JP2018092709A - Magnetic resonance heat generator - Google Patents

Magnetic resonance heat generator Download PDF

Info

Publication number
JP2018092709A
JP2018092709A JP2016232700A JP2016232700A JP2018092709A JP 2018092709 A JP2018092709 A JP 2018092709A JP 2016232700 A JP2016232700 A JP 2016232700A JP 2016232700 A JP2016232700 A JP 2016232700A JP 2018092709 A JP2018092709 A JP 2018092709A
Authority
JP
Japan
Prior art keywords
resonance
coil
magnetic
heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016232700A
Other languages
Japanese (ja)
Inventor
聖士郎 宗平
Seishiro Munehira
聖士郎 宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016232700A priority Critical patent/JP2018092709A/en
Publication of JP2018092709A publication Critical patent/JP2018092709A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic resonance heat generator which can supply electromagnetic force of electromagnetic induction heating to a remote location by using magnetic resonance.SOLUTION: An oscillation coil 1 excited by electric power is brought close to a resonance coil 2 forming an LC resonance circuit having the same frequency as that of the oscillation coil. As a result, the oscillation coil and the resonance coil resonate with each other and are magnetically coupled to each other. By forming a heat generator into a coil shape or by using a heating resistor as a load, the heat generator is caused to magnetically resonate with the oscillation coil, thereby supplying heat to a remote location. The low-cost heat generator is formed by using the coil itself as a resistance heat generator so that a temperature of the heat generator may be estimated based on variations in resonance frequency of the oscillation coil that has been magnetically coupled, which is derived from variations in LC resonance frequency of the heat generator due to temperature/electrical characteristics of the heat generator.SELECTED DRAWING: Figure 2

Description

本発明は、調理等の加熱に磁気共鳴にて電力を伝送して加熱を行うものである。   The present invention performs heating by transmitting electric power by magnetic resonance for heating such as cooking.

従来,調理等の加熱にはIH(電磁誘導加熱)が用いられているが、金属等の比加熱物体を電磁誘導部に近接密着しなければ加熱出来なかった。
(たとえば特許文献1)
Conventionally, IH (electromagnetic induction heating) has been used for heating such as cooking, but heating was not possible unless a specific heating object such as metal was brought into close contact with the electromagnetic induction portion.
(For example, Patent Document 1)

鍋底が平面でない場合などは、電磁誘導部をそれに合わせた特殊形状にする必要があった。
(たとえば特許文献2)
When the pan bottom was not flat, it was necessary to make the electromagnetic induction part into a special shape.
(For example, Patent Document 2)

電磁誘導にて電力を伝送するには装置が複雑であった。
(たとえば特許文献3)
The device is complicated to transmit electric power by electromagnetic induction.
(For example, Patent Document 3)

簡易な回路で電力の伝送手段はあった。
(たとえば特許文献4)
There was a means of transmitting power with a simple circuit.
(For example, Patent Document 4)

特開2014−136023号公報 IH調理器用土鍋JP, 2014-136003, A clay pot for IH cooker

特開2004−357886号公報 誘導加熱調理器JP, 2004-357886, A Induction heating cooking device

特開2015−144508号公報 無線電力伝送システムJP, 2015-144508, A Wireless power transmission system

特開2011−193663号公報 磁気共鳴回路及びセンサー回路JP, 2011-193663, A Magnetic resonance circuit and sensor circuit

解決しようとする問題点は、鍋等の容器を透過して電力を隔離した場所まで伝送して加熱する方法である。   A problem to be solved is a method of heating by transmitting power to a place where electricity is isolated through a container such as a pot.

本発明は、磁気共鳴現象により、共鳴条件を持った発振回路と共鳴回路において電力を伝送して、共鳴回路に発生した電力を回路自体の発熱または共鳴回路よりの二次誘導加熱により容器等を直接加熱しないで内容発熱体を加熱するものである。   The present invention transmits power in an oscillating circuit having a resonance condition and a resonant circuit by a magnetic resonance phenomenon, and the power generated in the resonant circuit is heated by the circuit itself or by secondary induction heating from the resonant circuit. The content heating element is heated without being directly heated.

