JP2020193111A - Member having diamond film, method for manufacturing the same and method for smoothing diamond film - Google Patents

Member having diamond film, method for manufacturing the same and method for smoothing diamond film Download PDF

Info

Publication number
JP2020193111A
JP2020193111A JP2019097750A JP2019097750A JP2020193111A JP 2020193111 A JP2020193111 A JP 2020193111A JP 2019097750 A JP2019097750 A JP 2019097750A JP 2019097750 A JP2019097750 A JP 2019097750A JP 2020193111 A JP2020193111 A JP 2020193111A
Authority
JP
Japan
Prior art keywords
diamond coating
diamond
diamond film
manufacturing
smoothing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019097750A
Other languages
Japanese (ja)
Other versions
JP7212579B2 (en
Inventor
プルワディ ラハルジョ
Raharjo Purwadi
ラハルジョ プルワディ
植村 賢介
Kensuke Uemura
賢介 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP2019097750A priority Critical patent/JP7212579B2/en
Publication of JP2020193111A publication Critical patent/JP2020193111A/en
Application granted granted Critical
Publication of JP7212579B2 publication Critical patent/JP7212579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a method for manufacturing a member having a high smoothing speed and including a diamond film having high surface smoothness, and a method for smoothing the diamond film.SOLUTION: The method for manufacturing a member having a diamond film includes the step of reducing the surface roughness of the diamond film by adding scratch motion to the surface of the diamond film using a mass body without dissolving in an acid solution forming an OH radical and a CH3 radical while applying an electric field to the surface of the member including the diamond film and used as an anode in the acid solution. The method for smoothing the diamond film is also provided.SELECTED DRAWING: Figure 1

Description

本発明は、高い表面平滑性を有するダイヤモンド被膜付き部材およびその製造方法ならびにダイヤモンド被膜の平滑化方法に関する。 The present invention relates to a member with a diamond coating having high surface smoothness, a method for producing the same, and a method for smoothing the diamond coating.

気相合成法(CVD)で成膜された多結晶ダイヤモンド(PCD)被膜は表面粗さによる凹凸が大きく、ダイヤモンド被膜を表面に備えた部材と他の部材とが擦れる態様で使用される場合、ダイヤモンド被膜表面の凹部に異物が混入し、ダイヤモンド被膜が表面に存在する異物の機械的作用によって必然的に破壊される。従って、CVDで成膜された多結晶ダイヤモンド被膜の表面粗さを小さくする、つまり被膜を平滑化することは、このような破壊を防止する効果がある。このような平滑化は、例えば、メカニカルシールの固定リング、ウェハのメカノケミカル研磨装置(MCP)に応用され、長寿命化が期待できる。 When the polycrystalline diamond (PCD) coating film formed by the vapor phase synthesis method (CVD) has large irregularities due to surface roughness and is used in such a manner that a member having the diamond coating film on the surface and another member rub against each other. Foreign matter enters the recesses on the surface of the diamond coating, and the diamond coating is inevitably destroyed by the mechanical action of the foreign matter present on the surface. Therefore, reducing the surface roughness of the polycrystalline diamond film formed by CVD, that is, smoothing the film has an effect of preventing such destruction. Such smoothing is applied to, for example, a fixing ring for a mechanical seal and a mechanochemical polishing apparatus (MCP) for a wafer, and can be expected to extend the service life.

メカニカルシールの固定リングに関する従来技術として特許文献1、ダイヤモンドの単結晶や薄膜の平滑化に関する従来技術として非特許文献2〜6が挙げられる。 Patent Document 1 is a prior art technique relating to a fixing ring of a mechanical seal, and Non-Patent Documents 2 to 6 are examples of a prior art technique relating to smoothing a single crystal or a thin film of diamond.

特許文献1には、メカニカルシールの2つの揺動面のうち、一方は炭化ケイ素(SiC)にダイヤモンド被膜を有する固定リング(1)、他方は炭素複合材料製の回転リング(2)であるメカニカルシール装置が開示されている。固定リング(1)の平均初期粗さ(Ra1)が回転リング(2)の平均初期粗さ(Ra2)より50%小さく、Ra1は0.01〜0.06μmである事が述べられている。また、固定リング(1)のダイヤモンド被膜にはボロン(B)ドーパントを含み、導電性を有することが述べられている。
通常のメカニカルシール装置では、固定リングと回転リングの摺動運動で発生する非常に高い静電気が、放電破壊を起こすことが知られており(非特許文献1)、特許文献1に記載のメカニカルシール装置では、ダイヤモンド被膜に導電性を持たせることで固定リングの放電現象を防ぐことができ、長寿命化が期待される。メカニカルシールの流体が純水あるいは超純水の場合は、流体の抵抗値が高く、摺動運動により発生する正電荷が固定リングの放電破壊を防ぐのに非常に有効な手段であり、発電用循環水、半導体洗浄用循環水において高い効果が認められる。
しかしながら、メカニカルシールの流体が工業用排水、油性流体などの場合、流体中に多くの残渣、いわゆるスラッジ、金属残渣を含有しており、これらがダイヤモンド被膜上に張り付き、メカニカルシールの稼働開始から程なくトライボロジー的あるいは機械的破壊を起こすことから、ダイヤモンド被膜の更なる平滑化が求められている。
In Patent Document 1, of the two rocking surfaces of the mechanical seal, one is a fixing ring (1) having a diamond coating on silicon carbide (SiC), and the other is a rotating ring (2) made of a carbon composite material. The sealing device is disclosed. The average initial roughness (R a 1) of the fixed ring (1) is 50% smaller than the average initial roughness (R a 2) of the rotating ring (2), and R a 1 is 0.01 to 0.06 μm. Is stated. Further, it is stated that the diamond coating of the fixing ring (1) contains a boron (B) dopant and has conductivity.
In a normal mechanical seal device, it is known that extremely high static electricity generated by the sliding motion of the fixing ring and the rotating ring causes electric discharge failure (Non-Patent Document 1), and the mechanical seal described in Patent Document 1 In the device, by making the diamond coating conductive, it is possible to prevent the discharge phenomenon of the fixing ring, and it is expected that the service life will be extended. When the fluid of the mechanical seal is pure water or ultrapure water, the resistance value of the fluid is high, and the positive charge generated by the sliding motion is a very effective means to prevent the discharge destruction of the fixed ring, and is for power generation. High effect is observed in circulating water and circulating water for cleaning semiconductors.
However, when the fluid of the mechanical seal is industrial wastewater, oil-based fluid, etc., the fluid contains a large amount of residue, so-called sludge, and metal residue, which stick to the diamond coating and soon after the operation of the mechanical seal starts. Further smoothing of the diamond coating is required because it causes tribological or mechanical fracture.

