JP2020193813A - Physical property measuring device - Google Patents

Physical property measuring device Download PDF

Info

Publication number
JP2020193813A
JP2020193813A JP2019097781A JP2019097781A JP2020193813A JP 2020193813 A JP2020193813 A JP 2020193813A JP 2019097781 A JP2019097781 A JP 2019097781A JP 2019097781 A JP2019097781 A JP 2019097781A JP 2020193813 A JP2020193813 A JP 2020193813A
Authority
JP
Japan
Prior art keywords
power supply
sensor chip
physical property
measuring device
property measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019097781A
Other languages
Japanese (ja)
Other versions
JP7277875B2 (en
Inventor
圭祐 森島
Keisuke Morishima
圭祐 森島
薫 上杉
Kaoru Uesugi
薫 上杉
義之 ▲高▼島
義之 ▲高▼島
Yoshiyuki Takashima
雄太 八上
Yuta Yagami
雄太 八上
長雄 玉川
Nagao Tamagawa
長雄 玉川
剛士 佐藤
Takeshi Sato
剛士 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquatech Ltd
Osaka University NUC
Original Assignee
Aquatech Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquatech Ltd, Osaka University NUC filed Critical Aquatech Ltd
Priority to JP2019097781A priority Critical patent/JP7277875B2/en
Publication of JP2020193813A publication Critical patent/JP2020193813A/en
Application granted granted Critical
Publication of JP7277875B2 publication Critical patent/JP7277875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

To provide a physical property measuring device versatile enough to measure physical properties of various objects with low invasiveness to objects such as cells and microbiological tissues with a simple configuration.SOLUTION: A physical property measuring device 1 includes: a sensor chip 2 for measuring physical properties of an object; a power supply circuit 3 for applying a high-speed pulse current of μs order to the sensor chip 2; and a voltage measurement unit 4 for measuring a voltage of mV order or less at the sensor chip 2. The sensor chip 2 has: a pair of power supply electrodes 22, 23 connected to the power supply circuit 3; a pair of measuring electrodes 24, 25 connected to the voltage measurement unit 4; and a constriction 26 of μm order or less provided between the power supply electrodes 22, 23. The power supply circuit 3 continuously applies a high-speed pulse current to the sensor chip 2 at a predetermined time when the object is in contact with the constriction 26. The voltage measurement unit 4 measures the physical properties of the object from the integral of the voltage at the constriction 26 corresponding to a high-speed pulse current.SELECTED DRAWING: Figure 1

Description

本発明は、細胞や微小生体組織といった対象物の熱物性等の物性を測定する物性測定装置に関する。 The present invention relates to a physical property measuring device for measuring physical properties such as thermophysical properties of an object such as a cell or a microscopic biological tissue.

従来から、対象物の熱物性を測定する方法として、プラチナ等から成る極細の熱線に電流を印加し、時間による熱線の温度上昇を利用して熱伝導度を測定する非定常熱線法(transient hot−wire method)を用いた熱伝導度測定装置が知られている(例えば、特許文献1参照)。この熱伝導度測定装置は、上部板及び下部板の間に設置されたシリンダ内に、上下移動が可能な稼動板を設け、上部板に結合された第1固定手段と、稼動板に設置された第2固定手段とで熱線を固定し、熱線の温度変化からシリンダ内に流入されるナノ流体の熱伝導度を測定する。 Conventionally, as a method for measuring the thermophysical properties of an object, a transient hot wire method (transient hot wire method) in which a current is applied to an ultrafine heat ray made of platinum or the like and the thermal conductivity is measured by utilizing the temperature rise of the heat ray with time. -A thermal conductivity measuring device using a wire method is known (see, for example, Patent Document 1). In this thermal conductivity measuring device, a moving plate capable of moving up and down is provided in a cylinder installed between the upper plate and the lower plate, and a first fixing means connected to the upper plate and a first fixing means installed on the moving plate are provided. 2 The heat ray is fixed by the fixing means, and the thermal conductivity of the nanofluid flowing into the cylinder is measured from the temperature change of the heat ray.

また、基板に一対の電流・電圧端子を配置すると共に、一対の電流・電圧端子間に熱線を配置し、この熱線に直列に標準抵抗を接続し、熱線に対向するように熱溜端子を配置し、熱線の中央部と熱溜端子とを接続するように試料細線を配置した熱伝導率測定装置が知られている(例えば、特許文献2参照)。この熱伝導率測定装置は、熱線と標準抵抗に直流電流を印加したときの熱線及び標準抵抗の両端の電圧を測定して、熱線の加熱量及び平均温度を求め、その結果から試料細線の熱流束及び温度を算出して、試料微細の熱伝導率を測定する。 In addition, a pair of current / voltage terminals are arranged on the board, a heat wire is arranged between the pair of current / voltage terminals, a standard resistor is connected in series with the heat wire, and a heat storage terminal is arranged so as to face the heat wire. However, there is known a thermal conductivity measuring device in which a thin sample wire is arranged so as to connect a central portion of the heat wire and a heat storage terminal (see, for example, Patent Document 2). This thermal conductivity measuring device measures the voltage across the heat ray and the standard resistance when a DC current is applied to the heat ray and the standard resistance, obtains the heating amount and the average temperature of the heat ray, and obtains the heat flow of the sample thin wire from the result. The bundle and temperature are calculated to measure the thermal conductivity of the sample.

