JP2020191555A - 受信電力推定装置、受信電力推定方法およびプログラム - Google Patents

受信電力推定装置、受信電力推定方法およびプログラム Download PDF

Info

Publication number
JP2020191555A
JP2020191555A JP2019096196A JP2019096196A JP2020191555A JP 2020191555 A JP2020191555 A JP 2020191555A JP 2019096196 A JP2019096196 A JP 2019096196A JP 2019096196 A JP2019096196 A JP 2019096196A JP 2020191555 A JP2020191555 A JP 2020191555A
Authority
JP
Japan
Prior art keywords
received power
information
estimation
feature amount
estimated value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019096196A
Other languages
English (en)
Other versions
JP7084352B2 (ja
Inventor
竜也 長尾
Tatsuya Nagao
竜也 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2019096196A priority Critical patent/JP7084352B2/ja
Publication of JP2020191555A publication Critical patent/JP2020191555A/ja
Application granted granted Critical
Publication of JP7084352B2 publication Critical patent/JP7084352B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】位置ごとの品質の違いおよび品質の時間変動を加味した受信電力の推定を精度良く行うことができる受信電力推定装置などを提供する。【解決手段】1以上の送信局から無線により発信される電波の受信電力の推定値を演算する受信電力推定装置であって、位置ごとに時間的に変動する音の情報を含む第1情報に基づく特徴量を入力し、前記特徴量を用いて前記受信電力の推定値を演算する推定モデルに基づいて、前記受信電力の推定値を演算する推定部を備える、受信電力推定装置。【選択図】図1

