JP2020192927A - Vehicle steering device - Google Patents

Vehicle steering device Download PDF

Info

Publication number
JP2020192927A
JP2020192927A JP2019100643A JP2019100643A JP2020192927A JP 2020192927 A JP2020192927 A JP 2020192927A JP 2019100643 A JP2019100643 A JP 2019100643A JP 2019100643 A JP2019100643 A JP 2019100643A JP 2020192927 A JP2020192927 A JP 2020192927A
Authority
JP
Japan
Prior art keywords
steering
unit
torque
mode
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019100643A
Other languages
Japanese (ja)
Other versions
JP7222309B2 (en
Inventor
堅吏 森
Kenri Mori
堅吏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2019100643A priority Critical patent/JP7222309B2/en
Priority to US17/595,568 priority patent/US11964713B2/en
Priority to CN202080039577.7A priority patent/CN113891827B/en
Priority to PCT/JP2020/020606 priority patent/WO2020241591A1/en
Priority to EP20813711.7A priority patent/EP3978338A4/en
Publication of JP2020192927A publication Critical patent/JP2020192927A/en
Application granted granted Critical
Publication of JP7222309B2 publication Critical patent/JP7222309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

To provide a vehicle steering device that is able to improve feeling of steering.SOLUTION: A vehicle steering device has a drive mode (a first mode) and a low-speed drive mode (a second mode), as drive modes for the vehicle. In a predetermined area where the absolute value |θh| of the steering angle θh of a handle is equal to or larger than zero, a rate of change of target steering torque Tref in the low-speed drive mode (the second mode) is equal to or higher than that in the drive mode (the first mode). In areas other than the predetermined area, a rate of change of target steering torque Tref in the low-speed drive mode (the second mode) is lower than that in the drive mode (the first mode).SELECTED DRAWING: Figure 14

Description

本発明は、車両用操向装置に関する。 The present invention relates to a steering device for a vehicle.

車両用操向装置の1つである電動パワーステアリング装置(EPS)は、車両の操舵系にモータの回転力でアシスト力(操舵補助力)を付与するものである。EPSは、インバータから供給される電力で制御されるモータの駆動力を、減速機構を含む伝達機構により、ステアリングシャフト又はラック軸にアシスト力として付与する。 The electric power steering device (EPS), which is one of the steering devices for vehicles, applies an assist force (steering assist force) to the steering system of the vehicle by the rotational force of the motor. The EPS applies the driving force of the motor controlled by the electric power supplied from the inverter to the steering shaft or the rack shaft as an assisting force by a transmission mechanism including a reduction mechanism.

例えば、車庫入れ操作などの低速運転時に操舵補助力を通常時によりも徐々に増加させ、車庫入れが終了すると増加させた操舵補助力を徐々に通常時の操舵補助力に戻すパワーステアリング装置が開示されている(例えば、特許文献1)。 For example, a power steering device that gradually increases the steering assist force during low-speed operation such as garage entry operation and gradually returns the increased steering assist force to the normal steering assist force when the garage entry is completed is disclosed. (For example, Patent Document 1).

特許第3891275号Patent No. 3891275

一般に、低速運転時には操舵補助力を下げる制御が行われる。しかしながら、低速運転時に操舵補助力を一律に下げた場合、舵角がゼロ付近となる操舵角を運転者が認識し辛くなる。特に、パーキングエリア等に車両を駐車するために車両を後進(バック)させている場合等、運転者が車両の背後の安全確認を目視で行う際の操舵感覚が掴み難くなる。 Generally, control is performed to reduce the steering assist force during low-speed operation. However, when the steering assist force is uniformly reduced during low-speed driving, it becomes difficult for the driver to recognize the steering angle at which the steering angle is close to zero. In particular, when the vehicle is being moved backward (backward) in order to park the vehicle in a parking area or the like, it becomes difficult for the driver to grasp the steering feeling when visually checking the safety behind the vehicle.

本発明は、上記の課題に鑑みてなされたものであって、操舵感を向上することができる車両用操向装置を提供すること、を目的としている。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a steering device for a vehicle capable of improving a steering feeling.

上記の目的を達成するため、本発明の一態様に係る車両用操向装置は、操舵力を補助するモータを駆動制御することにより、車両の操舵系をアシスト制御する車両用操向装置であって、前記車両の運転モードとして、第1モードと、前記第1モードとは異なる第2モードと、を有し、ハンドルの操舵角の絶対値がゼロ以上となる所定領域において、前記第2モードにおける前記モータの目標操舵トルクの変化率が前記第1モード以上となり、前記所定領域以外の領域において、前記第2モードにおける前記目標操舵トルクの変化率が前記第1モードよりも小さい。 In order to achieve the above object, the vehicle steering device according to one aspect of the present invention is a vehicle steering device that assists and controls the steering system of the vehicle by driving and controlling a motor that assists the steering force. The second mode has a first mode and a second mode different from the first mode as the driving mode of the vehicle, and in a predetermined region where the absolute value of the steering angle of the steering wheel is zero or more. The rate of change of the target steering torque of the motor in the first mode is equal to or higher than that of the first mode, and the rate of change of the target steering torque in the second mode is smaller than that of the first mode in a region other than the predetermined region.

車両用操向装置の望ましい態様として、予め定められた所定の操作を検知した場合に、前記第2モードと判定する判定部と、ハンドルの操舵角の絶対値の増加に伴い徐々に変化率が小さくなる曲線に沿って増加する第1トルク信号を生成し、当該第1トルク信号に基づき生成された第2トルク信号に補正ゲインを乗じて第3トルク信号を生成し、当該第3トルク信号に対し、第4トルク信号を加算して、前記目標操舵トルクを生成する目標操舵トルク生成部と、を備え、前記目標操舵トルク生成部は、前記第2モードにおいて、1未満の正の補正ゲインを生成すると共に、前記操舵角の絶対値がゼロのときの傾きが前記第1トルク信号よりも大きい第4トルク信号を生成することが好ましい。 As a desirable mode of the vehicle steering device, when a predetermined predetermined operation is detected, the determination unit for determining the second mode and the rate of change gradually increase as the absolute value of the steering angle of the handle increases. A first torque signal that increases along a smaller curve is generated, and a third torque signal is generated by multiplying the second torque signal generated based on the first torque signal by a correction gain to generate the third torque signal. On the other hand, a target steering torque generating unit that adds a fourth torque signal to generate the target steering torque is provided, and the target steering torque generating unit produces a positive correction gain of less than 1 in the second mode. It is preferable to generate a fourth torque signal whose inclination is larger than that of the first torque signal when the absolute value of the steering angle is zero.

上記構成によれば、第2モードにおける運転者の負担を軽減することができ、操舵感を向上することができる。 According to the above configuration, the burden on the driver in the second mode can be reduced, and the steering feeling can be improved.

車両用操向装置の望ましい態様として、前記第2モードにおける第4トルク信号は、前記操舵角が所定値以上の領域において一定値となることが好ましい。 As a desirable embodiment of the steering device for a vehicle, it is preferable that the fourth torque signal in the second mode has a constant value in a region where the steering angle is equal to or more than a predetermined value.

これにより、第2モードにおける目標操舵トルクを小さくすることができ、ハンドルの操作を軽くすることができる。 As a result, the target steering torque in the second mode can be reduced, and the operation of the steering wheel can be lightened.

車両用操向装置の望ましい態様として、前記目標操舵トルク生成部は、前記第1モードにおいて、前記補正ゲインを1とし、前記第4トルク信号をゼロとすることが好ましい。 As a desirable embodiment of the vehicle steering device, it is preferable that the target steering torque generating unit sets the correction gain to 1 and the fourth torque signal to zero in the first mode.

これにより、第1モードに適した目標操舵トルクが得られる。 As a result, a target steering torque suitable for the first mode can be obtained.

車両用操向装置の望ましい態様として、前記第2モードにおける目標操舵トルクが前記第1モードにおける目標操舵トルクよりも小さい。 As a desirable embodiment of the vehicle steering device, the target steering torque in the second mode is smaller than the target steering torque in the first mode.

これにより、ハンドルの操作を軽くすることができる。 As a result, the operation of the handle can be lightened.

本発明によれば、操舵感を向上することができる車両用操向装置を提供することができる。 According to the present invention, it is possible to provide a steering device for a vehicle that can improve the steering feeling.

図1は、電動パワーステアリング装置の一般的な構成を示した図である。FIG. 1 is a diagram showing a general configuration of an electric power steering device. 図2は、電動パワーステアリング装置を制御するコントロールユニットのハードウェア構成を示す模式図である。FIG. 2 is a schematic view showing a hardware configuration of a control unit that controls an electric power steering device. 図3は、電動パワーステアリング装置におけるコントロールユニットの内部ブロック構成の一例を示す図である。FIG. 3 is a diagram showing an example of an internal block configuration of a control unit in an electric power steering device. 図4は、舵角センサの設置例を示す構造図である。FIG. 4 is a structural diagram showing an installation example of the steering angle sensor. 図5は、実施形態1に係るコントロールユニットの内部ブロック構成の一例を示す図である。FIG. 5 is a diagram showing an example of an internal block configuration of the control unit according to the first embodiment. 図6は、操舵方向の説明図である。FIG. 6 is an explanatory view of the steering direction. 図7は、実施形態1に係るコントロールユニットの動作例を示すフローチャートである。FIG. 7 is a flowchart showing an operation example of the control unit according to the first embodiment. 図8は、実施形態1の目標操舵トルク生成部の一構成例を示すブロック図である。FIG. 8 is a block diagram showing a configuration example of the target steering torque generating unit of the first embodiment. 図9は、基本マップ部が保持する基本マップの特性例を示す図である。FIG. 9 is a diagram showing a characteristic example of the basic map held by the basic map unit. 図10は、ダンパゲインマップ部が保持するダンパゲインマップの特性例を示す図である。FIG. 10 is a diagram showing a characteristic example of the damper gain map held by the damper gain map unit. 図11は、ヒステリシス補正部の特性例を示す図である。FIG. 11 is a diagram showing a characteristic example of the hysteresis correction unit. 図12は、操舵反力補正部の一構成例を示すブロック図である。FIG. 12 is a block diagram showing a configuration example of the steering reaction force correction unit. 図13は、補正トルクマップの一例を示す図である。FIG. 13 is a diagram showing an example of a correction torque map. 図14は、目標操舵トルク生成部から出力される目標操舵トルクの一例を示す図である。FIG. 14 is a diagram showing an example of the target steering torque output from the target steering torque generation unit. 図15は、実施形態1の捩れ角制御部の一構成例を示すブロック図である。FIG. 15 is a block diagram showing a configuration example of the twist angle control unit of the first embodiment. 図16は、実施形態2に係るコントロールユニットの内部ブロック構成の一例を示す図である。FIG. 16 is a diagram showing an example of an internal block configuration of the control unit according to the second embodiment. 図17は、実施形態2の目標操舵トルク生成部の一構成例を示すブロック図である。FIG. 17 is a block diagram showing a configuration example of the target steering torque generation unit of the second embodiment. 図18は、SAT情報補正部の一構成例を示すブロック図である。FIG. 18 is a block diagram showing a configuration example of the SAT information correction unit. 図19は、路面からステアリングまでの間に発生するトルクの様子を示すイメージ図である。FIG. 19 is an image diagram showing a state of torque generated between the road surface and the steering wheel. 図20は、操舵トルク感応ゲインの特性例を示す図である。FIG. 20 is a diagram showing a characteristic example of the steering torque sensitive gain. 図21は、車速感応ゲインの特性例を示す図である。FIG. 21 is a diagram showing a characteristic example of the vehicle speed sensitive gain. 図22は、舵角感応ゲインの特性例を示す図である。FIG. 22 is a diagram showing a characteristic example of the steering angle sensitive gain. 図23は、制限部におけるトルク信号の上限値及び下限値の設定例を示す図である。FIG. 23 is a diagram showing an example of setting the upper limit value and the lower limit value of the torque signal in the limiting portion. 図24は、実施形態2の捩れ角制御部の一構成例を示すブロック図である。FIG. 24 is a block diagram showing a configuration example of the twist angle control unit of the second embodiment. 図25は、SBWシステムの構成例を、図1に示される電動パワーステアリング装置の一般的な構成に対応させて示した図である。FIG. 25 is a diagram showing a configuration example of the SBW system corresponding to the general configuration of the electric power steering device shown in FIG. 図26は、実施形態3に係るコントロールユニットの内部ブロック構成を示すブロック図である。FIG. 26 is a block diagram showing an internal block configuration of the control unit according to the third embodiment. 図27は、目標転舵角生成部の構成例を示す図である。FIG. 27 is a diagram showing a configuration example of the target steering angle generation unit. 図28は、転舵角制御部の構成例を示す図である。FIG. 28 is a diagram showing a configuration example of the steering angle control unit. 図29は、実施形態3の動作例を示すフローチャートである。FIG. 29 is a flowchart showing an operation example of the third embodiment.

以下、発明を実施するための形態(以下、実施形態という)につき図面を参照しつつ詳細に説明する。なお、下記の実施形態により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。 Hereinafter, embodiments for carrying out the invention (hereinafter referred to as embodiments) will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments. In addition, the components in the following embodiments include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those in a so-called equal range. Further, the components disclosed in the following embodiments can be appropriately combined.

(実施形態1)
図1は、電動パワーステアリング装置の一般的な構成を示した図である。車両用操向装置の1つである電動パワーステアリング装置(EPS)は、操舵者から与えられる力が伝達する順に、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2、減速機構3、ユニバーサルジョイント4a,4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、トーションバーを有するコラム軸2には、ハンドル1の操舵トルクTsを検出するトルクセンサ10及び操舵角θhを検出する舵角センサ14が設けられており、ハンドル1の操舵力を補助するモータ20が減速機構3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクTsと車速センサ12で検出された車速Vsとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、電流指令値に補償等を施した電圧制御指令値Vrefによって、モータ20に供給する電流を制御する。
(Embodiment 1)
FIG. 1 is a diagram showing a general configuration of an electric power steering device. The electric power steering device (EPS), which is one of the steering devices for vehicles, has a column shaft (steering shaft, steering shaft) 2, a reduction mechanism 3, and a universal joint of the steering wheel 1 in the order in which the force given by the steering wheel is transmitted. It is connected to the steering wheels 8L and 8R via 4a and 4b, a pinion rack mechanism 5, tie rods 6a and 6b, and further via hub units 7a and 7b. Further, the column shaft 2 having the torsion bar is provided with a torque sensor 10 for detecting the steering torque Ts of the steering wheel 1 and a steering angle sensor 14 for detecting the steering angle θh, and is a motor that assists the steering force of the steering wheel 1. 20 is connected to the column shaft 2 via the reduction mechanism 3. Electric power is supplied from the battery 13 to the control unit (ECU) 30 that controls the electric power steering device, and an ignition key signal is input via the ignition key 11. The control unit 30 calculates the current command value of the assist (steering assistance) command based on the steering torque Ts detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12, and compensates the current command value. The current supplied to the motor 20 is controlled by the voltage control command value Vref.

コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40等の車載ネットワークが接続されている。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。 An in-vehicle network such as a CAN (Controller Area Network) 40 that exchanges various vehicle information is connected to the control unit 30. Further, a non-CAN 41 that transmits / receives communications other than CAN 40, analog / digital signals, radio waves, and the like can also be connected to the control unit 30.

コントロールユニット30は、主としてCPU(MCU、MPU等も含む)で構成される。図2は、電動パワーステアリング装置を制御するコントロールユニットのハードウェア構成を示す模式図である。 The control unit 30 is mainly composed of a CPU (including an MCU, an MPU, etc.). FIG. 2 is a schematic view showing a hardware configuration of a control unit that controls an electric power steering device.

コントロールユニット30を構成する制御用コンピュータ1100は、CPU(Central Processing Unit)1001、ROM(Read Only Memory)1002、RAM(Random Access Memory)1003、EEPROM(Electrically Erasable Programmable ROM)1004、インターフェース(I/F)1005、A/D(Analog/Digital)変換器1006、PWM(Pulse Width Modulation)コントローラ1007等を備え、これらがバスに接続されている。 The control computer 1100 constituting the control unit 30 includes a CPU (Central Processing Unit) 1001, a ROM (Read Only Memory) 1002, a RAM (Random Access Memory) 1003, an EEPROM (Electrically Erasable Programmable ROM) 1004, and an interface (I / F). ) 1005, A / D (Analog / Digital) converter 1006, PWM (Pulse Width Modulation) controller 1007, etc., which are connected to the bus.

CPU1001は、電動パワーステアリング装置の制御用コンピュータプログラム(以下、制御プログラムという)を実行して、電動パワーステアリング装置を制御する処理装置である。 The CPU 1001 is a processing device that controls the electric power steering device by executing a computer program for controlling the electric power steering device (hereinafter referred to as a control program).

ROM1002は、電動パワーステアリング装置を制御するための制御プログラムを格納する。また、RAM1003は、制御プログラムを動作させるためのワークメモリとして使用される。EEPROM1004には、制御プログラムが入出力する制御データ等が格納されている。制御データは、コントロールユニット30に電源が投入された後にRAM1003に展開された制御用コンピュータプログラム上で使用され、所定のタイミングでEEPROM1004に上書きされる。 The ROM 1002 stores a control program for controlling the electric power steering device. Further, the RAM 1003 is used as a work memory for operating the control program. The EEPROM 1004 stores control data and the like input and output by the control program. The control data is used on the control computer program expanded in the RAM 1003 after the power is turned on to the control unit 30, and is overwritten on the EEPROM 1004 at a predetermined timing.

ROM1002、RAM1003、及びEEPROM1004等は情報を格納する記憶装置であって、CPU1001が直接アクセスできる記憶装置(一次記憶装置)である。 The ROM 1002, RAM 1003, EEPROM 1004, and the like are storage devices for storing information, and are storage devices (primary storage devices) that can be directly accessed by the CPU 1001.