共鳴コイル2近傍にて発振コイル1に発振回路9より交番電流を流して、共鳴コイル2と共鳴コンデンサー6により成るLC共振周波数と同じ周波数を発振コイル1に印加して為す。 An alternating current is passed from the oscillation circuit 9 to the oscillation coil 1 in the vicinity of the resonance coil 2, and the same frequency as the LC resonance frequency formed by the resonance coil 2 and the resonance capacitor 6 is applied to the oscillation coil 1.

共鳴コイル2と発振コイル1が同じ周波数で共鳴するとコイル間の距離が大きくなっても磁気結合状態を保持して効率よく磁気伝達が可能となる。 When the resonance coil 2 and the oscillation coil 1 resonate at the same frequency, even if the distance between the coils increases, the magnetic coupling state is maintained and the magnetic transmission can be performed efficiently.

また、磁気共鳴現象は共鳴コイル2と発振コイル1の関係は一対でなくとも、共振周波数が同じであれば連携して複数間にて作動し、共鳴コイル2の磁界にて更に別の共鳴コイル2と共鳴するので、一つの発振コイル1に対して複数の共鳴コイル2とすることが出来、逆に複数の発振コイル1に対して一つの共鳴コイル2に電力を集中させることも可能である。 In addition, the magnetic resonance phenomenon is not a pair of resonance coil 2 and oscillation coil 1, but if the resonance frequency is the same, the resonance coil 2 operates in cooperation with each other, and another resonance coil is generated by the magnetic field of resonance coil 2. 2, it is possible to provide a plurality of resonance coils 2 for one oscillation coil 1, and conversely, it is possible to concentrate power in one resonance coil 2 for a plurality of oscillation coils 1. .

この磁気共鳴に依る電力伝送は先行技術があるのでここにおいて詳細は省略するが、その伝達距離はIH加熱器などの誘導加熱の加熱範囲の比ではない長距離伝達が可能となる。 Since there is a prior art for power transmission based on this magnetic resonance, the details thereof will be omitted here, but the transmission distance can be transmitted over a long distance which is not a ratio of the heating range of induction heating such as an IH heater.

本特性を利用して、発振コイル1と共鳴コイル2間にて電力の非接触伝送を行い、共鳴コイル2自身を発熱体として被加熱物を直接加熱するものである。 Utilizing this characteristic, non-contact power transmission is performed between the oscillation coil 1 and the resonance coil 2, and the object to be heated is directly heated using the resonance coil 2 itself as a heating element.

発熱の方法として共鳴コイル2に生じた電流を別個ニクロム線等の発熱抵抗体に電力を供給して行うことも可能であるが、共鳴コイル2自身を抵抗体として構成すれば別個の発熱体も不要となる。 As a heat generation method, the current generated in the resonance coil 2 can be supplied by supplying power to a heating resistor such as a separate nichrome wire. However, if the resonance coil 2 itself is configured as a resistor, a separate heating element can be used. It becomes unnecessary.

また、共鳴コイル2に磁性コアは必須ではないが、インダクタンス調整及び磁気漏れ対策としてコアを設ける場合は、渦電流損失及び磁気ヒステリシス損失の大きい材質とすることで磁気コア自身が発熱磁性コア4となり熱伝達効率のよい発熱体と成る。 In addition, a magnetic core is not essential for the resonance coil 2, but when a core is provided for inductance adjustment and magnetic leakage countermeasures, the magnetic core itself becomes the heat generating magnetic core 4 by using a material having a large eddy current loss and magnetic hysteresis loss. It becomes a heating element with good heat transfer efficiency.

また、共鳴コイル2に共鳴コンデンサー6を別個に設けても良いが、共鳴コイル2の絶縁体として誘電率の大きな材料を用いればコイル自身の寄生誘電容量にてLC共振回路となる。 Further, the resonance capacitor 2 may be provided separately in the resonance coil 2, but if a material having a large dielectric constant is used as the insulator of the resonance coil 2, an LC resonance circuit is formed by the parasitic dielectric capacitance of the coil itself.