また、ダイヤモンドウェハに代表される単結晶ダイヤモンドの超平滑化加工に関してはいくつかの報告例がある。複数の単結晶ダイヤモンドを接合した10mm角程度のモザイクウェハの超平滑化関しても同様である。
非特許文献2では、ダイヤモンドの禁制帯幅(バンドギャップ)が5.47eVである事から、この等価波長より短い波長のUV(紫外線)をダイヤモンドの表面に照射し、ダイヤモンドの表面炭素をガス化することで平滑化する方法が開示されている。また、非特許文献3において、紫外線援用研磨による多結晶ダイヤモンドの超精密加工について開示されている。紫外線を援用したダイヤモンドの平滑化では、表面粗さ0.8nmRaと非常に高い平滑性が得られている。しかし、紫外線を援用した研磨方法では、砥石を用いた定圧研削法による前処理が必要である。また、定圧研削法による研磨速度は10μm/hと十分高いが、紫外線照射面積が1cm2程度と小さく、径が数十cm単位になるメカニカルシールの経済的な研磨には応用が難しい。
In addition, there are some reported examples of ultra-smoothing processing of single crystal diamond represented by diamond wafer. The same applies to the ultra-smoothing of a mosaic wafer of about 10 mm square in which a plurality of single crystal diamonds are bonded.
In Non-Patent Document 2, since the forbidden band width (band gap) of diamond is 5.47 eV, the surface of diamond is irradiated with UV (ultraviolet) having a wavelength shorter than this equivalent wavelength, and the surface carbon of diamond is gasified. A method of smoothing by doing so is disclosed. Further, Non-Patent Document 3 discloses ultra-precision processing of polycrystalline diamond by ultraviolet-assisted polishing. In the smoothing of diamond using ultraviolet rays, a very high smoothness with a surface roughness of 0.8 nm Ra is obtained. However, in the polishing method using ultraviolet rays, pretreatment by a constant pressure grinding method using a grindstone is required. The polishing speed by the constant pressure grinding method is sufficiently high at 10 μm / h, but it is difficult to apply it to economical polishing of mechanical seals having a small ultraviolet irradiation area of about 1 cm 2 and a diameter of several tens of cm.

非特許文献4では、石英ガラス砥石を用い、プラズマ照射を援用した研磨法で、3mm×4mmの単結晶CVDダイヤモンドウェハに対し、400℃に加熱保持、プラズマを照射しながら8時間研磨した結果、平滑度の改善と表面粗さを0.349nm rmsから0.178nm rmsに低減できたことが報告されている。
上記方法もダイヤモンドの平滑化に優れた方法であるが、メカニカルシールへの経済的な研磨には適応が難しい。
In Non-Patent Document 4, a polishing method using a quartz glass grindstone and using plasma irradiation was used to heat and hold a 3 mm × 4 mm single crystal CVD diamond wafer at 400 ° C. and polish it for 8 hours while irradiating plasma. It has been reported that the smoothness was improved and the surface roughness could be reduced from 0.349 nm rms to 0.178 nm rms.
The above method is also an excellent method for smoothing diamond, but it is difficult to apply it to economical polishing of mechanical seals.

その他、ダイヤモンド原石を研磨する場合には、スカイフと呼ばれる鋳鉄でできた円盤を高速で回転させ、ダイヤモンドパウダーを砥粒としてダイヤモンドの表面を削るスカイフ法が旧態の方式として知られているが、ダイヤモンド砥粒を使用するため、加工変質層の発生が避けられない。 In addition, when polishing rough diamond, the Skyf method, in which a disk made of cast iron called Skyf is rotated at high speed and the surface of diamond is ground using diamond powder as abrasive grains, is known as an old method. Since abrasive grains are used, it is inevitable that a work-affected layer will be generated.

非特許文献5および非特許文献6によれば、高濃度ボロンがドーピングされたダイヤモンド(BDD,Boron−doped Diamond)被膜電極が酢酸(CH3COOH)溶液中での電気分解により正電荷を印加された場合、低濃度ボロンドーピングされたダイヤモンド電極に比べて電解腐食を呈することが述べられている。本発明における腐食の意味については後述する。
電気分解によるダイヤモンド被膜の腐食は、酢酸水溶液(CH3COOH)、プロピオン酸(CH3CH2COOH)中で観察されたが、他の有機物、例えばギ酸(HCOOH)、グルコース、メタノールなどでは観察されなかった。
また、電気分解した後、酢酸溶液中では、メチルラジカル(CH3)の生成が検出された。これは電気分解により生成したOHラジカルが酢酸と反応し、CH3ラジカルが生成すると考えられる。CH3ラジカルがBDD表面に存在しているC−OH官能基と反応し、ダイヤモンド被膜の表面に存在する混成軌道sp3結合を有する炭素を、混成軌道sp2結合を有する炭素に構造変化することが、非特許文献5で述べられており、本発明ではこの現象を腐食という。
According to Non-Patent Document 5 and Non-Patent Document 6, a high-concentration boron-doped diamond (BDD, Boron-topped Diamond) coated electrode is positively charged by electrolysis in an acetic acid (CH 3 COOH) solution. If so, it is stated that it exhibits electrolytic corrosion as compared to low-concentration boron-doped diamond electrodes. The meaning of corrosion in the present invention will be described later.
Corrosion of the diamond film due to electrolysis was observed in acetic acid aqueous solution (CH 3 COOH) and propionic acid (CH 3 CH 2 COOH), but was also observed in other organic substances such as formic acid (HCOOH), glucose and methanol. There wasn't.
In addition, after electrolysis, the formation of methyl radicals (CH 3 ) was detected in the acetic acid solution. It is considered that the OH radical generated by electrolysis reacts with acetic acid to generate CH 3 radical. The CH 3 radical reacts with the C-OH functional group present on the surface of the BDD to structurally change the carbon having the hybrid orbital sp 3 bond existing on the surface of the diamond coating to the carbon having the hybrid orbital sp 2 bond. However, it is described in Non-Patent Document 5, and in the present invention, this phenomenon is referred to as corrosion.

