JP2020191225A - Heater - Google Patents

Heater Download PDF

Info

Publication number
JP2020191225A
JP2020191225A JP2019095700A JP2019095700A JP2020191225A JP 2020191225 A JP2020191225 A JP 2020191225A JP 2019095700 A JP2019095700 A JP 2019095700A JP 2019095700 A JP2019095700 A JP 2019095700A JP 2020191225 A JP2020191225 A JP 2020191225A
Authority
JP
Japan
Prior art keywords
magnetic core
primary
heated
circuit
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019095700A
Other languages
Japanese (ja)
Other versions
JP7297239B2 (en
Inventor
和行 吉岡
Kazuyuki Yoshioka
和行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Kogyo KK
Original Assignee
Showa Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Kogyo KK filed Critical Showa Kogyo KK
Priority to JP2019095700A priority Critical patent/JP7297239B2/en
Publication of JP2020191225A publication Critical patent/JP2020191225A/en
Application granted granted Critical
Publication of JP7297239B2 publication Critical patent/JP7297239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Abstract

To provide a heater using magnetic resonance operating at a low frequency, the heater being capable of solving the problem of electrode wear in direct electrical heating and the problem of initial cost rise and energy loss caused by a transformer in high frequency induction heating and low frequency induction heating.SOLUTION: A heater 1 of the present invention comprises: a primary circuit 10; a secondary circuit 20 that is coupled with the primary circuit 10 via magnetic resonance; and a heat insulating wall 30 that separates the primary circuit 10 from the secondary circuit 20 by surrounding the secondary circuit 20 and has permeability for a magnetic field of magnetic resonance. The primary circuit 10 includes: a primary magnetic core 11; and a power supply coil 12 that is disposed around the primary magnetic core 11 to receive AC current. The secondary circuit 20 includes: a secondary magnetic core 21 that is coupled with the primary magnetic core 11 via magnetic resonance; a conductive heating object 22 that is short-circuited and disposed in a loop shape around the secondary magnetic core 21; and a secondary side resonance capacitor 23 that is electrically connected to the heating object 22.SELECTED DRAWING: Figure 1

Description

本発明は、加熱装置に関し、より詳しくは、商用電源を用いて加熱対象物を高温に加熱可能な装置に関する。 The present invention relates to a heating device, and more particularly to a device capable of heating an object to be heated to a high temperature by using a commercial power source.

高温熱処理は、金属をはじめとする工業部材における重要な加工工程であり、部材の形状や処理内容に応じた様々な熱処理設備が使われている。大型の高温熱処理設備では石油や天然ガスなどの化石燃料も用いられるが、より小型の設備では簡便さのために電気を利用するものもある。 High-temperature heat treatment is an important processing process for industrial members such as metals, and various heat treatment facilities are used according to the shape and processing content of the members. Fossil fuels such as petroleum and natural gas are also used in large high-temperature heat treatment facilities, but some smaller facilities use electricity for convenience.

電気を利用する設備として、加熱対象に電極を接触させて通電し、内部抵抗によるジュール熱で内部から加熱する直接通電加熱方式の設備が知られている。この設備は、簡便な装置構成で加熱対象を内部から満遍なく加熱できるという利点を有する。しかしながら、設備の使用期間が長くなるにつれて、電極が消耗する。この消耗に起因して、ランニングコストを押し上げるという課題がある。また、電極の消耗物が加熱対象物に混入するリスクを確実に抑えるには、他の方式による設備の提案が求められる。 As equipment that uses electricity, a direct energization heating type equipment is known in which an electrode is brought into contact with a heating target to energize the object, and Joule heat due to internal resistance is used to heat the equipment from the inside. This equipment has an advantage that the heating target can be heated evenly from the inside with a simple equipment configuration. However, as the equipment is used for a longer period of time, the electrodes are consumed. Due to this consumption, there is a problem of pushing up the running cost. Further, in order to surely suppress the risk of electrode consumables being mixed into the object to be heated, it is necessary to propose equipment by another method.

直接通電加熱方式とは別の方式の設備として、高周波誘導加熱方式の設備が知られている。この設備の例として、渦電流によるジュール熱で加熱対象を内部から加熱する設備のほか、加熱対象を誘導コイルの内部に配置する設備、あるいは誘導コイルの軸方向の近傍に配置する設備等が知られている。この方式は、電極の消耗を伴わないため、電極の消耗物が加熱対象物に混入するリスクを確実に抑えられるという利点を有する。他方、作業員への高周波の曝露や周辺機器へのノイズ混入、設置に届出が必要となる等の改善課題を有する。 As a facility of a system different from the direct energization heating system, a facility of a high frequency induction heating system is known. As an example of this equipment, in addition to equipment that heats the object to be heated from the inside by Joule heat due to eddy current, equipment that arranges the object to be heated inside the induction coil, or equipment that arranges the object to be heated near the axial direction of the induction coil, etc. are known. Has been done. Since this method does not involve the consumption of the electrodes, it has an advantage that the risk of the consumables of the electrodes being mixed into the object to be heated can be surely suppressed. On the other hand, there are improvement issues such as exposure of high frequencies to workers, noise contamination in peripheral devices, and notification of installation.

直接通電方式における電極の消耗の課題と、高周波誘導加熱方式における高周波の利用に伴う課題との両方を解決する手段として、誘導加熱装置に低周波を用いることが提案されている。例えば、特許文献1は、閉ループ回路を形成する磁性コアに低周波磁界を供与することで、前記磁性コアの周囲に配置する断熱容器内に収められた加熱対象物である金属に二次電流を誘導してジュール熱を発生させる誘導加熱装置を開示する。特許文献1に記載の誘導加熱装置は、加熱対象物内部に直接誘導電流を発生させることから電極を用いないため、直接通電方式における電極の消耗の課題を解決できる。また、特許文献1に記載の誘導加熱装置は、低周波を用いることから、高周波誘導過熱方式における高周波の利用に伴う課題も解決できる。 It has been proposed to use a low frequency for an induction heating device as a means for solving both the problem of electrode wear in the direct energization method and the problem associated with the use of high frequency in the high frequency induction heating method. For example, Patent Document 1 applies a low-frequency magnetic field to a magnetic core forming a closed-loop circuit to apply a secondary current to a metal to be heated contained in a heat insulating container arranged around the magnetic core. Disclosed is an induction heating device that induces and generates Joule heat. Since the induction heating device described in Patent Document 1 does not use an electrode because it generates an induced current directly inside the object to be heated, it can solve the problem of electrode wear in the direct energization method. Further, since the induction heating device described in Patent Document 1 uses a low frequency, the problem associated with the use of a high frequency in the high frequency induction superheating method can be solved.

特開平4−006788号公報Japanese Unexamined Patent Publication No. 4-006788

特許文献1が開示する装置は、駆動装置により回転する可動コアを用いた交番磁束発生装置によって、加熱対象物に対して適切な周波数の交番磁束を供与し、加熱効率を高め得る。しかしながら、この交番磁束発生装置において生じるエネルギー損失に対する考慮が十分でない。 The device disclosed in Patent Document 1 can provide an alternating magnetic flux of an appropriate frequency to an object to be heated by an alternating magnetic flux generating device using a movable core rotated by a driving device, and can improve the heating efficiency. However, consideration for energy loss generated in this alternating magnetic flux generator is not sufficient.

また、特許文献1が開示する装置は、磁気漏れによって交番磁束の一部が漏れ磁束となり、加熱対象物内部に誘導電流を流すことなく消費されてしまう。この磁気漏れによって生じる漏れインダクタンスに対する考慮も十分でない。 Further, in the device disclosed in Patent Document 1, a part of the alternating magnetic flux becomes a leakage flux due to magnetic leakage, and the device is consumed without flowing an induced current inside the object to be heated. Consideration for the leakage inductance caused by this magnetic leakage is also insufficient.

本発明は、上記に鑑みてなされたものであり、直接通電加熱における電極の消耗の課題と、高周波誘導加熱における高周波電磁波の課題との両方を解決でき、高周波誘導加熱における変圧器がもたらすイニシャルコスト上昇及びエネルギー損失の課題も解決でき、低周波誘導加熱における漏れ磁束によるエネルギー損失の課題も解決でき、加熱対象物が発する熱が磁性コアや加熱装置全体を温めるために浪費されることもない、低周波で動作する磁界共鳴を用いた加熱装置を提供することを目的とする。 The present invention has been made in view of the above, and can solve both the problem of electrode wear in direct energization heating and the problem of high-frequency electromagnetic waves in high-frequency induction heating, and the initial cost brought about by a transformer in high-frequency induction heating. The problem of rising and energy loss can be solved, the problem of energy loss due to leakage magnetic flux in low frequency induction heating can be solved, and the heat generated by the object to be heated is not wasted to heat the magnetic core or the entire heating device. It is an object of the present invention to provide a heating device using magnetic field resonance that operates at a low frequency.

本発明者らは、上記課題を解決するために鋭意検討した結果、非接触型の給電装置と直接通電加熱装置とを用い、これら両装置の間を断熱壁で隔て、前記非接触型の給電装置の受電設備を特別な構造にすることで、上記の目的を達成できることを見出し、本発明を完成させるに至った。具体的に、本発明は以下のものを提供する。 As a result of diligent studies to solve the above problems, the present inventors have used a non-contact type power supply device and a direct energization heating device, and separated the two devices with a heat insulating wall to provide the non-contact type power supply. We have found that the above object can be achieved by making the power receiving equipment of the device a special structure, and have completed the present invention. Specifically, the present invention provides the following.

本発明は、加熱装置に関する。加熱装置は、一次回路と、前記一次回路と磁界共鳴によって結合される二次回路と、前記二次回路を囲むことで前記一次回路と前記二次回路との間を隔て、前記磁界共鳴の磁場に対して透過性を示す断熱壁とを備え、前記一次回路は、一次磁性コアと、前記一次磁性コアの周囲に配され、動作周波数が400Hz以下の交流電流を受電する給電コイルとを有し、前記二次回路は、前記一次磁性コアと磁界共鳴によって結合される二次磁性コアと、前記二次磁性コアの周囲に短絡してループ状に配される導電性の加熱対象物と、前記加熱対象物と電気的に接続される二次側共振用コンデンサとを有する。 The present invention relates to a heating device. The heating device surrounds the primary circuit, the secondary circuit coupled to the primary circuit by magnetic field resonance, and the secondary circuit to separate the primary circuit from the secondary circuit, and the magnetic field of the magnetic field resonance. The primary circuit has a primary magnetic core and a feeding coil arranged around the primary magnetic core and receiving an AC current having an operating frequency of 400 Hz or less. The secondary circuit includes a secondary magnetic core coupled to the primary magnetic core by magnetic field resonance, a conductive heating object short-circuited around the secondary magnetic core and arranged in a loop, and the above. It has a secondary resonance capacitor that is electrically connected to the object to be heated.

