006-02-21 2013-05-08 株式会社ニコン パターン形成装置、露光装置、露光方法及びデバイス製造方法
KR101660668B1 (ko) * 2006-09-01 2016-09-27 가부시키가이샤 니콘 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
WO2008129762A1 (ja) 2007-03-05 2008-10-30 Nikon Corporation 移動体装置、パターン形成装置及びパターン形成方法、デバイス製造方法、移動体装置の製造方法、並びに移動体駆動方法
US7561280B2 (en) 2007-03-15 2009-07-14 Agilent Technologies, Inc. Displacement measurement sensor head and system having measurement sub-beams comprising zeroth order and first order diffraction components
KR101427071B1 (ko) * 2007-07-24 2014-08-07 가부시키가이샤 니콘 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
US8243257B2 (en) * 2007-07-24 2012-08-14 Nikon Corporation Position measurement system, exposure apparatus, position measuring method, exposure method and device manufacturing method, and tool and measuring method
JP2009049377A (ja) * 2007-07-24 2009-03-05 Nikon Corp 移動体駆動システム、露光装置、露光方法、及びデバイス製造方法
US8237916B2 (en) * 2007-12-28 2012-08-07 Nikon Corporation Movable body drive system, pattern formation apparatus, exposure apparatus and exposure method, and device manufacturing method
US8208128B2 (en) * 2008-02-08 2012-06-26 Nikon Corporation Position measuring system and position measuring method, Movable body apparatus, movable body drive method, exposure apparatus and exposure method, pattern forming apparatus, and device manufacturing method
TWI437373B (zh) * 2008-04-30 2014-05-11 尼康股份有限公司 A mounting apparatus, a pattern forming apparatus, an exposure apparatus, a stage driving method, an exposure method, and an element manufacturing method
WO2010032224A2 (en) * 2008-09-22 2010-03-25 Asml Netherlands B.V. Lithographic apparatus, programmable patterning device and lithographic method
TW201100975A (en) 2009-04-21 2011-01-01 Nikon Corp Moving-object apparatus, exposure apparatus, exposure method, and device manufacturing method
WO2010131485A1 (ja) 2009-05-15 2010-11-18 株式会社ニコン 移動体装置、用力伝達装置、及び露光装置、並びにデバイス製造方法
US8446569B2 (en) * 2009-06-19 2013-05-21 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US8514395B2 (en) * 2009-08-25 2013-08-20 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8493547B2 (en) * 2009-08-25 2013-07-23 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8988655B2 (en) 2010-09-07 2015-03-24 Nikon Corporation Exposure apparatus, movable body apparatus, flat-panel display manufacturing method, and device manufacturing method
NL2008272A (en) * 2011-03-09 2012-09-11 Asml Netherlands Bv Lithographic apparatus.
US9360772B2 (en) * 2011-12-29 2016-06-07 Nikon Corporation Carrier method, exposure method, carrier system and exposure apparatus, and device manufacturing method
EP3723111B1 (en) * 2012-10-02 2021-09-08 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
JP2014086560A (ja) * 2012-10-24 2014-05-12 Nikon Corp 較正方法、露光方法、露光装置、及び較正用基板、並びにデバイス製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131766A (ja) * 2006-03-29 2013-07-04 Plastic Logic Ltd 自己整合電極を有するデバイスの作製方法
JP2016014881A (ja) * 2007-07-18 2016-01-28 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法
WO2015147319A1 (ja) * 2014-03-28 2015-10-01 株式会社ニコン 移動体装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び移動体駆動方法

Also Published As

Publication number Publication date
JP7028289B2 (ja) 2022-03-02
KR20210130852A (ko) 2021-11-01
KR20190051050A (ko) 2019-05-14
TWI758334B (zh) 2022-03-21
US10782619B2 (en) 2020-09-22
JPWO2018062497A1 (ja) 2019-06-27
JP6752450B2 (ja) 2020-09-09
TW201823881A (zh) 2018-07-01
WO2018062497A1 (ja) 2018-04-05
CN109791364A (zh) 2019-05-21
US20190371643A1 (en) 2019-12-05
CN112965345B (zh) 2023-05-16
CN109791364B (zh) 2021-04-27
US20210048754A1 (en) 2021-02-18
KR102472753B1 (ko) 2022-11-30
KR102320293B1 (ko) 2021-11-01
CN112965345A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
JP7047876B2 (ja) 移動体装置、移動方法、露光装置、露光方法、フラットパネルディスプレイの製造方法、並びにデバイス製造方法
JP7036171B2 (ja) 移動体装置、移動方法、露光装置、露光方法、フラットパネルディスプレイの製造方法、並びにデバイス製造方法
JP2021056533A (ja) 露光装置及び露光方法、並びにフラットパネルディスプレイ製造方法
JP7028289B2 (ja) 移動体装置、露光装置、及びフラットパネルディスプレイ製造方法
JP7099507B2 (ja) 露光装置、フラットパネルディスプレイ製造方法、及びデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200819

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20201204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7028289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150