A/D変換器1006は、操舵トルクTs、モータ20の電流検出値Im、及び操舵角θhの信号等を入力し、ディジタル信号に変換する。 The A / D converter 1006 inputs signals such as a steering torque Ts, a current detection value Im of the motor 20, and a steering angle θh, and converts them into digital signals.

インターフェース1005は、CAN40に接続されている。インターフェース1005は、車速センサ12からの車速Vの信号(車速パルス)を受け付けるためのものである。 Interface 1005 is connected to CAN 40. The interface 1005 is for receiving a vehicle speed V signal (vehicle speed pulse) from the vehicle speed sensor 12.

PWMコントローラ1007は、モータ20に対する電流指令値に基づいてUVW各相のPWM制御信号を出力する。 The PWM controller 1007 outputs PWM control signals for each phase of UVW based on the current command value for the motor 20.

図3は、電動パワーステアリング装置におけるコントロールユニットの内部ブロック構成の一例を示す図である。操舵トルクTs及び車速Vsは、電流指令値演算部31に入力される。電流指令値演算部31は、操舵トルクTs及び車速Vsに基づき、予め記憶しているルックアップテーブル(アシストマップ等)を参照し、モータ20に供給する電流の制御目標値である電流指令値Iref1を演算する。 FIG. 3 is a diagram showing an example of an internal block configuration of a control unit in an electric power steering device. The steering torque Ts and the vehicle speed Vs are input to the current command value calculation unit 31. The current command value calculation unit 31 refers to a look-up table (assist map, etc.) stored in advance based on the steering torque Ts and the vehicle speed Vs, and refers to the current command value Iref1 which is a control target value of the current supplied to the motor 20. Is calculated.

補償信号生成部34は、補償信号CMを生成する。補償信号生成部34は、収れん性推定部341、慣性推定部342、セルフアライニングトルク(SAT:Self Aligning Torque)推定部343を備える。収れん性推定部341は、モータ20の角速度に基づいて車両のヨーレートを推定し、ハンドル1が振れ回る動作を制動することで、車両のヨーの収れん性を改善する補償値を推定する。慣性推定部342は、モータ20の角加速度に基づいて、モータ20の慣性力を推定し、応答性を高めるためにモータ20の慣性力を補償する補償値を推定する。SAT推定部343は、操舵トルクTs、アシストトルク、モータ20の角速度及び角加速度に基づいてセルフアライニングトルクTSATを推定し、そのセルフアライニングトルクを反力としてアシストトルクを補償する補償値を推定する。補償信号生成部34は、収れん性推定部341、慣性推定部342、SAT推定部343に加え、他の補償値を推定する推定部を備えてもよい。補償信号CMは、加算部344において慣性推定部342の補償値と、SAT推定部343の補償値とが加算され、この加算値と収れん性推定部341の補償値とが加算部345において加算された加算値である。なお、本開示において、SAT推定部343によって推定されるセルフアライニングトルクTSATは、後述する目標操舵トルク生成部200にも出力される。 The compensation signal generation unit 34 generates a compensation signal CM. The compensation signal generation unit 34 includes an astringent estimation unit 341, an inertial estimation unit 342, and a self-aligning torque (SAT: Self Aligning Torque) estimation unit 343. The astringent estimation unit 341 estimates the yaw rate of the vehicle based on the angular velocity of the motor 20, and estimates the compensation value for improving the yaw astringent of the vehicle by braking the swinging motion of the handle 1. The inertia estimation unit 342 estimates the inertial force of the motor 20 based on the angular acceleration of the motor 20, and estimates the compensation value for compensating for the inertial force of the motor 20 in order to improve the responsiveness. The SAT estimation unit 343 estimates the self-aligning torque T SAT based on the steering torque Ts, the assist torque, the angular velocity and the angular acceleration of the motor 20, and uses the self-aligning torque as a reaction force to compensate the assist torque. presume. The compensation signal generation unit 34 may include an estimation unit that estimates other compensation values in addition to the astringent estimation unit 341, the inertia estimation unit 342, and the SAT estimation unit 343. In the compensation signal CM, the compensation value of the inertia estimation unit 342 and the compensation value of the SAT estimation unit 343 are added in the addition unit 344, and this addition value and the compensation value of the convergence estimation unit 341 are added in the addition unit 345. Is the added value. In the present disclosure, the self-aligning torque T SAT estimated by the SAT estimation unit 343 is also output to the target steering torque generation unit 200, which will be described later.

加算部32Aにおいて、補償信号生成部34からの補償信号CMが電流指令値Iref1に加算されており、補償信号CMの加算によって、電流指令値Iref1に操舵システム系の特性補償がされ、収れん性や慣性特性等を改善するようになっている。そして、電流指令値Iref1は加算部32Aを経て、特性補償された電流指令値Iref2となり、電流指令値Iref2が電流制限部33に入力されている。電流制限部33において、電流指令値Iref2の最大電流が制限され、電流指令値Irefmが生成される。電流指令値Irefmが減算部32Bに入力され、モータ20側からフィードバックされている電流検出値Imとの偏差I(Irefm−Im)が減算部32Bで演算される。偏差Iが操舵動作の特性改善のためのPI制御部35に入力される。そうすると、PI制御部35で特性改善された電圧制御指令値VrefがPWM制御部36に入力され、さらにモータ駆動部としてのインバータ回路37を介してモータ20がPWM駆動される。モータ20の電流検出値Imは、電流検出器38で検出され、減算部32Bにフィードバックされる。また、インバータ回路37は、駆動素子として電界効果トランジスタ(Field Effect Transistor:(以下、FETという。))が用いられ、FETのブリッジ回路で構成されている。 In the addition unit 32A, the compensation signal CM from the compensation signal generation unit 34 is added to the current command value Inertia, and by adding the compensation signal CM, the characteristics of the steering system system are compensated to the current command value Inertia, and the convergence property is improved. It is designed to improve inertial characteristics and the like. Then, the current command value Iref1 becomes the characteristic-compensated current command value Iref2 via the addition unit 32A, and the current command value Iref2 is input to the current limiting unit 33. In the current limiting unit 33, the maximum current of the current command value Iref2 is limited, and the current command value Ireffm is generated. The current command value Ireffm is input to the subtraction unit 32B, and the deviation I (Irefm-Im) from the current detection value Im fed back from the motor 20 side is calculated by the subtraction unit 32B. The deviation I is input to the PI control unit 35 for improving the characteristics of the steering operation. Then, the voltage control command value Vref whose characteristics have been improved by the PI control unit 35 is input to the PWM control unit 36, and the motor 20 is PWM-driven via the inverter circuit 37 as the motor drive unit. The current detection value Im of the motor 20 is detected by the current detector 38 and fed back to the subtraction unit 32B. Further, in the inverter circuit 37, a field effect transistor (Field Effect Transistor: (hereinafter, referred to as FET)) is used as a driving element, and the inverter circuit 37 is composed of a bridge circuit of the FET.

従来の電動パワーステアリング装置でのアシスト制御では、運転者の手入力にて加えられた操舵トルクをトーションバーの捩れトルクとしてトルクセンサで検出し、主にそのトルクに応じたアシスト電流としてモータ電流を制御している。しかしながら、この方法で制御を行なう場合、路面の状態(例えば傾斜)の違いにより、操舵角によって異なる操舵トルクとなってしまうことがある。モータ出力特性の経年使用によるバラツキによっても、操舵トルクに影響を与えることがある。 In the assist control of the conventional electric power steering device, the steering torque applied manually by the driver is detected by the torque sensor as the torsion torque of the torsion bar, and the motor current is mainly used as the assist current according to the torque. I'm in control. However, when the control is performed by this method, the steering torque may differ depending on the steering angle due to the difference in the road surface condition (for example, inclination). The steering torque may also be affected by variations in the motor output characteristics due to aging.

図4は、舵角センサの設置例を示す構造図である。 FIG. 4 is a structural diagram showing an installation example of the steering angle sensor.

コラム軸2には、トーションバー2Aが備えられている。操向車輪8L,8Rには、路面反力Rr及び路面情報(路面の摩擦抵抗μ)が作用する。トーションバー2Aを挟み、コラム軸2のハンドル側には、上側角度センサが設けられている。トーションバー2Aを挟み、コラム軸2の操向車輪側には、下側角度センサが設けられている。上側角度センサは、ハンドル角θを検出し、下側角度センサは、コラム角θを検出する。操舵角θhは、コラム軸2の上部に設けられた舵角センサで検出される。トーションバーの捩れ角Δθは、ハンドル角θ及びコラム角θの偏差から、下記(1)式で表される。また、トーションバートルクTtは、(1)式で表されるトーションバーの捩れ角Δθ用いて、下記(2)式で表される。なお、Ktは、トーションバー2Aのバネ定数である。 The column shaft 2 is provided with a torsion bar 2A. Road surface reaction force Rr and road surface information (friction resistance μ of the road surface) act on the steering wheels 8L and 8R. An upper angle sensor is provided on the handle side of the column shaft 2 with the torsion bar 2A sandwiched between them. A lower angle sensor is provided on the steering wheel side of the column shaft 2 with the torsion bar 2A sandwiched between them. The upper angle sensor detects the handle angle θ 1 , and the lower angle sensor detects the column angle θ 2 . The steering angle θh is detected by a steering angle sensor provided on the upper part of the column shaft 2. Torsion angle Δθ of the torsion bar from the deviation of the steering wheel angle theta 1 and column angle theta 2, represented by the following equation (1). Further, the torsion bar torque Tt is expressed by the following equation (2) using the torsion angle Δθ of the torsion bar expressed by the equation (1). Kt is the spring constant of the torsion bar 2A.

Δθ=θ−θ・・・(1) Δθ = θ 2 −θ 1 ... (1)

Tt=−Kt×Δθ・・・(2) Tt = −Kt × Δθ ... (2)

トーションバートルクTtは、トルクセンサを用いて検出することも可能である。本実施形態では、トーションバートルクTtを操舵トルクTsとしても扱うこととする。 The torsion bar torque Tt can also be detected using a torque sensor. In the present embodiment, the torsion bar torque Tt is also treated as the steering torque Ts.

図5は、実施形態1に係るコントロールユニットの内部ブロック構成の一例を示す図である。 FIG. 5 is a diagram showing an example of an internal block configuration of the control unit according to the first embodiment.

コントロールユニット30は、内部ブロック構成として、目標操舵トルク生成部200、捩れ角制御部300、操舵方向判定部400、及び変換部500を備えている。 The control unit 30 includes a target steering torque generation unit 200, a torsion angle control unit 300, a steering direction determination unit 400, and a conversion unit 500 as an internal block configuration.

本実施形態において、運転者のハンドル操舵は、EPS操舵系/車両系100のモータ20でアシスト制御される。EPS操舵系/車両系100は、モータ20の他に、角度センサ、角速度演算部等を含む。 In the present embodiment, the steering wheel steering of the driver is assist-controlled by the motor 20 of the EPS steering system / vehicle system 100. The EPS steering system / vehicle system 100 includes an angle sensor, an angular velocity calculation unit, and the like in addition to the motor 20.

目標操舵トルク生成部200は、本開示において車両の操舵系をアシスト制御する際の操舵トルクの目標値である目標操舵トルクTrefを生成する。変換部500は、目標操舵トルクTrefを目標捩れ角Δθrefに変換する。捩れ角制御部300は、モータ20に供給する電流の制御目標値であるモータ電流指令値Irefを生成する。 In the present disclosure, the target steering torque generation unit 200 generates a target steering torque Tref, which is a target value of steering torque when assisting and controlling the steering system of the vehicle. The conversion unit 500 converts the target steering torque Tref into the target twist angle Δθref. The torsion angle control unit 300 generates a motor current command value Iref, which is a control target value of the current supplied to the motor 20.

捩れ角制御部300は、捩れ角Δθが目標捩れ角Δθrefとなるようなモータ電流指令値Irefを演算する。モータ20は、モータ電流指令値Irefにより駆動される。 The twist angle control unit 300 calculates the motor current command value Iref so that the twist angle Δθ becomes the target twist angle Δθref. The motor 20 is driven by the motor current command value Iref.

操舵方向判定部400は、EPS操舵系/車両系100から出力されるモータ角速度ωmに基づき、操舵方向が右切りか左切りかを判定し、判定結果を操舵状態信号STsとして出力する。図6は、操舵方向の説明図である。 The steering direction determination unit 400 determines whether the steering direction is right-turning or left-turning based on the motor angular velocity ωm output from the EPS steering system / vehicle system 100, and outputs the determination results as steering state signals STs. FIG. 6 is an explanatory view of the steering direction.

操舵方向が右切りか左切りかを示す操舵状態は、例えば図6に示すような操舵角θh及びモータ角速度ωmの関係で求めることができる。すなわち、モータ角速度ωmが正の値の場合は「右切り」と判定し、負の値の場合は「左切り」と判定する。なお、モータ角速度ωmの代わりに、操舵角θh、ハンドル角θ又はコラム角θに対して速度演算を行って算出される角速度を用いても良い。 The steering state indicating whether the steering direction is right-turning or left-turning can be obtained from the relationship between the steering angle θh and the motor angular velocity ωm as shown in FIG. 6, for example. That is, when the motor angular velocity ωm is a positive value, it is determined as “right turn”, and when it is a negative value, it is determined as “left turn”. Instead of the motor angular speed .omega.m, the steering angle [theta] h, may be used an angular velocity that is calculated by performing the speed calculation with respect to the handle angle theta 1 or column angle theta 2.

変換部500は、上記(2)式の関係を用いて、目標操舵トルク生成部200で生成された目標操舵トルクTrefを目標捩れ角Δθrefに変換する。 The conversion unit 500 converts the target steering torque Tref generated by the target steering torque generation unit 200 into the target torsion angle Δθref using the relationship of the above equation (2).

次に、実施形態1のコントロールユニットにおける基本的な動作例について説明する。図7は、実施形態1に係るコントロールユニットの動作例を示すフローチャートである。 Next, a basic operation example in the control unit of the first embodiment will be described. FIG. 7 is a flowchart showing an operation example of the control unit according to the first embodiment.

操舵方向判定部400は、EPS操舵系/車両系100から出力されるモータ角速度ωmの符号に基づき、操舵方向が右切りか左切りかを判定し、判定結果を操舵状態信号STsとして、目標操舵トルク生成部200に出力する(ステップS10)。 The steering direction determination unit 400 determines whether the steering direction is right-turning or left-turning based on the sign of the motor angular velocity ωm output from the EPS steering system / vehicle system 100, and uses the determination result as the steering state signal STs for target steering. Output to the torque generator 200 (step S10).

目標操舵トルク生成部200は、車速Vs、車速判定信号Vfail、操舵状態信号STs、操舵角θh、及び実ヨーレートγreに基づき、目標操舵トルクTrefを生成する(ステップS20)。 The target steering torque generation unit 200 generates a target steering torque Tref based on the vehicle speed Vs, the vehicle speed determination signal Vfile, the steering state signal STs, the steering angle θh, and the actual yaw rate γre (step S20).

変換部500は、目標操舵トルク生成部200で生成された目標操舵トルクTrefを目標捩れ角Δθrefに変換する(ステップS20)。目標捩れ角Δθrefは、捩れ角制御部300に出力される。 The conversion unit 500 converts the target steering torque Tref generated by the target steering torque generation unit 200 into the target torsion angle Δθref (step S20). The target twist angle Δθref is output to the twist angle control unit 300.

捩れ角制御部300は、目標捩れ角Δθref、操舵角θh、捩れ角Δθ、及びモータ角速度ωmに基づき、モータ電流指令値Irefを演算する(ステップS30)。 The twist angle control unit 300 calculates the motor current command value Iref based on the target twist angle Δθref, steering angle θh, twist angle Δθ, and motor angular velocity ωm (step S30).

そして、捩れ角制御部300から出力されたモータ電流指令値Irefに基づいて電流制御が実施され、モータ20が駆動される(ステップS40)。 Then, current control is performed based on the motor current command value Iref output from the torsion angle control unit 300, and the motor 20 is driven (step S40).

図8は、実施形態1の目標操舵トルク生成部の一構成例を示すブロック図である。図8に示すように、目標操舵トルク生成部200は、基本マップ部210、乗算部211、符号抽出部213、微分部220、ダンパゲインマップ部230、ヒステリシス補正部240、SAT情報補正部250、乗算部260,264、加算部261,262,265、及び操舵反力補正部280を備える。図9は、基本マップ部が保持する基本マップの特性例を示す図である。図10は、ダンパゲインマップ部が保持するダンパゲインマップの特性例を示す図である。 FIG. 8 is a block diagram showing a configuration example of the target steering torque generating unit of the first embodiment. As shown in FIG. 8, the target steering torque generation unit 200 includes a basic map unit 210, a multiplication unit 211, a code extraction unit 213, a differentiation unit 220, a damper gain map unit 230, a hysteresis correction unit 240, and a SAT information correction unit 250. It includes a multiplication unit 260, 264, an addition unit 261, 262, 265, and a steering reaction force correction unit 280. FIG. 9 is a diagram showing a characteristic example of the basic map held by the basic map unit. FIG. 10 is a diagram showing a characteristic example of the damper gain map held by the damper gain map unit.

基本マップ部210には、操舵角θh及び車速Vsが入力される。基本マップ部210は、図9に示す基本マップを用いて、車速Vsをパラメータとするトルク信号Tref_a0を出力する。すなわち、基本マップ部210は、車速Vsに応じたトルク信号Tref_a0を出力する。 The steering angle θh and the vehicle speed Vs are input to the basic map unit 210. The basic map unit 210 outputs a torque signal Tref_a0 with the vehicle speed Vs as a parameter, using the basic map shown in FIG. That is, the basic map unit 210 outputs the torque signal Tref_a0 according to the vehicle speed Vs.