特許第6,046,858号公報Japanese Patent No. 6,046,858

Kazuo Murakami, Yasuhiro Dosho, Kensuke Uemura and Hiroshi Kimura, Concrete Demolition and Surface Scraping using High Voltage Pulse Discharge, Journal of Advanced Concrete Technology, volume 16 (2018) pp 358-367Kazuo Murakami, Yasuhiro Dosho, Kensuke Uemura and Hiroshi Kimura, Concrete Demolition and Surface Scraping using High Voltage Pulse Discharge, Journal of Advanced Concrete Technology, volume 16 (2018) pp 358-367 坂本武司、紫外線を用いた先進的研磨法の実用化に関する研究、熊本大学学術リポジトリ、2014-03-25Takeshi Sakamoto, Research on Practical Use of Advanced Polishing Method Using Ultraviolet Light, Kumamoto University Academic Repository, 2014-03-25 中野貴之、三好 瑛、峠 睦、渡邉純二、紫外線援用研磨によるPCDの超精密加工、砥粒加工学会誌 vol.53 No.4 2008 APR. 242-247Takayuki Nakano, Ei Miyoshi, Mutsumi Toge, Junji Watanabe, Ultra-precision machining of PCD by UV-aided polishing, Journal of Abrasive Grain Machining vol.53 No.4 2008 APR. 242-247 道上久也、田畑雄壮、遠藤勝義、山村和也、山田英明、茶谷原昭義、杢野由明、大気圧プラズマプロセスをベースとした単結晶CVDダイヤモンドウェハの平滑化・平滑化、第22回「精密工学会 学生会員卒業研究発表講演会論文集」2015 P11 pp89-90Hisaya Michigami, Yuso Tabata, Katsuyoshi Endo, Kazuya Yamamura, Hideaki Yamada, Akiyoshi Chatanihara, Yoshiaki Masino, Smoothing and smoothing of single crystal CVD diamond wafers based on atmospheric pressure plasma process, 22nd "Precision Engineering Society" Student Member Graduation Research Presentation Lecture Proceedings ”2015 P11 pp89-90 Takeshi Kashiwada, Takeshi Watanabe, Yusuke Ootani, Yoshitaka Tateyama, and Yasuaki Einaga, A Study on Electrolytic Corrosion of Boron-Doped Diamond Electrodes when Decomposing organic Compounds, ACS APPLIED MATERIALS & INERFACES, 2016,8,28299-28305Takeshi Kashiwada, Takeshi Watanabe, Yusuke Ootani, Yoshitaka Tateyama, and Yasuaki Einaga, A Study on Electrolytic Corrosion of Boron-Doped Diamond Electrodes when Decomposing organic Compounds, ACS APPLIED MATERIALS & INERFACES, 2016,8,28299-28305 Brian P. Chaplin, David K. Hubler, James Farrell, Understanding anodic wear at boron doped diamond film electrodes, Electrochimica Acta 89 (2013) 122- 131.Brian P. Chaplin, David K. Hubler, James Farrell, Understanding anodic wear at boron doped diamond film electrodes, Electrochimica Acta 89 (2013) 122- 131.

前述のような非特許文献2〜4に開示されている技術では、平滑化されたダイヤモンド被膜を機械部品等に適用するには多大なコストと時間が必要であった。本発明者が鋭意検討したところ、BDD表面に存在する混成軌道sp2結合の炭素原子を機械的擦過により、前述した従来手法より速い速度でダイヤモンド被膜の平滑化が実現することに至った。 In the techniques disclosed in Non-Patent Documents 2 to 4 as described above, a great deal of cost and time are required to apply the smoothed diamond coating to mechanical parts and the like. As a result of diligent studies by the present inventor, it has been achieved that the carbon atom of the hybrid orbital sp 2 bond existing on the surface of the BDD is mechanically scraped to smooth the diamond film at a speed faster than that of the conventional method described above.

本発明は、平滑化速度が速く、高い表面平滑性を有するダイヤモンド被膜を備える部材およびその製造方法ならびにダイヤモンド被膜の平滑化方法を提供することを目的とする。 An object of the present invention is to provide a member provided with a diamond coating having a high smoothing rate and high surface smoothness, a method for producing the same, and a method for smoothing the diamond coating.

本発明者は上記のような課題を解決するため鋭意検討し、本発明に至った。
本発明は以下の(1)〜(9)である。
(1)OHラジカルおよびCH3ラジカルが生成する酸性溶液中においてダイヤモンド被膜を表面に備えた部材の被膜表面を陽極として電界を掛けながら、前記酸性溶液に溶解しない質量体を用いて前記ダイヤモンド被膜の表面へ擦過運動を加えることで、前記ダイヤモンド被膜の表面粗さを低減させる工程を備える、ダイヤモンド被膜付き部材の製造方法。
(2)前記擦過運動を加えた後の前記ダイヤモンド被膜の最表面に混成軌道sp2結合を有する炭素原子が残存している、上記(1)に記載のダイヤモンド被膜付き部材の製造方法。
(3)前記ダイヤモンド被膜はボロンがドープされ、そのボロン濃度が0.5mass%以上である、上記(1)または(2)に記載のダイヤモンド被膜付き部材の製造方法。
(4)前記ダイヤモンド被膜の電気抵抗値が5Ω以下である、上記(1)〜(3)のいずれかに記載のダイヤモンド被膜付き部材の製造方法。
(5)前記ダイヤモンド被膜はCVD法により形成された多結晶のダイヤモンド被膜である、上記(1)〜(4)のいずれかに記載のダイヤモンド被膜付き部材の製造方法。
(6)前記部材がSiCである、上記(1)〜(5)のいずれかに記載のダイヤモンド被膜付き部材の製造方法。
(7)上記(1)〜(6)のいずれかに記載の製造方法によって得られ、機械部品として用いることができる、ダイヤモンド被膜付き部材。
(8)OHラジカルおよびCH3ラジカルが生成する酸性溶液中においてダイヤモンド被膜表面を陽極として電界を掛けながら、前記酸性溶液に溶解しない質量体を用いて前記ダイヤモンド被膜の表面へ擦過運動を加えることを特徴とするダイヤモンド被膜の平滑化方法。
The present inventor has diligently studied in order to solve the above problems, and has reached the present invention.
The present invention is the following (1) to (9).
(1) In an acidic solution in which OH radicals and CH 3 radicals are generated, a mass body that does not dissolve in the acidic solution is used while applying an electric field with the coating surface of a member having a diamond coating on the surface as an anode. A method for manufacturing a member with a diamond coating, comprising a step of reducing the surface roughness of the diamond coating by applying a scraping motion to the surface.
(2) The method for producing a member with a diamond coating according to (1) above, wherein carbon atoms having a hybrid orbital sp 2 bond remain on the outermost surface of the diamond coating after the scraping motion is applied.
(3) The method for producing a member with a diamond coating according to (1) or (2) above, wherein the diamond coating is doped with boron and the boron concentration is 0.5 mass% or more.
(4) The method for manufacturing a member with a diamond coating according to any one of (1) to (3) above, wherein the electric resistance value of the diamond coating is 5Ω or less.
(5) The method for manufacturing a member with a diamond coating according to any one of (1) to (4) above, wherein the diamond coating is a polycrystalline diamond coating formed by a CVD method.
(6) The method for manufacturing a member with a diamond coating according to any one of (1) to (5) above, wherein the member is SiC.
(7) A member with a diamond coating, which is obtained by the manufacturing method according to any one of (1) to (6) above and can be used as a mechanical part.
(8) In an acidic solution in which OH radicals and CH 3 radicals are generated, an electric field is applied with the surface of the diamond coating as an anode, and a scraping motion is applied to the surface of the diamond coating using a mass that does not dissolve in the acidic solution. A characteristic method for smoothing a diamond coating.