Description

本発明は、受信電力推定装置、受信電力推定方法およびプログラムに関する。
移動体通信における品質を推定する装置などが検討されている(例えば、特許文献1参照。)。
特許文献1に記載された品質推定装置では、基地局装置からの電波伝搬に基づいて品質を計算するRF(Radio Frequency)管理手法によって、品質のエリア分布を推定することが行われる。また、当該品質推定装置では、推定された品質のエリア分布と、エリア内の測定点においてあらかじめ測定された品質の測定値とに基づいて、エリア内の品質を推定することが行われる。また、当該品質推定装置では、エリア内の品質を推定するために、ニューラルネットワークモデルが使用されている。また、当該品質推定装置では、エリア内の土地利用区分を、ニューラルネットワークモデルの入力として学習させることが行われる。
これらの構成によって、当該品質推定装置では、移動体通信における品質推定の面的網羅性を確保しつつ、推定精度を向上させることが図られている。
特開2018−32939号公報
しかしながら、特許文献1に記載された品質推定では、位置(場所)ごとの品質の違いに関する課題として、土地利用区分というカテゴライズされた指標が機械学習の入力パラメータとされており、電波伝搬において重要なパラメータとなる構造物の情報が離散的であることから、推定精度には一定の限界があった。一方で、当該品質推定では、レイトレーシング法が用いられているが、レイトレーシング法による推定では計算に膨大な時間がかかる場合があった。
また、特許文献1に記載された品質推定では、品質の時間変動に関する課題として、現実には人や自動車などの動きによって伝搬は細かく変動するが、静的な情報のみが考慮されていることから、時間的な変動幅を推定することができない場合があった。
本発明は、このような事情を考慮してなされたもので、位置ごとの品質の違いおよび品質の時間変動を加味した受信電力の推定を精度良く行うことができる受信電力推定装置、受信電力推定方法およびプログラムを提供することを課題とする。
一構成例として、1以上の送信局から無線により発信される電波の受信電力の推定値を演算する受信電力推定装置であって、位置ごとに時間的に変動する音の情報を含む第1情報に基づく特徴量を入力し、前記特徴量を用いて前記受信電力の推定値を演算する推定モデルに基づいて、前記受信電力の推定値を演算する推定部を備える、受信電力推定装置である。
一構成例として、受信電力推定装置において、前記第1情報は、都市の構造に関する情報を含む。
一構成例として、受信電力推定装置において、前記第1情報は、前記送信局に関する情報を含む。
一構成例として、受信電力推定装置において、前記受信電力は、前記送信局から無線で発信される電波を受信する受信局における受信電力である。
一構成例として、受信電力推定装置において、前記受信電力の推定値は、位置ごとに異なり時間的に変動する値である。
一構成例として、受信電力推定装置において、前記推定モデルは、位置ごとに時間的に変動する音の情報を含む第2情報に基づく特徴量と教師情報を用いて機械学習が行われることによって得られたモデルである。
一構成例として、1以上の送信局から無線により発信される電波の受信電力の推定値を演算する受信電力推定方法であって、位置ごとに時間的に変動する音の情報を含む第1情報に基づく特徴量を入力し、前記特徴量を用いて前記受信電力の推定値を演算する推定モデルに基づいて、前記受信電力の推定値を演算する、受信電力推定方法である。
一構成例として、1以上の送信局から無線により発信される電波の受信電力の推定値を演算する受信電力推定装置を構成するコンピュータに、位置ごとに時間的に変動する音の情報を含む第1情報に基づく特徴量を入力するステップと、前記特徴量を用いて前記受信電力の推定値を演算する推定モデルに基づいて、前記受信電力の推定値を演算するステップと、を実行させるプログラムである。
本発明によれば、受信電力推定装置、受信電力推定方法およびプログラムにおいて、場所ごとの品質の違いおよび品質の時間変動を加味した受信電力の推定を精度良く行うことができる。
本発明の一実施形態に係る通信システムの概略的な構成を示す図である。 本発明の一実施形態に係る受信電力推定装置の概略的なブロック構成を示す図である。 本発明の一実施形態に係る推定モデルの学習および受信電力の推定の流れの一例を示す図である。 本発明の一実施形態に係る都市構造情報の一例を示す図である。
以下、図面を参照し、本発明の実施形態について説明する。
[通信システム]
図1は、本発明の一実施形態に係る通信システム1の概略的な構成を示す図である。
通信システム1は、移動通信システムであり、複数であるN個の基地局装置21−1〜21−Nと、複数であるM個の端末装置31−1〜31−Mと、複数であるL個の測定器41−1〜41−Lと、受信電力推定装置51と、データベース52と、ネットワーク61を備える。
また、図1には、例えば人である利用者71を示してある。利用者71は、受信電力推定装置51を操作する。
ここで、本実施形態では、基地局装置21−1〜21−Nの数(N個)、端末装置31−1〜31−Mの数(M個)、測定器41−1〜41−Lの数(L個)のそれぞれは、2以上の整数の値であるが、他の例として、これらのうちの1つ以上が1であってもよい。
受信電力推定装置51と、データベース52と、ネットワーク61と、それぞれの基地局装置21−1〜21−Nは、ネットワーク61と接続されている。この接続としては、例えば、有線の接続が用いられてもよく、あるいは、無線の接続が用いられてもよい。
それぞれの端末装置31−1〜31−Mは、通信相手となる基地局装置21−1〜21−Nと、無線により通信する。例えば、それぞれの端末装置31−1〜31−Mは、通信相手となる1つの基地局装置のセルに収容されて、当該基地局装置と無線により通信する。
それぞれの測定器41−1〜41−Lは、データベース52と、有線または無線により、通信する。
ここで、本実施形態では、それぞれの測定器41−1〜41−Lとデータベース52とが直接接続される構成を示すが、他の構成例として、それぞれの測定器41−1〜41−Lとデータベース52とが、他の装置などを介して、間接的に接続されてもよい。具体例として、それぞれの測定器41−1〜41−Lとデータベース52とが、受信電力推定装置51を介して、間接的に接続されてもよい。また、それぞれの測定器41−1〜41−Lとデータベース52との接続、あるいは、それぞれの測定器41−1〜41−Lと受信電力推定装置51との接続は、例えば、ネットワーク61を用いた接続であってもよい。
また、ネットワーク61は、例えば、1つのまとまったネットワークであってもよく、あるいは、複数のネットワークの集合であってもよい。
また、本実施形態では、受信電力推定装置51として、1つのまとまった装置が用いられるが、他の構成例として、複数の異なる装置の集合であってもよく、この場合、受信電力推定装置51の機能が複数の異なる装置に分散される。
また、本実施形態では、データベース52としては、1つのまとまったデータベースが用いられるが、他の構成例として、複数の異なるデータベースの集合であってもよい。
本実施形態では、基地局装置21−1〜21−Nおよび端末装置31−1〜31−Mは、移動端通信システムにおける装置である。
それぞれの基地局装置21−1〜21−Nは、それぞれ異なる場所に設置されている。
それぞれの端末装置31−1〜31−Mは、例えば、スマートホンあるいは携帯電話などの装置である。それぞれの端末装置31−1〜31−Mは、例えば、ユーザ(例えば、人)によって携帯されて持ち運ばれることで移動させられる装置、あるいは、自動車などに載置されて移動させられる装置である。
それぞれの測定器41−1〜41−Lは、それぞれ異なる場所に設置されている。なお、それぞれの測定器41−1〜41−Lが設置される場所は、例えば、端末装置31−1〜31−Mとは独立した場所であってもよい。
それぞれの基地局装置21−1〜21−Nは、所定の電波を無線により発信する。
それぞれの端末装置31−1〜31−Mは、通信相手となる基地局装置21−1〜21−Nから発信される電波を受信し、その受信電力を測定する。
それぞれの端末装置31−1〜31−Mは、音を収集するマイクを備え、当該マイクによって収集される音を測定する。本実施形態では、当該音は、それぞれの端末装置31−1〜31−Mが存在する位置における環境音であるとする。