図9に示すように、トルク信号Tref_a0は、操舵角θhの大きさ(絶対値)|θh|の増加に伴い増加する特性を有する。また、トルク信号Tref_aは、車速Vsの増加に伴い増加する特性を有する。なお、図9では操舵角θhの大きさ|θh|に応じたマップを構成しているが、正負の操舵角θhに応じたマップを構成しても良い。この場合は、トルク信号Tref_a0の値は、正負の値を取り、後述する符号計算は不要である。 As shown in FIG. 9, the torque signal Tref_a0 has a characteristic of increasing as the magnitude (absolute value) | θh | of the steering angle θh increases. Further, the torque signal Tref_a has a characteristic of increasing as the vehicle speed Vs increases. In FIG. 9, a map is configured according to the magnitude | θh | of the steering angle θh, but a map corresponding to the positive and negative steering angles θh may be configured. In this case, the value of the torque signal Tref_a0 takes a positive or negative value, and the code calculation described later is unnecessary.

符号抽出部213は、操舵角θhの符号を抽出する。具体的には、例えば、操舵角θhの値を、操舵角θhの絶対値で除算する。これにより、符号抽出部213は、操舵角θhの符号が「+」の場合には「1」を出力し、操舵角θhの符号が「−」の場合には「−1」を出力する。 The code extraction unit 213 extracts the code of the steering angle θh. Specifically, for example, the value of the steering angle θh is divided by the absolute value of the steering angle θh. As a result, the code extraction unit 213 outputs "1" when the sign of the steering angle θh is "+" and outputs "-1" when the sign of the steering angle θh is "-".

微分部220には、操舵角θhが入力される。微分部220は、操舵角θhを微分して、角速度情報である舵角速度ωhを算出する。微分部220は、算出した舵角速度ωhを乗算部260に出力する。 The steering angle θh is input to the differential unit 220. The differentiation unit 220 differentiates the steering angle θh to calculate the steering angular velocity ωh, which is the angular velocity information. The differential unit 220 outputs the calculated steering angular velocity ωh to the multiplication unit 260.

ダンパゲインマップ部230には、車速Vsが入力される。ダンパゲインマップ部230は、図10に示す車速感応型のダンパゲインマップを用いて、車速Vsに応じたダンパゲインDを出力する。 The vehicle speed Vs is input to the damper gain map unit 230. Damper gain map 230, using the damper gain map of vehicle speed sensitive type shown in FIG. 10, and outputs the damper gain D G corresponding to the vehicle speed Vs.

図10に示すように、ダンパゲインDは、車速Vsが高くなるに従い徐々に大きくなる特性を有する。ダンパゲインDは、操舵角θhに応じて可変する態様としても良い。 As shown in FIG. 10, damper gain D G has gradually increases as the vehicle speed Vs is high. Damper gain D G may be a mode for varying according to the steering angle [theta] h.

乗算部260は、微分部220から出力される舵角速度ωhに対して、ダンパゲインマップ部230から出力されるダンパゲインDを乗算し、トルク信号Tref_bとして加算部262に出力する。 Multiplying unit 260, with respect to the steering angular velocity ωh outputted from the differentiating unit 220, multiplies the damper gain D G outputted from the damper gain map 230, and outputs the result to adding section 262 as a torque signal Tref_b.

操舵方向判定部400は、例えば図6に示すような判定を行う。ヒステリシス補正部240には、操舵角θh、車速Vs、及び、図6に示す判定結果である操舵状態信号STsが入力される。ヒステリシス補正部240は、操舵角θh及び操舵状態信号STsに基づき、下記(3)式及び(4)式を用いてトルク信号Tref_cを演算する。なお、下記(3)式及び(4)式において、xは操舵角θh、y=Tref_c及びy=Tref_cはトルク信号Tref_cとする。また、係数aは1よりも大きい値であり、係数cは0よりも大きい値である。係数Ahysは、ヒステリシス特性の出力幅を示し、係数cは、ヒステリシス特性の丸みを表す係数である。 The steering direction determination unit 400 makes a determination as shown in FIG. 6, for example. The steering angle θh, the vehicle speed Vs, and the steering state signal STs, which are the determination results shown in FIG. 6, are input to the hysteresis correction unit 240. The hysteresis correction unit 240 calculates the torque signal Tref_c using the following equations (3) and (4) based on the steering angle θh and the steering state signal STs. In the following equations (3) and (4), x is the steering angle θh, y R = Tref_c and y L = Tref_c are the torque signals Tref_c. Further, the coefficient a is a value larger than 1, and the coefficient c is a value larger than 0. The coefficient Ahys indicates the output width of the hysteresis characteristic, and the coefficient c is a coefficient representing the roundness of the hysteresis characteristic.

=Ahys{1−a−c(x−b)}・・・(3) y R = Ahys {1-a- c (x-b) } ... (3)

=−Ahys{1−ac(x−b’)}・・・(4) y L = -Ahys {1-a c (x-b') } ... (4)

右切り操舵の際には、上記(3)式を用いて、トルク信号Tref_c(y)を算出する。左切り操舵の際には、上記(4)式を用いて、トルク信号Tref_c(y)を算出する。なお、右切り操舵から左切り操舵へ切り替える際、又は、左切り操舵から右切り操舵へ切り替える際には、操舵角θh及びトルク信号Tref_cの前回値であるの最終座標(x,y)の値に基づき、操舵切り替え後の上記(3)式及び(4)式に対し、下記(5)式又は(6)式に示す係数b又はb’を代入する。これにより、操舵切り替え前後の連続性が保たれる。 When steering to the right, the torque signal Tref_c (y R ) is calculated using the above equation (3). When steering to the left, the torque signal Tref_c (y L ) is calculated using the above equation (4). When switching from right-turn steering to left-turn steering, or when switching from left-turn steering to right-turn steering, the final coordinates (x 1 , y 1 ) of the steering angle θh and the previous values of the torque signal Tref_c. Based on the value of, the coefficient b or b'shown in the following equation (5) or (6) is substituted for the above equations (3) and (4) after the steering switching. As a result, continuity before and after steering switching is maintained.

b=x+(1/c)log{1−(y/Ahys)}・・・(5) b = x 1 + (1 / c) log a {1- (y 1 / Ahys)} ... (5)

b’=x−(1/c)log{1−(y/Ahys)}・・・(6) b'= x 1 − (1 / c) log a {1- (y 1 / Ahys)} ... (6)

上記(5)式及び(6)式は、上記(3)式及び(4)式において、xにxを代入し、y及びyにyを代入することにより導出することができる。 The above equations (5) and (6) can be derived by substituting x 1 for x and y 1 for y R and y L in the above equations (3) and (4). ..

係数aとして、例えば、ネイピア数eを用いた場合、上記(3)式、(4)式、(5)式、(6)式は、それぞれ下記(7)式、(8)式、(9)式、(10)式で表せる。 When, for example, the Napier number e is used as the coefficient a, the above equations (3), (4), (5), and (6) are the following equations (7), (8), and (9), respectively. ) And (10) can be expressed.

=Ahys[1−exp{−c(x−b)}]・・・(7) y R = Ahys [1-exp {-c (x-b)}] ... (7)

=−Ahys[{1−exp{c(x−b’)}]・・・(8) y L = -Ahys [{1-exp {c (x-b')}] ... (8)

b=x+(1/c)log{1−(y/Ahys)}・・・(9) b = x 1 + (1 / c) log e {1- (y 1 / Ahys)} ... (9)

b’=x−(1/c)log{1−(y/Ahys)}・・・(10) b'= x 1 − (1 / c) log e {1- (y 1 / Ahys)} ... (10)

図11は、ヒステリシス補正部の特性例を示す図である。図11に示す例では、上記(9)式及び(10)式において、Ahys=1[Nm]、c=0.3と設定し、0[deg]から開始し、+50[deg]、−50[deg]の操舵をした場合の、ヒステリシス補正されたトルク信号Tref_cの特性例を示している。図11に示すように、ヒステリシス補正部240から出力されるトルク信号Tref_cは、0の原点→L1(細線)→L2(破線)→L3(太線)のようなヒステリシス特性を有している。 FIG. 11 is a diagram showing a characteristic example of the hysteresis correction unit. In the example shown in FIG. 11, in the above equations (9) and (10), Ahys = 1 [Nm] and c = 0.3 are set, starting from 0 [deg], and +50 [deg], -50. An example of the characteristics of the torque signal Tref_c with hysteresis correction when the steering of [deg] is performed is shown. As shown in FIG. 11, the torque signal Tref_c output from the hysteresis correction unit 240 has a hysteresis characteristic such as the origin of 0 → L1 (thin line) → L2 (broken line) → L3 (thick line).

なお、ヒステリシス特性の出力幅を表す係数であるAhys及び丸みを表す係数であるcを、車速Vs及び操舵角θhの一方又は双方に応じて可変としても良い。 It should be noted that Ahys, which is a coefficient representing the output width of the hysteresis characteristic, and c, which is a coefficient representing roundness, may be made variable according to one or both of the vehicle speed Vs and the steering angle θh.

また、舵角速度ωhは、操舵角θhに対する微分演算により求めているが、高域のノイズの影響を低減するために適度にローパスフィルタ(LPF)処理を実施している。また、ハイパスフィルタ(HPF)とゲインにより、微分演算とLPFの処理を実施しても良い。更に、舵角速度ωhは、操舵角θhではなく、上側角度センサが検出するハンドル角θ1又は下側角度センサが検出するコラム角θ2に対して微分演算とLPFの処理を行って算出しても良い。舵角速度ωhの代わりにモータ角速度ωmを角速度情報として使用しても良く、この場合、微分部220は不要となる。 Further, the steering angular velocity ωh is obtained by a differential calculation with respect to the steering angle θh, but a low-pass filter (LPF) processing is appropriately performed in order to reduce the influence of high-frequency noise. Further, the differential calculation and the LPF processing may be performed by the high-pass filter (HPF) and the gain. Further, the steering angular velocity ωh may be calculated by performing differential calculation and LPF processing on the steering wheel angle θ1 detected by the upper angle sensor or the column angle θ2 detected by the lower angle sensor instead of the steering angle θh. .. The motor angular velocity ωm may be used as the angular velocity information instead of the steering angular velocity ωh, and in this case, the differential unit 220 becomes unnecessary.

図8に戻り、乗算部211は、基本マップ部210から出力されるトルク信号Tref_a0に対して、符号抽出部213から出力される操舵角θhの符号を乗算し、トルク信号Tref_aとして加算部261に出力する。これにより、正負の操舵角θhに応じたトルク信号Tref_aが得られる。 Returning to FIG. 8, the multiplication unit 211 multiplies the torque signal Tref_a0 output from the basic map unit 210 by the sign of the steering angle θh output from the code extraction unit 213, and outputs the torque signal Tref_a to the addition unit 261. Output. As a result, the torque signal Tref_a corresponding to the positive and negative steering angles θh can be obtained.

上述のように求められたトルク信号Tref_a、トルク信号Tref_b、及びトルク信号Tref_cは、加算部261,262で加算され、トルク信号Tref_eが得られる。 The torque signal Tref_a, the torque signal Tref_b, and the torque signal Tref_c obtained as described above are added by the addition units 261,262 to obtain the torque signal Tref_e.

本実施形態におけるトルク信号Tref_aが、本開示の「第1トルク信号」に対応する。また、本実施形態におけるトルク信号Tref_eが、本開示の「第2トルク信号」に対応する。 The torque signal Tref_a in the present embodiment corresponds to the "first torque signal" of the present disclosure. Further, the torque signal Tref_e in the present embodiment corresponds to the "second torque signal" of the present disclosure.

図12は、操舵反力補正部の一構成例を示すブロック図である。図12に示すように、操舵反力補正部280は、補正ゲイン生成部281、補正トルクマップ282、符号抽出部283、及び乗算部284を備えている。 FIG. 12 is a block diagram showing a configuration example of the steering reaction force correction unit. As shown in FIG. 12, the steering reaction force correction unit 280 includes a correction gain generation unit 281, a correction torque map 282, a code extraction unit 283, and a multiplication unit 284.

操舵反力補正部280には、操舵角θh及び低速運転モード検知部15(図1参照)から出力される低速運転モード信号Pfが入力される。 The steering angle θh and the low-speed operation mode signal Pf output from the low-speed operation mode detection unit 15 (see FIG. 1) are input to the steering reaction force correction unit 280.

ここで、「低速運転モード(第2モード)」について説明する。本実施形態において、「低速運転モード(第2モード)」とは、例えば、車両を駐車場に駐車する場合等、車両を所定の停車位置に移動させる際や、進入した袋小路から戻るために後退移動させる等、運転者が予め定められた所定の低速運転モード移行操作を行ったときに選択される運転モードである。つまり、本実施形態における低速運転モード(第2モード)は、上述したような所定の低速運転モード移行操作が行われた際に、車両を低速で移動させるための運転モードである。 Here, the "low speed operation mode (second mode)" will be described. In the present embodiment, the "low-speed driving mode (second mode)" means, for example, when the vehicle is parked in a parking lot, when the vehicle is moved to a predetermined stop position, or when the vehicle retreats to return from the entered dead end. This is an operation mode selected when the driver performs a predetermined low-speed operation mode transition operation such as moving the vehicle. That is, the low-speed driving mode (second mode) in the present embodiment is a driving mode for moving the vehicle at a low speed when the predetermined low-speed driving mode transition operation as described above is performed.

低速運転モード検知部15は、運転者によって所定の低速運転モード移行操作が行われたことを検知して、低速運転モード信号Pfを出力する構成部である。低速運転モード検知部15は、例えば、車両のセンターコンソール等に具備される「パーキングボタン」が運転者によって押されたことを検知して、低速運転モード信号Pfを出力する態様であっても良い。また、低速運転モード検知部15は、例えば、車両のシフトノブを運転者が操作して、「リバース(後退)」、「パーキングF(前進)」、又は「パーキングB(後退)」のポジションが選択されたことを検知して、低速運転モード信号Pfを出力する態様であっても良い。ここで、「パーキングF(前進)」は、低速運転モード(第2モード)において前進する際に選択するポジションを示し、「パーキングB(後退)」は、低速運転モード(第2モード)において後退する際に選択するポジションを示している。運転者による低速運転モード(第2モード)の選択手段としては、上記以外の態様であっても良く、運転者による低速運転モード(第2モード)の選択手段により本発明が限定されるものではない。なお、以下の説明では、低速運転モード(第2モード)非選択時における通常の運転モードを「ドライブモード(第1モード)」とも称する。すなわち、本開示において、低速運転モード検知部15は、所定の低速運転モード移行操作を検知して、ドライブモード(第1モード)とは異なる低速運転モード(第2モード)と判定する「判定部」に対応する。 The low-speed operation mode detection unit 15 is a configuration unit that detects that a predetermined low-speed operation mode transition operation has been performed by the driver and outputs a low-speed operation mode signal Pf. The low-speed driving mode detection unit 15 may be in a mode of detecting that the "parking button" provided on the center console of the vehicle or the like is pressed by the driver and outputting the low-speed driving mode signal Pf. .. Further, in the low-speed driving mode detection unit 15, for example, the driver operates the shift knob of the vehicle to select a position of "reverse (reverse)", "parking F (forward)", or "parking B (reverse)". The mode may be such that the low speed operation mode signal Pf is output by detecting that the signal has been generated. Here, "parking F (forward)" indicates a position to be selected when moving forward in the low-speed operation mode (second mode), and "parking B (backward)" indicates backward in the low-speed operation mode (second mode). Indicates the position to be selected when doing so. The means for selecting the low-speed operation mode (second mode) by the driver may be an embodiment other than the above, and the present invention is not limited by the means for selecting the low-speed operation mode (second mode) by the driver. Absent. In the following description, the normal operation mode when the low speed operation mode (second mode) is not selected is also referred to as a "drive mode (first mode)". That is, in the present disclosure, the low-speed operation mode detection unit 15 detects a predetermined low-speed operation mode transition operation and determines that the low-speed operation mode (second mode) is different from the drive mode (first mode). Corresponds to.

補正ゲイン生成部281は、低速運転モード(第2モード)において、低速運転モード信号Pfに応じた補正ゲインG(Gは、1未満の正の値)を出力する。具体的に、補正ゲイン生成部281は、低速運転モード(第2モード)において、例えば、補正ゲインG=0.3を出力する。また、補正ゲイン生成部281は、ドライブモード(第1モード)において、補正ゲインG=1を出力する。低速運転モード(第2モード)における補正ゲインGの値は一例であって、0.3に限るものではない。低速運転モード(第2モード)における補正ゲインGの値は、1未満の正の所定値とすることができる。 The correction gain generation unit 281 outputs a correction gain G (G is a positive value less than 1) corresponding to the low-speed operation mode signal Pf in the low-speed operation mode (second mode). Specifically, the correction gain generation unit 281 outputs, for example, a correction gain G = 0.3 in the low-speed operation mode (second mode). Further, the correction gain generation unit 281 outputs a correction gain G = 1 in the drive mode (first mode). The value of the correction gain G in the low-speed operation mode (second mode) is an example, and is not limited to 0.3. The value of the correction gain G in the low-speed operation mode (second mode) can be a positive predetermined value less than 1.

補正トルクマップ282には、操舵角θhの大きさ|θh|に応じた補正トルクが設定されている。補正トルクマップ282は、操舵角θhの大きさ|θh|に応じた補正トルク信号Tref_p0を出力する。 In the correction torque map 282, a correction torque is set according to the magnitude | θh | of the steering angle θh. The correction torque map 282 outputs a correction torque signal Tref_p0 according to the magnitude | θh | of the steering angle θh.

符号抽出部283は、操舵角θhの符号を抽出する。具体的には、例えば、操舵角θhの値を、操舵角θhの絶対値で除算する。これにより、符号抽出部283は、操舵角θhの符号が「+」の場合には「1」を出力し、操舵角θhの符号が「−」の場合には「−1」を出力する。 The code extraction unit 283 extracts the code of the steering angle θh. Specifically, for example, the value of the steering angle θh is divided by the absolute value of the steering angle θh. As a result, the code extraction unit 283 outputs "1" when the sign of the steering angle θh is "+", and outputs "-1" when the sign of the steering angle θh is "-".