本発明によれば、平滑化速度が速く、高い表面平滑性を有するダイヤモンド被膜を備える部材およびその製造方法ならびにダイヤモンド被膜の平滑化方法を提供することができる。 According to the present invention, it is possible to provide a member provided with a diamond coating having a high smoothing rate and high surface smoothness, a method for producing the same, and a method for smoothing the diamond coating.

実施例1の実験装置を示す概略図である。It is the schematic which shows the experimental apparatus of Example 1. FIG. 実施例1で得られたダイヤモンド被膜表面のSEMを用いた観察結果を示す図である。It is a figure which shows the observation result using SEM of the diamond coating surface obtained in Example 1. FIG. 実施例1で得られたダイヤモンド被膜表面のレーザ顕微鏡を用いた観察結果を示す図である。It is a figure which shows the observation result using the laser microscope of the diamond coating surface obtained in Example 1. FIG. 実施例1、比較例1、比較例2で得られたダイヤモンド被膜表面のSEMを用いた観察結果を処理前のものと比較した図である。It is a figure which compared the observation result using SEM of the diamond coating surface obtained in Example 1, Comparative Example 1, and Comparative Example 2 with the one before treatment.

本発明の製造方法について説明する。
本発明の製造方法は、OHラジカルおよびCH3ラジカルが生成する酸性溶液中においてダイヤモンド被膜を表面に備えた部材の被膜表面を陽極として電界を掛けながら、前記酸性溶液に溶解しない質量体を用いて前記ダイヤモンド被膜の表面へ擦過運動を加えることで、前記ダイヤモンド被膜の表面粗さを低減させる工程を備える、ダイヤモンド被膜付き部材の製造方法である。
The production method of the present invention will be described.
The production method of the present invention uses a mass body that does not dissolve in the acidic solution while applying an electric field with the coating surface of the member having the diamond coating on the surface as an anode in the acidic solution generated by OH radical and CH 3 radical. This is a method for manufacturing a member with a diamond coating, which comprises a step of reducing the surface roughness of the diamond coating by applying a scraping motion to the surface of the diamond coating.

混成軌道sp2炭素原子の結合形態で典型例としてのグラファイトは、機械的擦過すると除去しやすい。本発明の製造方法では、ダイヤモンドを構成するsp3構造をsp2構造に変化(グラファイト化)させながら擦過する。この結果、比較的短時間の処理にもかかわらず、その表面粗度は極めて低くなり、具体的には例えば2nmRaまで平滑化させることができる。 Graphite, which is a typical example of the bond form of hybrid orbital sp 2 carbon atoms, is easily removed by mechanical scraping. In the production method of the present invention, the sp 3 structure constituting diamond is abraded while being changed (graphitized) into an sp 2 structure. As a result, despite the treatment for a relatively short time, the surface roughness thereof becomes extremely low, and specifically, it can be smoothed to, for example, 2 nmRa.

本発明の製造方法では、初めに、例えば、従来公知のCVDで成膜されたダイヤモンド(PCD)被膜を備える部材を用意する。
このダイヤモンド被膜の表面粗度は、例えば0.1〜0.3μmRa程度、より具体的には0.2μmRa程度であってよい。また、SiC基板にPCDを成膜した場合、SiC基板の表面粗さが反映され、部分的な突起(高さ7〜10μm、直径2〜5μm)が形成されている。
In the manufacturing method of the present invention, first, for example, a member provided with a diamond (PCD) film formed by a conventionally known CVD film is prepared.
The surface roughness of the diamond coating may be, for example, about 0.1 to 0.3 μmRa, and more specifically, about 0.2 μmRa. Further, when the PCD is formed on the SiC substrate, the surface roughness of the SiC substrate is reflected, and partial protrusions (height 7 to 10 μm, diameter 2 to 5 μm) are formed.

ダイヤモンド被膜はボロンがドープされていることが好ましい。さらに、そのボロン濃度が0.5mass%以上であることが好ましく、1.0mass%以上であることがより好ましい。ここでダイヤモンド被膜中のボロン濃度の上限値は特に限定されないが、例えば1mass%であってよい。 The diamond coating is preferably boron-doped. Further, the boron concentration is preferably 0.5 mass% or more, and more preferably 1.0 mass% or more. Here, the upper limit of the boron concentration in the diamond film is not particularly limited, but may be, for example, 1 mass%.

ダイヤモンド被膜は、その電気抵抗値が5Ω以下であることが好ましい。 The diamond coating preferably has an electrical resistance value of 5Ω or less.

ダイヤモンド被膜へボロンを0.5mass%以上ドープすると、ダイヤモンド被膜の電気抵抗値は1〜4Ω程度になり得る。電気抵抗値が低いため、擦過運動を加えても、発生し得る静電気による放電破壊を起こし難くなるので好ましい。 When boron is doped into the diamond coating in an amount of 0.5 mass% or more, the electric resistance value of the diamond coating can be about 1 to 4Ω. Since the electric resistance value is low, it is preferable that even if a scraping motion is applied, discharge destruction due to static electricity that may occur is unlikely to occur.