本発明に係る加熱装置において、まず、一次回路にて、動作周波数が400Hz以下の交流電流を給電コイルが受電する。この受電により、給電コイルの略中央に配される一次磁性コアに変動磁場が発生する。そして、変動磁場は、一次磁性コアから、二次回路の二次磁性コアに到達する。一次回路と二次回路との間は、断熱壁で隔てられているものの、断熱壁は、磁界共鳴の磁場に対して透過性を示すため、一次磁性コアと二次磁性コアとの磁気結合は、阻害されない。一次磁性コアで発生した変動磁場は、磁場透過性の断熱壁を通って二次磁性コアに到達可能である。 In the heating device according to the present invention, first, the feeding coil receives an alternating current having an operating frequency of 400 Hz or less in the primary circuit. By this power reception, a fluctuating magnetic field is generated in the primary magnetic core arranged substantially in the center of the feeding coil. Then, the fluctuating magnetic field reaches the secondary magnetic core of the secondary circuit from the primary magnetic core. Although the primary circuit and the secondary circuit are separated by a heat insulating wall, the heat insulating wall is transparent to the magnetic field of magnetic field resonance, so that the magnetic coupling between the primary magnetic core and the secondary magnetic core is , Not disturbed. The fluctuating magnetic field generated in the primary magnetic core can reach the secondary magnetic core through a magnetic field permeable insulating wall.

続いて、二次回路にて、変動磁場が二次磁性コアに到達すると、電磁誘導の法則により、二次磁性コアの周囲に短絡してループ状に配される導電性の加熱対象物の内部に誘導電流を発生させる。加熱対象物は、内部抵抗を有するため、加熱対象物の内部に誘導電流が発生すると、加熱対象物の内部にジュール熱が加えられる。 Subsequently, in the secondary circuit, when the fluctuating magnetic field reaches the secondary magnetic core, the inside of the conductive heating object is short-circuited around the secondary magnetic core and arranged in a loop according to the law of electromagnetic induction. Generates an induced current. Since the object to be heated has an internal resistance, when an induced current is generated inside the object to be heated, Joule heat is applied to the inside of the object to be heated.

本発明に係る加熱装置によると、加熱対象に電極を接触させる必要がないために、直接通電加熱における電極の消耗の課題と、電極の消耗に起因する諸課題(ランニングコストの押し上げ、電極の消耗物の混入リスク軽減)とを解決できる。 According to the heating device according to the present invention, since it is not necessary to bring the electrode into contact with the object to be heated, there are problems of electrode wear in direct energization heating and various problems caused by electrode wear (increasing running cost, electrode wear). (Reduction of risk of contamination) can be solved.

また、給電コイルでの受電に用いられる交流電流の動作周波数は400Hz以下であり、低周波帯である。本発明に係る加熱装置によると、高周波帯の交流電流を利用することなく、ジュール熱で加熱対象物を内部から加熱できるため、高周波誘導加熱における諸課題(作業員への高周波の曝露、周辺機器へのノイズ混入、設置に際しての要届出)を解決できる。 Further, the operating frequency of the alternating current used for receiving power from the feeding coil is 400 Hz or less, which is a low frequency band. According to the heating device according to the present invention, since the object to be heated can be heated from the inside by Joule heat without using the alternating current in the high frequency band, various problems in high frequency induction heating (exposure of high frequency to workers, peripheral devices). It is possible to solve the problem of noise mixing in the radio frequency and notification required for installation).

続いて、高周波誘導加熱及び低周波誘導加熱におけるエネルギー損失の解決について説明する。非特許文献1(“磁界共振結合における効率と磁束”,日本AEM学会誌,vol.24,No.4,pp.317−322(2016))によると、加熱装置の共振周波数をω、一次回路のレジスタンス、インダクタンス、キャパシタンスをそれぞれr、L、C、二次回路のレジスタンス、インダクタンス、キャパシタンスをそれぞれr、L、C、負荷をR、励磁インダクタンスをL、結合係数をkとすると、電力伝送の効率ηは式(1)によって求められる。
η=(ωL/[{(r+R+(ωL−1/ωC}r
+(ωL+(ωL] ・・・(1)
Next, the solution of energy loss in high frequency induction heating and low frequency induction heating will be described. According to Non-Patent Document 1 (“Efficiency and Magnetic Flux in Magnetic Resonance Coupling”, Journal of AEM Society of Japan, vol.24, No.4, pp.317-322 (2016)), the resonance frequency of the heating device is ω, and the primary circuit resistance, inductance, r 1, L 1, C 1 and the capacitance, respectively, r 2 secondary circuit of the resistance, inductance, capacitance, respectively, L 2, C 2, load R L, the exciting inductance L m, the coupling coefficient When k is, the efficiency η of power transmission is obtained by the equation (1).
η = (ωL m) 2 R L / [{(r 2 + R L) 2 + (ωL 2 -1 / ωC 2) 2} r 1
+ (ΩL m) 2 r 2 + (ωL m) 2 R L] ··· (1)

負荷Rが式(2)の示す最適負荷RLoptと等しいとき、式(1)は理想的な磁界共鳴条件にある。
Lopt={r +(r/r)(ωL+(ωL−1/ωC1/2 ・・・(2)
When the load R L is equal to the optimum load R Lopt indicated by equation (2), Equation (1) is an ideal magnetic resonance condition.
R Lopt = {r 2 2 + (r 2 / r 1) (ωL m) 2 + (ωL 2 -1 / ωC 2) 2} 1/2 ··· (2)

また、このときC、ω、Lは式(3)を満たす。
=1/(Lω) ・・・(3)
At this time, C 2 , ω, and L 2 satisfy the equation (3).
C 2 = 1 / (L 2 ω 2 ) ・ ・ ・ (3)

本発明に係る加熱装置によると、二次回路の加熱対象物に、二次側共振用コンデンサが電気的に接続される。そして、二次側共振用コンデンサがもつキャパシタンス(静電容量)が漏れインダクタンスを補償することによって磁界共鳴条件を達成できるため、本発明に係る加熱装置では、漏れ磁束によるエネルギー効率の低下を解決できる。 According to the heating device according to the present invention, the secondary resonance capacitor is electrically connected to the object to be heated in the secondary circuit. Then, since the magnetic field resonance condition can be achieved by compensating the leakage inductance with the capacitance (capacitance) of the secondary resonance capacitor, the heating device according to the present invention can solve the decrease in energy efficiency due to the leakage flux. ..

続いて、加熱対象物が発するジュール熱が対象物の加熱以外の用途に浪費されることの抑制という課題の解決について説明する。本発明に係る加熱装置では、二次回路が断熱壁で囲まれている。断熱壁があることによって、加熱対象物が発するジュール熱が二次回路の外部に流出することを抑制できる。したがって、本発明に係る加熱装置によると、加熱対象物が発するジュール熱が一次回路側の各部材(一次磁性コア、給電コイル)をはじめとした二次回路の外部にある加熱装置全体を温めるために浪費されることを抑えられる。 Next, a solution to the problem of suppressing the Joule heat generated by the object to be heated from being wasted for purposes other than heating the object will be described. In the heating device according to the present invention, the secondary circuit is surrounded by a heat insulating wall. The presence of the heat insulating wall can prevent the Joule heat generated by the object to be heated from flowing out to the outside of the secondary circuit. Therefore, according to the heating device according to the present invention, the Joule heat generated by the object to be heated heats the entire heating device outside the secondary circuit including each member (primary magnetic core, feeding coil) on the primary circuit side. It can be suppressed from being wasted.

以上のとおりであるため、本発明によると、直接通電加熱における電極の消耗の課題と、高周波誘導加熱における高周波電磁波の課題との両方を解決でき、高周波誘導加熱及び低周波誘導加熱における変圧器がもたらすイニシャルコスト上昇及びエネルギー損失の課題も解決でき、加熱対象物が発する熱が磁性コアや加熱装置全体を温めるために浪費されることを抑えられる、低周波で動作する磁界共鳴を用いた加熱装置を提供できる。 As described above, according to the present invention, both the problem of electrode wear in direct energization heating and the problem of high frequency electromagnetic waves in high frequency induction heating can be solved, and transformers in high frequency induction heating and low frequency induction heating can be used. A heating device using magnetic field resonance that operates at low frequencies can solve the problems of increased initial cost and energy loss, and can prevent the heat generated by the object to be heated from being wasted to heat the magnetic core and the entire heating device. Can be provided.

本発明に係る加熱装置において、前記一次回路は、前記給電コイルと電気的に接続される一次側共振用コンデンサをさらに有することが好ましい。 In the heating device according to the present invention, it is preferable that the primary circuit further includes a primary resonance capacitor that is electrically connected to the feeding coil.

一次側共振用コンデンサは、一次回路のリアクタンスを減少させ、それによって一次磁性コアと二次磁性コアを結合する主磁束を強める。主磁束が強まることで、二次回路における電磁誘導が強まり、加熱対象物への給電効率をよりいっそう高められる。 The primary resonance capacitor reduces the reactance of the primary circuit, thereby increasing the main magnetic flux that couples the primary and secondary magnetic cores. By strengthening the main magnetic flux, electromagnetic induction in the secondary circuit is strengthened, and the efficiency of feeding power to the object to be heated can be further improved.

本発明に係る加熱装置において、前記加熱対象物が断熱性部材の内部に配されることが好ましい。 In the heating device according to the present invention, it is preferable that the object to be heated is arranged inside the heat insulating member.

この加熱装置によると、断熱性部材があることによって、加熱対象物が発するジュール熱が断熱性部材の外部に流出することを抑制できるため、一次回路側の各部材をはじめとした二次回路の外部にある部材に加え、二次回路側の各部材(二次磁性コア及び二次側共振用コンデンサ)を温めるために加熱対象物が発するジュール熱が浪費されることを抑えられる。 According to this heating device, since the presence of the heat insulating member can prevent the Joule heat generated by the object to be heated from flowing out to the outside of the heat insulating member, the secondary circuit including each member on the primary circuit side In addition to the external members, it is possible to prevent the Joule heat generated by the object to be heated from being wasted in order to heat each member (secondary magnetic core and secondary resonance capacitor) on the secondary circuit side.

本発明に係る加熱装置において、前記加熱対象物の形状がリング状、パイプ状又はケーブル状であり、前記加熱対象物がループ状に配されることが好ましい。 In the heating device according to the present invention, it is preferable that the heating target has a ring shape, a pipe shape, or a cable shape, and the heating target is arranged in a loop shape.