特表2013−534322号公報Japanese Patent Application Laid-Open No. 2013-534322 特開2000−352561号公報Japanese Unexamined Patent Publication No. 2000-352561

しかしながら、熱線を用いた熱伝導測定装置では、熱線が適切な張力で配置されていなければ、適正な熱伝導度を測定できないことがあり、例えば、上記特許文献1では、熱線を固定する第1固定手段を上下に移動させる張力調節手段を設けているが、このような機構を設けると装置が複雑化してしまう。また、熱線に電流を印加し、所定の時間をかけて熱線の温度上昇を用いて試料の熱伝導度等を測定する場合には、試料に一定程度の熱が加わることが避けられない。上記特許文献2では、試料が細線なので、一定程度の熱が加わっても影響は少ないが、試料が細胞や微小生体組織である場合には、試料に対する侵襲性が問題となり、多様な対象物の物性を測定することができない。 However, in a heat conduction measuring device using heat rays, it may not be possible to measure appropriate heat conductivity unless the heat rays are arranged at an appropriate tension. For example, in Patent Document 1, the first method of fixing the heat rays A tension adjusting means for moving the fixing means up and down is provided, but if such a mechanism is provided, the device becomes complicated. Further, when a current is applied to a heat ray and the thermal conductivity of the sample is measured by using the temperature rise of the heat ray over a predetermined time, it is inevitable that a certain amount of heat is applied to the sample. In Patent Document 2 above, since the sample is a thin line, there is little effect even if a certain amount of heat is applied, but when the sample is a cell or a microbiological tissue, invasiveness to the sample becomes a problem, and various objects The physical properties cannot be measured.

本発明は、上記課題を解決するものであり、簡易な構成で、細胞や微小生体組織といった対象物に対する侵襲性が低く、多様な対象物の物性を測定することができる汎用性の高い物性測定装置を提供することを目的とする。 The present invention solves the above-mentioned problems, and has a simple structure, is less invasive to objects such as cells and microbiological tissues, and can measure the physical properties of various objects with high versatility. The purpose is to provide the device.

上記目的を達成するため、本発明は、対象物の物性を測定するためのセンサチップと、前記センサチップにmsオーダー以下の高速パルス電流を印加する電源回路と、前記センサチップにおけるmVオーダー以下の電圧を計測する電圧計側部と、を備えた物性測定装置であって、前記センサチップは、前記電源回路と電気的に接続される一対の電源電極と、前記電圧計側部と電気的に接続される一対の計測電極と、前記一対の電源電極間に設けられるμmオーダー以下の狭窄部と、を有し、前記電源回路は、前記狭窄部に対象物が接触しているとき前記高速パルス電流を所定時間に連続的に前記センサチップに印加し、前記電圧計側部は、前記高速パルス電流に対応する前記狭窄部の電圧の積分値から対象物の物性を測定することを特徴とする。 In order to achieve the above object, the present invention comprises a sensor chip for measuring the physical properties of an object, a power supply circuit for applying a high-speed pulse current of ms order or less to the sensor chip, and an mV order or less in the sensor chip. A physical property measuring device including a voltmeter side portion for measuring a voltage, wherein the sensor chip is electrically connected to a pair of power supply electrodes electrically connected to the power supply circuit and the voltmeter side portion. It has a pair of measurement electrodes to be connected and a constriction portion of μm order or less provided between the pair of power supply electrodes, and the power supply circuit has the high-speed pulse when an object is in contact with the constriction portion. A feature is that a current is continuously applied to the sensor chip at a predetermined time, and the voltmeter side portion measures the physical properties of the object from the integrated value of the voltage of the constricted portion corresponding to the high-speed pulse current. ..

また、上記物性測定装置において、前記電圧計側部は、前記所定時間における前記積分値の平均値に基づいて対象物の物性を測定することが好ましい。 Further, in the physical property measuring device, it is preferable that the voltmeter side portion measures the physical property of the object based on the average value of the integrated values in the predetermined time.

また、上記物性測定装置において、前記計測電極は、前記狭窄部の近傍から延出された配線パターンを介して前記電源電極と電気的に接続されていることが好ましい。 Further, in the physical property measuring device, it is preferable that the measuring electrode is electrically connected to the power supply electrode via a wiring pattern extending from the vicinity of the narrowed portion.

また、上記物性測定装置において、前記狭窄部上に配置され、対象物が注入される保持筒を更に備えることが好ましい。 Further, in the physical property measuring device, it is preferable to further include a holding cylinder arranged on the narrowed portion and into which an object is injected.

また、上記物性測定装置において、前記狭窄部上に配置され、対象物が流入される流路を更に備えることが好ましい。 Further, in the physical property measuring device, it is preferable to further include a flow path arranged on the narrowed portion and into which the object flows.

本発明によれば、電源回路によってセンサチップの狭窄部に印加される高速パルス電流は、短時間の微小電流なので、狭窄部から発するジュール発熱による熱量も僅かとなり、狭窄部と接触する対象物への熱による侵襲性も小さくすることができる。また、ジュール発熱に伴う狭窄部の電圧変化が微小値であっても、高速パルス電流が印加される所定時間における積分値から、物性の相違を検出することができる。従って、簡易な構成で、対象物に対する侵襲性が低く、多様な対象物の物性を測定することができる汎用性の高い物性測定装置を得ることができる。 According to the present invention, since the high-speed pulse current applied to the narrowed portion of the sensor chip by the power supply circuit is a minute current for a short time, the amount of heat generated by the Joule heat generated from the narrowed portion is also small, and the object that comes into contact with the narrowed portion is reached. The heat invasiveness can also be reduced. Further, even if the voltage change of the narrowed portion due to Joule heat generation is a minute value, the difference in physical properties can be detected from the integrated value at a predetermined time when the high-speed pulse current is applied. Therefore, it is possible to obtain a highly versatile physical property measuring device capable of measuring the physical properties of various objects with a simple configuration and having low invasiveness to the object.