上記のようなダイヤモンド被膜を有する部材を、特定の酸性溶液に浸漬し、電界を掛ける。
ここで酸性溶液は、電界を掛けることでOHラジカルおよびCH3ラジカルを生成させるものであり、具体的には、酢酸、プロピオン酸が挙げられる。
このような酸性溶液に電界を掛けることで生成されたOHラジカルが、酸性溶液中の酸(例えば酢酸(CH3COOH)やプロピオン酸(C25COOH))と反応し、中間体(例えばCH3COOラジカル)を生成し、これが分解してCH3ラジカルが生成すると考えられる。そして、このCH3ラジカルが、ダイヤモンド被膜の最表面に存する炭素原子が備える水酸基(OH基)と反応すると考えらえる。その結果、ダイヤモンド被膜の表面の混成軌道sp3結合を有する炭素原子が混成軌道sp2結合を有する炭素原子に変化すると考えられる。
A member having a diamond coating as described above is immersed in a specific acidic solution and an electric field is applied.
Here, the acidic solution generates OH radicals and CH 3 radicals by applying an electric field, and specific examples thereof include acetic acid and propionic acid.
The OH radicals generated by applying an electric field to such an acidic solution react with the acids in the acidic solution (for example, acetic acid (CH 3 COOH) and propionic acid (C 2 H 5 COOH)) and are intermediates (for example, C 2 H 5 COOH). It is considered that CH 3 COO radical) is generated and decomposed to generate CH 3 radical. Then, it is considered that this CH 3 radical reacts with the hydroxyl group (OH group) contained in the carbon atom existing on the outermost surface of the diamond film. As a result, it is considered that the carbon atom having the hybrid orbital sp 3 bond on the surface of the diamond coating is changed to the carbon atom having the hybrid orbital sp 2 bond.

本発明の製造方法では、上記のような特定の酸性溶液中においてダイヤモンド被膜が付いた部材を電界を掛けながら、前記酸性溶液に溶解しない質量体を用いて前記ダイヤモンド被膜の表面へ擦過運動を加える。 In the production method of the present invention, while applying an electric field to a member having a diamond coating in a specific acidic solution as described above, a scraping motion is applied to the surface of the diamond coating using a mass body that is insoluble in the acidic solution. ..

ダイヤモンド被膜の表面へ擦過運動を加えることで、上述の電界を掛けることによってダイヤモンド被膜の最表面に生成した混成軌道sp2結合を有する炭素原子を除去することができる。ただし、混成軌道sp2結合を有する炭素原子からなる部分が若干残存して良い。 By applying a scraping motion to the surface of the diamond coating, the carbon atom having the hybrid orbital sp 2 bond formed on the outermost surface of the diamond coating can be removed by applying the above-mentioned electric field. However, a portion consisting of carbon atoms having a hybrid orbital sp 2 bond may remain.

本発明において、質量体は重しを含む荷重を印加するための手段であり、目的の荷重を加えることができさえすればよく、その質量は特に限定されない。前記酸性溶液に溶解しない質量体として、例えばアルミナ、石英などの耐酸性セラミック等からなり、球状、円筒状等からなる質量体を用いることができる。 In the present invention, the mass body is a means for applying a load including a weight, and the mass is not particularly limited as long as a target load can be applied. As the mass body that does not dissolve in the acidic solution, for example, a mass body made of an acid-resistant ceramic such as alumina or quartz, and having a spherical shape, a cylindrical shape, or the like can be used.

酸性溶液中においてダイヤモンド被膜が付いた部材を電界を掛けながら、このような質量体をダイヤモンド被膜の表面へ荷重をかけるように押しつけながら、擦過運動を加える。
ここでダイヤモンド被膜の表面へ加える荷重は0.5kg/mm2以上であることが好ましい。荷重の上限は特に限定されないが、例えば、5kg/mm2程度であってもよい。
A scraping motion is applied while applying an electric field to the member having the diamond coating in an acidic solution and pressing such a mass body against the surface of the diamond coating so as to apply a load.
Here, the load applied to the surface of the diamond coating is preferably 0.5 kg / mm 2 or more. The upper limit of the load is not particularly limited, but may be, for example, about 5 kg / mm 2 .

そして、ダイヤモンド被膜の表面に存在する混成軌道sp2結合を有する炭素原子の少なくとも一部を分離する。
そうすると、ダイヤモンド被膜の表面粗度は極めて低くなり、具体的には例えば2nmRaまで平滑化させることができる。
Then, at least a part of the carbon atom having a hybrid orbital sp 2 bond existing on the surface of the diamond film is separated.
Then, the surface roughness of the diamond film becomes extremely low, and specifically, it can be smoothed to, for example, 2 nmRa.

なお、ダイヤモンド被膜の表面へ加える擦過運動は、ダイヤモンド被膜の表面へ質量体を押し付けて擦る運動であってよく、回転運動等であってもよい。 The scraping motion applied to the surface of the diamond film may be a motion of pressing a mass body against the surface of the diamond film and rubbing it, or may be a rotational motion or the like.

このような本発明の製造方法によって得られる被膜付き部材は、機械部品として用いることができる。具体的にはメカニカルシールや半導体ウェハのメカノケミカル研磨装置(MCP)筺体として利用することができる。 The coated member obtained by the manufacturing method of the present invention can be used as a mechanical part. Specifically, it can be used as a mechanical seal or a mechanochemical polishing device (MCP) housing for a semiconductor wafer.

本発明の製造方法によってダイヤモンド被膜の表面粗度が大きく改善し平滑化されるので、得られる被膜付き部材をメカニカルシールとして利用する場合、純水、超純水の域を超え、残渣を含む流体に適用した場合、残渣がダイヤモンド表面の粗さの凹凸に噛みこんで機械的にメカニカルシールの摺動リングを破壊する危険性は低い。また、適応流体がシール材の冷却媒体として用いられる場合、表面粗度仕上げに凹凸を意図して作成し、冷却媒体の侵入、微量の吐露も製作可能となる。 Since the surface roughness of the diamond coating is greatly improved and smoothed by the production method of the present invention, when the obtained coated member is used as a mechanical seal, it exceeds the range of pure water and ultrapure water and contains a residue. When applied to, there is a low risk that the residue will bite into the roughness of the diamond surface and mechanically break the sliding ring of the mechanical seal. Further, when the adaptive fluid is used as a cooling medium for the sealing material, the surface roughness finish is intentionally created to have irregularities, so that the cooling medium can invade and a small amount of dew can be produced.