また、それぞれの端末装置31−1〜31−Mは、自装置(当該それぞれの端末装置31−1〜31−M)の位置を測定する機能を備え、当該機能によって自装置の位置を測定する。当該機能は、任意の機能であってもよく、例えば、GPS(Global Positioning System)の機能であってもよい。位置は、例えば、緯度と経度によって特定されてもよい。
そして、それぞれの端末装置31−1〜31−Mは、測定結果を表す情報(以下、説明の便宜上、端末測定結果情報と呼ぶ。)を、通信相手となる基地局装置21−1〜21−Nに無線により送信する。
それぞれの基地局装置21−1〜21−Nは、端末装置31−1〜31−Mから送信された端末測定結果情報を受信し、受信された端末測定結果情報を、ネットワーク61を介して、データベース52に送信する。
なお、それぞれの端末装置31−1〜31−Mは、例えば、端末測定結果情報をリアルタイムでデータベース52に送信してもよく、あるいは、端末測定結果情報をいったんログとして記録した後に、データベース52に送信してもよい。
また、それぞれの端末装置31−1〜31−Mに記録された端末測定結果情報が、USB(Universal Serial Bus)などの可搬記録媒体に記録されて、当該可搬記録媒体からデータベース52に当該端末測定結果情報が渡されてもよい。
ここで、本実施形態では、端末測定情報は、それぞれの端末装置31−1〜31−Mによって測定された受信電力の情報と、当該それぞれの端末装置31−1〜31−Mによって測定された音の情報と、当該それぞれの端末装置31−1〜31−Mによって測定された位置の情報を含むが、他の構成例として、受信電力の情報と音の情報とは、別々の端末測定情報に含められてもよい。当該他の構成例では、1つ以上の端末装置31−1〜31−Mは、受信電力と音とのうちで任意の一方のみを測定してもよい。
それぞれの測定器41−1〜41−Lは、基地局装置21−1〜21−Nから発信される電波を受信し、その受信電力を測定する。
それぞれの測定器41−1〜41−Lは、音を収集するマイクを備え、当該マイクによって収集される音を測定する。本実施形態では、当該音は、それぞれの測定器41−1〜41−Lが存在する位置における環境音であるとする。
また、それぞれの測定器41−1〜41−Lは、自装置(当該それぞれの測定器41−1〜41−L)の位置の情報を記憶部に記憶している。
そして、それぞれの測定器41−1〜41−Lは、測定結果を表す情報(以下、説明の便宜上、測定器測定結果情報と呼ぶ。)を、データベース52に送信する。
なお、それぞれの測定器41−1〜41−Lは、例えば、測定器測定結果情報をリアルタイムでデータベース52に送信してもよく、あるいは、測定器測定結果情報をいったんログとして記録した後に、データベース52に送信してもよい。
また、それぞれの測定器41−1〜41−Lに記録された測定器測定結果情報が、USBなどの可搬記録媒体に記録されて、当該可搬記録媒体からデータベース52に当該測定器測定結果情報が渡されてもよい。
ここで、本実施形態では、測定器測定情報は、それぞれの測定器41−1〜41−Lによって測定された受信電力の情報と、当該測定器41−1〜41−Lによって測定された音の情報と、当該それぞれの測定器41−1〜41−Lの位置の情報を含むが、他の構成例として、受信電力の情報と音の情報とは、別々の測定器測定情報に含められてもよい。当該他の構成例では、1つ以上の測定器41−1〜41−Lは、受信電力と音とのうちで任意の一方のみを測定してもよい。
また、本実施形態では、それぞれの測定器41−1〜41−Lは、自装置(当該それぞれの測定器41−1〜41−L)の位置の情報を測定器測定情報に含めるが、他の構成例として、それぞれの測定器41−1〜41−Lは、自装置(当該それぞれの測定器41−1〜41−L)の位置の情報の代わりに、自装置の識別情報を測定器測定情報に含めてもよい。当該他の構成例では、データベース52は、それぞれの測定器41−1〜41−Lの識別情報と当該それぞれの測定器41−1〜41−Lの位置の情報との対応を記憶しており、測定器測定情報に含まれる識別情報に基づいて、当該識別情報に対応する位置の情報を特定する。
データベース52は、基地局装置21−1〜21−Nから送信される端末測定結果情報を受信し、受信された端末測定結果情報を記憶する。
また、データベース52は、測定器41−1〜41−Lから送信される測定器測定結果情報を受信し、受信された測定器測定結果情報を記憶する。
ここで、データベース52では、端末測定結果情報と測定器測定結果情報とが、別々に管理されてもよく、あるいは、まとめて管理されてもよい。
ここで、本実施形態では、測定器41−1〜41−Lが設置された場所に固定されている場合を示すが、他の構成例として、測定器41−1〜41−Lのうちの1つ以上が車両などに載置されて移動させられる構成が用いられてもよい。当該他の構成例では、移動させられる測定器は、例えば、端末装置31−1〜31−Mと同様に、自器(当該測定器)の位置を測定して、測定された位置を自器の位置とみなす。
また、本実施形態では、端末装置31−1〜31−Mと測定器41−1〜41−Lによって測定が行われる構成を示すが、他の構成例として、端末装置31−1〜31−Mと測定器41−1〜41−Lとの任意の一方によって測定が行われる構成が用いられてもよい。つまり、端末装置31−1〜31−Mによって測定が行われる構成が用いられてもよく、あるいは、測定器41−1〜41−Lによって測定が行われる構成が用いられてもよい。測定器41−1〜41−Lによって測定が行われない場合には、測定器41−1〜41−Lは備えられなくてもよい。
[データベースに記憶される情報]
本実施形態では、データベース52は、送信局に関する情報と、受信電力に関する情報と、環境音に関する情報と、都市構造に関する情報と、推定モデルに関する情報を記憶する。
送信局に関する情報としては、様々な情報が用いられてもよく、例えば、送信局から発信される電波の周波数、当該電波の電力、当該送信局の位置などのうちの1以上の情報であってもよい。
送信局に関する情報の一部または全部は、例えば、基地局装置21−1〜21−Nごとに異なり得る情報であってもよい。
また、送信局に関する情報の一部または全部は、例えば、時間的に変動し得る情報であってもよい。
送信局に関する情報は、例えば、あらかじめデータベース52に記憶されてもよい。
なお、本実施形態では、送信局として、それぞれの基地局装置21−1〜21−Nが用いられている。
他の例として、送信局として、中継局装置(図示せず)が用いられてもよい。当該中継局装置は、例えば、通信システム1に備えられて、基地局装置21−1〜21−Nから端末装置31−1〜31−Mに送信される電波を中継する処理と、端末装置31−1〜31−Mから基地局装置21−1〜21−Nに送信される電波を中継する処理と、の一方または両方を行う。
受信電力に関する情報としては、本実施形態では、端末装置31−1〜31−Mによって測定された受信電力の情報と、測定器41−1〜41−Lによって測定された受信電力の情報と、の一方または両方が用いられる。
本実施形態では、受信電力の情報は、実測値の情報である。
受信電力に関する情報の一部または全部は、例えば、位置ごとに異なり得る。
また、受信電力に関する情報の一部または全部は、例えば、時間的に変動し得る。
受信電力の情報としては、例えば、所定の時間帯における受信電力の情報が収集されてもよい。当該時間帯は、例えば、1日などの時間帯であってもよい。
環境音に関する情報としては、本実施形態では、端末装置31−1〜31−Mによって測定された音の情報と、測定器41−1〜41−Lによって測定された音の情報と、の一方または両方が用いられる。
本実施形態では、環境音の情報は、実測値の情報である。
環境音に関する情報の一部または全部は、例えば、位置ごとに異なり得る。
また、環境音に関する情報の一部または全部は、例えば、時間的に変動し得る。
環境音の情報としては、例えば、所定の時間帯における環境音の情報が収集されてもよい。当該時間帯は、例えば、1日などの時間帯であってもよい。
ここで、環境音の情報としては、例えば、音の測定結果の情報がスペクトログラムに変換された情報が用いられてもよい。
環境音の情報としては、例えば、任意の周波数の音の情報が用いられてもよい。当該周波数は、例えば、1点の周波数であってもよく、2点以上の周波数であってもよく、あるいは、所定の帯域幅を有する周波数であってもよい。また、これらの周波数としては、例えば、可聴域の周波数であってもよく、あるいは、他の周波数であってもよい。