乗算部284は、補正トルクマップ282から出力される補正トルク信号Tref_p0に対して、符号抽出部283から出力される操舵角θhの符号を乗算し、補正トルク信号Tref_pとして出力する。これにより、正負の操舵角θhに応じた補正トルク信号Tref_pが得られる。 The multiplication unit 284 multiplies the correction torque signal Tref_p0 output from the correction torque map 282 by the sign of the steering angle θh output from the code extraction unit 283, and outputs the correction torque signal Tref_p. As a result, the correction torque signal Tref_p corresponding to the positive and negative steering angles θh can be obtained.

図13は、補正トルクマップの一例を示す図である。図13において、横軸は操舵角θhの絶対値|θh|を示し、縦軸はトルクを示している。 FIG. 13 is a diagram showing an example of a correction torque map. In FIG. 13, the horizontal axis represents the absolute value | θh | of the steering angle θh, and the vertical axis represents the torque.

図13では、トルク信号Tref_a0の一例を破線で示し、補正トルク信号Tref_p0を実線で示している。なお、図13では操舵角θhの大きさ(絶対値)|θh|に応じたマップを構成しているが、正負の操舵角θhに応じたマップを構成しても良い。この場合、補正トルク信号Tref_p0の値は、正負の値を取り得る。補正トルクマップ282は、例えば、コントロールユニット30を構成する制御用コンピュータ1100のEEPROM1004等に記憶されていても良いし、操舵反力補正部280が保持する態様であっても良い。 In FIG. 13, an example of the torque signal Tref_a0 is shown by a broken line, and the correction torque signal Tref_p0 is shown by a solid line. In FIG. 13, a map is configured according to the magnitude (absolute value) | θh | of the steering angle θh, but a map corresponding to the positive and negative steering angles θh may be configured. In this case, the value of the correction torque signal Tref_p0 can take a positive or negative value. The correction torque map 282 may be stored in the EEPROM 1004 of the control computer 1100 constituting the control unit 30, or may be held by the steering reaction force correction unit 280.

図13に示すように、補正トルク信号Tref_p0は、操舵角θhの絶対値|θh|が閾値θh_th未満となる領域において、操舵角θhの絶対値|θh|の増加に伴い徐々に変化率が小さくなる曲線に沿って増加する特性を有する。また、図13に示すように、補正トルク信号Tref_p0は、操舵角θhの絶対値|θh|が閾値|θh_th|以上となる領域において一定値|Tc|となる。本実施形態において、補正トルク信号Tref_p0の操舵角θhの絶対値|θh|=0における傾きK2は、トルク信号Tref_a0の操舵角θhの絶対値|θh|=0における傾きK1よりも大きい値としている。閾値|θh_th|及び一定値|Tc|は任意の所定値とすることができる。 As shown in FIG. 13, the correction torque signal Tref_p0 gradually decreases in the rate of change as the absolute value | θh | of the steering angle θh increases in the region where the absolute value | θh | of the steering angle θh is less than the threshold value θh_th. Has the property of increasing along the curve. Further, as shown in FIG. 13, the correction torque signal Tref_p0 has a constant value | Tc | in a region where the absolute value | θh | of the steering angle θh is equal to or higher than the threshold value | θh_th |. In the present embodiment, the inclination K2 at the absolute value | θh | = 0 of the steering angle θh of the correction torque signal Tref_p0 is set to be larger than the inclination K1 at the absolute value | θh | = 0 of the steering angle θh of the torque signal Tref_a0. .. The threshold value | θh_th | and the constant value | Tc | can be any predetermined value.

操舵反力補正部280は、低速運転モード信号Pfに応じた補正トルク信号Tref_pを出力する。操舵反力補正部280は、低速運転モード(第2モード)において、操舵角θhに応じた補正トルク信号Tref_pを出力する。また、操舵反力補正部280は、ドライブモード(第1モード)において、操舵角θhに依らず、補正トルク信号Tref_p=0を出力する。 The steering reaction force correction unit 280 outputs a correction torque signal Tref_p corresponding to the low-speed operation mode signal Pf. The steering reaction force correction unit 280 outputs a correction torque signal Tref_p according to the steering angle θh in the low-speed operation mode (second mode). Further, the steering reaction force correction unit 280 outputs a correction torque signal Tref_p = 0 in the drive mode (first mode) regardless of the steering angle θh.

図8に戻り、乗算部264は、加算部261から出力されるトルク信号Tref_eに対し、操舵反力補正部280から出力される補正ゲインGを乗算し、トルク信号Tref_fとして加算部265に出力する。加算部265は、乗算部264から出力されるトルク信号Tref_fに対し、操舵反力補正部280から出力される補正トルク信号Tref_pを加算して、目標操舵トルクTrefとして出力する。すなわち、目標操舵トルクTrefは、下記(11)式で表せる。 Returning to FIG. 8, the multiplication unit 264 multiplies the torque signal Tref_e output from the addition unit 261 by the correction gain G output from the steering reaction force correction unit 280, and outputs the torque signal Tref_f to the addition unit 265. .. The addition unit 265 adds the correction torque signal Tref_p output from the steering reaction force correction unit 280 to the torque signal Tref_f output from the multiplication unit 264, and outputs it as the target steering torque Tref. That is, the target steering torque Tref can be expressed by the following equation (11).

Tref=(Tref_e)×G+Tref_p
=Tref_f+Tref_p ・・・(11)
Tref = (Tref_e) x G + Tref_p
= Tref_f + Tref_p ... (11)

本実施形態におけるトルク信号Tref_fが、本開示の「第3トルク信号」に対応する。また、本実施形態における補正トルク信号Tref_pが、本開示の「第4トルク信号」に対応する。 The torque signal Tref_f in the present embodiment corresponds to the "third torque signal" of the present disclosure. Further, the correction torque signal Tref_p in the present embodiment corresponds to the "fourth torque signal" of the present disclosure.

図14は、目標操舵トルク生成部から出力される目標操舵トルクの一例を示す図である。図14において、横軸は操舵角θhを示し、縦軸はトルクを示している。 FIG. 14 is a diagram showing an example of the target steering torque output from the target steering torque generation unit. In FIG. 14, the horizontal axis represents the steering angle θh, and the vertical axis represents the torque.

図14では、ドライブモードにおける目標操舵トルクの一例を破線で示し、低速運転モードにおける目標操舵トルクを実線で示している。 In FIG. 14, an example of the target steering torque in the drive mode is shown by a broken line, and the target steering torque in the low speed operation mode is shown by a solid line.

ドライブモード(第1モード)では、上述したように、トルク信号Tref_e(第2トルク信号)に対して、補正ゲインG=1を乗じ、補正トルク信号Tref_p(第4トルク信号)=0を加算する。これにより、目標操舵トルクTref=トルク信号Tref_e(第2トルク信号)となり、ドライブモード(第1モード)に適した目標操舵トルクTrefを得ることができる。 In the drive mode (first mode), as described above, the torque signal Tref_e (second torque signal) is multiplied by the correction gain G = 1 and the correction torque signal Tref_p (fourth torque signal) = 0 is added. .. As a result, the target steering torque Tref = torque signal Tref_e (second torque signal), and the target steering torque Tref suitable for the drive mode (first mode) can be obtained.

低速運転モード(第2モード)では、上述したように、トルク信号Tref_e(第2トルク信号)に対し、1未満の正の補正ゲインG(例えば、G=0.3)を乗じてトルク信号Tref_f(第3トルク信号)を生成し、さらに、トルク信号Tref_f(第3トルク信号)に対し、トルク信号Tref_a(第1トルク信号)よりも操舵角θhの絶対値|θh|=0における傾きが大きい補正トルク信号Tref_p(第4トルク信号)を加算して、目標操舵トルクTrefを生成する。これにより、図14に示すように、低速運転モード(第2モード)では、ドライブモード(第1モード)よりも目標操舵トルクTrefを小さくすることができ、ハンドル1の操作を軽くすることができる。また、図14に示すように、操舵角θhが0前後の所定領域(図14中において一点鎖線で示した領域)では、操舵角θhの変化に対して操舵力の変化を大きくすることができる。換言すれば、ハンドル1の操舵角θhの絶対値|θh|がゼロ以上となる所定領域において、低速運転モード(第2モード)における目標操舵トルクTrefの変化率がドライブモード(第1モード)以上となり、所定領域以外の領域において、低速運転モード(第2モード)における目標操舵トルクTrefの変化率がドライブモード(第1モード)よりも小さくなる。これにより、運転者は、舵角ゼロを認識し易くなる。このため、運転者の負担を軽減することができ、操舵感を向上することができる。 In the low-speed operation mode (second mode), as described above, the torque signal Tref_e (second torque signal) is multiplied by a positive correction gain G (for example, G = 0.3) of less than 1, and the torque signal Tref_f (Third torque signal) is generated, and the inclination of the steering angle θh at the absolute value | θh | = 0 is larger than that of the torque signal Tref_a (first torque signal) with respect to the torque signal Tref_f (third torque signal). The correction torque signal Tref_p (fourth torque signal) is added to generate the target steering torque Tref. As a result, as shown in FIG. 14, in the low-speed operation mode (second mode), the target steering torque Tref can be made smaller than in the drive mode (first mode), and the operation of the steering wheel 1 can be made lighter. .. Further, as shown in FIG. 14, in a predetermined region where the steering angle θh is around 0 (the region indicated by the alternate long and short dash line in FIG. 14), the change in steering force can be increased with respect to the change in steering angle θh. .. In other words, in a predetermined region where the absolute value | θh | of the steering angle θh of the steering wheel 1 is zero or more, the rate of change of the target steering torque Tref in the low speed operation mode (second mode) is equal to or more than the drive mode (first mode). In a region other than the predetermined region, the rate of change of the target steering torque Tref in the low-speed operation mode (second mode) is smaller than that in the drive mode (first mode). This makes it easier for the driver to recognize the steering angle of zero. Therefore, the burden on the driver can be reduced and the steering feeling can be improved.

なお、図8に示す例では、トルク信号Tref_a(第1トルク信号)、トルク信号Tref_b、及びトルク信号Tref_cを加算して得たトルク信号Tref_e(第2トルク信号)に対し、補正ゲインGを乗じて、トルク信号Tref_f(第3トルク信号)を生成する例を示したが、トルク信号Tref_a(第1トルク信号)、トルク信号Tref_b、トルク信号Tref_cのそれぞれに対して、それぞれ1未満の個別の補正ゲインGを乗じた後に加算して、トルク信号Tref_f(第3トルク信号)を生成する態様であっても良い。 In the example shown in FIG. 8, the torque signal Tref_e (second torque signal) obtained by adding the torque signal Tref_a (first torque signal), the torque signal Tref_b, and the torque signal Tref_c is multiplied by the correction gain G. An example of generating a torque signal Tref_f (third torque signal) has been shown, but each of the torque signal Tref_a (first torque signal), the torque signal Tref_b, and the torque signal Tref_c is individually corrected to be less than 1. A mode may be used in which a torque signal Tref_f (third torque signal) is generated by multiplying the gain G and then adding the torque signal.

以下、実施形態1の捩れ角制御部300(図5参照)について、図15を参照して説明する。 Hereinafter, the twist angle control unit 300 (see FIG. 5) of the first embodiment will be described with reference to FIG.

図15は、実施形態1の捩れ角制御部の一構成例を示すブロック図である。捩れ角制御部300は、目標捩れ角Δθref、捩れ角Δθ、操舵角θh及びモータ角速度ωmに基づいてモータ電流指令値Irefを演算する。捩れ角制御部300は、捩れ角フィードバック(FB)補償部310、速度制御部330、安定化補償部340、出力制限部350、舵角外乱補償部360、減算部361、加算部363、及び減速比部370を備えている。 FIG. 15 is a block diagram showing a configuration example of the twist angle control unit of the first embodiment. The twist angle control unit 300 calculates the motor current command value Iref based on the target twist angle Δθref, twist angle Δθ, steering angle θh, and motor angular velocity ωm. The torsion angle control unit 300 includes a torsion angle feedback (FB) compensation unit 310, a speed control unit 330, a stabilization compensation unit 340, an output limiting unit 350, a steering angle disturbance compensation unit 360, a subtraction unit 361, an addition unit 363, and a deceleration unit. The ratio part 370 is provided.

変換部500から出力される目標捩れ角Δθrefは、減算部361に加算入力される。捩れ角Δθは、減算部361に減算入力される。操舵角θhは、舵角外乱補償部360に入力される。モータ角速度ωmは、安定化補償部340に入力される。 The target twist angle Δθref output from the conversion unit 500 is additionally input to the subtraction unit 361. The twist angle Δθ is subtracted and input to the subtracting unit 361. The steering angle θh is input to the steering angle disturbance compensation unit 360. The motor angular velocity ωm is input to the stabilization compensation unit 340.

捩れ角FB補償部310は、減算部361で算出される目標捩れ角Δθrefと捩れ角Δθの偏差Δθ0に対して補償値CFB(伝達関数)を乗算し、目標捩れ角Δθrefに捩れ角Δθが追従するような目標コラム角速度ωref1を出力する。目標コラム角速度ωref1は、加算部363に加算出力される。補償値CFBは、単純なゲインKppでも、PI制御の補償値など一般的に用いられている補償値でも良い。 The twist angle FB compensation unit 310 multiplies the compensation value CFB (transfer function) by the deviation Δθ0 of the target twist angle Δθref and the twist angle Δθ calculated by the subtraction unit 361, and the twist angle Δθ follows the target twist angle Δθref. The target column angular velocity ωref1 is output. The target column angular velocity ωref1 is additionally output to the addition unit 363. The compensation value CFB may be a simple gain Kpp or a commonly used compensation value such as a PI control compensation value.

舵角外乱補償部360は、操舵角θhに対して補償値Ch(伝達関数)を乗算し、目標コラム角速度ωref2を出力する。目標コラム角速度ωref2は、加算部363に加算出力される。 The steering angle disturbance compensation unit 360 multiplies the steering angle θh by the compensation value Ch (transfer function) and outputs the target column angular velocity ωref2. The target column angular velocity ωref2 is additionally output to the addition unit 363.

加算部363は、目標コラム角速度ωref1と目標コラム角速度ωref2とを加算し、目標コラム角速度ωrefとして速度制御部330に出力する。これにより、運転者から入力される操舵角θhの変化による、トーションバー捩れ角Δθへの影響を抑制し、急操舵に対する目標捩れ角Δθrefへの捩れ角Δθの追従性を向上することができる。 The addition unit 363 adds the target column angular velocity ωref1 and the target column angular velocity ωref2, and outputs the target column angular velocity ωref to the speed control unit 330. As a result, it is possible to suppress the influence of the change in the steering angle θh input from the driver on the torsion bar torsion angle Δθ, and improve the followability of the torsion angle Δθ to the target torsion angle Δθref for sudden steering.

運転者の操舵により操舵角θhが変化すると、操舵角θhの変化が外乱として捩れ角Δθに影響してしまい、目標捩れ角Δθrefに対してずれが発生する。特に、急な操舵に対しては、操舵角θhの変化による目標捩れ角Δθrefに対するずれが顕著に出てしまう。舵角外乱補償部360の基本的な目的は、この外乱としての操舵角θhの影響を低減させることである。 When the steering angle θh changes due to the steering of the driver, the change in the steering angle θh affects the torsion angle Δθ as a disturbance, and a deviation occurs with respect to the target torsion angle Δθref. In particular, for sudden steering, the deviation from the target twist angle Δθref due to the change in the steering angle θh becomes remarkable. The basic purpose of the steering angle disturbance compensating unit 360 is to reduce the influence of the steering angle θh as the disturbance.

速度制御部330は、I−P制御(比例先行型PI制御)により、目標コラム角速度ωrefにコラム角速度ωcが追従するようなモータ電流指令値Isを算出する。コラム角速度ωcは、図15のように、モータ角速度ωmに減速機構である減速比部370の減速比1/Nを乗算した値としても良い。 The speed control unit 330 calculates the motor current command value Is so that the column angular velocity ωc follows the target column angular velocity ωref by IP control (proportional leading PI control). As shown in FIG. 15, the column angular velocity ωc may be a value obtained by multiplying the motor angular velocity ωm by the reduction ratio 1 / N of the reduction ratio unit 370, which is a reduction mechanism.

減算部333は、目標コラム角速度ωrefとコラム角速度ωcとの差分(ωref−ωc)を算出する。積分部331は、目標コラム角速度ωrefとコラム角速度ωcとの差分(ωref−ωc)を積分し、積分結果を減算部334に加算入力する。 The subtraction unit 333 calculates the difference (ωref−ωc) between the target column angular velocity ωref and the column angular velocity ωc. The integration unit 331 integrates the difference (ωref−ωc) between the target column angular velocity ωref and the column angular velocity ωc, and adds and inputs the integration result to the subtraction unit 334.

捩れ角速度ωtは、比例部332にも出力される。比例部332は、コラム角速度ωcに対してゲインKvpによる比例処理を行い、比例処理結果を減算部334に減算入力する。減算部334での減算結果は、モータ電流指令値Isとして出力される。なお、速度制御部330は、I−P制御ではなく、PI制御、P(比例)制御、PID(比例積分微分)制御、PI−D制御(微分先行型PID制御)、モデルマッチング制御、モデル規範制御等の一般的に用いられている制御方法でモータ電流指令値Isを算出しても良い。 The torsion angular velocity ωt is also output to the proportional portion 332. The proportional unit 332 performs proportional processing with a gain Kvp on the column angular velocity ωc, and subtracts and inputs the proportional processing result to the subtraction unit 334. The subtraction result in the subtraction unit 334 is output as the motor current command value Is. The speed control unit 330 is not an IP control, but a PI control, a P (proportional) control, a PID (proportional integral differential) control, a PI-D control (differential leading PID control), a model matching control, and a model reference. The motor current command value Is may be calculated by a commonly used control method such as control.