<実施例1>
図1に示す装置を準備し、以下に示す実験を行った。
アクリル容器に95%硫酸(H2SO4) 6mlと、穀物酢(CH3COOHを5%程度含む) 27mlで満たした。そして、ここへCVD法によりSiC基板(25mm×25mm×3mm)にボロンを0.5mass%ドーピングした多結晶ダイヤモンドを8μm被膜した試料(電気抵抗値4Ω)を沈め、おおむねその主面が水平方向となるようにした。
<Example 1>
The device shown in FIG. 1 was prepared and the experiment shown below was performed.
The acrylic container was filled with 6 ml of 95% sulfuric acid (H 2 SO 4 ) and 27 ml of grain vinegar (containing about 5% CH 3 COOH). Then, a sample (electrical resistance value of 4 Ω) coated with 8 μm of polycrystalline diamond doped with 0.5 mass% of boron is submerged in a SiC substrate (25 mm × 25 mm × 3 mm) by the CVD method, and the main surface thereof is generally in the horizontal direction. I tried to be.

次に、図1に示すようにSiC基板を正極とし、板厚0.5mmの純チタン(Ti)板を負極として、両極間に9〜10Vの電位を掛けた。
そして、ダイヤモンド被膜の上に9.5mm径のアルミナ(Al23)球(京セラ製)を配置し、このアルミナ球へ、おおむね鉛直方向の上から下へ6kgの荷重を掛けることでダイヤモンド被膜へアルミナ球を押し付けながら、このアルミナ球を水平方向へ往復運動させることで、ダイヤモンド被膜の表面を擦過した。
このような処理を10分間行った後のダイヤモンド被膜表面のSEM像を図2に示す。色が薄い領域は、ダイヤモンド被膜の最表面に混成軌道sp2結合を有する炭素原子が残存している領域であり、平滑性が高いことがわかる。この領域について、レーザ顕微鏡(Olympus, OLS4100)で観察した(解析パラメータ:線粗さカットオフλc=8μm)。観察結果を図3(b)に示す。なお、図3(a)は処理前のダイヤモンド被膜表面をレーザ顕微鏡(Olympus, OLS4100)で観察した結果を示している。
図3(a)に示した処理前のダイヤモンド被膜の表面粗さ(Ra)は0.230μmRaであった。また、図3(b)に示した処理後のダイヤモンド被膜の表面粗さ(Ra)は0.002μmRaであった。
Next, as shown in FIG. 1, a potential of 9 to 10 V was applied between the two electrodes, using a SiC substrate as a positive electrode and a pure titanium (Ti) plate having a plate thickness of 0.5 mm as a negative electrode.
Then, an alumina (Al 2 O 3 ) sphere (manufactured by Kyocera) having a diameter of 9.5 mm is placed on the diamond film, and a load of 6 kg is applied to the alumina sphere from the top to the bottom in the vertical direction to form the diamond film. The surface of the diamond coating was scraped by reciprocating the alumina spheres in the horizontal direction while pressing the aluminum spheres.
The SEM image of the diamond coating surface after performing such a treatment for 10 minutes is shown in FIG. The light-colored region is a region in which carbon atoms having a hybrid orbital sp 2 bond remain on the outermost surface of the diamond coating, and it can be seen that the smoothness is high. This region was observed with a laser microscope (Olympus, OLS4100) (analysis parameter: line roughness cutoff λc = 8 μm). The observation results are shown in FIG. 3 (b). Note that FIG. 3A shows the results of observing the surface of the diamond coating before treatment with a laser microscope (Olympus, OLS4100).
The surface roughness (Ra) of the diamond coating before the treatment shown in FIG. 3A was 0.230 μmRa. The surface roughness (Ra) of the diamond coating after the treatment shown in FIG. 3B was 0.002 μmRa.

<実施例2>
実施例1と同様のダイヤモンド被膜を表面に形成したメカニカルシールの固定リングについて、実施例1と同様の処理を施した。
そして、予め用意したグラファイトから作られた回転リングと、処理後の固定リングとからメカニカルシールを構成し、砂れき残渣を含む市水流体についての適用可能性を調査した。その結果、このメカニカルシールは市水流体への適用が可能であることを確認した。
<Example 2>
The fixing ring of the mechanical seal having the same diamond coating as in Example 1 formed on the surface was subjected to the same treatment as in Example 1.
Then, a mechanical seal was constructed from a rotating ring made of graphite prepared in advance and a fixing ring after treatment, and the applicability to a city water fluid containing gravel residue was investigated. As a result, it was confirmed that this mechanical seal can be applied to city water fluid.

<実施例3>
半導体ウェハのメカノケミカル研磨装置(MCP)筺体に、実施例1の場合と同様のダイヤモンド被膜を形成した。その結果、微粒研磨剤の筺体における残渣は水洗洗浄だけで取り除くことができ、再使用が可能となった。
<Example 3>
A diamond film similar to that in Example 1 was formed on the mechanochemical polishing apparatus (MCP) housing of the semiconductor wafer. As a result, the residue of the fine abrasive in the housing can be removed only by washing with water, and it can be reused.