本発明の一実施形態に係る物性測定装置の概略構成を示す図。The figure which shows the schematic structure of the physical property measuring apparatus which concerns on one Embodiment of this invention. 上記物性測定装置に用いられるセンサチップの平面図。The plan view of the sensor chip used for the said physical property measuring apparatus. (a)は図2の一点鎖線部の拡大図、(b)は(a)の二点鎖線部の拡大図(A) is an enlarged view of the alternate long and short dash line portion of FIG. 2, and (b) is an enlarged view of the alternate long and short dash line portion of FIG. (a)乃至(e)は上記センサチップの作成工程を示す図。(A) to (e) are diagrams showing the manufacturing process of the sensor chip. 上記センサチップに保持筒を取り付けた構成を示す斜視図。The perspective view which shows the structure which attached the holding cylinder to the said sensor chip. 上記物性測定装置の概略的な回路構成を示す図。The figure which shows the schematic circuit structure of the said physical property measuring apparatus. 上記物性測定装置の具体的な回路構成と、実行される処理を示す図。The figure which shows the specific circuit structure of the said physical property measuring apparatus, and the processing to be executed. (a)は上記物性測定装置の動作において、高速パルス電流の電流波形の変化を示す図、(b)は抵抗温度の変化を示す図、(c)は電圧波形の変化を示す図、(d)は電圧から積分値と、その平均値を求めるための数式を示す図。(A) is a diagram showing a change in the current waveform of a high-speed pulse current in the operation of the physical property measuring device, (b) is a diagram showing a change in the resistance temperature, and (c) is a diagram showing a change in the voltage waveform, (d). ) Is a diagram showing the integrated value from the voltage and the mathematical formula for obtaining the average value. (a)は対象物が液体(水)である場合の動作を説明するための図、(b)は対象物が細胞である場合の動作を説明するための図。(A) is a diagram for explaining the operation when the object is a liquid (water), and (b) is a diagram for explaining the operation when the object is a cell. 上記実施形態の変形例であり、狭窄部上に流路が設けられた構成を示す斜視図。It is a modification of the above-described embodiment, and is a perspective view showing a configuration in which a flow path is provided on a narrowed portion.

以下、本発明の一実施形態に係る物性測定装置について、図面を参照して説明する。図1に示すように、物性測定装置1は、対象物の物性を測定するためのセンサチップ2と、センサチップ2に高速パルス電流を印加する電源回路3と、センサチップ2における微電圧を計測する電圧計側部4と、を備える。 Hereinafter, the physical property measuring device according to the embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the physical property measuring device 1 measures a sensor chip 2 for measuring the physical properties of an object, a power supply circuit 3 for applying a high-speed pulse current to the sensor chip 2, and a minute voltage in the sensor chip 2. The voltmeter side portion 4 is provided.

センサチップ2は、ヒートシンク5上に、後述する電極が設けられた面を上面にして載置される。また、ヒートシンク5は、水冷用のチラー6と接続され、センサチップ2は定温に維持される。センサチップ2の各電極には電極パッドが配置され、それらの電極パットと繋がれた導線3a、3b、4a、4bを介して、センサチップ2は、電源回路3及び電圧計側部4と夫々によって電気的に接続される。また、センサチップ2の略中央には、対象物が注入される保持筒7が配置される。 The sensor chip 2 is placed on the heat sink 5 with the surface provided with the electrodes described later facing up. Further, the heat sink 5 is connected to the water cooling chiller 6, and the sensor chip 2 is maintained at a constant temperature. An electrode pad is arranged on each electrode of the sensor chip 2, and the sensor chip 2 is connected to the power supply circuit 3 and the voltmeter side 4 via the conducting wires 3a, 3b, 4a, and 4b connected to the electrode pads, respectively. Is electrically connected by. Further, a holding cylinder 7 into which an object is injected is arranged substantially in the center of the sensor chip 2.

電源回路3は、商用電源を受けてセンサチップ2への入力電源を生成し、矩形波に変換して出力することができるパルス電源回路を備えたものであり、本実施形態では、msオーダー以下、好ましくはμsオーダーの高速パルス電流を印加することができるものが用いられる。 The power supply circuit 3 is provided with a pulse power supply circuit capable of receiving a commercial power supply, generating an input power supply to the sensor chip 2, converting it into a square wave, and outputting the power supply circuit. A device capable of applying a high-speed pulse current on the order of μs is preferably used.

電圧計側部4には、アナログ―デジタル変換回路を用いて電流、電圧、抵抗としった測定値をモニタにデジタル数字で表示するデジタルマルチメータ(DMM)と、DMMで計測されたデータを計算、解析等を行うためのソフトウェアを実行するデバイス(パーソナルコンピュータ等、不図示)が用いられる。なお、本実施形態のDMMには、直流電圧計として、mVオーダー以下、好ましくはμVオーダーの微電圧を計測することができるものが用いられる。 On the side 4 of the voltmeter, a digital multimeter (DMM) that displays the measured values of current, voltage, and resistance as digital numbers on a monitor using an analog-to-digital conversion circuit, and the data measured by the DMM are calculated. A device (personal computer, etc., not shown) that executes software for performing analysis or the like is used. As the DMM of the present embodiment, a DC voltmeter capable of measuring a minute voltage of mV order or less, preferably μV order is used.

図2及び図3に示すように、センサチップ2は、基板21と、基板21上に形成され電源回路3と電気的に接続される一対の電源電極22、23と、基板21上に形成され電圧計側部4と電気的に接続される一対の計測電極24、25と、基板21上に形成され一対の電源電極22、23間に設けられるμmオーダー以下の狭窄部26と、を有する。基板21は、ガラスであり、電源電極22、23、計測電極24、25、狭窄部26は、いずれも、例えば、μmオーダー以下、好ましくはnmオーダーの厚みで成膜された金属材料により形成される。金属材料としては、細胞や生体計測が可能なように、生体適合性が高い金属、例えば、金(Au)が好適に用いられる。また、対象物が生体材料ではない場合には、安価なニッケル(Ni)等が用いられてもよい。なお、狭窄部26は、微細な構造であり、図2では殆ど確認できず、図3(a)(b)に示される。 As shown in FIGS. 2 and 3, the sensor chip 2 is formed on the substrate 21, a pair of power electrode 22 and 23 formed on the substrate 21 and electrically connected to the power supply circuit 3, and the substrate 21. It has a pair of measurement electrodes 24 and 25 electrically connected to the voltmeter side portion 4 and a constriction portion 26 of μm order or less formed on the substrate 21 and provided between the pair of power supply electrodes 22 and 23. The substrate 21 is glass, and the power supply electrodes 22 and 23, the measuring electrodes 24 and 25, and the narrowed portion 26 are all formed of a metal material formed with a thickness of, for example, μm or less, preferably nm. To. As the metal material, a metal having high biocompatibility, for example, gold (Au), is preferably used so that cells and biometric measurements can be performed. Further, when the object is not a biomaterial, inexpensive nickel (Ni) or the like may be used. The narrowed portion 26 has a fine structure and can hardly be confirmed in FIG. 2, and is shown in FIGS. 3 (a) and 3 (b).