渦巻状のステンレス閉回路として水中に入れるだけでも、水が誘電体としての機能を果たし所要のLC回路が形成される。コイルの材質は流れる電流にて抵抗がある限り電力は全て熱量に変換されるので導体であればその材質は問わない。 Even if it is simply placed in water as a spiral stainless closed circuit, water functions as a dielectric and the required LC circuit is formed. As long as the coil has a resistance due to the flowing current, all the electric power is converted into heat, so any material can be used as long as it is a conductor.

沸点以上の高温が必要であれば、耐熱鋼をセラミックで絶縁すれば千度を超える高温にも対応でき、簡易に高温発熱磁性コア4が製作できる。 If a temperature higher than the boiling point is required, insulating the heat-resistant steel with ceramic can cope with a high temperature exceeding 1000 degrees, and the high-temperature exothermic magnetic core 4 can be easily manufactured.

高温であっても、厚みのある断熱材を介しても電力を伝達可能であるので保温性能の高い加熱構造とすることも容易である。 Even at a high temperature, electric power can be transmitted through a thick heat insulating material, so that it is easy to provide a heating structure with high heat retention performance.

高断熱効果のある真空断熱にあっても磁力は透過するので利用可能であり、共鳴周波数によってはアルミ、銅、オーステナイト系ステンレス等の非磁性材料は磁力線が透過できるので、導体による渦電流発熱が伴うものの利用可能である。 Even in vacuum insulation with a high thermal insulation effect, it can be used because it transmits magnetic force, and depending on the resonance frequency, nonmagnetic materials such as aluminum, copper, and austenitic stainless steel can transmit magnetic lines of force, so eddy current heat generation by the conductor can occur. Things that accompany it are available.

また、磁力線10の透過箇所に非磁性体の導体を設置することにより、共鳴コイル2自身の発熱に寄らず、中間物質の誘導加熱としても利用可能である。 In addition, by installing a non-magnetic conductor at a location where the magnetic lines of force 10 are transmitted, it is possible to use the induction heating of the intermediate substance without depending on the heat generation of the resonance coil 2 itself.

また、発信コイル1は基本的にはIHコンロと同様であるので、従来のIHコンロとしての利用も可能であり、共鳴コイル2による共鳴が検出できない時は通常のIHコンロとして機能することが可能となる。 Further, since the transmitting coil 1 is basically the same as the IH stove, it can be used as a conventional IH stove, and can function as a normal IH stove when resonance by the resonance coil 2 cannot be detected. It becomes.

共鳴コイル2の検出は、共鳴時の発信コイル1の共振周波数と共鳴コイル2に於いて消費される電力分が発信コイル1の共振電圧降下として現れるので電圧検知するだけで、共鳴コイル2の有無および状態を推定することが容易に出来、IHとして機能するときは発信コイル1を共鳴周波数と異なる周波数にて発信すればその負荷の違いが推定できる。 The resonance coil 2 is detected by detecting the voltage of the resonance coil 2 only by detecting the voltage because the resonance frequency of the transmission coil 1 at the time of resonance and the power consumed in the resonance coil 2 appear as a resonance voltage drop of the transmission coil 1. It is easy to estimate the state, and when functioning as IH, if the transmitting coil 1 is transmitted at a frequency different from the resonance frequency, the load difference can be estimated.

発信コイル1及び寄生容量を含む共鳴コンデンサー6及び発熱磁性コア4によるLC共振回路は温度により容量及び透磁率が変化して、発熱体の温度により磁気結合している発振コイル1に及ぼす共鳴周波数が変化することに成る。 The LC resonance circuit including the transmission coil 1 and the resonance capacitor 6 including the parasitic capacitance and the heat generating magnetic core 4 changes in capacitance and permeability depending on the temperature, and the resonance frequency exerted on the oscillation coil 1 that is magnetically coupled depending on the temperature of the heating element varies. Will change.

この特性を予め計測しておけば、発熱体の温度と共鳴周波数の関係より非接触に依る温度計測が可能となる。 If this characteristic is measured in advance, temperature measurement based on non-contact can be performed from the relationship between the temperature of the heating element and the resonance frequency.