<比較例1>
紫外線を援用したPCD研磨方法を試した。具体的に説明する。
初めに、実施例1と同様に、SiC基板(25mm×25mm×3mm)にボロンを0.5mass%ドーピングした多結晶ダイヤモンドを8μm被膜した試料を用意した。また、光触媒としてTiO2(アナターゼ、粒径φ5μm)を用意し、これを純水10mlに0.5g加えてコロイドを作成した。
そして、SiC基板の表面の多結晶ダイヤモンドへ紫外線を照射しながら、紫外線が照射されている多結晶ダイヤモンドの表面へ、上記のTiO2のコロイドを5〜10分ごとに2mlずつ、ピペットを用いて滴下した。
ダイヤモンド被膜の上に側面が接するように石英ガラス円柱(φ25mm、幅t=10mm)を配置し、上から下へ向けて1kgの荷重を掛けながら石英ガラス円柱を転がすように往復運動させることで、ダイヤモンド被膜の表面を擦過した。しかし、図4(c)に示すように、このような処理を1時間行っても、PCD表面粗さの変化はなかった。なお、図4(a)は処理前の観察結果を示している。
<Comparative example 1>
A PCD polishing method using ultraviolet rays was tried. This will be described in detail.
First, as in Example 1, a sample was prepared in which a SiC substrate (25 mm × 25 mm × 3 mm) was coated with 8 μm of polycrystalline diamond doped with 0.5 mass% of boron. Further, TiO 2 (anatase, particle size φ5 μm) was prepared as a photocatalyst, and 0.5 g of this was added to 10 ml of pure water to prepare a colloid.
Then, while irradiating the polycrystalline diamond on the surface of the SiC substrate with ultraviolet rays, 2 ml of the above-mentioned TiO 2 colloid is applied to the surface of the polycrystalline diamond irradiated with ultraviolet rays every 5 to 10 minutes using a pipette. Dropped.
A quartz glass cylinder (φ25 mm, width t = 10 mm) is placed on the diamond coating so that the side surfaces are in contact with each other, and the quartz glass cylinder is reciprocated so as to roll while applying a load of 1 kg from top to bottom. The surface of the diamond coating was scraped. However, as shown in FIG. 4C, there was no change in the PCD surface roughness even after performing such a treatment for 1 hour. Note that FIG. 4A shows the observation results before the treatment.

<比較例2>
UV−フェントン反応によりOHラジカルを生成させ、PCD研磨方法を行った。具体的に説明する。
初めに、実施例1と同様に、SiC基板(25mm×25mm×3mm)にボロンを0.5mass%ドーピングした多結晶ダイヤモンドを8μm被膜した試料を用意した。また、フェントン反応には、NiSO4 2g(またはFeSO4 2.12g)を95% H2SO4 2mlと純水5ml中に溶かして得た溶液を用いた。
そして、SiC基板の表面の多結晶ダイヤモンドへ紫外線を照射しながら、紫外線が照射されている多結晶ダイヤモンドの表面へ、上記のNiSO4およびH2SO4を含む溶液を5〜10分ごとに2mlずつ、ピペットを用いて滴下しつつ、30%H22もピペットで滴下して、ダイヤモンド被膜上でフェントン反応を生じさせた。
ダイヤモンド被膜の上に側面が接するように石英ガラス円柱(φ25mm、幅t=10mm)を配置し、上から下へ向けて2.4kgの荷重を掛けながら石英ガラス円柱を転がすように往復運動させることで、ダイヤモンド被膜の表面を擦過した。
このような処理を1時間行った後のダイヤモンド被膜表面を観察した結果を図4(d)に示す。
図4(d)に示すように、ダイヤモンド被膜の表面にある突起部が削られたにすぎなかった。
<Comparative example 2>
OH radicals were generated by the UV-Fenton reaction, and the PCD polishing method was performed. This will be described in detail.
First, as in Example 1, a sample was prepared in which a SiC substrate (25 mm × 25 mm × 3 mm) was coated with 8 μm of polycrystalline diamond doped with 0.5 mass% of boron. Further, in the Fenton reaction, using a solution obtained by dissolving NiSO 4 2 g (or FeSO 4 2.12 g) in 95% H 2 SO 4 2ml of pure water 5 ml.
Then, while irradiating ultraviolet rays to the polycrystalline diamond surface of the SiC substrate, the surface of the polycrystalline diamond ultraviolet is irradiated, a solution containing NiSO 4 and H 2 SO 4 above every 5-10 minutes 2ml While dropping with a pipette, 30% H 2 O 2 was also dropped with a pipette to cause a Fenton reaction on the diamond coating.
A quartz glass cylinder (φ25 mm, width t = 10 mm) is placed on the diamond coating so that the side surfaces are in contact with each other, and the quartz glass cylinder is reciprocated so as to roll while applying a load of 2.4 kg from top to bottom. The surface of the diamond coating was scraped.
The result of observing the surface of the diamond coating after performing such a treatment for 1 hour is shown in FIG. 4 (d).
As shown in FIG. 4D, the protrusions on the surface of the diamond coating were merely scraped.

例えば、残渣を含む流体に使用されるメカニカルシールのダイヤモンド被膜の表面粗度の低減化、ダイヤモンド被膜を有する半導体ウェハ研磨装置における同被膜の表面粗度低減化が可能となる。 For example, it is possible to reduce the surface roughness of the diamond coating of a mechanical seal used for a fluid containing a residue, and to reduce the surface roughness of the coating in a semiconductor wafer polishing apparatus having a diamond coating.

Claims (8)