なお、音の測定結果の情報をスペクトログラムに変換する処理は、例えば、あらかじめ行われてもよく、あるいは、受信電力推定装置51における学習部113の変換部131や推定部115の変換部151によって行われてもよい。
環境音の情報としては、例えば、周波数と、時間と、音のレベルとが対応付けられた情報が用いられてもよい。
都市構造に関する情報としては、様々な情報が用いられてもよく、例えば、建物の存在に関する情報が用いられてもよい。
本実施形態では、都市構造に関する情報は、現実の都市構造に基づく情報である。
都市構造に関する情報は、例えば、あらかじめデータベース52に記憶されてもよい。
ここで、都市構造に関する情報としては、例えば、受信電力が学習あるいは推定される位置と、1以上の送信局との間における電波の伝搬環境を表す情報が用いられてもよい。当該情報としては、例えば、それぞれの送信局ごとに別々の情報が用いられてもよく、あるいは、2以上の異なる送信局についてまとめられた情報が用いられてもよい。
推定モデルに関する情報としては、様々な情報が用いられてもよく、例えば、線形回帰モデル、ニューラルネットワークをベースとしたモデル、あるいは、決定木をベースとしたモデルなどが用いられてもよい。
線形回帰モデルとしては、例えば、Lasso、Ridge、ElasticNetなどのモデルが用いられてもよい。
ニューラルネットワークをベースとしたモデルとしては、DeepLearningなどのモデルが用いられてもよい。
決定木をベースとしたモデルとしては、RandomForest、あるいは、XGBoostなどのモデルが用いられてもよい。
また、推定モデルとして、例えば、CNN(Convolutional Neural Network)のモデルが用いられてもよい。当該モデルでは、入力情報の構造的な特徴を抽出することができるため、都市構造や環境音の特徴量を画像的に捉えて、伝搬環境の特徴を学習させることができる。
推定モデルに関する情報は、例えば、あらかじめデータベース52に記憶されてもよい。
[受信電力推定装置]
図2は、本発明の一実施形態に係る受信電力推定装置51の概略的なブロック構成を示す図である。
受信電力推定装置51は、特徴量生成部111と、教師情報取得部112と、学習部113と、推定位置指定部114と、推定部115を備える。
学習部113は、変換部131と、推定モデル生成部132を備える。
推定部115は、変換部151と、推定値演算部152を備える。
本実施形態では、受信電力推定装置51は、データベース52に記憶された情報を用いて、各種の処理を行う。
なお、他の構成例として、受信電力推定装置51は、データベース52以外の記憶装置に記憶された情報を用いてもよい。当該記憶装置は、例えば、受信電力推定装置51の外部に備えられてもよく、あるいは、受信電力推定装置51の内部に備えられてもよい。
特徴量生成部111は、所定の特徴量を生成する。
また、特徴量生成部111は、生成された特徴量を学習部113および推定部115に出力する。
本実施形態では、特徴量生成部111は、データベース52に記憶された、送信局に関する情報、環境音の情報、および都市構造に関する情報に基づく特徴量を生成する。
本実施形態では、特徴量を生成するための演算式が、あらかじめデータベース52に記憶される。特徴量生成部111は、当該演算式を用いて、所定の特徴量を演算することにより生成する。
ここで、特徴量生成部111は、例えば、複数の特徴量を生成してもよい。
複数の特徴量としては、例えば、送信局に関する情報に基づく特徴量、環境音の情報に基づく特徴量、都市構造に関する情報に基づく特徴量が用いられてもよい。
また、特徴量は、例えば、位置ごとに対応付けられていてもよい。また、特徴量は、例えば、時間的に変動する特徴量であってもよい。
教師情報取得部112は、データベース52に記憶された教師情報を取得する。本実施形態では、当該教師情報は、受信電力の情報である。
また、教師情報取得部112は、取得された教師情報を学習部113に出力する。
ここで、受信電力の情報は、例えば、位置ごとに対応付けられていてもよい。また、受信電力の情報は、例えば、時間的に変動する特徴量であってもよい。
学習部113の変換部131は、特徴量生成部111から出力された特徴量を入力し、入力された特徴量に対して所定の変換を行い、当該変換が為された後における特徴量を推定モデル生成部132に出力する。
また、学習部113の変換部131は、教師情報取得部112から出力された教師情報(受信電力の情報)に対して所定の変換を行い、当該変換が為された後における教師情報を推定モデル生成部132に出力する。
ここで、変換部131によって行われる変換としては、様々な変換であってもよい。
例えば、教師情報(受信電力の情報)に位置が対応付けられている場合に、変換部131は、特徴量生成部111から入力される特徴量を、当該位置における特徴量へ変換してもよい。
また、例えば、教師情報(受信電力の情報)に時間が対応付けられている場合に、変換部131は、特徴量生成部111から入力される特徴量を、当該時間における特徴量へ変換してもよい。
なお、このような変換が不要ある場合には、学習部113に変換部131が備えられなくてもよい。
推定モデル生成部132は、変換部131から出力された特徴量および教師情報を入力する。
推定モデル生成部132は、データベース52に記憶された推定モデルに関する情報によって特定される推定モデルと、変換部131から入力される特徴量および教師情報に基づいて、当該推定モデルにおける1以上のパラメータの値を更新する。
ここで、当該パラメータとしては、様々なものが用いられてもよく、例えば、当該推定モデルにおいて所定の値に乗算すべき重み付けの値(重み)が用いられてもよい。
また、パラメータの数としては、1以上の任意の数であってもよい。
学習部113では、このような処理を行うことにより、推定モデル生成部132によって、学習されたパラメータの値を有する推定モデル(説明の便宜上、学習済み推定モデルとも呼ぶ。)を生成する。
学習部113では、推定モデル生成部132は、生成された学習済み推定モデルを推定部115に出力する。
ここで、学習の手法としては、任意の手法が用いられてもよい。
本実施形態では、教師情報を用いた機械学習(教師あり学習)が用いられている。
推定位置指定部114は、受信電力を推定する対象とする位置を指定する情報(説明の便宜上、位置指定情報とも呼ぶ。)を、推定部115に出力する。
ここで、受信電力を推定する対象とする位置は、例えば、利用者71によって指定されてもよい。この場合、推定位置指定部114は、利用者71によって操作されることが可能な操作部を有しており、当該操作部に対して行われた操作に応じて位置の指定を受け付ける。
他の構成例として、受信電力を推定する対象とする位置は、例えば、あらかじめ決められていて設定されていてもよい。
ここで、受信電力を推定する対象とする位置は、例えば、緯度と経度によって指定されてもよい。
また、受信電力を推定する対象とする位置は、例えば、1つの位置を単位として指定されてもよく、あるいは、複数の位置を含む範囲を単位として指定されてもよい。なお、当該範囲の形状あるいは大きさなどとしては、様々なものが用いられてもよい。
推定部115の変換部151は、特徴量生成部111から出力された特徴量を入力し、入力された特徴量に対して所定の変換を行い、当該変換が為された後における特徴量を推定値演算部152に出力する。
また、推定部115の変換部151は、推定位置指定部114から出力された位置指定情報に対して所定の変換を行い、当該変換が為された後における位置指定情報を推定値演算部152に出力する。
ここで、変換部151によって行われる変換としては、様々な変換であってもよい。本実施形態では、学習部113の変換部131と、推定部115の変換部151とで、同様な変換処理が行われてもよい。
例えば、位置指定情報に対して、変換部131は、特徴量生成部111から入力される特徴量を、当該位置における特徴量へ変換してもよい。
また、例えば、位置指定情報によって指定される位置について推定される受信電力の情報に時間が対応付けられる場合に、変換部131は、特徴量生成部111から入力される特徴量を、当該時間における特徴量へ変換してもよい。
なお、このような変換が不要ある場合には、推定部115に変換部151が備えられなくてもよい。