リング状、パイプ状又はケーブル状の加熱対象物をループ状に配すること等によって、加熱対象物が短絡された電気的回路を形成する。したがって、二次磁性コアの変動磁場が電磁誘導の法則によって、加熱対象物内に誘導電流を発生可能である。 By arranging ring-shaped, pipe-shaped, or cable-shaped heating objects in a loop shape or the like, an electric circuit in which the heating objects are short-circuited is formed. Therefore, the fluctuating magnetic field of the secondary magnetic core can generate an induced current in the object to be heated by the law of electromagnetic induction.

本発明に係る加熱装置において、前記二次回路がリング状容器をさらに有することも好ましい。この場合、前記加熱対象物は、導電性の液体又は導電性の粉末であり、前記リング状容器は、前記二次磁性コアの周囲にリング状に設けられ、内部に前記加熱対象物を収容可能に構成されることが好ましい。 In the heating device according to the present invention, it is also preferable that the secondary circuit further has a ring-shaped container. In this case, the object to be heated is a conductive liquid or a conductive powder, and the ring-shaped container is provided in a ring shape around the secondary magnetic core and can accommodate the object to be heated inside. It is preferably configured in.

リング状容器に液体又は粉末の加熱対象物を収容することで、加熱対象物が短絡された電気的回路を形成する。したがって、二次磁性コアの変動磁場が電磁誘導の法則によって、加熱対象物内に誘導電流を発生させる。 By accommodating a liquid or powder heating object in a ring-shaped container, an electrical circuit in which the heating object is short-circuited is formed. Therefore, the fluctuating magnetic field of the secondary magnetic core generates an induced current in the object to be heated according to the law of electromagnetic induction.

本発明に係る加熱装置は、前記加熱対象物の温度を直接的に又は間接的に計測する温度計測手段と、前記温度計測手段によって計測された温度に基づいて前記給電コイルへの給電量を調整する給電量調整手段とをさらに備えることが好ましい。 The heating device according to the present invention adjusts the amount of power supplied to the power feeding coil based on the temperature measuring means for directly or indirectly measuring the temperature of the object to be heated and the temperature measured by the temperature measuring means. It is preferable to further provide a power supply amount adjusting means.

この加熱装置によると、加熱対象物の温度を直接的に又は間接的に計測し、この計測の結果に基づいて、給電コイルに給電する給電元(電源等)の電流又は位相を制御できるため、さらに効率的な電力伝送と加熱対象物の加熱処理を行うことができる。 According to this heating device, the temperature of the object to be heated can be measured directly or indirectly, and the current or phase of the power supply source (power supply, etc.) that supplies power to the power supply coil can be controlled based on the measurement result. More efficient power transmission and heat treatment of the object to be heated can be performed.

加熱対象物の温度を直接的に計測する温度計測手段としては、温度センサ等が挙げられる。また、加熱対象物の温度を間接的に計測する温度計測手段としては、給電コイルに接続された電流計等が挙げられる。当該電流計を用いて給電コイルにかかる電気抵抗の変化を算出し、算出結果から温度変化を求めることができる。 Examples of the temperature measuring means for directly measuring the temperature of the object to be heated include a temperature sensor and the like. Further, as a temperature measuring means for indirectly measuring the temperature of the object to be heated, an ammeter connected to the feeding coil and the like can be mentioned. The change in electrical resistance applied to the feeding coil can be calculated using the ammeter, and the temperature change can be obtained from the calculation result.

また、加熱装置が温度計測手段を備えることにより、加熱対象物の温度を一定以下に保つ、一定範囲内に保つ、あるいは温度の上昇速度を一定範囲内に維持する等、安定した加熱処理が可能となる。これにより、金属に対する焼きなまし、焼戻し、浸炭処理等も可能となる。 In addition, if the heating device is equipped with a temperature measuring means, stable heat treatment such as keeping the temperature of the object to be heated below a certain level, keeping it within a certain range, or keeping the temperature rise rate within a certain range is possible. It becomes. As a result, metal can be annealed, tempered, carburized, and the like.

本発明に係る加熱装置は、前記一次磁性コアの磁極面積が前記給電コイルの断面積より大きく、前記二次磁性コアの磁極面積が前記給電コイルの断面積より大きいことが好ましい。 In the heating device according to the present invention, it is preferable that the magnetic pole area of the primary magnetic core is larger than the cross-sectional area of the feeding coil and the magnetic pole area of the secondary magnetic core is larger than the cross-sectional area of the feeding coil.

一次磁性コアの磁極面積が給電コイルの断面積より大きいことから、一次磁性コアから出る第1磁束ループを減少させる。また、二次磁性コアの磁極面積が給電コイルの断面積より大きいことから、二次磁性コアから出る第2磁束ループを減少させる。これら第1磁束ループ及び第2磁束ループの減少は、一次磁性コアと二次磁性コアとの磁界結合を強める。したがって、一次回路側の給電コイルと二次回路側の加熱対象物との間の結合係数kを理想的な値である1に近づけることができ、加熱対象物への給電効率をよりいっそう高められる。 Since the magnetic pole area of the primary magnetic core is larger than the cross-sectional area of the feeding coil, the first magnetic flux loop emitted from the primary magnetic core is reduced. Further, since the magnetic pole area of the secondary magnetic core is larger than the cross-sectional area of the feeding coil, the second magnetic flux loop emitted from the secondary magnetic core is reduced. The decrease of the first magnetic flux loop and the second magnetic flux loop strengthens the magnetic field coupling between the primary magnetic core and the secondary magnetic core. Therefore, the coupling coefficient k between the feeding coil on the primary circuit side and the heating target on the secondary circuit side can be brought close to the ideal value of 1, and the feeding efficiency to the heating target can be further improved.

本発明に係る加熱装置は、前記給電コイルと電気的に接続された可変変圧器を備えることも好ましい。 It is also preferable that the heating device according to the present invention includes a variable transformer electrically connected to the power feeding coil.

前記可変変圧器により、加熱対象物の電気的特性に応じた周波数選択が可能となり、磁界共鳴条件の達成を容易にする。また、前記可変変圧器は、前記温度計測手段と組み合わせることにより、加熱対象物の電気的特性が加熱に伴って変化する場合の、前記給電コイルに供給される交流電流の周波数変更をも可能とする。この周波数変更によって、加熱に伴い加熱対象物の電気的特性が変化しても磁界共鳴条件が維持され、加熱対象物への給電効率をよりいっそう高められる。 The variable transformer enables frequency selection according to the electrical characteristics of the object to be heated, facilitating the achievement of magnetic field resonance conditions. Further, by combining the variable transformer with the temperature measuring means, it is possible to change the frequency of the alternating current supplied to the feeding coil when the electrical characteristics of the object to be heated change with heating. To do. By this frequency change, the magnetic field resonance condition is maintained even if the electrical characteristics of the object to be heated change with heating, and the efficiency of feeding the object to be heated can be further improved.

本発明によると、直接通電加熱における電極の消耗の課題と、高周波誘導加熱における高周波電磁波の課題との両方を解決でき、高周波誘導加熱及び低周波誘導加熱における漏れ磁束によるエネルギー損失の課題も解決でき、加熱対象物が発する熱が磁性コアや加熱装置全体を温めるために浪費されることもない、低周波で動作する磁界共鳴を用いた加熱装置を提供できる。 According to the present invention, both the problem of electrode wear in direct energization heating and the problem of high frequency electromagnetic waves in high frequency induction heating can be solved, and the problem of energy loss due to leakage magnetic field in high frequency induction heating and low frequency induction heating can also be solved. It is possible to provide a heating device using magnetic field resonance that operates at a low frequency so that the heat generated by the heating object is not wasted to heat the magnetic core or the entire heating device.

本実施形態に係る加熱装置1を説明するための概略模式図である。It is a schematic schematic diagram for demonstrating the heating apparatus 1 which concerns on this Embodiment. 本実施形態の第1の変形例に係る加熱装置1’を説明するための概略模式図である。It is a schematic schematic diagram for demonstrating the heating apparatus 1'corresponding to the 1st modification of this embodiment. 本実施形態の第2の変形例に係る加熱装置1’’を説明するための概略模式図である。It is a schematic schematic diagram for demonstrating the heating apparatus 1 ″ which concerns on the 2nd modification of this embodiment.

以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, specific embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and the present invention is carried out with appropriate modifications within the scope of the object of the present invention. can do.

<加熱装置1>
図1は、本実施形態に係る加熱装置1を説明するための概略模式図である。加熱装置1は、少なくとも、一次回路10と、二次回路20と、二次回路20を囲むことで一次回路10と二次回路20との間を隔てる断熱壁30とを備える。
<Heating device 1>
FIG. 1 is a schematic schematic view for explaining the heating device 1 according to the present embodiment. The heating device 1 includes at least a primary circuit 10, a secondary circuit 20, and a heat insulating wall 30 that surrounds the secondary circuit 20 and separates the primary circuit 10 from the secondary circuit 20.

〔一次回路10〕
一次回路10は、少なくとも、一次磁性コア11と、給電コイル12とを有する。
[Primary circuit 10]
The primary circuit 10 has at least a primary magnetic core 11 and a feeding coil 12.

[一次磁性コア11]
一次磁性コア11は、磁性体であれば特に限定されない。給電コイル12が発生させる磁界の変動に沿って磁化し、かつ保磁力が磁場の変動を妨げないよう、一次磁性コア11は、硬質磁性体に比べて、透磁率が高く、保磁力が低い、軟質磁性体であることが好ましい。
[Primary magnetic core 11]
The primary magnetic core 11 is not particularly limited as long as it is a magnetic material. The primary magnetic core 11 has a higher magnetic permeability and a lower coercive force than the hard magnetic material so that the primary magnetic core 11 is magnetized along the fluctuation of the magnetic field generated by the feeding coil 12 and the coercive force does not hinder the fluctuation of the magnetic field. It is preferably a soft magnetic material.

本実施形態において、硬質磁性体とは、いわゆる磁石をいい、保磁力が大きく永久磁石として用いられる物質をいう。それに対し、軟質磁性体とは、磁石にくっつく材料をいい、外部の磁界を取り除くと速やかに磁気がなくなり、元の状態に戻る物質をいう。 In the present embodiment, the hard magnetic material means a so-called magnet, which has a large coercive force and is used as a permanent magnet. On the other hand, a soft magnetic substance is a material that sticks to a magnet, and is a substance that quickly loses its magnetism and returns to its original state when the external magnetic field is removed.