出力制限部350は、モータ電流指令値Isに対する上限値及び下限値が予め設定されている。モータ電流指令値Isの上下限値を制限して、モータ電流指令値Irefを出力する。 The output limiting unit 350 has preset upper and lower limit values for the motor current command value Is. The upper and lower limits of the motor current command value Is are limited, and the motor current command value Iref is output.

なお、本実施形態における捩れ角制御部300の構成は一例であり、図15に示す構成とは異なる態様であっても良い。例えば、捩れ角制御部300は、舵角外乱補償部360及び加算部363や、減速比部370を具備しない構成であっても良い。 The configuration of the torsion angle control unit 300 in this embodiment is an example, and may be different from the configuration shown in FIG. For example, the torsion angle control unit 300 may not include the steering angle disturbance compensation unit 360, the addition unit 363, and the reduction ratio unit 370.

(実施形態2)
図16は、実施形態2に係るコントロールユニットの内部ブロック構成の一例を示す図である。なお、上述した実施形態1で説明した構成と同じ構成部には同一の符号を付して重複する説明は省略する。実施形態2に係るコントロールユニット(ECU)30aは、目標操舵トルク生成部201及び捩れ角制御部300aの構成が実施形態1とは異なる。
(Embodiment 2)
FIG. 16 is a diagram showing an example of an internal block configuration of the control unit according to the second embodiment. The same components as those described in the first embodiment are designated by the same reference numerals, and duplicate description will be omitted. The control unit (ECU) 30a according to the second embodiment is different from the first embodiment in the configurations of the target steering torque generation unit 201 and the torsion angle control unit 300a.

目標操舵トルク生成部201には、操舵角θh、車速Vs、車速判定信号Vfailに加え、操舵トルクTs及びモータ角θmが入力される。 In addition to the steering angle θh, the vehicle speed Vs, and the vehicle speed determination signal Vfile, the steering torque Ts and the motor angle θm are input to the target steering torque generation unit 201.

捩れ角制御部300aは、捩れ角Δθが目標捩れ角Δθrefとなるようなモータ電流指令値Imcを演算する。モータ20は、モータ電流指令値Imcにより駆動される。 The twist angle control unit 300a calculates the motor current command value Imc so that the twist angle Δθ becomes the target twist angle Δθref. The motor 20 is driven by the motor current command value Imcc.

図17は、実施形態2の目標操舵トルク生成部の一構成例を示すブロック図である。図17に示すように、実施形態2の目標操舵トルク生成部201は、実施形態1において説明した構成に加え、SAT情報補正部250及び加算部263を備える。 FIG. 17 is a block diagram showing a configuration example of the target steering torque generation unit of the second embodiment. As shown in FIG. 17, the target steering torque generation unit 201 of the second embodiment includes a SAT information correction unit 250 and an addition unit 263 in addition to the configuration described in the first embodiment.

SAT情報補正部250には、操舵角θh、車速Vs、操舵トルクTs、モータ角θm及びモータ電流指令値Imcが入力される。SAT情報補正部250は、操舵トルクTs、モータ角θm及びモータ電流指令値Imcに基づいてセルフアライニングトルク(SAT)を算出し、更にフィルタ処理、ゲイン乗算及び制限処理を施して、トルク信号Tref_dを演算する。 The steering angle θh, vehicle speed Vs, steering torque Ts, motor angle θm, and motor current command value Imc are input to the SAT information correction unit 250. The SAT information correction unit 250 calculates the self-aligning torque (SAT) based on the steering torque Ts, the motor angle θm, and the motor current command value Imc, and further performs filter processing, gain multiplication, and limiting processing to perform torque signal Tref_d. Is calculated.

図18は、SAT情報補正部の一構成例を示すブロック図である。SAT情報補正部250は、SAT算出部251、フィルタ部252、操舵トルク感応ゲイン部253、車速感応ゲイン部254、舵角感応ゲイン部255、及び制限部256を備える。 FIG. 18 is a block diagram showing a configuration example of the SAT information correction unit. The SAT information correction unit 250 includes a SAT calculation unit 251, a filter unit 252, a steering torque sensitive gain unit 253, a vehicle speed sensitive gain unit 254, a steering angle sensitive gain unit 255, and a limiting unit 256.

ここで、路面からステアリングまでの間に発生するトルクの様子について、図19を参照して説明する。図19は、路面からステアリングまでの間に発生するトルクの様子を示すイメージ図である。 Here, the state of the torque generated between the road surface and the steering wheel will be described with reference to FIG. FIG. 19 is an image diagram showing a state of torque generated between the road surface and the steering wheel.

運転者がハンドルを操舵することによって操舵トルクTsが発生し、その操舵トルクTsに従ってモータ20がアシストトルク(モータトルク)Tmを発生する。その結果、車輪が転舵され、反力としてセルフアライニングトルクTSATが発生する。その際、コラム軸換算慣性(モータ20(のロータ)、減速機構等によりコラム軸に作用する慣性)J及び摩擦(静摩擦)Frによってハンドル操舵の抵抗となるトルクが生じる。更に、モータ20の回転速度により、ダンパ項(ダンパ係数D)として表現される物理的なトルク(粘性トルク)が発生する。これらの力の釣り合いから、下記(12)式に示す運動方程式が得られる。 When the driver steers the steering wheel, steering torque Ts is generated, and the motor 20 generates assist torque (motor torque) Tm according to the steering torque Ts. As a result, the wheels are steered and a self-aligning torque T SAT is generated as a reaction force. At that time, torque that becomes resistance to steering the handle is generated by the column shaft conversion inertia (inertia acting on the column shaft by the motor 20 (rotor), the reduction mechanism, etc.) J and friction (static friction) Fr. Further, the rotational speed of the motor 20, the physical torque expressed as a damper section (damper coefficient D M) (viscous torque) is generated. From the balance of these forces, the equation of motion shown in Eq. (12) below can be obtained.

J×α+Fr×sign(ω)+D×ω=Tm+Ts+TSAT・・・(12) J x α M + Fr x sign (ω M ) + D M x ω M = Tm + Ts + T SAT ... (12)

上記(12)式において、ωはコラム軸換算(コラム軸に対する値に変換)されたモータ角速度であり、αはコラム軸換算されたモータ角加速度である。そして、上記(12)式をTSATについて解くと、下記(13)式が得られる。 In the above equation (12), ω M is the motor angular velocity converted to the column shaft (converted to the value with respect to the column shaft), and α M is the motor angular acceleration converted to the column shaft. Then, when the above equation (12) is solved for T SAT , the following equation (13) is obtained.

SAT=−Tm−Ts+J×α+Fr×sign(ω)+D×ω・・・(13) T SAT = -Tm-Ts + J x α M + Fr x sign (ω M ) + D M x ω M ... (13)

上記(13)式からわかるように、コラム軸換算慣性J、静摩擦Fr及びダンパ係数DMを定数として予め求めておくことで、モータ角速度ω、モータ角加速度α、アシストトルクTm及び操舵トルクTsよりセルフアライニングトルクTSATを算出することができる。なお、コラム軸換算慣性Jは、簡易的にモータ慣性と減速比の関係式を用いてコラム軸に換算した値でも良い。 As can be seen from the above equation (13), the motor angular velocity ω M , the motor angular acceleration α M , the assist torque Tm and the steering torque Ts are obtained in advance by obtaining the column shaft conversion inertia J, the static friction Fr and the damper coefficient DM as constants. The self-aligning torque T SAT can be calculated more. The column shaft conversion inertia J may be a value converted to the column shaft simply by using the relational expression of the motor inertia and the reduction ratio.

SAT算出部251には、操舵トルクTs、モータ角θm、及びモータ電流指令値Imcが入力される。SAT算出部251は、上記(13)式を用いて、セルフアライニングトルクTSATを算出する。SAT算出部251は、換算部251A、角速度演算部251B、角加速度演算部251C、ブロック251D、ブロック251E、ブロック251F、ブロック251G、及び加算器251H,251I,251Jを備える。 The steering torque Ts, the motor angle θm, and the motor current command value Imc are input to the SAT calculation unit 251. The SAT calculation unit 251 calculates the self-aligning torque T SAT using the above equation (13). The SAT calculation unit 251 includes a conversion unit 251A, an angular velocity calculation unit 251B, an angular acceleration calculation unit 251C, a block 251D, a block 251E, a block 251F, a block 251G, and adders 251H, 251I, and 251J.

換算部251Aには、モータ電流指令値Imcが入力される。換算部251Aは、予め定められたギア比及びトルク定数を乗算することにより、コラム軸換算されたアシストトルクTmを算出する。 The motor current command value Imc is input to the conversion unit 251A. The conversion unit 251A calculates the column shaft-converted assist torque Tm by multiplying the predetermined gear ratio and torque constant.

角速度演算部251Bには、モータ角θmが入力される。角速度演算部251Bは、微分処理及びギア比の乗算により、コラム軸換算されたモータ角速度ωが算出される。 The motor angle θm is input to the angular velocity calculation unit 251B. The angular velocity calculation unit 251B calculates the motor angular velocity ω M converted to the column axis by the differential processing and the multiplication of the gear ratios.

角加速度演算部251Cには、モータ角速度ωが入力される。角加速度演算部251Cは、モータ角速度ωを微分し、コラム軸換算されたモータ角加速度αを算出する。 The motor angular velocity ω M is input to the angular acceleration calculation unit 251C. Angular acceleration calculating unit 251C differentiates the motor angular speed omega M, calculates the motor angular acceleration alpha M which is converted column shaft.

そして、入力された操舵トルクTs並びに算出された上記アシストトルクTm、モータ角速度ω及びモータ角加速度αを用いて、ブロック251D、ブロック251E、ブロック251F、ブロック251G、及び加算器251H,251I,251Jにより、数8に基づいて、図18に示されるような構成によりセルフアライニングトルクTSATが算出される。 Then, using the input steering torque Ts, the calculated assist torque Tm, the motor angular velocity ω M, and the motor angular acceleration α M , the blocks 251D, block 251E, block 251F, block 251G, and adders 251H, 251I, According to 251J, the self-aligning torque T SAT is calculated based on Equation 8 with the configuration shown in FIG.

ブロック251Dには、角速度演算部251Bから出力されたモータ角速度ωが入力される。ブロック251Dは、符号関数として機能し、入力データの符号を出力する。 The motor angular velocity ω M output from the angular velocity calculation unit 251B is input to the block 251D. Block 251D functions as a sign function and outputs the code of the input data.

ブロック251Eには、角速度演算部251Bから出力されたモータ角速度ωが入力される。ブロック251Eは、入力データにダンパ係数Dを乗算して出力する。 The motor angular velocity ω M output from the angular velocity calculation unit 251B is input to the block 251E. Block 251E is input data is multiplied by the damper coefficient D M outputs.

ブロック251Fは、ブロック251Dからの入力データに静摩擦Frを乗算して出力する。 The block 251F outputs the input data from the block 251D by multiplying the static friction Fr.

ブロック251Gには、角加速度演算部251Cから出力されたモータ角加速度αが入力される。ブロック251Gは、入力データにコラム軸換算慣性Jを乗算して出力する。 The motor angular acceleration α M output from the angular acceleration calculation unit 251C is input to the block 251G. The block 251G outputs the input data by multiplying it by the column axis conversion inertia J.

加算器251Hは、操舵トルクTsと換算部251Aから出力されるアシストトルクTmとを加算する。 The adder 251H adds the steering torque Ts and the assist torque Tm output from the conversion unit 251A.

加算器251Iは、加算器251Hの出力からブロック251Gの出力を減算する。 The adder 251I subtracts the output of block 251G from the output of adder 251H.

加算器251Jは、ブロック251Eの出力とブロック251Fの出力とを加算し、加算器251Iの出力を減算する。 The adder 251J adds the output of block 251E and the output of block 251F and subtracts the output of adder 251I.

上記構成により、上記(13)式を実現することができる。すなわち、図18に示すSAT算出部251の構成により、セルフアライニングトルクTSATが算出される。 With the above configuration, the above equation (13) can be realized. That is, the self-aligning torque T SAT is calculated according to the configuration of the SAT calculation unit 251 shown in FIG.

なお、コラム角が直接検出可能な場合は、モータ角θmの代わりにコラム角を角度情報として使用しても良い。この場合、コラム軸換算は不要となる。また、モータ角θmではなく、EPS操舵系/車両系100からのモータ角速度ωmをコラム軸換算した信号をモータ角速度ωとして入力し、モータ角θmに対する微分処理を省略しても良い。更に、セルフアライニングトルクTSATは、上記以外の方法で算出しても良く、算出値ではなく、測定値を使用しても良い。 If the column angle can be directly detected, the column angle may be used as the angle information instead of the motor angle θm. In this case, column axis conversion is unnecessary. Further, instead of the motor angle θm, a signal obtained by converting the motor angular velocity ωm from the EPS steering system / vehicle system 100 into a column axis may be input as the motor angular velocity ω M , and the differential processing with respect to the motor angle θm may be omitted. Further, the self-aligning torque T SAT may be calculated by a method other than the above, and a measured value may be used instead of the calculated value.

SAT算出部251にて算出されたセルフアライニングトルクTSATを活用し運転者に操舵感として適切に伝えるために、フィルタ部252により、伝えたい情報をセルフアライニングトルクTSATから抽出し、操舵トルク感応ゲイン部253、車速感応ゲイン部254及び舵角感応ゲイン部255により伝える量を調整し、更に、制限部256により上下限値を調整する。なお、本開示において、SAT算出部251にて算出されるセルフアライニングトルクTSATは、目標操舵トルク生成部201にも出力される。 In order to utilize the self-aligning torque T SAT calculated by the SAT calculation unit 251 and appropriately convey the steering feeling to the driver, the filter unit 252 extracts the information to be transmitted from the self-aligning torque T SAT and steers it. The amount transmitted by the torque-sensitive gain unit 253, the vehicle speed-sensitive gain unit 254, and the steering angle-sensitive gain unit 255 is adjusted, and the upper and lower limit values are further adjusted by the limiting unit 256. In the present disclosure, the self-aligning torque T SAT calculated by the SAT calculation unit 251 is also output to the target steering torque generation unit 201.

フィルタ部252には、SAT算出部251からセルフアライニングトルクTSATが入力される。フィルタ部252は、例えばバンドバスフィルタにより、セルフアライニングトルクTSATに対してフィルタ処理を行い、SAT情報TST1を出力する。 The self-aligning torque T SAT is input to the filter unit 252 from the SAT calculation unit 251. The filter unit 252 performs a filter process on the self-aligning torque T SAT by, for example, a band bus filter, and outputs SAT information T ST 1.

操舵トルク感応ゲイン部253には、フィルタ部252から出力されるSAT情報TST1及び操舵トルクTsが入力される。操舵トルク感応ゲイン部253は、操舵トルク感応ゲインを設定する。 The SAT information T ST 1 and the steering torque Ts output from the filter unit 252 are input to the steering torque sensitive gain unit 253. The steering torque sensitive gain unit 253 sets the steering torque sensitive gain.

図20は、操舵トルク感応ゲインの特性例を示す図である。図20に示されるように、操舵トルク感応ゲイン部253は、直進走行状態であるオンセンタ近辺で感度が高くなるように、操舵トルク感応ゲインを設定する。操舵トルク感応ゲイン部253は、操舵トルクTsに応じて設定される操舵トルク感応ゲインをSAT情報TST1に乗算し、SAT情報TST2を出力する。 FIG. 20 is a diagram showing a characteristic example of the steering torque sensitive gain. As shown in FIG. 20, the steering torque sensitive gain unit 253 sets the steering torque sensitive gain so that the sensitivity becomes high in the vicinity of the on-center in the straight running state. The steering torque sensitive gain unit 253 multiplies the steering torque sensitive gain set according to the steering torque Ts by the SAT information T ST 1 and outputs the SAT information T ST 2.

図20において、操舵トルク感応ゲインは、操舵トルクTsがTs1(例えば2Nm)以下では1.0で固定とし、操舵トルクTsがTs2(>Ts1)(例えば4Nm)以上では1.0より小さい値で固定とし、操舵トルクTsがTs1とTs2の間では一定の割合で減少するように設定した例を示している。 In FIG. 20, the steering torque sensitive gain is fixed at 1.0 when the steering torque Ts is Ts1 (for example, 2 Nm) or less, and is less than 1.0 when the steering torque Ts is Ts2 (> Ts1) (for example, 4 Nm) or more. An example is shown in which the steering torque Ts is fixed and is set to decrease at a constant rate between Ts1 and Ts2.

車速感応ゲイン部254には、操舵トルク感応ゲイン部253から出力されるSAT情報TST2及び車速Vsが入力される。車速感応ゲイン部254は、車速感応ゲインを設定する。 The SAT information T ST 2 and the vehicle speed Vs output from the steering torque sensitive gain unit 253 are input to the vehicle speed sensitive gain unit 254. The vehicle speed-sensitive gain unit 254 sets the vehicle speed-sensitive gain.

図21は、車速感応ゲインの特性例を示す図である。図21に示されるように、車速感応ゲイン部254は、高速走行時の感度が高くなるように、車速感応ゲインを設定する。車速感応ゲイン部254は、車速Vsに応じて設定される車速感応ゲインをSAT情報TST2に乗算し、SAT情報TST3を出力する。 FIG. 21 is a diagram showing a characteristic example of the vehicle speed sensitive gain. As shown in FIG. 21, the vehicle speed-sensitive gain unit 254 sets the vehicle speed-sensitive gain so as to increase the sensitivity during high-speed driving. The vehicle speed-sensitive gain unit 254 multiplies the vehicle speed-sensitive gain set according to the vehicle speed Vs by the SAT information T ST 2 and outputs the SAT information T ST 3.