推定値演算部152は、推定モデル生成部132から出力された学習済み推定モデルを入力し、変換部151から出力された特徴量および位置指定情報を入力する。
推定値演算部152は、入力された学習済み推定モデルに、入力された特徴量および位置指定情報を入力することにより、受信電力の推定値を演算する。
ここで、受信電力の推定値は、例えば、位置ごとに異なり得る。また、受信電力の推定値は、例えば、時間的に変動し得る。本実施形態では、受信電力の推定値は、位置ごとに異なり得る値であり、時間的に変動し得る値である。
なお、通常の環境では、受信電力の推定値は、位置ごとに異なる場合が多く、時間的に変動する場合が多いと考えられる。
また、推定位置指定部114によって範囲が指定された場合には、推定部115の推定値演算部152は、当該範囲に含まれる1以上の位置について、受信電力の推定値を演算する。
当該範囲に含まれる1以上の位置の数は、任意であってもよく、例えば、あらかじめ指定されてもよい。
また、当該範囲に含まれる1以上の位置は、任意の位置であってもよく、例えば、あらかじめ指定されてもよい。
一例として、当該範囲にあらかじめ複数の枠が設定されていて、それぞれの枠ごとの位置について、受信電力の推定値が演算されてもよい。
ここで、本実施形態に係る受信電力推定装置51では、特徴量生成部111と教師情報取得部112と学習部113の機能によって推定モデルの学習が行われ、また、特徴量生成部111と推定位置指定部114と推定部115の機能によって学習済み推定モデルによる推定が行われる。このように、本実施形態に係る受信電力推定装置51では、学習を行う機能と、推定を行う機能とが、一体化された構成を有するが、他の構成例として、学習を行う機能と、推定を行う機能とが、別体の装置によって構成されてもよい。当該他の構成例では、学習を行う機能を有する装置によって推定モデルの学習を行い、これによって得られた学習済み推定モデルを用いて推定を行う装置が推定を行う。
[推定モデルの学習および受信電力の推定]
図3は、本発明の一実施形態に係る推定モデルの学習および受信電力の推定の流れの一例を示す図である。
学習T1の処理では、送信局に関する情報である送信局情報311、環境音に関する情報である環境音情報312、および都市構造に関する情報(都市構造情報313)に基づいて得られる特徴量211と、受信電力331に関する教師情報212を用いて、推定モデルの学習が行われる。
当該学習T1によって、学習済みの推定モデル231が得られる。
本実施形態では、当該学習T1は、機械学習である。
ここで、学習済みの推定モデル231としては、様々な演算式で表されるモデルが用いられてもよく、例えば、送信局情報311に基づく1以上の特徴量と、環境音情報312に基づく1以上の特徴量と、都市構造情報313に基づく1以上の特徴量を、それぞれパラメータとして、これらのパラメータおよび所定の重みの値を用いて受信電力の推定値を演算する演算式が用いられてもよい。当該重みの値は、例えば、1以上のパラメータのそれぞれに乗算される1以上の重みの値であってもよい。
なお、特徴量としては、例えば、送信局情報311と環境音情報312と都市構造情報313のうちの2以上に基づく特徴量が用いられてもよい。
また、本実施形態では、送信局情報311と環境音情報312と都市構造情報313が用いられるが、他の構成例として、少なくとも環境音情報312が用いられればよい。
また、送信局情報311と環境音情報312と都市構造情報313とは別の情報が、これらの情報とともに用いられてもよく、あるいは、送信局情報311と都市構造情報313との一方または両方の代わりに用いられてもよい。
推定T2の処理では、推定モデル251と、特徴量211と、位置指定情報351によって特定される位置情報213を用いて、受信電力の推定が行われる。ここで、推定モデル251としては、学習T1の処理によって得られた学習済みの推定モデル231が用いられる。
当該推定T2の処理によって、受信電力の推定値271が得られる。
本実施形態では、受信電力の推定値271は、位置ごとに異なり得る情報であり、時間的に変動し得る情報である。
[都市構造情報の例]
図4は、本発明の一実施形態に係る都市構造情報401の一例を示す図である。
本実施形態では、都市構造情報401として、二次元の平面状の地図の情報が用いられている。
都市構造情報401は、メッシュ状の単位領域411の情報と、建物領域431の情報と、送信局の位置451の情報と、対象位置452の情報を含む。
本実施形態では、都市構造情報401は、送信局ごとの情報である。
単位領域411は、平面を複数の領域に区切る単位となる領域である。本実施形態では、単位領域411は、正方形の形状を有している。そして、複数の単位領域411が、互いに直交する2つの方向のそれぞれに、並んで配置されている。
建物領域431は、建物が存在する領域を表している。本実施形態では、建物領域431は、建物を上空から見た場合に当該建物が存在する領域を表す。
送信局の位置451は、1つの送信局の位置を表す。本実施形態では、当該位置は、単位領域411の単位で表されている。
対象位置452は、学習の対象となる位置あるいは推定の対象となる位置を表す。本実施形態では、当該位置は、単位領域411の単位で表されている。
本実施形態では、1つの送信局の位置451および1つの対象位置452について、複数の単位領域411からなる正方形の領域における建物領域431の情報が、学習および推定に用いられる。本実施形態では、当該正方形における1組の対角線の両端に存在する2つの単位領域411のうちの一方が送信局の位置451であるとみなされ、他方が対象位置452であるとみなされる。なお、当該対角線の位置関係の代わりに、他の任意の位置関係が用いられてもよい。
ここで、都市構造情報401は、例えば、所定の条件を満たす1以上の送信局について用いられてもよい。
当該所定の条件としては、様々な条件が用いられてもよい。
当該所定の条件としては、例えば、送信局から発信される電波が対象位置452に所定の閾値以上の受信強度で届くという条件が用いられてもよい。
当該所定の条件としては、例えば、送信局と対象位置452との距離が所定の閾値以下であるという条件が用いられてもよい。
当該所定の条件としては、例えば、送信局が利用者71によって指定されたという条件が用いられてもよい。
なお、本実施形態では、都市構造情報401として、二次元の情報が用いられているが、他の構成例として、三次元の情報が用いられてもよい。都市構造情報401として、三次元の情報が用いられる場合には、例えば、図4に示されるような情報に、建物の高さの情報が追加された情報が用いられてもよい。この場合、例えば、単位領域としては、立方体の領域が用いられてもよい。
[実施形態の効果]
本実施形態に係る通信システム1において、受信電力推定装置51では、送信局から発信される電波の受信電力の推定を、位置ごとに、時間変動を含めて、実行することができる。これにより、受信電力推定装置51では、電波の伝搬状況を推定することができる。
例えば、受信電力推定装置51では、学習において教師情報が用いられた位置とは異なる位置における受信電力を推定することができる。
また、例えば、受信電力推定装置51では、学習において教師情報が用いられた環境とは異なる環境における受信電力を推定することができる。環境が異なる態様としては、例えば、送信局情報、環境音情報、都市構造情報のうちの1以上が異なる態様がある。
本実施形態に係る通信システム1において、受信電力推定装置51では、電波の受信電力の学習および推定において、位置(場所)ごとの変動を考慮することができ、時間ごとの変動を考慮することができる。これにより、受信電力推定装置51では、位置(場所)ごとの推定精度を向上させることができ、時間ごとの推定精度を向上させることができる。受信電力推定装置51では、移動体通信における品質推定の空間的網羅性を確保しつつ、時間的網羅性を確保しつつ、推定精度を向上させることができる。
このように、本実施形態に係る通信システム1において、受信電力推定装置51では、位置(場所)ごとの品質の違いおよび品質の時間変動を加味した受信電力の推定を精度良く行うことができる。
本実施形態に係る通信システム1において、受信電力推定装置51では、例えば、周辺環境である電波伝搬の動的な変動要素を、当該周辺環境の音を用いて、特徴量として考慮して機械学習を行うことにより、場所ごとで時間ごとの変動幅を加味した電波伝搬推定を行うことができ、移動体通信における動的な変動要素を考慮して品質推定を行うことができる。