OHラジカルおよびCH3ラジカルが生成する酸性溶液中においてダイヤモンド被膜を表面に備えた部材の被膜表面を陽極として電界を掛けながら、前記酸性溶液に溶解しない質量体を用いて前記ダイヤモンド被膜の表面へ擦過運動を加えることで、前記ダイヤモンド被膜の表面粗さを低減させる工程を備える、ダイヤモンド被膜付き部材の製造方法。 In an acidic solution generated by OH radicals and CH 3 radicals, an electric field is applied using the coating surface of a member having a diamond coating on the surface as an anode, and the surface of the diamond coating is scraped with a mass body that does not dissolve in the acidic solution. A method for manufacturing a member with a diamond coating, comprising a step of reducing the surface roughness of the diamond coating by applying motion. 前記擦過運動を加えた後の前記ダイヤモンド被膜の最表面に混成軌道sp2結合を有する炭素原子が残存している、請求項1に記載のダイヤモンド被膜付き部材の製造方法。 The method for producing a member with a diamond coating according to claim 1, wherein carbon atoms having a hybrid orbital sp 2 bond remain on the outermost surface of the diamond coating after the scraping motion is applied. 前記ダイヤモンド被膜はボロンがドープされ、そのボロン濃度が0.5mass%以上である、請求項1または2に記載のダイヤモンド被膜付き部材の製造方法。 The method for producing a member with a diamond coating according to claim 1 or 2, wherein the diamond coating is doped with boron and the boron concentration is 0.5 mass% or more. 前記ダイヤモンド被膜の電気抵抗値が5Ω以下である、請求項1〜3のいずれかに記載のダイヤモンド被膜付き部材の製造方法。 The method for manufacturing a member with a diamond coating according to any one of claims 1 to 3, wherein the electric resistance value of the diamond coating is 5Ω or less. 前記ダイヤモンド被膜はCVD法により形成された多結晶のダイヤモンド被膜である、請求項1〜4のいずれかに記載のダイヤモンド被膜付き部材の製造方法。 The method for manufacturing a member with a diamond coating according to any one of claims 1 to 4, wherein the diamond coating is a polycrystalline diamond coating formed by a CVD method. 前記部材がSiCである、請求項1〜5のいずれかに記載のダイヤモンド被膜付き部材の製造方法。 The method for manufacturing a member with a diamond coating according to any one of claims 1 to 5, wherein the member is SiC. 請求項1〜6のいずれかに記載の製造方法によって得られ、機械部品として用いることができる、ダイヤモンド被膜付き部材。 A member with a diamond coating, which is obtained by the manufacturing method according to any one of claims 1 to 6 and can be used as a mechanical part. OHラジカルおよびCH3ラジカルが生成する酸性溶液中においてダイヤモンド被膜表面を陽極として電界を掛けながら、前記酸性溶液に溶解しない質量体を用いて前記ダイヤモンド被膜の表面へ擦過運動を加えることを特徴とするダイヤモンド被膜の平滑化方法。 It is characterized in that while applying an electric field with the surface of the diamond coating as an anode in an acidic solution generated by OH radicals and CH 3 radicals, an abrasion motion is applied to the surface of the diamond coating using a mass body that is insoluble in the acidic solution. A method for smoothing a diamond coating.
JP2019097750A 2019-05-24 2019-05-24 MEMBER WITH DIAMOND COATING AND MANUFACTURING METHOD THEREOF AND METHOD FOR SMOOTHING DIAMOND COATING Active JP7212579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019097750A JP7212579B2 (en) 2019-05-24 2019-05-24 MEMBER WITH DIAMOND COATING AND MANUFACTURING METHOD THEREOF AND METHOD FOR SMOOTHING DIAMOND COATING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019097750A JP7212579B2 (en) 2019-05-24 2019-05-24 MEMBER WITH DIAMOND COATING AND MANUFACTURING METHOD THEREOF AND METHOD FOR SMOOTHING DIAMOND COATING

Publications (2)

Publication Number Publication Date
JP2020193111A true JP2020193111A (en) 2020-12-03
JP7212579B2 JP7212579B2 (en) 2023-01-25

Family

ID=73546240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019097750A Active JP7212579B2 (en) 2019-05-24 2019-05-24 MEMBER WITH DIAMOND COATING AND MANUFACTURING METHOD THEREOF AND METHOD FOR SMOOTHING DIAMOND COATING

Country Status (1)

Country Link
JP (1) JP7212579B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128600A (en) * 1979-03-27 1980-10-04 Hitachi Zosen Corp Electrolytical superfine composite finishing of cylindrical product
JPH04260694A (en) * 1991-02-18 1992-09-16 Sumitomo Electric Ind Ltd Flattening of coated layer of diamond
JP2009035442A (en) * 2007-08-01 2009-02-19 Kurita Water Ind Ltd Method for processing diamond

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4260694B2 (en) 2004-06-25 2009-04-30 日本特殊陶業株式会社 Optical module, ceramic substrate for optical module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128600A (en) * 1979-03-27 1980-10-04 Hitachi Zosen Corp Electrolytical superfine composite finishing of cylindrical product
JPH04260694A (en) * 1991-02-18 1992-09-16 Sumitomo Electric Ind Ltd Flattening of coated layer of diamond
JP2009035442A (en) * 2007-08-01 2009-02-19 Kurita Water Ind Ltd Method for processing diamond

Also Published As

Publication number Publication date
JP7212579B2 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
EP1568798B1 (en) Process for producing a conductive diamond electrode
CN102084020B (en) Ceramic coating comprising yttrium which is resistant to a reducing plasma
US20060219570A1 (en) Electrolytic anode and method for electrolytically synthesizing fluorine containing substance using the electrolytic anode
Zhang et al. Electrochemical corrosion behavior of Ni-doped ZnO thin film coated on low carbon steel substrate in 3.5% NaCl solution
Lu et al. Photocatalysis assisting the mechanical polishing of a single-crystal SiC wafer utilizing an anatase TiO2-coated diamond abrasive
JP6781748B2 (en) Hydrogen production method and silicon fine particles for hydrogen production
He et al. Investigation on material removal mechanisms in photocatalysis-assisted chemical mechanical polishing of 4H–SiC wafers
WO2015163256A1 (en) Method for polishing silicon carbide substrate
Wang et al. High efficiency polishing of silicon carbide by applying reactive non-aqueous fluids to fixed abrasive pads
JP7212579B2 (en) MEMBER WITH DIAMOND COATING AND MANUFACTURING METHOD THEREOF AND METHOD FOR SMOOTHING DIAMOND COATING
KR101877017B1 (en) Semiconductor reactor and method of forming coating layer on metallic substrate for semiconductor reactor
Cheng et al. Plasma electrolytic oxidation behavior and corrosion resistance of brass in aluminate electrolyte containing NaH2PO4 or Na2SiO3
JPWO2009054295A1 (en) Diamond electrode, processing apparatus, and method for manufacturing diamond electrode
Yang et al. Effect of electrolyte composition on corrosion behavior and tribological performance of plasma electrolytic oxidized TC4 alloy
JP6566303B2 (en) Polishing method and apparatus using micro / nano bubbles
CN1271248C (en) Production process of alumina template with nano holes
Tsuji et al. Improvement in the polishing characteristics of titanium-based materials using electrochemical mechanical polishing
Yan et al. Photoelectrocatalytic activity of two antimony doped SnO2 films for oxidation of phenol pollutants
JP2014065617A (en) Method of forming graphene band gaps
JP6083889B2 (en) Amorphous carbon film coated member
Xie et al. Promote the catalytic performance and service life of Ti-based oxide coatings through sandblasting
Zeng et al. Recent Advances in Chemical Mechanical Polishing Technologies of Silicon Carbide
CN113967769B (en) Method for milling and grinding metal-based silicon carbide by photocatalysis-assisted electrolysis
CN113909597B (en) Method for processing metal-based silicon carbide through photocatalysis assisted jet flow electrolysis
Wei et al. Electrocatalytic Degradation of Acyclovir by Three-Dimensional Porous Lead Dioxide Anodes: Condition Optimization, Kinetic Analysis and Degradation Mechanisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230113

R150 Certificate of patent or registration of utility model

Ref document number: 7212579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150