図21において、車速感応ゲインは、車速VsがVs2(例えば70km/h)以上では1.0で固定とし、車速VsがVs1(<Vs2)(例えば50km/h)以下では1.0より小さい値で固定とし、車速VsがVs1とVs2の間では一定の割合で増加するように設定した例を示している。 In FIG. 21, the vehicle speed sensitive gain is fixed at 1.0 when the vehicle speed Vs is Vs2 (for example, 70 km / h) or more, and is smaller than 1.0 when the vehicle speed Vs is Vs1 (<Vs2) (for example, 50 km / h) or less. An example is shown in which the vehicle speed Vs is set to increase at a constant rate between Vs1 and Vs2.

舵角感応ゲイン部255には、車速感応ゲイン部254から出力されるSAT情報TST3及び操舵角θhが入力される。舵角感応ゲイン部255は、舵角感応ゲインを設定する。 The SAT information T ST 3 and the steering angle θh output from the vehicle speed-sensitive gain unit 254 are input to the steering angle-sensitive gain unit 255. The steering angle sensitive gain unit 255 sets the steering angle sensitive gain.

図22は、舵角感応ゲインの特性例を示す図である。図22に示されるように、舵角感応ゲイン部255は、所定の操舵角から作用し始め、操舵角が大きい時の感度が高くなるように、舵角感応ゲインを設定する。舵角感応ゲイン部255は、操舵角θhに応じて設定される舵角感応ゲインをSAT情報TST3に乗算し、トルク信号Tref_d0を出力する。 FIG. 22 is a diagram showing a characteristic example of the steering angle sensitive gain. As shown in FIG. 22, the steering angle sensitive gain unit 255 starts to act from a predetermined steering angle and sets the steering angle sensitive gain so that the sensitivity becomes high when the steering angle is large. The steering angle sensitive gain unit 255 multiplies the steering angle sensitive gain set according to the steering angle θh by the SAT information T ST 3 and outputs the torque signal Tref_d0.

図22において、舵角感応ゲインは、操舵角θhがθh1(例えば10deg)以下では所定のゲイン値Gαで、操舵角θhがθh2(例えば30deg)以上では1.0で固定とし、操舵角θhがθh1とθh2の間では一定の割合で増加するように設定した例を示している。操舵角θhが大きいときの感度を高くしたい場合は、Gαを0≦Gα<1の範囲に設定すれば良い。操舵角θhが小さいときの感度を高くしたい場合は、図示していないが、Gαを1<Gαの範囲に設定すれば良い。操舵角θhによる感度を変えたくない場合は、Gα=1として設定すれば良い。 In FIG. 22, the steering angle sensitive gain is fixed at a predetermined gain value Gα when the steering angle θh is θh1 (for example, 10 deg) or less, and is fixed at 1.0 when the steering angle θh is θh2 (for example, 30 deg) or more, and the steering angle θh is An example is shown in which the increment is set to increase at a constant rate between θh1 and θh2. If it is desired to increase the sensitivity when the steering angle θh is large, Gα may be set in the range of 0 ≦ Gα <1. If it is desired to increase the sensitivity when the steering angle θh is small, Gα may be set in the range of 1 <Gα, although not shown. If it is not desired to change the sensitivity depending on the steering angle θh, Gα = 1 may be set.

制限部256には、舵角感応ゲイン部255から出力されるトルク信号Tref_d0が入力される。制限部256は、トルク信号Tref_d0の上限値及び下限値が設定されている。 The torque signal Tref_d0 output from the steering angle sensitive gain unit 255 is input to the limiting unit 256. The limiting unit 256 is set with an upper limit value and a lower limit value of the torque signal Tref_d0.

図23は、制限部におけるトルク信号の上限値及び下限値の設定例を示す図である。図23に示されるように、制限部256は、トルク信号Tref_d0に対する上限値及び下限値が予め設定され、入力するトルク信号Tref_d0が、上限値以上の場合は上限値を、下限値以下の場合は下限値を、それ以外の場合はトルク信号Tref_d0を、トルク信号Tref_dとして出力する。 FIG. 23 is a diagram showing an example of setting the upper limit value and the lower limit value of the torque signal in the limiting portion. As shown in FIG. 23, the limiting unit 256 has preset upper and lower limit values for the torque signal Tref_d0, and when the input torque signal Tref_d0 is equal to or greater than the upper limit value, the upper limit value is set, and when it is equal to or less than the lower limit value. The lower limit value is output, and in other cases, the torque signal Tref_d0 is output as the torque signal Tref_d.

なお、操舵トルク感応ゲイン、車速感応ゲイン、及び舵角感応ゲインは、図20、図21、及び図22に示されるような直線的な特性ではなく、曲線的な特性でも良い。また、操舵トルク感応ゲイン、車速感応ゲイン、及び舵角感応ゲインは、操舵フィーリングに応じて設定を適宜調整しても良い。また、トルク信号の大きさが増大するおそれがない場合や他の手段で抑制する場合等では、制限部256を削除しても良い。操舵トルク感応ゲイン部253、車速感応ゲイン部254、及び舵角感応ゲイン部255についても、適宜、省略可能である。また、操舵トルク感応ゲイン、車速感応ゲイン、及び舵角感応ゲインの設置位置を入れ替えても良い。また、例えば、操舵トルク感応ゲイン、車速感応ゲイン、及び舵角感応ゲインを並列に求め、1つの構成部でSAT情報TST1に乗算する態様であっても良い。 The steering torque sensitive gain, the vehicle speed sensitive gain, and the steering angle sensitive gain may be curved characteristics instead of linear characteristics as shown in FIGS. 20, 21, and 22. Further, the steering torque sensitive gain, the vehicle speed sensitive gain, and the steering angle sensitive gain may be appropriately adjusted according to the steering feeling. Further, the limiting portion 256 may be deleted when there is no possibility that the magnitude of the torque signal will increase or when it is suppressed by other means. The steering torque-sensitive gain unit 253, the vehicle speed-sensitive gain unit 254, and the steering angle-sensitive gain unit 255 can also be omitted as appropriate. Further, the installation positions of the steering torque sensitive gain, the vehicle speed sensitive gain, and the steering angle sensitive gain may be interchanged. Further, for example, the steering torque sensitive gain, the vehicle speed sensitive gain, and the steering angle sensitive gain may be obtained in parallel and multiplied by the SAT information T ST 1 by one component.

すなわち、本実施形態におけるSAT情報補正部250の構成は一例であり、図18に示す構成とは異なる態様であっても良い。 That is, the configuration of the SAT information correction unit 250 in this embodiment is an example, and may be different from the configuration shown in FIG.

本実施形態においても、上述した実施形態1において説明した操舵反力補正部280を目標操舵トルク生成部201に備えた構成とすることで、実施形態1と同様の効果を得ることができる。 Also in the present embodiment, the same effect as that of the first embodiment can be obtained by providing the target steering torque generation unit 201 with the steering reaction force correction unit 280 described in the above-described first embodiment.

具体的に、トルク信号Tref_a(第1トルク信号)、トルク信号Tref_b、トルク信号Tref_c、及びトルク信号Tref_dは、加算部261,262,263で加算され、トルク信号Tref_e(第2トルク信号)が得られる。 Specifically, the torque signal Tref_a (first torque signal), the torque signal Tref_b, the torque signal Tref_c, and the torque signal Tref_d are added by the addition units 261,262,263 to obtain the torque signal Tref_e (second torque signal). To be done.

また、乗算部264は、加算部261から出力されるトルク信号Tref_e(第2トルク信号)に対し、操舵反力補正部280から出力される補正ゲインGを乗算し、トルク信号Tref_f(第3トルク信号)として加算部265に出力する。加算部265は、乗算部264から出力されるトルク信号Tref_f(第3トルク信号)に対し、操舵反力補正部280から出力される補正トルク信号Tref_p(第4トルク信号)を加算して、目標操舵トルクTrefとして出力する。 Further, the multiplication unit 264 multiplies the torque signal Tref_e (second torque signal) output from the addition unit 261 by the correction gain G output from the steering reaction force correction unit 280, and the torque signal Tref_f (third torque). It is output to the addition unit 265 as a signal). The addition unit 265 adds the correction torque signal Tref_p (fourth torque signal) output from the steering reaction force correction unit 280 to the torque signal Tref_f (third torque signal) output from the multiplication unit 264 to target. It is output as steering torque Tref.

ドライブモード(第1モード)では、実施形態1と同様に、トルク信号Tref_e(第2トルク信号)に対して、補正ゲインG=1を乗じ、補正トルク信号Tref_p(第4トルク信号)=0を加算する。これにより、目標操舵トルクTref=トルク信号Tref_e(第2トルク信号)となり、ドライブモード(第1モード)に適した目標操舵トルクTrefを得ることができる。 In the drive mode (first mode), as in the first embodiment, the torque signal Tref_e (second torque signal) is multiplied by the correction gain G = 1 to obtain the correction torque signal Tref_p (fourth torque signal) = 0. to add. As a result, the target steering torque Tref = torque signal Tref_e (second torque signal), and the target steering torque Tref suitable for the drive mode (first mode) can be obtained.

低速運転モード(第2モード)では、実施形態1と同様に、トルク信号Tref_e(第2トルク信号)に対し、1未満の正の補正ゲインG(例えば、G=0.3)を乗じてトルク信号Tref_f(第3トルク信号)を生成し、さらに、トルク信号Tref_f(第3トルク信号)に対し、トルク信号Tref_a(第1トルク信号)よりも操舵角θhの絶対値|θh|=0における傾きが大きい補正トルク信号Tref_p(第4トルク信号)を加算して、目標操舵トルクTrefを生成する。これにより、実施形態1と同様に、ドライブモード(第1モード)よりも目標操舵トルクTrefを小さくすることができ、ハンドル1の操作を軽くすることができる。また、実施形態1と同様に、操舵角θhが0前後の領域(図14中において一点鎖線で示した領域)では、操舵角θhの変化に対して操舵力の変化を大きくすることができ、舵角ゼロを認識し易くなる。これにより、運転者の負担を軽減することができ、操舵感を向上することができる。 In the low-speed operation mode (second mode), the torque is obtained by multiplying the torque signal Tref_e (second torque signal) by a positive correction gain G (for example, G = 0.3) of less than 1 as in the first embodiment. A signal Tref_f (third torque signal) is generated, and a tilt at an absolute value | θh | = 0 of the steering angle θh with respect to the torque signal Tref_f (third torque signal) with respect to the torque signal Tref_a (first torque signal). The correction torque signal Tref_p (fourth torque signal) having a large value is added to generate the target steering torque Tref. As a result, as in the first embodiment, the target steering torque Tref can be made smaller than that in the drive mode (first mode), and the operation of the steering wheel 1 can be made lighter. Further, as in the first embodiment, in the region where the steering angle θh is around 0 (the region indicated by the alternate long and short dash line in FIG. 14), the change in steering force can be increased with respect to the change in steering angle θh. It becomes easier to recognize zero rudder angle. As a result, the burden on the driver can be reduced and the steering feeling can be improved.

以下、実施形態2の捩れ角制御部300aについて、図24を参照して説明する。 Hereinafter, the twist angle control unit 300a of the second embodiment will be described with reference to FIG. 24.

図24は、実施形態2の捩れ角制御部の一構成例を示すブロック図である。捩れ角制御部300aは、目標捩れ角Δθref、捩れ角Δθ及びモータ角速度ωmに基づいてモータ電流指令値Imcを演算する。捩れ角制御部300aは、捩れ角フィードバック(FB)補償部310、捩れ角速度演算部320、速度制御部330、安定化補償部340、出力制限部350、減算部361及び加算部362を備えている。 FIG. 24 is a block diagram showing a configuration example of the twist angle control unit of the second embodiment. The twist angle control unit 300a calculates the motor current command value Imc based on the target twist angle Δθref, the twist angle Δθ, and the motor angular velocity ωm. The torsion angle control unit 300a includes a torsion angle feedback (FB) compensation unit 310, a torsion angular velocity calculation unit 320, a speed control unit 330, a stabilization compensation unit 340, an output limiting unit 350, a subtraction unit 361, and an addition unit 362. ..

変換部500から出力される目標捩れ角Δθrefは、減算部361に加算入力される。捩れ角Δθは、減算部361に減算入力されると共に、捩れ角速度演算部320に入力される。モータ角速度ωmは、安定化補償部340に入力される。 The target twist angle Δθref output from the conversion unit 500 is additionally input to the subtraction unit 361. The torsion angle Δθ is subtracted and input to the subtraction unit 361 and is input to the torsion angular velocity calculation unit 320. The motor angular velocity ωm is input to the stabilization compensation unit 340.

捩れ角FB補償部310は、減算部361で算出される目標捩れ角Δθrefと捩れ角Δθの偏差Δθ0に対して補償値CFB(伝達関数)を乗算し、目標捩れ角Δθrefに捩れ角Δθが追従するような目標捩れ角速度ωrefを出力する。補償値CFBは、単純なゲインKppでも、PI制御の補償値など一般的に用いられている補償値でも良い。 The twist angle FB compensation unit 310 multiplies the compensation value CFB (transfer function) by the deviation Δθ0 of the target twist angle Δθref and the twist angle Δθ calculated by the subtraction unit 361, and the twist angle Δθ follows the target twist angle Δθref. The target torsional velocity ωref is output. The compensation value CFB may be a simple gain Kpp or a commonly used compensation value such as a PI control compensation value.

目標捩れ角速度ωrefは、速度制御部330に入力される。捩れ角FB補償部310及び速度制御部330により、目標捩れ角Δθrefに捩れ角Δθを追従させ、所望の操舵トルクを実現することが可能となる。 The target torsional velocity ωref is input to the speed control unit 330. The torsion angle FB compensation unit 310 and the speed control unit 330 make it possible to make the torsion angle Δθ follow the target torsion angle Δθref and realize a desired steering torque.

捩れ角速度演算部320は、捩れ角Δθに対して微分演算処理を行い、捩れ角速度ωtを算出する。捩れ角速度ωtは、速度制御部330に出力される。捩れ角速度演算部320は、微分演算として、HPFとゲインによる擬似微分を行なっても良い。また、捩れ角速度演算部320は、捩れ角速度ωtを別の手段や捩れ角Δθ以外から算出し、速度制御部330に出力するようにしても良い。 The torsion angular velocity calculation unit 320 performs a differential calculation process on the torsion angle Δθ to calculate the torsion angular velocity ωt. The torsion angular velocity ωt is output to the speed control unit 330. The torsional angular velocity calculation unit 320 may perform pseudo-differentiation by HPF and gain as a differential calculation. Further, the torsion angular velocity calculation unit 320 may calculate the torsion angular velocity ωt from another means or other than the torsion angle Δθ and output it to the speed control unit 330.

速度制御部330は、I−P制御(比例先行型PI制御)により、目標捩れ角速度ωrefに捩れ角速度ωtが追従するようなモータ電流指令値Imca1を算出する。 The speed control unit 330 calculates the motor current command value Imca1 so that the torsion angular velocity ωt follows the target torsional velocity ωref by IP control (proportional leading PI control).

減算部333は、目標捩れ角速度ωrefと捩れ角速度ωtとの差分(ωref−ωt)を算出する。積分部331は、目標捩れ角速度ωrefと捩れ角速度ωtとの差分(ωref−ωt)を積分し、積分結果を減算部334に加算入力する。 The subtraction unit 333 calculates the difference (ωref−ωt) between the target torsional velocity ωref and the torsional angular velocity ωt. The integration unit 331 integrates the difference (ωref−ωt) between the target torsional velocity ωref and the torsional angular velocity ωt, and adds and inputs the integration result to the subtraction unit 334.

捩れ角速度ωtは、比例部332にも出力される。比例部332は、捩れ角速度ωtに対してゲインKvpによる比例処理を行い、比例処理結果を減算部334に減算入力する。減算部334での減算結果は、モータ電流指令値Imca1として出力される。なお、速度制御部330は、I−P制御ではなく、PI制御、P(比例)制御、PID(比例積分微分)制御、PI−D制御(微分先行型PID制御)、モデルマッチング制御、モデル規範制御等の一般的に用いられている制御方法でモータ電流指令値Imca1を算出しても良い。 The torsion angular velocity ωt is also output to the proportional portion 332. The proportional unit 332 performs proportional processing with a gain Kvp on the torsion angular velocity ωt, and subtracts and inputs the proportional processing result to the subtraction unit 334. The subtraction result in the subtraction unit 334 is output as the motor current command value Imca1. The speed control unit 330 is not an IP control, but a PI control, a P (proportional) control, a PID (proportional integral differential) control, a PI-D control (differential leading PID control), a model matching control, and a model reference. The motor current command value Imca1 may be calculated by a commonly used control method such as control.

安定化補償部340は、補償値Cs(伝達関数)を有しており、モータ角速度ωmからモータ電流指令値Imca2を算出する。追従性及び外乱特性を向上させるために、捩れ角FB補償部310及び速度制御部330のゲインを上げると、高域の制御的な発振現象が発生してしまう。この対策として、モータ角速度ωmに対し、安定化するために必要な伝達関数(Cs)を安定化補償部340に設定する。これにより、EPS制御システム全体の安定化を実現することができる。 The stabilization compensation unit 340 has a compensation value Cs (transfer function), and calculates the motor current command value Imca2 from the motor angular velocity ωm. If the gains of the torsion angle FB compensating unit 310 and the speed control unit 330 are increased in order to improve the followability and the disturbance characteristics, a high-frequency controlled oscillation phenomenon occurs. As a countermeasure, the transfer function (Cs) required for stabilizing the motor angular velocity ωm is set in the stabilization compensation unit 340. As a result, it is possible to realize stabilization of the entire EPS control system.

加算部362は、速度制御部330からのモータ電流指令値Imca1と安定化補償部340からのモータ電流指令値Imca2とを加算し、モータ電流指令値Imcbとして出力する。 The addition unit 362 adds the motor current command value Imca1 from the speed control unit 330 and the motor current command value Imca2 from the stabilization compensation unit 340, and outputs the motor current command value Imccb.