電源電極22、23は、電極パッドが配置される一対のパッド部22a、23aが、基板21の2隅に所定の間隔を空けて、相対的に大きな面積で設けられている。また、各パッド部22a、23aの内側辺の中央寄りの位置から、夫々延出部22b、23bが設けられている。延出部22b、23bの互いに向かい合う辺の間隔は、μmオーダーである。そして、狭窄部26は、延出部22b、23bの互いに向かい合う辺を架橋するように形成される。狭窄部26の長さLは、延出部22b、23bの間隔に等しく、例えば、5〜30μmであり、より好ましくは、10〜15μmである。また、狭窄部26の幅Wは、例えば、1〜15μmであり、より好ましくは、2〜6μmである。狭窄部26の厚みは、電源電極22、23と等しく、例えば、10〜50nmであり、より好ましくは、20〜30nmである。 The power supply electrodes 22 and 23 are provided with a pair of pad portions 22a and 23a on which electrode pads are arranged, with a relatively large area at two corners of the substrate 21 at predetermined intervals. Further, extending portions 22b and 23b are provided from positions near the center of the inner sides of the pad portions 22a and 23a, respectively. The distance between the extending portions 22b and 23b facing each other is on the order of μm. The narrowed portion 26 is formed so as to bridge the opposite sides of the extending portions 22b and 23b. The length L of the narrowed portion 26 is equal to the distance between the extending portions 22b and 23b, for example, 5 to 30 μm, and more preferably 10 to 15 μm. The width W of the narrowed portion 26 is, for example, 1 to 15 μm, more preferably 2 to 6 μm. The thickness of the narrowed portion 26 is equal to that of the power supply electrodes 22 and 23, for example, 10 to 50 nm, and more preferably 20 to 30 nm.

計測電極24、25は、電極パッドが配置される一対のパッド部24a、25aが、基板21のうち、電源電極22、23のパッド部22a、23aとは対峙する2隅に所定の間隔を空けて設けられている。また、計測電極24、25のパッド部24a、25aは、電源電極22、23に比べて、互いに離れて設けられ、配線パターン24b、25bを介して電源電極22、23と電気的に接続されている。ここで、電源電極22、23のうち計測電極24、25側の辺は、狭窄部26に向けて掘り込まれており、配線パターン24b、25bが狭窄部26の近傍から延出された形状となっている。配線パターン24b、25bが狭窄部26の近傍から延出されることにより、電圧計側部4により、狭窄部26の微細な電圧変化を計測することができる。 The measurement electrodes 24 and 25 have a pair of pad portions 24a and 25a on which electrode pads are arranged at predetermined intervals at two corners of the substrate 21 facing the pad portions 22a and 23a of the power electrode 22 and 23. It is provided. Further, the pad portions 24a and 25a of the measurement electrodes 24 and 25 are provided apart from each other as compared with the power supply electrodes 22 and 23, and are electrically connected to the power supply electrodes 22 and 23 via the wiring patterns 24b and 25b. There is. Here, the sides of the power supply electrodes 22 and 23 on the measurement electrodes 24 and 25 are dug toward the narrowed portion 26, and the wiring patterns 24b and 25b have a shape extending from the vicinity of the narrowed portion 26. It has become. Since the wiring patterns 24b and 25b extend from the vicinity of the narrowed portion 26, the voltmeter side portion 4 can measure a minute voltage change in the narrowed portion 26.

センサチップ2は、図4に示すように、一般的なフォトリソグラフィ技術及びウェットエッチングにより作製される。まず、図4(a)に示すように、ガラス製の基板21上に所定膜厚でニッケル層20Aがめっき等により成膜された基材が用意される。次に、図4(b)に示すように、ニッケル層20A上に感光性樹脂等によるフォトレジスト層20Bが形成される。そして、図4(c)に示すように、フォトレジスト層20B上に、電源電極22、23、計測電極24、25、狭窄部26といった電極パターンに対応するように紫外線を照射することで、紫外線が照射された部分のフォトレジスト層20Bが除去される。 As shown in FIG. 4, the sensor chip 2 is manufactured by a general photolithography technique and wet etching. First, as shown in FIG. 4A, a base material in which a nickel layer 20A is formed by plating or the like with a predetermined film thickness on a glass substrate 21 is prepared. Next, as shown in FIG. 4B, a photoresist layer 20B made of a photosensitive resin or the like is formed on the nickel layer 20A. Then, as shown in FIG. 4C, the photoresist layer 20B is irradiated with ultraviolet rays so as to correspond to the electrode patterns such as the power supply electrodes 22 and 23, the measuring electrodes 24 and 25, and the narrowed portion 26. The photoresist layer 20B of the portion irradiated with is removed.

続いて、図4(d)に示すように、ウェットエッチングにより、フォトレジスト層20Bから露出したニッケル層20Aが溶融除去される。最後に、紫外線で残ったフォトレジスト層20Bを除去することで、図4(e)に示すように、基板21上に所望の電極パターンの形状に対応したニッケル層20Aを設けることができる。 Subsequently, as shown in FIG. 4D, the nickel layer 20A exposed from the photoresist layer 20B is melt-removed by wet etching. Finally, by removing the photoresist layer 20B remaining by ultraviolet rays, as shown in FIG. 4 (e), a nickel layer 20A corresponding to the shape of the desired electrode pattern can be provided on the substrate 21.