一次磁性コア11の具体例として、純鉄やケイ素鋼やステンレス鋼等が挙げられるが、渦電流によるエネルギー損失をより減らすために、純鉄やケイ素鋼やステンレス鋼より鉄損が小さい、鉄酸化物系フェライト、コバルト基アモルファス、センダスト、パーマロイ等を用いても良い。 Specific examples of the primary magnetic core 11 include pure iron, silicon steel, and stainless steel. In order to further reduce the energy loss due to eddy currents, iron oxidation has a smaller iron loss than pure iron, silicon steel, and stainless steel. Material-based ferrite, cobalt-based amorphous steel, sendust, permalloy, and the like may be used.

中でも、珪素と鉄を原料とするため鉄酸化物フェライト等より比較的に安価で、かつ、純鉄より透磁率が高いことから、一次磁性コア11は、ケイ素鋼であることが望ましい。 Above all, since silicon and iron are used as raw materials, the primary magnetic core 11 is preferably silicon steel because it is relatively cheaper than iron oxide ferrite and the like and has a higher magnetic permeability than pure iron.

一次磁性コア11から出る第1磁束を、二次磁性コア21へと伝えるために、一次磁性コア11の形状は、磁性体材料をコの字型に折り曲げて、後述する二次磁性コア21に対向させた形状であることが好ましい。対向させることで一次磁性コア11から出る第1磁束ループを減少させることができる。 In order to transmit the first magnetic flux emitted from the primary magnetic core 11 to the secondary magnetic core 21, the shape of the primary magnetic core 11 is such that the magnetic material is bent into a U shape to form the secondary magnetic core 21 described later. It is preferable that the shapes are opposed to each other. By facing each other, the first magnetic flux loop emitted from the primary magnetic core 11 can be reduced.

また、給電コイル12に沿った第1磁束の発生効率を高めるために、磁性体材料を、特定の方向に対して磁化されやすい、方向性電磁鋼板として加工し、磁化されやすい方向と給電コイル12が発生させる磁界の方向をそろえることもまた好ましい。 Further, in order to increase the efficiency of generating the first magnetic flux along the feeding coil 12, the magnetic material is processed as a directional electromagnetic steel plate that is easily magnetized in a specific direction, and the direction that is easily magnetized and the feeding coil 12 It is also preferable to align the directions of the magnetic fields generated by.

[給電コイル12]
給電コイル12は、一次磁性コア11の周囲に配され、動作周波数が400Hz以下の交流電流を受電するコイル形状の導電体より成る。この受電により、給電コイル12の略中央に配される一次磁性コア11に変動磁場が発生する。そして、変動磁場は、一次磁性コア11から、二次回路20の二次磁性コア21に到達する。
[Feed supply coil 12]
The power feeding coil 12 is arranged around the primary magnetic core 11 and is composed of a coil-shaped conductor that receives an alternating current having an operating frequency of 400 Hz or less. By this power reception, a fluctuating magnetic field is generated in the primary magnetic core 11 arranged substantially in the center of the power feeding coil 12. Then, the fluctuating magnetic field reaches the secondary magnetic core 21 of the secondary circuit 20 from the primary magnetic core 11.

給電コイル12は、交流電流を受電して変動磁場を発生させるコイル形状の導電体であれば良く、特に材料及び細部の構造を限定されない。 The power feeding coil 12 may be a coil-shaped conductor that receives an alternating current to generate a fluctuating magnetic field, and the material and detailed structure are not particularly limited.

給電コイル12での受電に用いられる交流電流の動作周波数は400Hz以下である。動作周波数400Hzを超えると、一次磁性コア11、及び二次磁性コア21をそれぞれケイ素鋼板で構成した場合の伝送効率が急激に低下するため、好ましくない。 The operating frequency of the alternating current used to receive power from the feeding coil 12 is 400 Hz or less. If the operating frequency exceeds 400 Hz, the transmission efficiency when the primary magnetic core 11 and the secondary magnetic core 21 are each made of silicon steel plate is sharply lowered, which is not preferable.

動作周波数は、300Hz以下であることがより好ましく、200Hz以下であることがさらに好ましく、100Hz以下であることがよりさらに好ましい。そして、商用電源を利用できることから、動作周波数は、50Hz又は60Hzであることが特に好ましい。 The operating frequency is more preferably 300 Hz or less, further preferably 200 Hz or less, and even more preferably 100 Hz or less. And since a commercial power source can be used, the operating frequency is particularly preferably 50 Hz or 60 Hz.

本発明に係る加熱装置1によると、高周波帯の交流電流を利用することなく、ジュール熱で加熱対象物22を内部から加熱できるため、高周波誘導加熱における諸課題(作業員への高周波の曝露、周辺機器へのノイズ混入、設置に際しての要届出)を解決できる。 According to the heating device 1 according to the present invention, since the object 22 to be heated can be heated from the inside by Joule heat without using the alternating current in the high frequency band, various problems in high frequency induction heating (exposure of high frequency to workers, It is possible to solve the problem of noise mixing in peripheral devices and notification required for installation).

なお、動作周波数の下限は特に限定されないが、より低い動作周波数での好適な加熱にはより大容量のキャパシタンスを必要とすることから、動作周波数は、5Hz以上であることが好ましく、10Hz以上であることがより好ましい。 Although the lower limit of the operating frequency is not particularly limited, the operating frequency is preferably 5 Hz or higher, preferably 10 Hz or higher, because a larger capacitance is required for suitable heating at a lower operating frequency. More preferably.

[一次側共振用コンデンサ13]
必須の構成ではないが、一次回路10は、一次側共振用コンデンサ13を備えることが好ましい。一次側共振用コンデンサ13は、一次回路10のリアクタンスを減少させ、それによって一次磁性コア11と二次磁性コア21を結合する主磁束を強める機能を有する。主磁束が強まることで、二次回路20における電磁誘導が強まり、加熱対象物22への給電効率をよりいっそう高められる。
[Primary side resonance capacitor 13]
Although not an essential configuration, the primary circuit 10 preferably includes a primary resonance capacitor 13. The primary resonance capacitor 13 has a function of reducing the reactance of the primary circuit 10 and thereby strengthening the main magnetic flux that couples the primary magnetic core 11 and the secondary magnetic core 21. By strengthening the main magnetic flux, the electromagnetic induction in the secondary circuit 20 is strengthened, and the power feeding efficiency to the heating object 22 can be further improved.

[可変変圧器16]
必須の構成ではないが、一次回路10は、可変変圧器16を備えることが好ましい。可変変圧器16は、加熱対象物22の電気的特性に応じた周波数選択を可能とすることから、磁界共鳴条件の達成を容易にする。また、可変変圧器16は、温度計測手段25と組み合わせることにより、加熱対象物22の電気的特性が加熱に伴って変化する場合の、給電コイル12に供給される交流電流の周波数変更を可能とする。この周波数変更によって、加熱に伴い加熱対象物22の電気的特性が変化しても磁界共鳴条件が維持され、加熱対象物22への給電効率をよりいっそう高められる。
[Variable transformer 16]
Although not an essential configuration, the primary circuit 10 preferably includes a variable transformer 16. Since the variable transformer 16 enables frequency selection according to the electrical characteristics of the object to be heated 22, it facilitates the achievement of the magnetic field resonance condition. Further, by combining the variable transformer 16 with the temperature measuring means 25, it is possible to change the frequency of the alternating current supplied to the feeding coil 12 when the electrical characteristics of the object to be heated 22 change with heating. To do. By this frequency change, the magnetic field resonance condition is maintained even if the electrical characteristics of the heating object 22 change with heating, and the power supply efficiency to the heating object 22 can be further improved.

〔二次回路20〕
二次回路20は、少なくとも、二次磁性コア21と、加熱対象物22と、二次側共振用コンデンサ23とを備える。
[Secondary circuit 20]
The secondary circuit 20 includes at least a secondary magnetic core 21, a heating object 22, and a secondary resonance capacitor 23.

[二次磁性コア21]
二次磁性コア21は、一次磁性コア11と磁界共鳴によって結合される。二次磁性コア21は、一次磁性コア11と同様に、磁性体であれば特に限定されない。給電コイル12が発生させる磁界の変動に沿って磁化し、かつ、保磁力が磁場の変動を妨げないよう、二次磁性コア21は、硬質磁性体より、透磁率が高く、保磁力が低い、軟質磁性体であることが好ましい。二次磁性コア21の材料は、これらの条件を満たすものであれば、特に限定されず、代表的なものとして、純鉄やケイ素鋼やステンレス鋼等が挙げられるが、渦電流によるエネルギー損失をより減らすために、純鉄やケイ素鋼やステンレス鋼より鉄損が小さい、鉄酸化物系フェライト、コバルト基アモルファス、センダスト、パーマロイ等を用いても良い。
[Secondary magnetic core 21]
The secondary magnetic core 21 is coupled to the primary magnetic core 11 by magnetic field resonance. The secondary magnetic core 21 is not particularly limited as long as it is a magnetic material, like the primary magnetic core 11. The secondary magnetic core 21 has a higher magnetic permeability and a lower coercive force than the hard magnetic material so that the secondary magnetic core 21 is magnetized along the fluctuation of the magnetic field generated by the feeding coil 12 and the coercive force does not hinder the fluctuation of the magnetic field. It is preferably a soft magnetic material. The material of the secondary magnetic core 21 is not particularly limited as long as it satisfies these conditions, and typical examples thereof include pure iron, silicon steel, stainless steel, etc., but energy loss due to eddy current is caused. In order to further reduce the iron loss, iron oxide-based ferrite, cobalt-based amorphous material, sendust, permalloy, etc., which have a smaller iron loss than pure iron, silicon steel, or stainless steel, may be used.

二次磁性コア21は、一次磁性コア11で発生し、断熱壁30を越えて到達した変動磁場を受け取る。変動磁場をより効率よく受け取るために、磁性体材料を、特定の方向に対して磁化されやすい、方向性電磁鋼板として加工し、磁化されやすい方向と、加熱対象物22が形成するループの垂直方向をそろえることもまた好ましい。 The secondary magnetic core 21 receives a fluctuating magnetic field generated in the primary magnetic core 11 and reached over the heat insulating wall 30. In order to receive the fluctuating magnetic field more efficiently, the magnetic material is processed as a grain-oriented electrical steel sheet that is easily magnetized in a specific direction, and the direction that is easily magnetized and the vertical direction of the loop formed by the object 22 to be heated. It is also preferable to align them.

二次磁性コア21は、加熱処理に伴ってその温度が上昇し、酸化が進むことから、耐食性を備えた軟質磁性体であるフェライト系ステンレス鋼であることもまた好ましい。 Since the temperature of the secondary magnetic core 21 rises with the heat treatment and oxidation proceeds, it is also preferable that the secondary magnetic core 21 is a ferritic stainless steel which is a soft magnetic material having corrosion resistance.