出力制限部350は、モータ電流指令値Imcbに対する上限値及び下限値が予め設定されている。出力制限部350は、モータ電流指令値Imcbの上下限値を制限して、モータ電流指令値Imcを出力する。 The output limiting unit 350 is preset with an upper limit value and a lower limit value with respect to the motor current command value Imccb. The output limiting unit 350 limits the upper and lower limits of the motor current command value Imccb and outputs the motor current command value Imcc.

なお、本実施形態における捩れ角制御部300aの構成は一例であり、図24に示す構成とは異なる態様であっても良い。例えば、捩れ角制御部300aは、安定化補償部340を具備しない構成であっても良い。 The configuration of the twist angle control unit 300a in this embodiment is an example, and may be different from the configuration shown in FIG. 24. For example, the twist angle control unit 300a may not include the stabilization compensation unit 340.

(実施形態3)
実施形態1,2では、車両用操向装置の1つとして、本開示をコラム型EPSに適用しているが、本開示はコラム型等の上流型に限られず、ラック&ピニオン等の下流型EPSにも適用可能である。更に、目標捩れ角に基づくフィードバック制御を行うということでは、トーションバー(バネ定数任意)及び捩れ角検出用のセンサを少なくとも備えるステアバイワイヤ(SBW)反力装置等にも適用可能である。本開示を、トーションバーを備えたSBW反力装置に適用した場合の実施形態(実施形態3)について説明する。
(Embodiment 3)
In the first and second embodiments, the present disclosure is applied to the column type EPS as one of the steering devices for vehicles, but the present disclosure is not limited to the upstream type such as the column type, and the downstream type such as the rack and pinion. It is also applicable to EPS. Further, by performing feedback control based on the target torsion angle, it can be applied to a steering bar (SBW) reaction force device having at least a torsion bar (arbitrary spring constant) and a sensor for detecting the torsion angle. An embodiment (Embodiment 3) when the present disclosure is applied to an SBW reaction force device provided with a torsion bar will be described.

まずは、SBW反力装置を含むSBWシステム全体について説明する。図25は、SBWシステムの構成例を、図1に示される電動パワーステアリング装置の一般的な構成に対応させて示した図である。なお、上述した実施形態1,2で説明した構成と同一構成には同一符号を付し、詳細な説明は省略する。 First, the entire SBW system including the SBW reaction force device will be described. FIG. 25 is a diagram showing a configuration example of the SBW system corresponding to the general configuration of the electric power steering device shown in FIG. The same components as those described in the above-described first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.

SBWシステムは、図1におけるユニバーサルジョイント4aにてコラム軸2と機械的に結合されるインターミディエイトシャフトがなく、ハンドル1の操作を電気信号によって操向車輪8L,8R等からなる転舵機構に伝えるシステムである。図25に示されるように、SBWシステムは反力装置60及び駆動装置70を備え、コントロールユニット(ECU)50が両装置の制御を行う。反力装置60は、舵角センサ14にて操舵角θhの検出を行うと同時に、操向車輪8L,8Rから伝わる車両の運動状態を反力トルクとして運転者に伝達する。反力トルクは、反力用モータ61により生成される。なお、本開示では、トルクセンサ10にて操舵トルクTsを検出するが、これに限定されない。また、角度センサ74が、反力用モータ61のモータ角θmを検出する。駆動装置70は、運転者によるハンドル1の操舵に合わせて、駆動用モータ71を駆動し、その駆動力を、ギア72を介してピニオンラック機構5に付与し、タイロッド6a,6bを経て、操向車輪8L,8Rを転舵する。ピニオンラック機構5の近傍には角度センサ73が配置されており、操向車輪8L,8Rの転舵角θtを検出する。ECU50は、反力装置60及び駆動装置70を協調制御するために、両装置から出力される操舵角θhや転舵角θt等の情報に加え、車速センサ12からの車速Vs等を基に、反力用モータ61を駆動制御する電圧制御指令値Vref1及び駆動用モータ71を駆動制御する電圧制御指令値Vref2を生成する。 The SBW system does not have an intermediate shaft that is mechanically coupled to the column shaft 2 at the universal joint 4a in FIG. 1, and transmits the operation of the steering wheel 1 to a steering mechanism composed of steering wheels 8L, 8R, etc. by an electric signal. It is a system. As shown in FIG. 25, the SBW system includes a reaction force device 60 and a drive device 70, and a control unit (ECU) 50 controls both devices. The reaction force device 60 detects the steering angle θh by the steering angle sensor 14, and at the same time, transmits the motion state of the vehicle transmitted from the steering wheels 8L and 8R to the driver as reaction force torque. The reaction force torque is generated by the reaction force motor 61. In the present disclosure, the torque sensor 10 detects the steering torque Ts, but the present invention is not limited to this. Further, the angle sensor 74 detects the motor angle θm of the reaction force motor 61. The drive device 70 drives the drive motor 71 in accordance with the steering of the steering wheel 1 by the driver, applies the driving force to the pinion rack mechanism 5 via the gear 72, and operates the pinion rack mechanism 5 via the tie rods 6a and 6b. Steer the facing wheels 8L and 8R. An angle sensor 73 is arranged in the vicinity of the pinion rack mechanism 5 to detect the steering angle θt of the steering wheels 8L and 8R. In order to coordinately control the reaction force device 60 and the drive device 70, the ECU 50 adds information such as steering angle θh and steering angle θt output from both devices, and based on vehicle speed Vs from the vehicle speed sensor 12 and the like. The voltage control command value Vref1 that drives and controls the reaction force motor 61 and the voltage control command value Vref2 that drives and controls the drive motor 71 are generated.

このようなSBWシステムに本開示を適用した実施形態3の構成について説明する。 The configuration of the third embodiment to which the present disclosure is applied to such an SBW system will be described.

図26は、実施形態3の構成を示すブロック図である。実施形態3は、捩れ角Δθに対する制御(以下、「捩れ角制御」とする)と、転舵角θtに対する制御(以下、「転舵角制御」とする)を行い、反力装置を捩れ角制御で制御し、駆動装置を転舵角制御で制御する。なお、駆動装置は他の制御方法で制御しても良い。 FIG. 26 is a block diagram showing the configuration of the third embodiment. In the third embodiment, the twist angle Δθ is controlled (hereinafter referred to as “twist angle control”) and the steering angle θt is controlled (hereinafter referred to as “turning angle control”), and the reaction force device is twisted. It is controlled by control, and the drive unit is controlled by steering angle control. The drive device may be controlled by another control method.

捩れ角制御では、実施形態2と同様の構成及び動作により、捩れ角Δθが、操舵角θh等を用いて目標操舵トルク生成部202及び変換部500を経て算出される目標捩れ角Δθrefに追従するような制御を行う。モータ角θmは角度センサ74で検出され、モータ角速度ωmは、角速度演算部951にてモータ角θmを微分することにより算出される。転舵角θtは角度センサ73で検出される。また、実施形態1ではEPS操舵系/車両系100内の処理として詳細な説明は行われていないが、電流制御部130は、図3に示される減算部32B、PI制御部35、PWM制御部36及びインバータ回路37と同様の構成及び動作により、捩れ角制御部300aから出力されるモータ電流指令値Imc及びモータ電流検出器140で検出される反力用モータ61の電流値Imrに基づいて、反力用モータ61を駆動して、電流制御を行う。 In the torsion angle control, the torsion angle Δθ follows the target torsion angle Δθref calculated through the target steering torque generation unit 202 and the conversion unit 500 using the steering angle θh and the like by the same configuration and operation as in the second embodiment. Such control is performed. The motor angle θm is detected by the angle sensor 74, and the motor angular velocity ωm is calculated by differentiating the motor angle θm by the angular velocity calculation unit 951. The steering angle θt is detected by the angle sensor 73. Further, although the processing in the EPS steering system / vehicle system 100 is not described in detail in the first embodiment, the current control unit 130 includes the subtraction unit 32B, the PI control unit 35, and the PWM control unit shown in FIG. Based on the motor current command value Imc output from the torsion angle control unit 300a and the current value Imr of the reaction force motor 61 detected by the motor current detector 140 by the same configuration and operation as those of 36 and the inverter circuit 37, The reaction force motor 61 is driven to control the current.

転舵角制御では、目標転舵角生成部910にて操舵角θhに基づいて目標転舵角θtrefが生成され、目標転舵角θtrefは転舵角θtと共に転舵角制御部920に入力され、転舵角制御部920にて、転舵角θtが目標転舵角θtrefとなるようなモータ電流指令値Imctが演算される。そして、モータ電流指令値Imct及びモータ電流検出器940で検出される駆動用モータ71の電流値Imdに基づいて、電流制御部930が、電流制御部130と同様の構成及び動作により、駆動用モータ71を駆動して、電流制御を行う。なお、本開示において、転舵角制御部920にて算出されるモータ電流指令値Imctは、目標操舵トルク生成部202にも出力される。 In the steering angle control, the target steering angle generation unit 910 generates a target steering angle θtref based on the steering angle θh, and the target steering angle θtref is input to the steering angle control unit 920 together with the steering angle θt. The steering angle control unit 920 calculates the motor current command value Imct so that the steering angle θt becomes the target steering angle θtref. Then, based on the motor current command value Imct and the current value Imd of the drive motor 71 detected by the motor current detector 940, the current control unit 930 has the same configuration and operation as the current control unit 130, and the drive motor has the same configuration and operation. The 71 is driven to control the current. In the present disclosure, the motor current command value Imct calculated by the steering angle control unit 920 is also output to the target steering torque generation unit 202.

図27は、目標転舵角生成部の構成例示す図である。目標転舵角生成部910は、制限部931、レート制限部932及び補正部933を備える。 FIG. 27 is a diagram showing a configuration example of the target steering angle generation unit. The target steering angle generation unit 910 includes a limiting unit 931, a rate limiting unit 932, and a correction unit 933.

制限部931は、操舵角θhの上下限値を制限して、操舵角θh1を出力する。図24に示す捩れ角制御部300a内の出力制限部350と同様に、操舵角θhに対する上限値及び下限値を予め設定して制限をかける。 The limiting unit 931 limits the upper and lower limits of the steering angle θh and outputs the steering angle θh1. Similar to the output limiting unit 350 in the twist angle control unit 300a shown in FIG. 24, the upper limit value and the lower limit value with respect to the steering angle θh are set in advance to limit.

レート制限部932は、操舵角の急変を回避するために、操舵角θh1の変化量に対して制限値を設定して制限をかけ、操舵角θh2を出力する。例えば、1サンプル前の操舵角θh1からの差分を変化量とし、その変化量の絶対値が所定の値(制限値)より大きい場合、変化量の絶対値が制限値となるように、操舵角θh1を加減算し、操舵角θh2として出力し、制限値以下の場合は、操舵角θh1をそのまま操舵角θh2として出力する。なお、変化量の絶対値に対して制限値を設定するのではなく、変化量に対して上限値及び下限値を設定して制限をかけるようにしても良く、変化量ではなく変化率や差分率に対して制限をかけるようにしても良い。 The rate limiting unit 932 sets and limits the amount of change in the steering angle θh1 in order to avoid a sudden change in the steering angle, and outputs the steering angle θh2. For example, the difference from the steering angle θh1 one sample before is used as the change amount, and when the absolute value of the change amount is larger than a predetermined value (limit value), the steering angle is set so that the absolute value of the change amount becomes the limit value. θh1 is added or subtracted and output as the steering angle θh2, and if it is equal to or less than the limit value, the steering angle θh1 is output as it is as the steering angle θh2. Instead of setting a limit value for the absolute value of the amount of change, an upper limit value and a lower limit value may be set for the amount of change to limit the amount of change. You may want to limit the rate.

補正部933は、操舵角θh2を補正して、目標転舵角θtrefを出力する。例えば、操舵角θh2の大きさ|θh2|に対する目標転舵角θtrefの特性を定義したマップを用いて、操舵角θh2より目標転舵角θtrefを求める。或いは、単純に、操舵角θh2に所定のゲインを乗算することにより、目標転舵角θtrefを求めるようにしても良い。 The correction unit 933 corrects the steering angle θh2 and outputs the target steering angle θtref. For example, the target steering angle θtref is obtained from the steering angle θh2 by using a map that defines the characteristics of the target steering angle θtref with respect to the magnitude | θh2 | of the steering angle θh2. Alternatively, the target steering angle θtref may be obtained by simply multiplying the steering angle θh2 by a predetermined gain.

図28は、転舵角制御部の構成例を示す図である。転舵角制御部920は、図24に示される捩れ角制御部300aの構成例において安定化補償部340及び加算部362を除いた構成と同様の構成をしており、目標捩れ角Δθref及び捩れ角Δθの代わりに目標転舵角θtref及び転舵角θtを入力し、転舵角フィードバック(FB)補償部921、転舵角速度演算部922、速度制御部923、出力制限部926及び減算部927が、それぞれ捩れ角FB補償部310、捩れ角速度演算部320、速度制御部330、出力制限部350及び減算部361と同様の構成で同様の動作を行う。 FIG. 28 is a diagram showing a configuration example of the steering angle control unit. The steering angle control unit 920 has the same configuration as the configuration example of the torsion angle control unit 300a shown in FIG. 24 except for the stabilization compensation unit 340 and the addition unit 362, and has a target torsion angle Δθref and a torsion. The target steering angle θtref and steering angle θt are input instead of the angle Δθ, and the steering angle feedback (FB) compensation unit 921, the steering angular velocity calculation unit 922, the speed control unit 923, the output limiting unit 926 and the subtraction unit 927 are input. However, the same operation is performed with the same configurations as the torsion angle FB compensation unit 310, the torsion angular velocity calculation unit 320, the speed control unit 330, the output limiting unit 350, and the subtraction unit 361, respectively.

このような構成において、実施形態3の動作例を、図29のフローチャートを参照して説明する。図29は、実施形態3の動作例を示すフローチャートである。 In such a configuration, an operation example of the third embodiment will be described with reference to the flowchart of FIG. FIG. 29 is a flowchart showing an operation example of the third embodiment.

動作を開始すると、角度センサ73は転舵角θtを検出し、角度センサ74はモータ角θmを検出し(ステップS110)、転舵角θtは転舵角制御部920に、モータ角θmは角速度演算部951にそれぞれ入力される。 When the operation is started, the angle sensor 73 detects the steering angle θt, the angle sensor 74 detects the motor angle θm (step S110), the steering angle θt is the steering angle control unit 920, and the motor angle θm is the angular velocity. Each is input to the calculation unit 951.

角速度演算部951は、モータ角θmを微分してモータ角速度ωmを算出し、捩れ角制御部300aに出力する(ステップS120)。 The angular velocity calculation unit 951 differentiates the motor angle θm to calculate the motor angular velocity ωm, and outputs the motor angular velocity ωm to the torsion angle control unit 300a (step S120).

その後、目標操舵トルク生成部202において、図7に示されるステップS10〜S40と同様の動作を実行し、反力用モータ61を駆動し、電流制御を実施する(ステップS130〜S160)。 After that, the target steering torque generation unit 202 executes the same operation as in steps S10 to S40 shown in FIG. 7, drives the reaction force motor 61, and executes current control (steps S130 to S160).

一方、転舵角制御においては、目標転舵角生成部910が操舵角θhを入力し、操舵角θhは制限部931に入力される。制限部931は、予め設定された上限値及び下限値により操舵角θhの上下限値を制限し(ステップS170)、操舵角θh1としてレート制限部932に出力する。レート制限部932は、予め設定された制限値により操舵角θh1の変化量に対して制限をかけ(ステップS180)、操舵角θh2として補正部933に出力する。補正部933は、操舵角θh2を補正して目標転舵角θtrefを求め(ステップS190)、転舵角制御部920に出力する。 On the other hand, in the steering angle control, the target steering angle generation unit 910 inputs the steering angle θh, and the steering angle θh is input to the limiting unit 931. The limiting unit 931 limits the upper and lower limit values of the steering angle θh by preset upper and lower limit values (step S170), and outputs the steering angle θh1 to the rate limiting unit 932. The rate limiting unit 932 limits the amount of change in the steering angle θh1 by a preset limit value (step S180), and outputs the steering angle θh2 to the correction unit 933. The correction unit 933 corrects the steering angle θh2 to obtain the target steering angle θtref (step S190), and outputs the steering angle θh2 to the steering angle control unit 920.

転舵角θt及び目標転舵角θtrefを入力した転舵角制御部920は、減算部927にて目標転舵角θtrefから転舵角θtを減算することにより、偏差Δθt0を算出する(ステップS200)。偏差Δθt0は転舵角FB補償部921に入力され、転舵角FB補償部921は、偏差Δθt0に補償値を乗算することにより偏差Δθt0を補償し(ステップS210)、目標転舵角速度ωtrefを速度制御部923に出力する。転舵角速度演算部922は転舵角θtを入力し、転舵角θtに対する微分演算により転舵角速度ωttを算出し(ステップS220)、速度制御部923に出力する。速度制御部923は、速度制御部330と同様にI−P制御によりモータ電流指令値Imctaを算出し(ステップS230)、出力制限部926に出力する。出力制限部926は、予め設定された上限値及び下限値によりモータ電流指令値Imctaの上下限値を制限し(ステップS240)、モータ電流指令値Imctとして出力する(ステップS250)。 The steering angle control unit 920, which has input the steering angle θt and the target steering angle θtref, calculates the deviation Δθt0 by subtracting the steering angle θt from the target steering angle θtref by the subtracting unit 927 (step S200). ). The deviation Δθt0 is input to the steering angle FB compensation unit 921, and the steering angle FB compensation unit 921 compensates for the deviation Δθt0 by multiplying the deviation Δθt0 by the compensation value (step S210), and sets the target steering angular velocity ωtref. Output to the control unit 923. The steering angular velocity calculation unit 922 inputs the steering angle θt, calculates the steering angular velocity ωtt by a differential calculation with respect to the steering angle θt (step S220), and outputs the steering angular velocity ωtt to the speed control unit 923. The speed control unit 923 calculates the motor current command value Imcta by IP control in the same manner as the speed control unit 330 (step S230), and outputs the motor current command value Imcta to the output limiting unit 926. The output limiting unit 926 limits the upper and lower limit values of the motor current command value Imcta by the preset upper limit value and lower limit value (step S240), and outputs the motor current command value Imct as the motor current command value Imct (step S250).