本実施形態に係る通信システム1において、受信電力推定装置51では、例えば、電波伝搬に大きく影響を与える人や車などの動きを、音を用いて特徴量化することができる。
本実施形態に係る通信システム1において、受信電力推定装置51では、例えば、周辺環境である電波伝搬の変動要素を、都市構造を用いて、特徴量として考慮して機械学習を行うことにより、場所ごとの変動幅を加味した電波伝搬推定を行うことができ、移動体通信における動的な変動要素を考慮して品質推定を行うことができる。
本実施形態に係る通信システム1において、受信電力推定装置51では、例えば、都市構造を、情報量が多くかつ計算量が少ない特徴量として定義し、機械学習を行うことにより、電波伝搬推定を行うことができる。
受信電力推定装置51では、例えば、土地利用区分による伝搬環境の特徴量化が離散的であり推定精度に限界があるという問題に対して、一定の解像度(例えば、5mなど)のメッシュごとに建物の面積や体積などの構造物情報を数値化することによって、連続的な数値に基づく特徴量を用いることで、高精度な伝搬推定を面的に行うことができる。
本実施形態に係る通信システム1において、受信電力推定装置51では、受信電力の測定結果を得ることができ、これにより、例えば、基地局装置の放射方向、基地局装置からの送信電力、あるいは、電波の周波数の設計や制御に役立つ。
ここで、本実施形態では、受信電力推定装置51を1つの移動通信システムに適用した場合を示したが、他の構成例として、本実施形態に係る受信電力推定装置51の適用対象としては、様々なものであってもよく、例えば、無線LAN(Local Area Network)などに適用されてもよい。
<構成例>
一構成例として、受信電力推定装置51では、1以上の送信局(図1の例では、基地局装置21−1〜21−N)から無線により発信される電波の受信電力の推定値を演算する。受信電力推定装置51では、位置ごとに時間的に変動する音の情報を含む第1情報(本実施形態では、送信局情報311、環境音情報312、都市構造情報313)に基づく特徴量を入力し、当該特徴量を用いて受信電力の推定値を演算する推定モデル251(学習済みの推定モデル231)に基づいて、受信電力の推定値を演算する推定部115を備える。
一構成例として、受信電力推定装置51では、第1情報は、都市の構造に関する情報を含む。
一構成例として、受信電力推定装置51では、第1情報は、送信局に関する情報を含む。
一構成例として、受信電力推定装置51では、受信電力は、送信局から無線で発信される電波を受信する受信局(図1の例では、端末装置31−1〜31−M、測定器41−1〜41−L)における受信電力である。
一構成例として、受信電力推定装置51では、受信電力の推定値は、位置ごとに異なり時間的に変動する値である。
一構成例として、受信電力推定装置51では、推定モデル251は、位置ごとに時間的に変動する音の情報を含む第2情報(本実施形態では、送信局情報311、環境音情報312、都市構造情報313)に基づく特徴量と教師情報を用いて機械学習が行われることによって得られたモデルである。
一構成例として、受信電力推定方法では、1以上の送信局から無線により発信される電波の受信電力の推定値を演算する。受信電力推定方法では、位置ごとに時間的に変動する音の情報を含む第1情報に基づく特徴量を入力し、当該特徴量を用いて受信電力の推定値を演算する推定モデル251に基づいて、受信電力の推定値を演算する。
一構成例として、プログラムは、1以上の送信局から無線により発信される電波の受信電力の推定値を演算する受信電力推定装置51を構成するコンピュータに、位置ごとに時間的に変動する音の情報を含む第1情報に基づく特徴量を入力するステップと、当該特徴量を用いて受信電力の推定値を演算する推定モデル251に基づいて、受信電力の推定値を演算するステップと、を実行させるプログラムである。
なお、他の態様として、プログラムの記録媒体、通信システムなどとして構成されてもよい。
ここで、以上に示した実施形態に係る各装置(例えば、受信電力推定装置51など)の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録(記憶)して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、処理を行ってもよい。
なお、ここでいう「コンピュータシステム」とは、オペレーティング・システム(OS:Operating System)あるいは周辺機器等のハードウェアを含むものであってもよい。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、フラッシュメモリ等の書き込み可能な不揮発性メモリ、DVD(Digital Versatile Disc)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
また、コンピュータ読み取り可能な記録媒体は、例えば、非一時的記録媒体である。
さらに、「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークあるいは電話回線等の通信回線を介してプログラムが送信された場合のサーバあるいはクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)あるいは電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
以上に説明した任意の装置における任意の構成部の機能は、プロセッサーにより実現されてもよい。例えば、本実施形態における各処理は、プログラム等の情報に基づき動作するプロセッサーと、プログラム等の情報を記憶するコンピュータ読み取り可能な記録媒体により実現されてもよい。ここで、プロセッサーは、例えば、各部の機能が個別のハードウェアで実現されてもよく、あるいは、各部の機能が一体のハードウェアで実現されてもよい。例えば、プロセッサーはハードウェアを含み、当該ハードウェアは、デジタル信号を処理する回路およびアナログ信号を処理する回路のうちの少なくとも一方を含んでもよい。例えば、プロセッサーは、回路基板に実装された1または複数の回路装置、あるいは、1または複数の回路素子のうちの一方または両方を用いて、構成されてもよい。回路装置としてはIC(Integrated Circuit)などが用いられてもよく、回路素子としては抵抗あるいはキャパシターなどが用いられてもよい。
ここで、プロセッサーは、例えば、CPUであってもよい。ただし、プロセッサーは、CPUに限定されるものではなく、例えば、GPU(Graphics Processing Unit)、あるいは、DSP(Digital Signal Processor)等のような、各種のプロセッサーが用いられてもよい。また、プロセッサーは、例えば、ASIC(Application Specific Integrated Circuit)によるハードウェア回路であってもよい。また、プロセッサーは、例えば、複数のCPUにより構成されていてもよく、あるいは、複数のASICによるハードウェア回路により構成されていてもよい。また、プロセッサーは、例えば、複数のCPUと、複数のASICによるハードウェア回路と、の組み合わせにより構成されていてもよい。また、プロセッサーは、例えば、アナログ信号を処理するアンプ回路あるいはフィルター回路等のうちの1以上を含んでもよい。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
1…通信システム、21−1〜21−N…基地局装置、31−1〜31−M…端末装置、41−1〜41−L…測定器、51…受信電力推定装置、52…データベース、61…ネットワーク、71…利用者、111…特徴量生成部、112…教師情報取得部、113…学習部、114…推定位置指定部、115…推定部、131、151…変換部、132…推定モデル生成部、152…推定値演算部、211…特徴量、212…教師情報、213…位置情報、231、251…推定モデル、271…受信電力の推定値、311…送信局情報、312…環境音情報、313、401…都市構造情報、331…受信電力、351…位置指定情報、411…単位領域、431…建物領域、451…送信局ごとの位置、452…対象位置、T1…学習、T2…推定