[加熱対象物22]
加熱対象物22は、二次磁性コア21の周囲に短絡してループ状に配される導電体である。リング状、パイプ状又はケーブル状の加熱対象物22をループ状に配すること等によって、加熱対象物22が短絡された電気的回路を形成する。したがって、二次磁性コア21の変動磁場が電磁誘導の法則によって、加熱対象物22内に誘導電流を発生可能である。二次回路20にて、二次磁性コア21に到達した変動磁場は、電磁誘導の法則により、二次磁性コア21の周囲に短絡してループ状に配された導電性の加熱対象物22の内部に誘導電流を発生させる。加熱対象物22は内部抵抗を有するため、加熱対象物22の内部に誘導電流が発生すると、加熱対象物22の内部にジュール熱が加えられる。
[Heating object 22]
The object to be heated 22 is a conductor short-circuited around the secondary magnetic core 21 and arranged in a loop. By arranging the ring-shaped, pipe-shaped, or cable-shaped heating object 22 in a loop shape or the like, the heating object 22 is short-circuited to form an electric circuit. Therefore, the fluctuating magnetic field of the secondary magnetic core 21 can generate an induced current in the object to be heated 22 according to the law of electromagnetic induction. In the secondary circuit 20, the fluctuating magnetic field that reaches the secondary magnetic core 21 is short-circuited around the secondary magnetic core 21 according to the law of electromagnetic induction, and is arranged in a loop of the conductive heating object 22. Generates an induced current inside. Since the object to be heated 22 has an internal resistance, when an induced current is generated inside the object to be heated 22, Joule heat is applied to the inside of the object to be heated 22.

加熱対象物22の材質は導電体であれば、特に限定されず、鉄、非鉄金属、合金、導電性高分子等が挙げられる。加熱対象物22の形状は二次磁性コア21の周囲に短絡してループ状に配置可能であれば良く、歯車などリング状のもの、鋼管などパイプ状のもの、鋼線などケーブル状のものが考えられるが、その材質及び形状はこれらに限定されない。 The material of the object to be heated 22 is not particularly limited as long as it is a conductor, and examples thereof include iron, non-ferrous metals, alloys, and conductive polymers. The shape of the object to be heated 22 may be short-circuited around the secondary magnetic core 21 and can be arranged in a loop shape, such as a ring shape such as a gear, a pipe shape such as a steel pipe, or a cable shape such as a steel wire. Although it is conceivable, its material and shape are not limited to these.

リング状、パイプ状又はケーブル状の加熱対象物22をループ状に配すること等によって、加熱対象物22が短絡された電気的回路を形成する。したがって、二次磁性コア21の変動磁場が電磁誘導の法則によって、加熱対象物22内に誘導電流を発生可能である。 By arranging the ring-shaped, pipe-shaped, or cable-shaped heating object 22 in a loop shape or the like, the heating object 22 is short-circuited to form an electric circuit. Therefore, the fluctuating magnetic field of the secondary magnetic core 21 can generate an induced current in the object to be heated 22 according to the law of electromagnetic induction.

本発明に係る加熱装置1によると、加熱対象に電極を接触させる必要がないために、直接通電加熱における電極の消耗の課題と、電極の消耗に起因する諸課題(ランニングコストの押し上げ、電極の消耗物の混入リスク軽減)とを解決できる。 According to the heating device 1 according to the present invention, since it is not necessary to bring the electrode into contact with the object to be heated, there are problems of electrode wear in direct energization heating and various problems caused by electrode wear (increasing running cost, electrode). (Reducing the risk of consumables being mixed in) can be solved.

[二次側共振用コンデンサ23]
二次側共振用コンデンサ23は、加熱対象物22と電気的に接続される。二次側共振用コンデンサ23は、磁界共鳴を達成するに過不足ない静電容量を備えていれば良く、その構造や製法を問わない。
[Secondary resonance capacitor 23]
The secondary resonance capacitor 23 is electrically connected to the object to be heated 22. The secondary resonance capacitor 23 may have a sufficient capacitance to achieve magnetic field resonance, regardless of its structure or manufacturing method.

非特許文献1(“磁界共振結合における効率と磁束”,日本AEM学会誌,vol.24,No.4,pp.317−322(2016))によると、加熱装置の共振周波数をω、一次回路10のレジスタンス、インダクタンス、キャパシタンスをそれぞれr、L、C、二次回路20のレジスタンス、インダクタンス、キャパシタンスをそれぞれr、L、C、負荷をR、励磁インダクタンスをL、結合係数をkとすると、電力伝送の効率ηは式(1)によって求められる。
η=(ωL/[{(r+R+(ωL−1/ωC}r
+(ωL+(ωL] ・・・(1)
According to Non-Patent Document 1 (“Efficiency and Magnetic Flux in Magnetic Resonance Coupling”, Journal of AEM Society of Japan, vol.24, No.4, pp.317-322 (2016)), the resonance frequency of the heating device is ω, and the primary circuit The resistance, inductance, and capacitance of 10 are r 1 , L 1 , C 1 , respectively, and the resistance, inductance, and capacitance of the secondary circuit 20 are r 2 , L 2 , C 2 , respectively, the load is RL , and the excitation inductance is L m . Assuming that the coupling coefficient is k, the power transmission efficiency η can be obtained by the equation (1).
η = (ωL m) 2 R L / [{(r 2 + R L) 2 + (ωL 2 -1 / ωC 2) 2} r 1
+ (ΩL m) 2 r 2 + (ωL m) 2 R L] ··· (1)

負荷Rが式(2)の示す最適負荷RLoptと等しいとき、式(1)は理想的な磁界共鳴条件にある。
Lopt={r +(r/r)(ωL+(ωL−1/ωC1/2 ・・・(2)
When the load R L is equal to the optimum load R Lopt indicated by equation (2), Equation (1) is an ideal magnetic resonance condition.
R Lopt = {r 2 2 + (r 2 / r 1) (ωL m) 2 + (ωL 2 -1 / ωC 2) 2} 1/2 ··· (2)

また、このときC、ω、Lは式(3)を満たす。
=1/(Lω) ・・・(3)
At this time, C 2 , ω, and L 2 satisfy the equation (3).
C 2 = 1 / (L 2 ω 2 ) ・ ・ ・ (3)

すなわち、二次側共振用コンデンサ23は、二次回路20のキャパシタンスをC=1/(Lω)とする静電容量を備えることが好ましい。 That is, it is preferable that the secondary resonance capacitor 23 has a capacitance such that the capacitance of the secondary circuit 20 is C 2 = 1 / (L 2 ω 2 ).

本発明に係る加熱装置1によると、二次回路20の加熱対象物22に、二次側共振用コンデンサ23が電気的に接続される。そして、二次側共振用コンデンサ23が持つキャパシタンス(静電容量)によって磁界共鳴条件を達成できるため、本発明に係る加熱装置1では、漏れ磁束によるエネルギー効率の低下を解決できる。 According to the heating device 1 according to the present invention, the secondary resonance capacitor 23 is electrically connected to the heating target 22 of the secondary circuit 20. Since the magnetic field resonance condition can be achieved by the capacitance (capacitance) of the secondary resonance capacitor 23, the heating device 1 according to the present invention can solve the decrease in energy efficiency due to the leakage flux.

[断熱性部材24]
必須の構成ではないが、二次回路20は、加熱対象物22の周囲に配する断熱性部材24を備えることが好ましい。断熱性部材24があることによって、加熱対象物22が発するジュール熱が断熱性部材24の外部に流出することを抑制できるため、一次回路10側の各部材をはじめとした二次回路20の外部にある部材に加え、二次回路20側の各部材(二次磁性コア21及び二次側共振用コンデンサ23)を温めるために加熱対象物22が発するジュール熱が浪費されることを抑えられる。
[Insulation member 24]
Although not an essential configuration, the secondary circuit 20 preferably includes a heat insulating member 24 arranged around the object to be heated 22. Since the presence of the heat insulating member 24 can prevent the Joule heat generated by the object to be heated 22 from flowing out to the outside of the heat insulating member 24, the outside of the secondary circuit 20 including each member on the primary circuit 10 side. In addition to the members in the above, it is possible to prevent the Joule heat generated by the object to be heated 22 from being wasted in order to heat each member (secondary magnetic core 21 and secondary side resonance capacitor 23) on the secondary circuit 20 side.

断熱性部材24は、磁界共鳴の磁場に対して透過性を示す材料であればエネルギー損失となる渦電流の発生を抑えられ、好ましい。断熱性部材24の材料は断熱性があり、前記鉄損を抑えるものであれば、特に限定されず、グラスウール、セラミックファイバー、ガラスクロス、シリカクロス、バサルトファイバー、ロックウール、コンクリート、アルミナセメント等が挙げられる。また、前記材料を組み合わせた複合部材による断熱性部材24の構成も、可能である。 The heat insulating member 24 is preferably a material that exhibits transparency to a magnetic field of magnetic field resonance because it can suppress the generation of eddy current that causes energy loss. The material of the heat insulating member 24 is not particularly limited as long as it has heat insulating properties and suppresses the iron loss, and glass wool, ceramic fiber, glass cloth, silica cloth, basalt fiber, rock wool, concrete, alumina cement and the like can be used. Can be mentioned. It is also possible to configure the heat insulating member 24 with a composite member in which the above materials are combined.

[温度計測手段25]
二次回路20は、加熱対象物22の温度を直接的に又は間接的に計測する温度計測手段25と、温度計測手段25によって計測された温度に基づいて給電コイル12への給電量を調整する給電量調整手段とをさらに備えることが好ましい。
[Temperature measuring means 25]
The secondary circuit 20 adjusts the amount of feed to the feed coil 12 based on the temperature measuring means 25 that directly or indirectly measures the temperature of the object to be heated 22 and the temperature measured by the temperature measuring means 25. It is preferable to further provide a power supply amount adjusting means.

この加熱装置1によると、加熱対象物22の温度を直接的に又は間接的に計測し、この計測の結果に基づいて、給電コイル12に給電する給電元(電源等)の電流又は位相を制御できるため、さらに効率的な電力伝送と加熱対象物22の加熱処理を行うことができる。 According to this heating device 1, the temperature of the object to be heated 22 is directly or indirectly measured, and the current or phase of the power supply source (power supply or the like) that supplies power to the power supply coil 12 is controlled based on the measurement result. Therefore, more efficient power transmission and heat treatment of the heating object 22 can be performed.

温度計測手段25は、加熱対象物22の温度を計測可能であれば、特に限定されない。直接的な温度計測手段25として、熱電対、放射温度計、及びこれらを組み合わせたものが挙げられる。間接的な温度計測手段25として、加熱対象物22と電気的に接続される電流計を用いて抵抗の温度変化を計る手法等が挙げられる。しかし、本発明の温度計測手段25は、これらに限定されない。 The temperature measuring means 25 is not particularly limited as long as it can measure the temperature of the object to be heated 22. Examples of the direct temperature measuring means 25 include a thermocouple, a radiation thermometer, and a combination thereof. Examples of the indirect temperature measuring means 25 include a method of measuring the temperature change of the resistance by using an ammeter electrically connected to the object to be heated 22. However, the temperature measuring means 25 of the present invention is not limited to these.