なお、1枚のガラス製の基板21上に、複数の電極パターンが形成されるように紫外線を照射し、最後のフォトレジスト層20Bの除去後に、各電極パターン毎に基板21を分割すれば、一度の製造工程で多数の同じセンサチップ2を製造することができる。従って、上述したフォトリソグラフィ技術及びウェットエッチングを用いて作製すれば、微細な狭窄部26を有するセンサチップ2を、容易に大量生産することができ、測定対象毎に使い切りできるような安価なセンサチップ2を得ることができる。このようにして作製されたセンサチップ2は、図5に示すように、狭窄部26を覆うように、且つ電源電極22、23及び計測電極24、25の電極パッドが配置される箇所には被らないにように、保持筒7が配置される。 If the substrate 21 is irradiated with ultraviolet rays so that a plurality of electrode patterns are formed on one glass substrate 21, and the substrate 21 is divided for each electrode pattern after the final photoresist layer 20B is removed, the substrate 21 can be divided. A large number of the same sensor chips 2 can be manufactured in one manufacturing process. Therefore, if it is manufactured by using the above-mentioned photolithography technique and wet etching, the sensor chip 2 having a fine constriction portion 26 can be easily mass-produced, and an inexpensive sensor chip that can be used up for each measurement target. 2 can be obtained. As shown in FIG. 5, the sensor chip 2 produced in this manner covers the narrowed portion 26 and covers the locations where the electrode pads of the power supply electrodes 22 and 23 and the measuring electrodes 24 and 25 are arranged. The holding cylinder 7 is arranged so as not to be.

図6は、物性測定装置1の概略的な回路構成を示す。まず、定電流電源I(電源回路3)から、試料(物性を測定する対象部)と接触する可変抵抗R(狭窄部26)に、微量な高速パルス電流が印加される。このとき、可変抵抗Rは、ジュール発熱し、発熱によって抵抗の温度が上昇することから、印加電圧も上昇する。この印加電圧を、積分回路を経て積分値として出力する。 FIG. 6 shows a schematic circuit configuration of the physical property measuring device 1. First, a small amount of high-speed pulse current is applied from the constant current power supply I (power supply circuit 3) to the variable resistor R (narrowed portion 26) in contact with the sample (target portion for measuring physical properties). At this time, the variable resistor R generates heat in Joule, and the temperature of the resistor rises due to the heat generation, so that the applied voltage also rises. This applied voltage is output as an integrated value via an integrator circuit.

図7は、図6よりも具体的な物性測定装置1の回路構成と、物性測定装置1(主に電源回路3)によって実行される処理を示す。励起・検知(Excitation&Detection)回路は、定電流電源Iによるセンサ抵抗Rs、標準抵抗Rfの電圧降下を測定する。センサ抵抗Rsの測定では、試料による電極の温度変化を測定する。また、標準抵抗Rfの測定では試料の影響を除いた、抵抗値が既知である抵抗を測定する。なお、ここでの、電圧変化はμVオーダーとなる。参照信号(Reference signal)回路は、センサ抵抗Rs及び標準抵抗Rfを使わずに、電圧の読み取り自体の精度を評価する。バッファー(Buffer)回路は、ボルテージフォロワ回路であり、検知された電圧を変えることなく、電流のみ増幅する。積分(Integration)回路は、一般的なRC積分回路であり、バッファー回路から流れてくる電流を貯めて、微小な変化をDMM(電圧計側部4)で検出可能とする。 FIG. 7 shows a circuit configuration of the physical property measuring device 1 which is more specific than that of FIG. 6, and a process executed by the physical property measuring device 1 (mainly the power supply circuit 3). The excitation & detection circuit measures the voltage drop of the sensor resistance Rs and the standard resistance Rf due to the constant current power supply I. In the measurement of the sensor resistance Rs, the temperature change of the electrode due to the sample is measured. Further, in the measurement of the standard resistance Rf, the resistance whose resistance value is known is measured excluding the influence of the sample. The voltage change here is on the order of μV. The reference signal circuit evaluates the accuracy of the voltage reading itself without using the sensor resistors Rs and standard resistors Rf. The Buffer circuit is a voltage follower circuit that amplifies only the current without changing the detected voltage. The integration circuit is a general RC integration circuit, and stores the current flowing from the buffer circuit so that minute changes can be detected by the DMM (voltmeter side 4).

ここで、物性測定装置1の動作について、図6で示した概略的な回路構成と併せて、図8を参照して説明する。まず、電源回路3は、狭窄部26が物性を測定する対象部と接触しているときに、図8(a)に示すような、高速パルス電流を、所定時間に連続的にセンサチップ2に印加する。ここで、高速パルス電流のパルス周期は、5000μs〜10000μsである。また、高速パルス電流のパルス幅は、例えば、0.1〜20μsであり、好ましくは、0.4〜10μsである。高速パルス電流の高速パルス電流を連続的に印加する所定時間は、例えば、1〜20sであり、高速パルス電流印加回数nは200〜500回である。また、高速パルス電流の電流値は、例えば、1〜15mAであり、好ましくは、3〜10mAである。 Here, the operation of the physical property measuring device 1 will be described with reference to FIG. 8 together with the schematic circuit configuration shown in FIG. First, the power supply circuit 3 continuously applies a high-speed pulse current as shown in FIG. 8A to the sensor chip 2 at a predetermined time when the narrowed portion 26 is in contact with the target portion for measuring physical properties. Apply. Here, the pulse period of the high-speed pulse current is 5000 μs to 10000 μs. The pulse width of the high-speed pulse current is, for example, 0.1 to 20 μs, preferably 0.4 to 10 μs. The predetermined time for continuously applying the high-speed pulse current of the high-speed pulse current is, for example, 1 to 20 s, and the number of times the high-speed pulse current is applied n is 200 to 500 times. The current value of the high-speed pulse current is, for example, 1 to 15 mA, preferably 3 to 10 mA.