モータ電流指令値Imctは電流制御部930に入力され、電流制御部930は、モータ電流指令値Imct及びモータ電流検出器940で検出された駆動用モータ71の電流値Imdに基づいて、駆動用モータ71を駆動し、電流制御を実施する(ステップS260)。 The motor current command value Imct is input to the current control unit 930, and the current control unit 930 is based on the motor current command value Imct and the current value Imd of the drive motor 71 detected by the motor current detector 940. 71 is driven and current control is performed (step S260).

なお、図29におけるデータ入力及び演算等の順番は適宜変更可能である。また、転舵角制御部920内の速度制御部923は、捩れ角制御部300a内の速度制御部330と同様に、I−P制御ではなく、PI制御、P制御、PID制御、PI−D制御等、実現可能で、P、I及びDのいずれかの制御を用いていれば良く、更に、転舵角制御部920及び捩れ角制御部300aでの追従制御は、一般的に用いられている制御構造で行っても良い。転舵角制御部920については、目標角度(ここでは目標転舵角θtref)に対して実角度(ここでは転舵角θt)が追従する制御構成であれば、車両用装置に用いられている制御構成に限定されず、例えば、産業用位置決め装置や産業用ロボット等に用いられている制御構成を適用しても良い。 The order of data input and calculation in FIG. 29 can be changed as appropriate. Further, the speed control unit 923 in the steering angle control unit 920 is not the IP control but the PI control, the P control, the PID control, and the PI-D, like the speed control unit 330 in the twist angle control unit 300a. Control and the like are feasible, and any of P, I, and D controls may be used, and follow-up control by the steering angle control unit 920 and the twist angle control unit 300a is generally used. The control structure may be used. The steering angle control unit 920 is used in a vehicle device as long as it has a control configuration in which the actual angle (here, the steering angle θt) follows the target angle (here, the target steering angle θtref). The control configuration is not limited, and for example, the control configuration used in an industrial positioning device, an industrial robot, or the like may be applied.

実施形態3では、図25に示されるように、1つのECU50で反力装置60及び駆動装置70の制御を行っているが、反力装置60用のECUと駆動装置70用のECUをそれぞれ設けても良い。この場合、ECU同士は通信によりデータの送受信を行うことになる。また、図25に示されるSBWシステムは反力装置60と駆動装置70の間には機械的な結合を持たないが、システムに異常が発生した場合に、コラム軸2と転舵機構をクラッチ等で機械的に結合する機械的トルク伝達機構を備えるSBWシステムにも、本開示は適用可能である。このようなSBWシステムでは、システム正常時はクラッチをオフにして機械的トルク伝達を開放状態とし、システム異常時はクラッチをオンにして機械的トルク伝達を可能状態とする。 In the third embodiment, as shown in FIG. 25, one ECU 50 controls the reaction force device 60 and the drive device 70, but an ECU for the reaction force device 60 and an ECU for the drive device 70 are provided, respectively. You may. In this case, the ECUs transmit and receive data by communication. Further, the SBW system shown in FIG. 25 does not have a mechanical coupling between the reaction force device 60 and the drive device 70, but when an abnormality occurs in the system, the column shaft 2 and the steering mechanism are clutched or the like. The present disclosure is also applicable to SBW systems provided with a mechanical torque transmission mechanism that mechanically couples with. In such an SBW system, when the system is normal, the clutch is turned off to open the mechanical torque transmission, and when the system is abnormal, the clutch is turned on to enable the mechanical torque transmission.

上述の実施形態1から3での捩れ角制御部300,300aは、直接的にモータ電流指令値Imc及びアシスト電流指令値Iacを演算しているが、それらを演算する前に、先ず出力したいモータトルク(目標トルク)を演算してから、モータ電流指令値及びアシスト電流指令値を演算するようにしても良い。この場合、モータトルクからモータ電流指令値及びアシスト電流指令値を求めるには、一般的に用いられている、モータ電流とモータトルクの関係を使用する。 The twist angle control units 300 and 300a in the above-described first to third embodiments directly calculate the motor current command value Imc and the assist current command value Iac, but before calculating them, the motor to be output first. After calculating the torque (target torque), the motor current command value and the assist current command value may be calculated. In this case, in order to obtain the motor current command value and the assist current command value from the motor torque, the generally used relationship between the motor current and the motor torque is used.

本実施形態においても、上述した実施形態1において説明した操舵反力補正部280を目標操舵トルク生成部202に備えた構成とすることで、実施形態1と同様の効果を得ることができる。 Also in the present embodiment, the same effect as that of the first embodiment can be obtained by providing the target steering torque generation unit 202 with the steering reaction force correction unit 280 described in the above-described first embodiment.

なお、上述で使用した図は、本開示に関して定性的な説明を行うための概念図であり、これらに限定されるものではない。また、上述の実施形態は本開示の好適な実施の一例ではあるが、これに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々変形実施可能である。また、ハンドルと、モータ又は反力モータの間に任意のバネ定数を有する機構であれば、トーションバーに限定しなくても良い。 The figures used above are conceptual diagrams for qualitatively explaining the present disclosure, and are not limited thereto. Further, the above-described embodiment is an example of a preferred embodiment of the present disclosure, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present disclosure. Further, as long as the mechanism has an arbitrary spring constant between the handle and the motor or the reaction force motor, the mechanism may not be limited to the torsion bar.

1 ハンドル
2 コラム軸
2A トーションバー
3 減速機構
4a、4b ユニバーサルジョイント
5 ピニオンラック機構
6a,6b タイロッド
7a,7b ハブユニット
8L,8R 操向車輪
10 トルクセンサ
11 イグニションキー
12 車速センサ
13 バッテリ
14 舵角センサ
15 低速運転モード検知部(判定部)
20 モータ
30,30a,50 コントロールユニット(ECU)
60 反力装置
61 反力用モータ
70 駆動装置
71 駆動用モータ
72 ギア
73 角度センサ
100 EPS操舵系/車両系
130 電流制御部
140 モータ電流検出器
200,201,202 目標操舵トルク生成部
210 基本マップ部
211 乗算部
213 符号抽出部
220 微分部
230 ダンパゲインマップ部
240 ヒステリシス補正部
250 SAT情報補正部
251 SAT算出部
251A 換算部
251B 角速度演算部
251C 角加速度演算部
251D,251E,251F ブロック
251H ,251I,251J 加算器
252 フィルタ部
253 操舵トルク感応ゲイン部
254 車速感応ゲイン部
255 舵角感応ゲイン部
256 制限部
260,264 乗算部
261,262,265 加算部
280 操舵反力補正部
281 補正ゲイン生成部
282 補正トルクマップ
283 符号抽出部
284 乗算部
300,300a 捩れ角制御部
310 捩れ角フィードバック(FB)補償部
320 捩れ角速度演算部
330 速度制御部
331 積分部
332 比例部
333,334 減算部
340 安定化補償部
350 出力制限部
360 舵角外乱補償部
361 減算部
362,363 加算部
370 減速比部
400 操舵方向判定部
500 変換部
910 目標転舵角生成部
920 転舵角制御部
921 転舵角フィードバック(FB)補償部
922 転舵角速度演算部
923 速度制御部
926 出力制限部
927 減算部
930 電流制御部
931 制限部
933 補正部
932 レート制限部
940 モータ電流検出器
1001 CPU
1005 インターフェース
1006 A/D変換器
1007 PWMコントローラ
1100 制御用コンピュータ(MCU)
1 Handle 2 Column shaft 2A Torsion bar 3 Deceleration mechanism 4a, 4b Universal joint 5 Pinion rack mechanism 6a, 6b Tie rod 7a, 7b Hub unit 8L, 8R Steering wheel 10 Torque sensor 11 Ignition key 12 Vehicle speed sensor 13 Battery 14 Steering angle sensor 15 Low-speed operation mode detection unit (judgment unit)
20 Motor 30, 30a, 50 Control unit (ECU)
60 Reaction force device 61 Reaction force motor 70 Drive device 71 Drive motor 72 Gear 73 Angle sensor 100 EPS Steering system / Vehicle system 130 Current control unit 140 Motor current detector 200, 201, 202 Target steering torque generator 210 Basic map Part 211 Multiplying part 213 Code extraction part 220 Differentiation part 230 Damper gain map part 240 Hysteresis correction part 250 SAT information correction part 251 SAT calculation part 251A Conversion part 251B Angular velocity calculation part 251C Angular velocity calculation part 251D, 251E, 251F Block 251H, 251I , 251J Adder 252 Filter part 253 Steering torque sensitive gain part 254 Vehicle speed sensitive gain part 255 Steering angle sensitive gain part 256 Limiting part 260, 264 Multiplying part 261,262,265 Adding part 280 Steering reaction force correction part 281 Correction gain generating part 282 Correction torque map 283 Code extraction unit 284 Multiplying unit 300,300a Twist angle control unit 310 Twist angle feedback (FB) Compensation unit 320 Twist angular velocity calculation unit 330 Speed control unit 331 Integration unit 332 Proportional unit 333,334 Subtraction unit 340 Stabilization Compensation section 350 Output limiting section 360 Steering angle disturbance compensation section 361 Subtraction section 362, 363 Addition section 370 Reduction ratio section 400 Steering direction determination section 500 Conversion section 910 Target steering angle generator 920 Steering angle control section 921 Steering angle feedback (FB) Compensation section 922 Steering angular velocity calculation section 923 Speed control section 926 Output limit section 927 Subtraction section 930 Current control section 931 Limiting section 933 Correction section 932 Rate limiting section 940 Motor current detector 1001 CPU
1005 Interface 1006 A / D Converter 1007 PWM Controller 1100 Control Computer (MCU)

Claims (5)

操舵力を補助するモータを駆動制御することにより、車両の操舵系をアシスト制御する車両用操向装置であって、
前記車両の運転モードとして、
第1モードと、
前記第1モードとは異なる第2モードと、
を有し、
ハンドルの操舵角の絶対値がゼロ以上となる所定領域において、前記第2モードにおける前記モータの目標操舵トルクの変化率が前記第1モード以上となり、前記所定領域以外の領域において、前記第2モードにおける前記目標操舵トルクの変化率が前記第1モードよりも小さい
車両用操向装置。
A vehicle steering device that assists and controls the steering system of a vehicle by driving and controlling a motor that assists the steering force.
As the driving mode of the vehicle,
1st mode and
A second mode different from the first mode,
Have,
In a predetermined region where the absolute value of the steering angle of the steering wheel is zero or more, the rate of change of the target steering torque of the motor in the second mode becomes the first mode or more, and in a region other than the predetermined region, the second mode The steering device for a vehicle in which the rate of change of the target steering torque is smaller than that of the first mode.
予め定められた所定の操作を検知した場合に、前記第2モードと判定する判定部と、
ハンドルの操舵角の絶対値の増加に伴い徐々に変化率が小さくなる曲線に沿って増加する第1トルク信号を生成し、当該第1トルク信号に基づき生成された第2トルク信号に補正ゲインを乗じて第3トルク信号を生成し、当該第3トルク信号に対し、第4トルク信号を加算して、前記目標操舵トルクを生成する目標操舵トルク生成部と、
を備え、
前記目標操舵トルク生成部は、
前記第2モードにおいて、1未満の正の前記補正ゲインを生成すると共に、前記操舵角の絶対値がゼロのときの傾きが前記第1トルク信号よりも大きい前記第4トルク信号を生成する
請求項1に記載の車両用操向装置。
When a predetermined operation is detected, a determination unit that determines the second mode and a determination unit
A first torque signal that increases along a curve whose rate of change gradually decreases as the absolute value of the steering angle of the handle increases is generated, and a correction gain is applied to the second torque signal generated based on the first torque signal. A target steering torque generating unit that generates the target steering torque by multiplying the third torque signal to generate the third torque signal and adding the fourth torque signal to the third torque signal.
With
The target steering torque generator
The claim that in the second mode, the positive correction gain of less than 1 is generated, and the fourth torque signal having a slope larger than that of the first torque signal when the absolute value of the steering angle is zero is generated. The vehicle steering device according to 1.
前記第2モードにおける第4トルク信号は、前記操舵角が所定値以上の領域において一定値となる
請求項2に記載の車両用操向装置。
The vehicle steering device according to claim 2, wherein the fourth torque signal in the second mode is a constant value in a region where the steering angle is a predetermined value or more.
前記目標操舵トルク生成部は、
前記第1モードにおいて、前記補正ゲインを1とし、前記第4トルク信号をゼロとする
請求項2又は3に記載の車両用操向装置。
The target steering torque generator
The vehicle steering device according to claim 2 or 3, wherein in the first mode, the correction gain is set to 1, and the fourth torque signal is set to zero.
前記第2モードにおける目標操舵トルクが前記第1モードにおける目標操舵トルクよりも小さい
請求項1から4の何れか一項に記載の車両用操向装置。
The vehicle steering device according to any one of claims 1 to 4, wherein the target steering torque in the second mode is smaller than the target steering torque in the first mode.
JP2019100643A 2019-05-29 2019-05-29 vehicle steering system Active JP7222309B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019100643A JP7222309B2 (en) 2019-05-29 2019-05-29 vehicle steering system
US17/595,568 US11964713B2 (en) 2019-05-29 2020-05-25 Vehicle steering device
CN202080039577.7A CN113891827B (en) 2019-05-29 2020-05-25 Steering device for vehicle
PCT/JP2020/020606 WO2020241591A1 (en) 2019-05-29 2020-05-25 Vehicular steering device
EP20813711.7A EP3978338A4 (en) 2019-05-29 2020-05-25 Vehicular steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019100643A JP7222309B2 (en) 2019-05-29 2019-05-29 vehicle steering system

Publications (2)

Publication Number Publication Date
JP2020192927A true JP2020192927A (en) 2020-12-03
JP7222309B2 JP7222309B2 (en) 2023-02-15

Family

ID=73546204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019100643A Active JP7222309B2 (en) 2019-05-29 2019-05-29 vehicle steering system

Country Status (1)

Country Link
JP (1) JP7222309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039747B1 (en) * 2021-04-23 2022-03-22 ナブテスコ株式会社 Column Assisted steering device, steering unit, auxiliary force calculation method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297517A (en) * 1997-04-23 1998-11-10 Nissan Motor Co Ltd Controller for power steering
JP2002284027A (en) * 2001-03-26 2002-10-03 Koyo Seiko Co Ltd Steering device for vehicle
JP2004314909A (en) * 2003-04-21 2004-11-11 Koyo Seiko Co Ltd Electric power steering device
JP2006199240A (en) * 2005-01-24 2006-08-03 Toyota Motor Corp Power steering device
JP3891275B2 (en) * 2002-03-29 2007-03-14 三菱自動車工業株式会社 Power steering device
JP2011105103A (en) * 2009-11-16 2011-06-02 Jtekt Corp Electric power steering device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297517A (en) * 1997-04-23 1998-11-10 Nissan Motor Co Ltd Controller for power steering
JP2002284027A (en) * 2001-03-26 2002-10-03 Koyo Seiko Co Ltd Steering device for vehicle
JP3891275B2 (en) * 2002-03-29 2007-03-14 三菱自動車工業株式会社 Power steering device
JP2004314909A (en) * 2003-04-21 2004-11-11 Koyo Seiko Co Ltd Electric power steering device
JP2006199240A (en) * 2005-01-24 2006-08-03 Toyota Motor Corp Power steering device
JP2011105103A (en) * 2009-11-16 2011-06-02 Jtekt Corp Electric power steering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039747B1 (en) * 2021-04-23 2022-03-22 ナブテスコ株式会社 Column Assisted steering device, steering unit, auxiliary force calculation method, and program
CN115230807A (en) * 2021-04-23 2022-10-25 纳博特斯克有限公司 Steering column assist type steering device, steering unit, and assist force calculation method
US11807314B2 (en) 2021-04-23 2023-11-07 Nabtesco Corporation Steering device and steering unit device
CN115230807B (en) * 2021-04-23 2024-01-02 纳博特斯克有限公司 Steering column assist steering device, steering unit, and assist force calculation method

Also Published As

Publication number Publication date
JP7222309B2 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
WO2020241591A1 (en) Vehicular steering device
JPWO2020115973A1 (en) Vehicle steering device
JPH06344935A (en) Steering device for vehicle
WO2020012689A1 (en) Vehicle steering device
JP6702513B2 (en) Steering device for vehicle
JPWO2020145036A1 (en) Vehicle steering device
JPWO2020100411A1 (en) Vehicle steering device
EP3061671B1 (en) Electric power steeering device
JP7199643B2 (en) vehicle steering system
WO2019167661A1 (en) Vehicle steering device
WO2021157727A1 (en) Vehicular steering device
JP7222309B2 (en) vehicle steering system
JP2020192908A (en) Vehicle steering device
CN118715153A (en) Control device for steering system for vehicle
WO2020213285A1 (en) Vehicle steering apparatus
JP7347493B2 (en) Vehicle steering device
JP2021147018A (en) Vehicle steering device
JP6628017B1 (en) Vehicle steering system
JP2021070340A (en) Steering system for vehicle
JP5407298B2 (en) Vehicle steering apparatus and control method thereof
JP7268488B2 (en) vehicle steering system
WO2020183838A1 (en) Vehicle steering device
JP2021160638A (en) Vehicular steering device
WO2021124822A1 (en) Vehicular steering device
JP2022056320A (en) Vehicular steering system control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R150 Certificate of patent or registration of utility model

Ref document number: 7222309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150