温度計測手段25により、加熱対象物22の温度を一定以下あるいは一定範囲内に保つ、温度の上昇速度を一定範囲内に維持する等の、加熱処理が可能となる。これにより、金属に対する焼きなまし、焼戻し、浸炭処理等も可能となる。 The temperature measuring means 25 enables heat treatment such as keeping the temperature of the object to be heated 22 below a certain level or within a certain range, and keeping the rate of temperature rise within a certain range. As a result, metal can be annealed, tempered, carburized, and the like.

〔断熱壁30〕
加熱装置1は、断熱壁30を備える。断熱壁30は、二次回路20を囲むことで一次回路10と二次回路20との間を隔てるように構成される。
[Insulation wall 30]
The heating device 1 includes a heat insulating wall 30. The heat insulating wall 30 is configured to surround the secondary circuit 20 so as to separate the primary circuit 10 from the secondary circuit 20.

断熱壁30は、磁界共鳴の磁場に対して透過性を示す。磁場に対して透過性を示さない場合、断熱壁30内部にエネルギー損失となる渦電流が発生するため、好ましくない。 The heat insulating wall 30 exhibits permeability to the magnetic field of magnetic field resonance. If it does not show transparency to a magnetic field, an eddy current that causes energy loss is generated inside the heat insulating wall 30, which is not preferable.

断熱壁30は、磁界共鳴の磁場に対して透過性を示す材料であれば、特に限定されず、グラスウール、セラミックファイバー、ガラスクロス、シリカクロス、バサルトファイバー、ロックウール、コンクリート、アルミナセメント等が挙げられる。また、これらの材料を2種類以上組み合わせた複合部材による断熱壁30の構成も、可能である。このように構成された断熱壁30は、一次回路10と二次回路20との間を隔てながらも、磁界共鳴の磁場に対して透過性を示すため、一次磁性コア11と二次磁性コア12との磁気結合は、阻害されない。一次磁性コア11で発生した変動磁場は、磁場透過性の断熱壁30を通って二次磁性コア21に到達可能である。 The heat insulating wall 30 is not particularly limited as long as it is a material that exhibits permeability to a magnetic field of magnetic field resonance, and examples thereof include glass wool, ceramic fiber, glass cloth, silica cloth, basalt fiber, rock wool, concrete, and alumina cement. Be done. It is also possible to configure the heat insulating wall 30 with a composite member in which two or more of these materials are combined. The heat insulating wall 30 configured in this way exhibits transparency to the magnetic field of magnetic field resonance while separating the primary circuit 10 and the secondary circuit 20, so that the primary magnetic core 11 and the secondary magnetic core 12 are exhibited. Magnetic coupling with is not inhibited. The fluctuating magnetic field generated in the primary magnetic core 11 can reach the secondary magnetic core 21 through the magnetic field permeable heat insulating wall 30.

また、断熱壁30は、二次回路20を囲んで構成される。断熱壁30が二次回路20を囲むことによって、加熱対象物22が発するジュール熱が二次回路20の外部に流出することを抑制できる。したがって、本発明に係る加熱装置1によると、加熱対象物22が発するジュール熱が一次回路10側の各部材(一次磁性コア11、給電コイル12)をはじめとした二次回路20の外部にある加熱装置1全体を温めるために浪費されることを抑えられる。 Further, the heat insulating wall 30 is configured to surround the secondary circuit 20. By surrounding the secondary circuit 20 with the heat insulating wall 30, it is possible to prevent the Joule heat generated by the heating object 22 from flowing out to the outside of the secondary circuit 20. Therefore, according to the heating device 1 according to the present invention, the Joule heat generated by the object to be heated 22 is outside the secondary circuit 20 including each member (primary magnetic core 11, power feeding coil 12) on the primary circuit 10 side. It is possible to prevent wasted to heat the entire heating device 1.

本発明に係る加熱装置1は一次回路10と二次回路20を磁界共鳴させることで動作する。このとき一次回路10と二次回路20との間を隔てる断熱壁30は、磁界共鳴の磁場に対して透過性を示すため、一次磁性コア11と二次磁性コア21との磁気結合は、阻害されない。一次磁性コア11で発生した変動磁場は、磁場透過性の断熱壁30を通って二次磁性コア21に到達可能である。 The heating device 1 according to the present invention operates by resonating the primary circuit 10 and the secondary circuit 20 with a magnetic field. At this time, since the heat insulating wall 30 that separates the primary circuit 10 and the secondary circuit 20 exhibits permeability to the magnetic field of magnetic field resonance, the magnetic coupling between the primary magnetic core 11 and the secondary magnetic core 21 is hindered. Not done. The fluctuating magnetic field generated in the primary magnetic core 11 can reach the secondary magnetic core 21 through the magnetic field permeable heat insulating wall 30.

<加熱装置1の使用方法>
以下、本実施形態に係る加熱装置1の使用方法を説明する。
<How to use the heating device 1>
Hereinafter, a method of using the heating device 1 according to the present embodiment will be described.

電源を入れると一次回路10の給電コイル12が交流電流を受電し、そうすると、電磁誘導の原理によって給電コイル12の周囲に第1磁界が発生し、発生した第1磁界が一次磁性コア11を磁化して第1磁束を発生させ、その第1磁束が変動磁場に対して透過性を示す断熱壁30を越えて二次磁性コア21に到達し、この第1磁束が二次磁性コア21を磁化し、二次磁性コア21周囲に変動磁場を発生させる。 When the power is turned on, the feeding coil 12 of the primary circuit 10 receives an AC current, and then a first magnetic field is generated around the feeding coil 12 by the principle of electromagnetic induction, and the generated first magnetic field magnetizes the primary magnetic core 11. Then, a first magnetic field is generated, and the first magnetic field reaches the secondary magnetic core 21 beyond the heat insulating wall 30 which exhibits permeability to a fluctuating magnetic field, and this first magnetic field magnetizes the secondary magnetic core 21. Then, a fluctuating magnetic field is generated around the secondary magnetic core 21.

この変動磁場が電磁誘導の原理によって二次磁性コア21周囲にループ状に配された加熱対象物22内部に直接的に誘導電流を発生させ、発生した誘導電流が加熱対象物22内部にジュール熱を生じさせ、加熱対象物22を直接的に内部から加熱する。 This fluctuating magnetic field directly generates an induced current inside the heated object 22 arranged in a loop around the secondary magnetic core 21 by the principle of electromagnetic induction, and the generated induced current is Joule heat inside the heated object 22. Is generated, and the object 22 to be heated is directly heated from the inside.

このとき、加熱対象物22に接続された二次側共振用コンデンサ23の存在によって、一次回路10と二次回路20は磁界共鳴の状態となり、給電コイル12が受電した交流電流が、加熱対象物22へと、磁界共鳴でない場合より遥かに高い効率で伝送される。加熱対象物22内部に発生したジュール熱は、耐熱性部材24の存在によって二次回路20全体を温めることなく加熱対象物22の加熱に用いられ、また、耐熱性部材24の外側に流出したジュール熱の一部も、断熱壁30の存在によって一次回路10を温めることなく加熱対象物22を加熱する。 At this time, due to the presence of the secondary resonance capacitor 23 connected to the object to be heated 22, the primary circuit 10 and the secondary circuit 20 are in a state of magnetic field resonance, and the alternating current received by the feeding coil 12 is the object to be heated. It is transmitted to 22 with much higher efficiency than when it is not magnetic resonance. The Joule heat generated inside the heat-resistant member 22 is used for heating the heat-resistant member 22 without heating the entire secondary circuit 20 due to the presence of the heat-resistant member 24, and Joule flows out to the outside of the heat-resistant member 24. Part of the heat also heats the object to be heated 22 without heating the primary circuit 10 due to the presence of the heat insulating wall 30.

加熱対象物22を、加熱対象物22の温度の上限と下限とによって規定された温度範囲内で加熱処理を行う場合には、加熱対象物22の温度が上限に近づいたこと、あるいは、下限に近づいたことを温度計測手段25が検知する。温度計測手段25が、加熱対象物22の温度が上限に近づいたことが検知した場合には、給電コイル12に供給する交流電流の電流あるいは位相を調節して、伝送される電流を減らし、加熱対象物22の温度が、規定された温度範囲内に留まるようにする。温度計測手段25が、加熱対象物22の温度が下限に近づいたことが検知した場合には、給電コイル12に供給する交流電流の電流あるいは位相を調節して、伝送される電流を増やし、加熱対象物22の温度が、規定された温度範囲内に留まるようにする。 When the heating target 22 is heat-treated within the temperature range defined by the upper limit and the lower limit of the temperature of the heating target 22, the temperature of the heating target 22 approaches the upper limit or reaches the lower limit. The temperature measuring means 25 detects that the vehicle is approaching. When the temperature measuring means 25 detects that the temperature of the object to be heated 22 has approached the upper limit, it adjusts the current or phase of the alternating current supplied to the feeding coil 12 to reduce the transmitted current and heat it. The temperature of the object 22 is kept within the specified temperature range. When the temperature measuring means 25 detects that the temperature of the object to be heated 22 has approached the lower limit, it adjusts the current or phase of the alternating current supplied to the feeding coil 12 to increase the transmitted current and heat it. The temperature of the object 22 is kept within the specified temperature range.

<本実施形態の第1の変形例に係る加熱装置1’>
図2は、本実施形態の第1の変形例に係る加熱装置1’を説明するための概略模式図である。加熱装置1’は、二次回路20’の構成が一部異なるほかは、本実施形態で説明した加熱装置1と同じ構成である。以下、加熱装置1’に関し、図1に示した加熱装置1とは異なる特徴について説明する。
<Heating device 1'according to the first modification of the present embodiment>
FIG. 2 is a schematic schematic diagram for explaining the heating device 1'according to the first modification of the present embodiment. The heating device 1'has the same configuration as the heating device 1 described in the present embodiment, except that the configuration of the secondary circuit 20'is partially different. Hereinafter, the characteristics of the heating device 1'different from those of the heating device 1 shown in FIG. 1 will be described.

〔二次回路20’〕
二次回路20’において、加熱対象物22’は、固体に限るものではなく、液体又は粉末であってもよい。このとき、二次回路20’は、リング状容器24’を備え、加熱対象物22’は、リング状容器24’の内部に収容される。
[Secondary circuit 20']
In the secondary circuit 20', the object to be heated 22'is not limited to a solid, but may be a liquid or a powder. At this time, the secondary circuit 20'provides a ring-shaped container 24', and the object to be heated 22'is housed inside the ring-shaped container 24'.