このとき、狭窄部26は、微小電流により僅かなジュール発熱し、図8(b)に示すように、抵抗温度が上昇し、図8(c)に示すように、電圧も上昇する。ここで、狭窄部26は、対象物に接触しているので、抵抗温度の上昇具合は、試料の熱物性に依存して異なり、電圧の上昇具合もまた、試料の熱物性に依存して異なることになる。つまり、狭窄部26(抵抗)の電圧値を計測することで、狭窄部26と接触する対象物の熱物性を測定することができる。 At this time, the narrowed portion 26 generates a small amount of Joule heat due to a minute current, the resistance temperature rises as shown in FIG. 8 (b), and the voltage also rises as shown in FIG. 8 (c). Here, since the narrowed portion 26 is in contact with the object, the degree of increase in resistance temperature differs depending on the thermophysical properties of the sample, and the degree of increase in voltage also differs depending on the thermophysical properties of the sample. It will be. That is, by measuring the voltage value of the narrowed portion 26 (resistance), the thermophysical properties of the object in contact with the narrowed portion 26 can be measured.

また、本実施形態では、図8(d)に示すように、電圧計側部4では、高速パルス電流に対応する狭窄部26の電圧の積分値を測定し、更に、上記の所定時間における積分値の平均値に基づいて、対象物の熱物性を測定する。なお、図8(d)中の数式におけるVsは狭窄部26の電圧の積分値であり、C、Rは、図7に示した積分回路のコンデンサCの静電容量と、抵抗Riの抵抗値であり、Voutputが電圧計側部4に出力される積分値の平均値である。 Further, in the present embodiment, as shown in FIG. 8D, the voltmeter side portion 4 measures the integrated value of the voltage of the constricted portion 26 corresponding to the high-speed pulse current, and further integrates at the above-mentioned predetermined time. The thermophysical properties of the object are measured based on the mean value of the values. In the mathematical formula in FIG. 8D, Vs is the integrated value of the voltage of the constricted portion 26, and C and R are the capacitance of the capacitor C of the integrating circuit shown in FIG. 7 and the resistance value of the resistor Ri. This is the average value of the integrated values output to the voltmeter side 4 by Voutput.

本実施形態によれば、電源回路3によって狭窄部26に印加される高速パルス電流は、短時間の微小電流なので、狭窄部から発するジュール発熱による熱量も僅かとなり、狭窄部26と接触する対象物への熱による侵襲性も小さくすることができる。また、ジュール発熱に伴う狭窄部26の電圧変化が微小値であっても、高速パルス電流が印加される所定時間における積分値とすることで読み取り可能な差とすることができ、更に積分値の平均値を用いることで、ノイズを除去し、正確に物性の相違を検出することができる。 According to the present embodiment, since the high-speed pulse current applied to the narrowed portion 26 by the power supply circuit 3 is a minute current for a short time, the amount of heat generated by the Joule heat generated from the narrowed portion is also small, and the object in contact with the narrowed portion 26. The invasiveness due to heat to the heat can also be reduced. Further, even if the voltage change of the narrowed portion 26 due to Joule heat generation is a minute value, it can be made a readable difference by making it an integral value at a predetermined time when a high-speed pulse current is applied, and further, the integrated value By using the average value, noise can be removed and the difference in physical properties can be detected accurately.

ここで、物性の相違と電圧変化の関係について、図9を参照して説明する。図9(a)における試料は、液体(例えば、水)であり、図9(b)における試料は、細胞である。
水は、細胞に比べて熱伝導率が大きいと予測される。そのため、狭窄部26の表面からの熱の伝わり方が早く、抵抗温度が小さくなるので、電圧変化も小さくなる。一方、細胞は、水に比べて熱伝導率が小さいと予測される。そのため、狭窄部26の表面からの熱の伝わり方が遅く、抵抗温度が大きくなるので、電圧変化も大きくなる。つまり、電圧変化を計測すれば、対象物の熱伝導率を逆算することができる。図9では、水と細胞の例を挙げたが、正常な細胞と異常な細胞でも、熱伝導率に相違が生じることが知られており、本実施形態の物性測定装置1によれば、生体内における細胞異常を検出することも可能となる。
Here, the relationship between the difference in physical properties and the change in voltage will be described with reference to FIG. The sample in FIG. 9 (a) is a liquid (eg, water) and the sample in FIG. 9 (b) is a cell.
Water is expected to have a higher thermal conductivity than cells. Therefore, heat is quickly transferred from the surface of the narrowed portion 26, and the resistance temperature is reduced, so that the voltage change is also small. On the other hand, cells are predicted to have lower thermal conductivity than water. Therefore, the heat is transferred slowly from the surface of the narrowed portion 26, and the resistance temperature becomes large, so that the voltage change also becomes large. That is, if the voltage change is measured, the thermal conductivity of the object can be calculated back. In FIG. 9, examples of water and cells are given, but it is known that there is a difference in thermal conductivity between normal cells and abnormal cells, and according to the physical property measuring device 1 of the present embodiment, raw cells It is also possible to detect cell abnormalities in the body.

また、電圧変化は、熱伝導率以外にも、試料の比熱の濃度、粘度等とも相関があるので、それらの相関に関するデータを蓄積することで、熱伝導率以外に、狭窄部26の電圧変化を計測することで、狭窄部26と接触する対象物の様々な物性を測定することも可能となる。なお、本実施形態の物性測定装置1によれば、1μV以上の電圧を計測できれば、5.0×10−4[K]の微小な温度変化を計測することができる。このような微小な温度変化であれば、対象物への熱による侵襲性は殆ど無視できる。また、対象物は、固体・液体・気体のいずれにも適用するこができる。従って、多様な対象物の物性を測定することができる汎用性の高い物性測定装置を得ることができる。 In addition to the thermal conductivity, the voltage change also correlates with the concentration and viscosity of the specific heat of the sample. Therefore, by accumulating data on these correlations, the voltage change of the constricted portion 26 other than the thermal conductivity It is also possible to measure various physical properties of the object in contact with the narrowed portion 26 by measuring. According to the physical property measuring device 1 of the present embodiment, if a voltage of 1 μV or more can be measured, a minute temperature change of 5.0 × 10-4 [K] can be measured. With such a small temperature change, the heat invasiveness to the object can be almost ignored. In addition, the object can be applied to any of solid, liquid, and gas. Therefore, it is possible to obtain a highly versatile physical property measuring device capable of measuring the physical properties of various objects.