Claims (8)

  1. 1以上の送信局から無線により発信される電波の受信電力の推定値を演算する受信電力推定装置であって、
    位置ごとに時間的に変動する音の情報を含む第1情報に基づく特徴量を入力し、前記特徴量を用いて前記受信電力の推定値を演算する推定モデルに基づいて、前記受信電力の推定値を演算する推定部を備える、
    受信電力推定装置。
  2. 前記第1情報は、都市の構造に関する情報を含む、
    請求項1に記載の受信電力推定装置。
  3. 前記第1情報は、前記送信局に関する情報を含む、
    請求項1または請求項2に記載の受信電力推定装置。
  4. 前記受信電力は、前記送信局から無線で発信される電波を受信する受信局における受信電力である、
    請求項1から請求項3のいずれか1項に記載の受信電力推定装置。
  5. 前記受信電力の推定値は、位置ごとに異なり時間的に変動する値である、
    請求項1から請求項4のいずれか1項に記載の受信電力推定装置。
  6. 前記推定モデルは、位置ごとに時間的に変動する音の情報を含む第2情報に基づく特徴量と教師情報を用いて機械学習が行われることによって得られたモデルである、
    請求項1から請求項5のいずれか1項に記載の受信電力推定装置。
  7. 1以上の送信局から無線により発信される電波の受信電力の推定値を演算する受信電力推定方法であって、
    位置ごとに時間的に変動する音の情報を含む第1情報に基づく特徴量を入力し、
    前記特徴量を用いて前記受信電力の推定値を演算する推定モデルに基づいて、前記受信電力の推定値を演算する、
    受信電力推定方法。
  8. 1以上の送信局から無線により発信される電波の受信電力の推定値を演算する受信電力推定装置を構成するコンピュータに、
    位置ごとに時間的に変動する音の情報を含む第1情報に基づく特徴量を入力するステップと、
    前記特徴量を用いて前記受信電力の推定値を演算する推定モデルに基づいて、前記受信電力の推定値を演算するステップと、
    を実行させるプログラム。
JP2019096196A 2019-05-22 2019-05-22 受信電力推定装置、受信電力推定方法およびプログラム Active JP7084352B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019096196A JP7084352B2 (ja) 2019-05-22 2019-05-22 受信電力推定装置、受信電力推定方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096196A JP7084352B2 (ja) 2019-05-22 2019-05-22 受信電力推定装置、受信電力推定方法およびプログラム