[加熱対象物22’]
加熱対象物22’は、導電性の液体又は粉末であれば、特に限定されず、鉄粉、銅粉などの金属粉末、ポリアセチレン、ポリチオフェンなど導電性ポリマーの粉末、ポリビニルアルコール水溶液など金属導電性の水溶液、食品等が挙げられる。
[Heating object 22']
The object to be heated 22'is not particularly limited as long as it is a conductive liquid or powder, and is metal powder such as iron powder and copper powder, powder of a conductive polymer such as polyacetylene and polythiophene, and metal conductive such as an aqueous polyvinyl alcohol solution. Examples include aqueous solutions and foods.

[リング状容器24’]
リング状容器24’は、二次磁性コア21の周囲に配される。リング状容器24’は、液体又は粉末の加熱対象物22’を収容可能に構成される。リング状容器24’の材料は加熱対象物22’を収容可能であれば、特に限定されず、ガラス、アルミナ磁器、ムライト磁器、その他セラミック等が挙げられる。このリング状容器24’は、断熱性であっても良い。またこのリング状容器24’は、開閉可能な蓋によって覆われていても良い。
[Ring-shaped container 24']
The ring-shaped container 24'is arranged around the secondary magnetic core 21. The ring-shaped container 24'is configured to accommodate a liquid or powder heating object 22'. The material of the ring-shaped container 24'is not particularly limited as long as it can accommodate the object to be heated 22', and examples thereof include glass, alumina porcelain, mullite porcelain, and other ceramics. The ring-shaped container 24'may be heat insulating. Further, the ring-shaped container 24'may be covered with a lid that can be opened and closed.

リング状容器24’に液体又は粉末の加熱対象物22’を収容することで、液体又は粉末の加熱対象物22’が短絡された電気的回路を形成する。したがって、二次磁性コア21の変動磁場が電磁誘導の法則によって、加熱対象物22’内に誘導電流を発生させる。加熱対象物22’は、内部抵抗を有するため、加熱対象物22’の内部に誘導電流が発生すると、加熱対象物22’の内部にジュール熱が加えられる。 By accommodating the liquid or powder heating object 22'in the ring-shaped container 24', an electric circuit in which the liquid or powder heating object 22'is short-circuited is formed. Therefore, the fluctuating magnetic field of the secondary magnetic core 21 generates an induced current in the object to be heated 22'according to the law of electromagnetic induction. Since the object to be heated 22'has an internal resistance, when an induced current is generated inside the object to be heated 22', Joule heat is applied to the inside of the object to be heated 22'.

<本実施形態の第2の変形例に係る加熱装置1’’>
図3は、本実施形態の第2の変形例に係る加熱装置1’’を説明するための概略模式図である。加熱装置1’’は、一次回路10’’における一次磁性コア11’’の形状と、二次回路20’’における二次磁性コア21’’の形状とが異なるほかは、本実施形態で説明した加熱装置1と同じ構成である。以下、加熱装置1’’に関し、図1に示した加熱装置1とは異なる特徴について説明する。
<Heating device 1'' according to the second modification of the present embodiment>
FIG. 3 is a schematic schematic diagram for explaining the heating device 1 ″ according to the second modification of the present embodiment. The heating device 1 ″ will be described in the present embodiment except that the shape of the primary magnetic core 11 ″ in the primary circuit 10 ″ and the shape of the secondary magnetic core 21 ″ in the secondary circuit 20 ″ are different. It has the same configuration as the heating device 1. Hereinafter, the characteristics of the heating device 1'' that are different from those of the heating device 1 shown in FIG. 1 will be described.

〔一次回路10’’〕
一次回路10’’は、一次磁性コア11’’を備える。
[Primary circuit 10'']
The primary circuit 10 ″ includes a primary magnetic core 11 ″.

〔一次磁性コア11’’〕
本変形例における一次磁性コア11’’は、一次磁性コア11と同様の材料で構成され、磁極面積が給電コイル12の断面積より大きい。一次磁性コア11’’の磁極面積が給電コイル12の断面積より大きいことから、一次磁性コア11’’から出る第1磁束ループを減少させる。
[Primary magnetic core 11'']
The primary magnetic core 11 ″ in this modification is made of the same material as the primary magnetic core 11, and the magnetic pole area is larger than the cross-sectional area of the feeding coil 12. Since the magnetic pole area of the primary magnetic core 11 ″ is larger than the cross-sectional area of the feeding coil 12, the first magnetic flux loop coming out of the primary magnetic core 11 ″ is reduced.

第1磁束ループを減少させる観点から、一次磁性コア11’’の磁極面積は、給電コイル12の断面積に比べて大きい方が好ましく、一次磁性コア11’’の磁極面積は、給電コイル12の断面積の2倍以上であることがより好ましく、3倍以上であることがさらに好ましい。 From the viewpoint of reducing the first magnetic flux loop, it is preferable that the magnetic pole area of the primary magnetic core 11 ″ is larger than the cross-sectional area of the feeding coil 12, and the magnetic pole area of the primary magnetic core 11 ″ is that of the feeding coil 12. It is more preferably twice or more the cross-sectional area, and further preferably three times or more.

他方、第1磁束ループの減少量に対する一次磁性コア11’’の重量増加が著しくなることから、一次磁性コア11’’の磁極面積の上限は、給電コイル12の断面積の100倍以下であることが好ましく、10倍以下であることがより好ましい。 On the other hand, since the weight of the primary magnetic core 11 ″ increases significantly with respect to the decrease in the first magnetic flux loop, the upper limit of the magnetic pole area of the primary magnetic core 11 ″ is 100 times or less the cross-sectional area of the feeding coil 12. It is preferable, and it is more preferable that it is 10 times or less.

〔二次回路20’’〕
二次回路20’’は、二次磁性コア21’’を備える。
[Secondary circuit 20'']
The secondary circuit 20 ″ includes a secondary magnetic core 21 ″.

〔二次磁性コア21’’〕
本変形例における二次磁性コア21’’は、二次磁性コア21と同様の材料で構成され、磁極面積が給電コイル12の断面積より大きく。二次磁性コア21’’の磁極面積が給電コイル12の断面積より大きいことから、二次磁性コア21’’から出る第2磁束ループを減少させる。
[Secondary magnetic core 21'']
The secondary magnetic core 21 ″ in this modification is made of the same material as the secondary magnetic core 21, and the magnetic pole area is larger than the cross-sectional area of the feeding coil 12. Since the magnetic pole area of the secondary magnetic core 21 ″ is larger than the cross-sectional area of the feeding coil 12, the second magnetic flux loop emitted from the secondary magnetic core 21 ″ is reduced.

第2磁束ループを減少させる観点から、二次磁性コア21’’の磁極面積は、給電コイル12の断面積に比べて大きい方が好ましく、二次磁性コア21’’の磁極面積は、給電コイル12の断面積の2倍以上であることがより好ましく、3倍以上であることがさらに好ましい。 From the viewpoint of reducing the second magnetic flux loop, the magnetic pole area of the secondary magnetic core 21 ″ is preferably larger than the cross-sectional area of the feeding coil 12, and the magnetic pole area of the secondary magnetic core 21 ″ is the feeding coil. It is more preferably twice or more the cross-sectional area of 12, and further preferably three times or more.

他方、第2磁束ループの減少量に対する二次磁性コア21’’の重量増加が著しくなることから、二次磁性コア21’’の磁極面積の上限は、給電コイル12の断面積の100倍以下であることが好ましく、10倍以下であることがより好ましい。 On the other hand, since the weight of the secondary magnetic core 21 ″ increases significantly with respect to the decrease in the second magnetic flux loop, the upper limit of the magnetic pole area of the secondary magnetic core 21 ″ is 100 times or less the cross-sectional area of the feeding coil 12. It is preferably, and more preferably 10 times or less.

一次磁性コア11’’、及び、二次磁性コア21’’の磁極形状が著しく非対称であると、磁極形状が対称である場合より、第1磁束ループ、及び、第2磁束ループが増大する。第1磁束ループ、及び、第2磁束ループを減少させるために、一次磁性コア11’’、及び、二次磁性コア21’’の磁極形状は、対称であることが好ましい。 When the magnetic pole shapes of the primary magnetic core 11 ″ and the secondary magnetic core 21 ″ are remarkably asymmetric, the first magnetic flux loop and the second magnetic flux loop increase as compared with the case where the magnetic pole shapes are symmetrical. In order to reduce the first magnetic flux loop and the second magnetic flux loop, the magnetic pole shapes of the primary magnetic core 11 ″ and the secondary magnetic core 21 ″ are preferably symmetrical.

非対称な磁極形状による第1磁束ループ、及び、第2磁束ループの増大を避けるために、一次磁性コア11’’の磁極面積と二次磁性コア21’’の磁極面積とが略等しいことが好ましい。具体的には、一次磁性コア11’’の磁極面積が、二次磁性コア21’’の磁極面積に対して0.7倍以上であることが好ましく、0.8倍以上であることがより好ましく、0.9倍以上であることがさらに好ましく、0.95倍以上であることが特に好ましい。 In order to avoid an increase in the first magnetic flux loop and the second magnetic flux loop due to the asymmetric magnetic pole shape, it is preferable that the magnetic pole area of the primary magnetic core 11 ″ and the magnetic pole area of the secondary magnetic core 21 ″ are substantially equal. .. Specifically, the magnetic pole area of the primary magnetic core 11 ″ is preferably 0.7 times or more, more preferably 0.8 times or more the magnetic pole area of the secondary magnetic core 21 ″. It is preferably 0.9 times or more, more preferably 0.95 times or more, and particularly preferably 0.95 times or more.

また、一次磁性コア11’’の磁極面積が、二次磁性コア21’’の磁極面積に対して1.3倍以下であることが好ましく、1.2倍以下であることがより好ましく、1.1倍以下であることがさらに好ましく、1.05倍以下であることが特に好ましい。 Further, the magnetic pole area of the primary magnetic core 11 ″ is preferably 1.3 times or less, more preferably 1.2 times or less, the magnetic pole area of the secondary magnetic core 21 ″. .1 times or less is more preferable, and 1.05 times or less is particularly preferable.