図10は、上記実施形態の変形例であり、狭窄部26上に、保持筒7に替えて、対象物が流入される流路8を設けたものである。流路8は、液体である対象物の注入口81と、排出口82と、注入口81及び排出口82の各下端部と夫々連通した管状部材83と、から成る。なお、図例では、電源電極22、23、計測電極24、25、狭窄部26を点線で示している。管状部材83は、センサチップ2と対向する面のうち、少なくとも狭窄部26上が開口しており、管状部材83を流れる液体が直接的に狭窄部26と接触する。 FIG. 10 is a modification of the above embodiment, in which a flow path 8 through which an object flows is provided in place of the holding cylinder 7 on the narrowed portion 26. The flow path 8 includes an injection port 81 for a liquid object, a discharge port 82, and a tubular member 83 that communicates with each lower end of the injection port 81 and the discharge port 82, respectively. In the illustrated example, the power supply electrodes 22 and 23, the measurement electrodes 24 and 25, and the narrowed portion 26 are shown by dotted lines. The tubular member 83 has at least an opening on the narrowed portion 26 of the surfaces facing the sensor chip 2, and the liquid flowing through the tubular member 83 comes into direct contact with the narrowed portion 26.

流路8を流れる液体の流量が大きいと、狭窄部26で発生した熱の拡散が早いので、抵抗温度は小さくなり、狭窄部26の電圧値も小さくなり、これとは逆に、流路8を流れる液体の流量が小さいと、狭窄部26で発生した熱の拡散が遅いので、抵抗温度は大きくなり、狭窄部26の電圧値も大きくなる。つまり、狭窄部26の電圧値を計測すれば、流路8を流れる液体の流量を計測することができる。すなわち、本変形例の物性測定装置1は、流量測定装置としても用いることができる。 When the flow rate of the liquid flowing through the flow path 8 is large, the heat generated in the narrowed portion 26 diffuses quickly, so that the resistance temperature becomes small and the voltage value of the narrowed portion 26 also becomes small. On the contrary, the flow path 8 When the flow rate of the liquid flowing through the narrowed portion 26 is small, the heat generated in the narrowed portion 26 diffuses slowly, so that the resistance temperature becomes large and the voltage value of the narrowed portion 26 also becomes large. That is, if the voltage value of the narrowed portion 26 is measured, the flow rate of the liquid flowing through the flow path 8 can be measured. That is, the physical property measuring device 1 of this modification can also be used as a flow rate measuring device.

なお、本発明は、センサチップ2の一対の電源電極22、23間に、μmオーダーの狭窄部26を設け、電源回路3から狭窄部26に高速パルス電流を所定時間に連続的に印加し、電圧計側部4で、高速パルス電流に対応する狭窄部26の電圧の積分値を計測し、この計測値から対象物の物性を測定するものであれば、上記実施形態の構成に限られず、種々の変形が可能である。上記実施形態において、センサチップ2は、基板21上に2次元的に電源電極22、23、計測電極24、25、狭窄部26が形成された構成を示したが、例えば、先端が先細りとなった棒状部材の先端部に狭窄部26が設けられ、電源電極22、23、計測電極24、25は、軸部側に3次元的に形成されていてもよい。この構成によれば、先端部の狭窄部26を対象物に当接させる又は突き刺す等によっても、その対象物の物性を測定することが可能となる。 In the present invention, a constriction portion 26 on the order of μm is provided between the pair of power supply electrodes 22 and 23 of the sensor chip 2, and a high-speed pulse current is continuously applied from the power supply circuit 3 to the constriction portion 26 at a predetermined time. As long as the integrated value of the voltage of the constriction portion 26 corresponding to the high-speed pulse current is measured by the voltmeter side portion 4 and the physical properties of the object are measured from this measured value, the configuration is not limited to the above embodiment. Various modifications are possible. In the above embodiment, the sensor chip 2 has a configuration in which the power supply electrodes 22 and 23, the measurement electrodes 24 and 25, and the narrowed portion 26 are two-dimensionally formed on the substrate 21, but the tip is tapered, for example. A narrowed portion 26 may be provided at the tip end portion of the rod-shaped member, and the power supply electrodes 22 and 23 and the measuring electrodes 24 and 25 may be three-dimensionally formed on the shaft portion side. According to this configuration, it is possible to measure the physical properties of the object by bringing the narrowed portion 26 at the tip into contact with or piercing the object.

1 物性測定装置
2 センサチップ
22、23 電源電極
24、25 計測電極
24b、25b 配線パターン
26 狭窄部
3 電源回路
4 電圧計側部
7 保持筒
8 流路
1 Physical property measuring device 2 Sensor chips 22, 23 Power supply electrodes 24, 25 Measuring electrodes 24b, 25b Wiring pattern 26 Constriction part 3 Power supply circuit 4 Voltmeter side 7 Holding cylinder 8 Flow path

Claims (5)