Publications (2)

Publication Number Publication Date
JP2020191555A true JP2020191555A (ja) 2020-11-26
JP7084352B2 JP7084352B2 (ja) 2022-06-14

Family

ID=73454771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096196A Active JP7084352B2 (ja) 2019-05-22 2019-05-22 受信電力推定装置、受信電力推定方法およびプログラム

Country Status (1)

Country Link
JP (1) JP7084352B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038580A1 (ja) * 2022-08-19 2024-02-22 日本電信電話株式会社 受信電力推定装置、受信電力推定方法及びプログラム
WO2024150327A1 (ja) * 2023-01-11 2024-07-18 日本電信電話株式会社 予測装置、学習装置、予測システム、予測方法、及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204050A (ja) * 2014-04-16 2015-11-16 株式会社日立製作所 情報提供システム
JP2016052061A (ja) * 2014-09-01 2016-04-11 日本電信電話株式会社 通信エリア推定システム、サーバ装置、通信エリア推定方法及び通信エリア推定プログラム
JP2019041243A (ja) * 2017-08-25 2019-03-14 富士通株式会社 受信電力推定装置、受信電力推定方法および受信電力推定プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204050A (ja) * 2014-04-16 2015-11-16 株式会社日立製作所 情報提供システム
JP2016052061A (ja) * 2014-09-01 2016-04-11 日本電信電話株式会社 通信エリア推定システム、サーバ装置、通信エリア推定方法及び通信エリア推定プログラム
JP2019041243A (ja) * 2017-08-25 2019-03-14 富士通株式会社 受信電力推定装置、受信電力推定方法および受信電力推定プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038580A1 (ja) * 2022-08-19 2024-02-22 日本電信電話株式会社 受信電力推定装置、受信電力推定方法及びプログラム
WO2024150327A1 (ja) * 2023-01-11 2024-07-18 日本電信電話株式会社 予測装置、学習装置、予測システム、予測方法、及びプログラム

Also Published As

Publication number Publication date
JP7084352B2 (ja) 2022-06-14

Similar Documents

Publication Publication Date Title
CN103874118B (zh) WiFi室内定位中基于贝叶斯回归的Radio Map校正方法
Rana et al. Ear-Phone: A context-aware noise mapping using smart phones
Atia et al. Dynamic online-calibrated radio maps for indoor positioning in wireless local area networks
CN112218330B (zh) 定位方法及通信装置
De Blasio et al. A protocol-channel-based indoor positioning performance study for bluetooth low energy
JP6093792B2 (ja) 測位装置、測位方法、測位プログラム、および、測位システム
JP7084352B2 (ja) 受信電力推定装置、受信電力推定方法およびプログラム
JP6168527B2 (ja) 位置推定システム、位置推定方法、プログラム
WO2019159965A1 (ja) 電波環境推定方法及び電波環境推定装置
US20100091834A1 (en) Systems and methods for telescopic data compression in sensor networks
CN110636516B (zh) 信号传播模型的确定方法及装置
Braham et al. Spatial prediction under location uncertainty in cellular networks
Cooper et al. LoCo: boosting for indoor location classification combining Wi-Fi and BLE
US20150126232A1 (en) Position estimation method, system, and position estimation apparatus
JP6696859B2 (ja) 品質推定装置及び品質推定方法
Maduranga et al. Supervised machine learning for RSSI based indoor localization in IoT applications
CN107850656A (zh) 用于定位目的的模型参数的确定
Zhou et al. Application of backpropagation neural networks to both stages of fingerprinting based WIPS
Luo et al. Accuracy-aware wireless indoor localization: Feasibility and applications
CN115615344A (zh) 一种地表形变监测方法、装置、电子设备及存储介质
Ulaganathan et al. Building accurate radio environment maps from multi-fidelity spectrum sensing data
KR20150060456A (ko) 전파지문지도 생성 장치 및 방법
Zhang et al. Variable elasticity spring-relaxation: improving the accuracy of localization for WSNs with unknown path loss exponent
KR20190030059A (ko) 통신 네트워크에서 무선 맵을 위한 핑거 프린트 생성 방법 및 장치
CN114942273A (zh) 一种建筑隔音性能检测评估方法、装置、设备及介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220602

R150 Certificate of patent or registration of utility model

Ref document number: 7084352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150