本変形例において、第1磁束ループ及び第2磁束ループの減少は、一次磁性コア11’’と二次磁性コア21’’との磁界結合を強める。したがって、一次回路側の給電コイル12と二次回路側の加熱対象物22との間の結合係数kを理想的な値である1に近づけることができ、加熱対象物22への給電効率をよりいっそう高められる。 In this modification, the reduction of the first magnetic flux loop and the second magnetic flux loop strengthens the magnetic field coupling between the primary magnetic core 11 ″ and the secondary magnetic core 21 ″. Therefore, the coupling coefficient k between the feeding coil 12 on the primary circuit side and the heating target 22 on the secondary circuit side can be brought close to the ideal value of 1, and the feeding efficiency to the heating target 22 can be further improved. Can be enhanced.

また、本変形例の加熱装置1’’は、第一変形例で示したものと同様のリング状容器24’を備えることができる。これによって第一変形例の場合と同様に、液体又は粉末である加熱対象物22’を加熱することが可能である。 Further, the heating device 1 ″ of the present modification can be provided with a ring-shaped container 24 ′ similar to that shown in the first modification. Thereby, as in the case of the first modification, it is possible to heat the object to be heated 22'which is a liquid or powder.

1 加熱装置
10 一次回路
11、11’’ 一次磁性コア
12 給電コイル
13 一次側共振用コンデンサ
16 可変変圧器
20 二次回路
21、21’’ 二次磁性コア
22、22’ 加熱対象物
23 二次側共振用コンデンサ
24 断熱性部材
24’ リング状容器
25 温度計測手段
30 断熱壁

1 Heating device 10 Primary circuit 11, 11'' Primary magnetic core 12 Feed coil 13 Primary side resonance capacitor 16 Variable transformer 20 Secondary circuit 21, 21'' Secondary magnetic core 22, 22'Secondary magnetic core 23, 22'Secondary Side resonance capacitor 24 Insulation member 24'Ring-shaped container 25 Temperature measuring means 30 Insulation wall

Claims (8)

一次回路と、
前記一次回路と磁界共鳴によって結合される二次回路と、
前記二次回路を囲むことで前記一次回路と前記二次回路との間を隔て、前記磁界共鳴の磁場に対して透過性を示す断熱壁と、
を備え、
前記一次回路は、
一次磁性コアと、
前記一次磁性コアの周囲に配され、動作周波数が400Hz以下の交流電流を受電する給電コイルとを有し、
前記二次回路は、
前記一次磁性コアと磁界共鳴によって結合される二次磁性コアと、
前記二次磁性コアの周囲に短絡してループ状に配される導電性の加熱対象物と、
前記加熱対象物と電気的に接続される二次側共振用コンデンサとを有する、加熱装置。
With the primary circuit
The primary circuit and the secondary circuit coupled by magnetic field resonance,
A heat insulating wall that separates the primary circuit and the secondary circuit by surrounding the secondary circuit and exhibits transparency to the magnetic field of the magnetic field resonance.
With
The primary circuit
With the primary magnetic core,
It has a feeding coil arranged around the primary magnetic core and receiving an alternating current having an operating frequency of 400 Hz or less.
The secondary circuit
A secondary magnetic core coupled to the primary magnetic core by magnetic field resonance,
A conductive heating object that is short-circuited around the secondary magnetic core and arranged in a loop.
A heating device having a secondary resonance capacitor that is electrically connected to the object to be heated.
前記一次回路は、前記給電コイルと電気的に接続される一次側共振用コンデンサをさらに有する、請求項1に記載の加熱装置。 The heating device according to claim 1, wherein the primary circuit further includes a primary resonance capacitor that is electrically connected to the feeding coil. 前記加熱対象物が断熱性部材の内部に配される、請求項1又は2に記載の加熱装置。 The heating device according to claim 1 or 2, wherein the object to be heated is arranged inside a heat insulating member. 前記加熱対象物の形状がリング状、パイプ状又はケーブル状であり、前記加熱対象物がループ状に配される、請求項1から3のいずれか1項に記載の加熱装置。 The heating device according to any one of claims 1 to 3, wherein the object to be heated has a ring shape, a pipe shape, or a cable shape, and the object to be heated is arranged in a loop shape. 前記二次回路は、リング状容器をさらに有し、
前記加熱対象物は、導電性の液体又は導電性の粉末であり、
前記リング状容器は、前記二次磁性コアの周囲にリング状に設けられ、内部に前記加熱対象物を収容可能に構成される、請求項1から3のいずれか1項に記載の加熱装置。
The secondary circuit further comprises a ring-shaped container.
The object to be heated is a conductive liquid or a conductive powder.
The heating device according to any one of claims 1 to 3, wherein the ring-shaped container is provided in a ring shape around the secondary magnetic core and is configured to accommodate the heating object inside.
前記加熱対象物の温度を直接的に又は間接的に計測する温度計測手段と、
前記温度計測手段によって計測された温度に基づいて前記給電コイルへの給電量を調整する給電量調整手段とをさらに備える、請求項1から5のいずれか1項に記載の加熱装置。
A temperature measuring means for directly or indirectly measuring the temperature of the object to be heated,
The heating device according to any one of claims 1 to 5, further comprising a feeding amount adjusting means for adjusting the feeding amount to the feeding coil based on the temperature measured by the temperature measuring means.
前記一次磁性コアの磁極面積が前記給電コイルの断面積より大きく、
前記二次磁性コアの磁極面積が前記給電コイルの断面積より大きい、請求項1から6のいずれか1項に記載の加熱装置。
The magnetic pole area of the primary magnetic core is larger than the cross-sectional area of the feeding coil.
The heating device according to any one of claims 1 to 6, wherein the magnetic pole area of the secondary magnetic core is larger than the cross-sectional area of the feeding coil.
前記給電コイルと電気的に接続された可変変圧器を備える、請求項1から7のいずれか1項に記載の加熱装置。

The heating device according to any one of claims 1 to 7, further comprising a variable transformer electrically connected to the power feeding coil.

JP2019095700A 2019-05-22 2019-05-22 heating device Active JP7297239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019095700A JP7297239B2 (en) 2019-05-22 2019-05-22 heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019095700A JP7297239B2 (en) 2019-05-22 2019-05-22 heating device

Publications (2)

Publication Number Publication Date
JP2020191225A true JP2020191225A (en) 2020-11-26
JP7297239B2 JP7297239B2 (en) 2023-06-26

Family

ID=73454678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019095700A Active JP7297239B2 (en) 2019-05-22 2019-05-22 heating device

Country Status (1)

Country Link
JP (1) JP7297239B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899542U (en) * 1972-02-22 1973-11-24
JPS5134741U (en) * 1974-09-06 1976-03-15
JPS59143027U (en) * 1983-03-12 1984-09-25 池田電機株式会社 Fixing structure of capacitor in ballast
JPS61263084A (en) * 1985-05-17 1986-11-21 松下電器産業株式会社 Induction heating cooker
JPH046788A (en) * 1990-04-24 1992-01-10 Berumateitsuku:Kk Induction heating method by low-frequency ac magnetic field and device thereof
JPH08302431A (en) * 1995-05-01 1996-11-19 Nippon Steel Corp Electric heating device
JPH1187035A (en) * 1997-09-02 1999-03-30 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2016082670A (en) * 2014-10-15 2016-05-16 学校法人加計学園 岡山理科大学 Non-contact power supply device
US20170245679A1 (en) * 2014-09-29 2017-08-31 Aaron Watts Wireless Heat Devices
JP2018092709A (en) * 2016-11-30 2018-06-14 聖士郎 宗平 Magnetic resonance heat generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899542U (en) * 1972-02-22 1973-11-24
JPS5134741U (en) * 1974-09-06 1976-03-15
JPS59143027U (en) * 1983-03-12 1984-09-25 池田電機株式会社 Fixing structure of capacitor in ballast
JPS61263084A (en) * 1985-05-17 1986-11-21 松下電器産業株式会社 Induction heating cooker
JPH046788A (en) * 1990-04-24 1992-01-10 Berumateitsuku:Kk Induction heating method by low-frequency ac magnetic field and device thereof
JPH08302431A (en) * 1995-05-01 1996-11-19 Nippon Steel Corp Electric heating device
JPH1187035A (en) * 1997-09-02 1999-03-30 Matsushita Electric Ind Co Ltd Induction heating cooker
US20170245679A1 (en) * 2014-09-29 2017-08-31 Aaron Watts Wireless Heat Devices
JP2016082670A (en) * 2014-10-15 2016-05-16 学校法人加計学園 岡山理科大学 Non-contact power supply device
JP2018092709A (en) * 2016-11-30 2018-06-14 聖士郎 宗平 Magnetic resonance heat generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石田 弘樹(岡山理科大学 理学部 応用物理学科 准教授): "商用電源周波数で共鳴させた非接触給電装置(60Hz−WPT)", 中国地域さんさんコンソ 新技術説明会(2015年11月5日)発表資料, JPN7022005602, ISSN: 0004934514 *

Also Published As

Publication number Publication date
JP7297239B2 (en) 2023-06-26

Similar Documents

Publication Publication Date Title
JP4057038B2 (en) Power transmission method, method for selecting and using coil of power transmission device
Han et al. All-metal domestic induction heating using single-frequency double-layer coils
US6288374B1 (en) Coil and core structure for an induction cooktop
KR20040072581A (en) An amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device
CN106916928A (en) A kind of amorphous or the heat treatment method of nanocrystalline material for magnetic screen piece
US5256211A (en) Rapid annealing method using shorted secondary technique
CN110854975A (en) Wireless power supply system, power supply and reception device, and magnetic field space forming method
CN103442470A (en) Electromagnetic heating device and heating method for electromagnetic heating device
CN101824512B (en) Method for preparing permanent magnet iron core
US20190182908A1 (en) Induction heating device
CN104682526A (en) Energy conversion device for wireless charging of electric automobile
WO2014088423A1 (en) Apparatus and method for induction heating of magnetic materials
Sun et al. Eddy current loss analysis and frequency optimization design of double-sided LCC-IPT system in seawater environment
JP7297239B2 (en) heating device
CN105656212B (en) Contactless charging equipment based on rotating excitation field and charging method
Acero et al. Enhancement of induction heating performance by sandwiched planar windings
He et al. Dynamic magnetic characteristics of Fe78Si13B9 amorphous alloy subjected to operating temperature
RU2661505C1 (en) Coaxial induction cable, heating device and heating method
CN205453306U (en) Non -contact battery charging outfit based on rotating field
Yamada et al. Fluctuation of resonance frequency of applicator having wireless power transmission for hyperthermia therapy
KR20210050857A (en) Apparatus for measuring a ingot container and method of applying the same
US9055616B2 (en) Method and apparatus for inductively heating an electrically conductive workpiece
Chen et al. Optimization of magnetic coupling structure of electric vehicle wireless charging DD coil
Xin et al. Wireless power transmission for oil well applications
EP4373211A1 (en) Induction heating type cooktop

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230606

R150 Certificate of patent or registration of utility model

Ref document number: 7297239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150