対象物の物性を測定するためのセンサチップと、前記センサチップにmsオーダー以下の高速パルス電流を印加する電源回路と、前記センサチップにおけるmVオーダー以下の電圧を計測する電圧計側部と、を備えた物性測定装置であって、
前記センサチップは、前記電源回路と電気的に接続される一対の電源電極と、前記電圧計側部と電気的に接続される一対の計測電極と、前記一対の電源電極間に設けられるμmオーダー以下の狭窄部と、を有し、
前記電源回路は、前記狭窄部に対象物が接触しているとき前記高速パルス電流を所定時間に連続的に前記センサチップに印加し、
前記電圧計側部は、前記高速パルス電流に対応する前記狭窄部の電圧の積分値から対象物の物性を測定することを特徴とする物性測定装置。
A sensor chip for measuring the physical properties of an object, a power supply circuit for applying a high-speed pulse current of ms order or less to the sensor chip, and a voltmeter side portion for measuring a voltage of mV order or less in the sensor chip. It is a physical property measuring device equipped with
The sensor chip is provided between a pair of power supply electrodes electrically connected to the power supply circuit, a pair of measurement electrodes electrically connected to the side of the voltmeter, and a pair of power supply electrodes on the order of μm. Has the following constrictions,
The power supply circuit continuously applies the high-speed pulse current to the sensor chip at a predetermined time when the object is in contact with the narrowed portion.
The voltmeter side portion is a physical property measuring device characterized in that the physical properties of an object are measured from an integrated value of the voltage of the narrowed portion corresponding to the high-speed pulse current.
前記電圧計側部は、前記所定時間における前記積分値の平均値に基づいて対象物の物性を測定することを特徴とする請求項1に記載の物性測定装置。 The physical property measuring device according to claim 1, wherein the voltmeter side portion measures the physical properties of an object based on an average value of the integrated values in the predetermined time. 前記計測電極は、前記狭窄部の近傍から延出された配線パターンを介して前記電源電極と電気的に接続されていることを特徴とする請求項1又は請求項2に記載の物性測定装置。 The physical property measuring device according to claim 1 or 2, wherein the measuring electrode is electrically connected to the power supply electrode via a wiring pattern extending from the vicinity of the narrowed portion. 前記狭窄部上に配置され、対象物が注入される保持筒を更に備えることを特徴とする請求項1乃至請求項3のいずれか一項に記載の物性測定装置。 The physical property measuring apparatus according to any one of claims 1 to 3, further comprising a holding cylinder that is arranged on the constricted portion and into which an object is injected. 前記狭窄部上に配置され、対象物が流入される流路を更に備えることを特徴とする請求項1乃至請求項4のいずれか一項に記載の物性測定装置。
The physical property measuring apparatus according to any one of claims 1 to 4, further comprising a flow path into which an object flows, which is arranged on the narrowed portion.
JP2019097781A 2019-05-24 2019-05-24 Physical property measuring device Active JP7277875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019097781A JP7277875B2 (en) 2019-05-24 2019-05-24 Physical property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019097781A JP7277875B2 (en) 2019-05-24 2019-05-24 Physical property measuring device

Publications (2)

Publication Number Publication Date
JP2020193813A true JP2020193813A (en) 2020-12-03
JP7277875B2 JP7277875B2 (en) 2023-05-19

Family

ID=73545949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019097781A Active JP7277875B2 (en) 2019-05-24 2019-05-24 Physical property measuring device

Country Status (1)

Country Link
JP (1) JP7277875B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201148A (en) * 1985-03-04 1986-09-05 Richo Seiki Kk Structure for supporting heating element
JPS62220850A (en) * 1986-03-24 1987-09-29 Ricoh Seiki Kk Atmosphere detector
JP2013228346A (en) * 2012-03-25 2013-11-07 Mitsuteru Kimura Thermal conductivity sensor using time integration of output, hydrogen gas sensor using the same, absolute humidity sensor, and thermal conductivity sensor chip
US20160033435A1 (en) * 2012-05-10 2016-02-04 Industry-Academic Cooperation Foundation, Yonsei University Method of measuring biological sample properties and biological sample property measuring apparatus
JP2019039734A (en) * 2017-08-24 2019-03-14 学校法人東北学院 Ion biosensor chip, ion biosensor module and ion biosensor using them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201148A (en) * 1985-03-04 1986-09-05 Richo Seiki Kk Structure for supporting heating element
JPS62220850A (en) * 1986-03-24 1987-09-29 Ricoh Seiki Kk Atmosphere detector
JP2013228346A (en) * 2012-03-25 2013-11-07 Mitsuteru Kimura Thermal conductivity sensor using time integration of output, hydrogen gas sensor using the same, absolute humidity sensor, and thermal conductivity sensor chip
US20160033435A1 (en) * 2012-05-10 2016-02-04 Industry-Academic Cooperation Foundation, Yonsei University Method of measuring biological sample properties and biological sample property measuring apparatus
JP2019039734A (en) * 2017-08-24 2019-03-14 学校法人東北学院 Ion biosensor chip, ion biosensor module and ion biosensor using them

Also Published As

Publication number Publication date
JP7277875B2 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
US4723908A (en) Dielectric probe; method and apparatus including its use
CN104237823B (en) Method for effectively verifying probe card abnormality
Bera et al. Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomography
EP1990612B1 (en) Device for two-dimensional measuring of the velocity field in flows
TW200538724A (en) Chemical-sensing devices
JP2006501472A5 (en)
EP2634588B1 (en) System and method for testing electrical circuits using a photoelectrochemical effect
CA2648768A1 (en) Thermoconductimetric analyzer for soldering process improvement
JP2011524981A (en) Method and apparatus for detection and / or measurement of fouling in a heat exchanger
JP6416600B2 (en) measuring device
JP2020193813A (en) Physical property measuring device
Addabbo et al. On the suitability of low-cost compact instrumentation for blood impedance measurements
JP6692077B2 (en) Body fluid viscosity measurement device
Lin et al. Autonomous wearable sweat rate monitoring based on digitized microbubble detection
EP1021704B1 (en) Process for detecting condensations on surfaces
KR100829932B1 (en) Device for Measuring Thrombogenic Potential of Blood and Method using the same
KR100334131B1 (en) Apparatus for measuring thermal properties of a material surface and applying to thermomechanical modification using a peltier tip
Lyons et al. A method for the accurate determination of the thermal product (ρck) 1/2 for thin film heat transfer or surface thermocouple gauges
JP2011214907A (en) Energization test cassette used for energization test of nucleic acid concentration quantitative analyzing apparatus, and energization test method
JP2004191213A (en) Method and apparatus for calibrating temperature of thermal analyzer and thermal analyzer
JP5390779B2 (en) Connection quality inspection device and connection quality inspection method
JPH01201147A (en) Method and device for measuring heat conductivity and thermistor
KR102186466B1 (en) Micro probe for measuring electrical conductivity and flow rate of sap, and measuring device with the same
RU2784681C2 (en) Apparatus for measuring the thermophysical properties of plastic materials
JP2008170259A (en) Evaluating substrate of thermoelectric material, and package/collective evaluation device for the thermoelectric material

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7277875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150