また、IHヒーターとして用いる場合でも、誘導加熱体の性状が既知であれば発信コイル1の共振周波数より加熱体の温度が推定可能とも成る。 Even when used as an IH heater, the temperature of the heating body can be estimated from the resonance frequency of the transmitting coil 1 if the properties of the induction heating body are known.

また、共鳴コイル2にサーモスタットに代表される感熱スイッチング回路を付加して、温度の上昇に拠って共鳴コイル2の回路を開いて発熱を制御して一定温度に成るようにすることも可能である。 It is also possible to add a thermal switching circuit typified by a thermostat to the resonance coil 2 so that the circuit of the resonance coil 2 is opened and the heat generation is controlled to reach a constant temperature in response to a rise in temperature. .

また、共鳴コイル2には起電力が有るので、LED等による発光装飾、モーターによる撹拌等の負荷を接続することも可能である。 Further, since the resonance coil 2 has an electromotive force, it is possible to connect a load such as a light emitting decoration by an LED or the like, or a stirring by a motor.

以下に項目別に効果を説明する。 The effects will be described for each item below.

磁気共鳴による電力伝達手段により遠隔にて熱量を発生させる磁気共鳴発熱により
1 断熱容器内の加熱保温が容易に可能となる。
2 容器が被加熱物以上の高温とならないため安全性が高い。
3 容器の熱量及び放熱による熱損失が小さくなる。
4 密閉容器内の加熱が可能となる。
The heat insulation in the one heat insulating container can be easily performed by the magnetic resonance heat generation by which the amount of heat is generated remotely by the power transmission means by magnetic resonance.
2 Since the container does not reach a temperature higher than that of the object to be heated, safety is high.
3 Heat loss due to heat quantity and heat dissipation of the container is reduced.
4 Heating in a sealed container becomes possible.

抵抗体によるジュール熱に直接熱源加熱とした
1 構造が単純で発熱体製造コストが低い。
2 単純構造のため耐久性が高い。
1 structure that uses direct heat source heating to Joule heat generated by a resistor is simple and the heating element manufacturing cost is low.
2 High durability due to simple structure.

磁気共鳴より生じる磁気誘導により導体に生じるジュール熱とした
1 発振コイル1から離れた場所の誘導加熱が可能となる。
2 発熱体の材質及び形状の自由度が高い。
3 被加熱物自体を発熱体として直接加熱できる。
Inductive heating in a place away from the 1 oscillation coil 1 can be performed as Joule heat generated in the conductor by magnetic induction caused by magnetic resonance.
2 High degree of freedom in material and shape of heating element.
3 The heated object itself can be directly heated as a heating element.

共鳴周波数の変化量から発熱体の温度を非接触計測する。
1 温度センサーを省略できる。
2 直接内部温度を計測できる。
3 高温測定が可能となる。
Non-contact measurement of the temperature of the heating element from the amount of change in resonance frequency.
1 The temperature sensor can be omitted.
2 The internal temperature can be measured directly.
3 High temperature measurement is possible.

以上の様な効果があり、用途に応じ適宜最適組み合わせにて利用する。   There are the effects as described above, and they are used in an optimum combination depending on the application.

回路(実施例1)Circuit (Example 1) 平面発熱体(実施例2)Planar heating element (Example 2) 平面コイル発熱型(実施例3)Flat coil heating type (Example 3) 巻線コイル発熱型(実施例4)Winding coil heating type (Example 4) 磁路発熱型(実施例5)Magnetic path heating type (Example 5)

本発明の1実施形態を示すものであり、基本的構成である。   1 shows one embodiment of the present invention, which is a basic configuration.

図1に回路(実施例1)を示し、これを説明する。   FIG. 1 shows a circuit (Example 1), which will be described.

図1にて、+電源からハイサイドスイッチング素子7より発信コイル1と共振コンデンサー5のLC共振回路に通電しローサイドスイッチング素子8を経て−電源に電流が流れる発振回路(特開2011−193663号公報)を形成して発信コイル1と軟磁性コア3より成る磁気回路より交番磁界を発生させる。 In FIG. 1, an oscillation circuit in which a current flows from a positive power source to an LC resonant circuit of a transmitting coil 1 and a resonant capacitor 5 from a high side switching element 7 and flows through a low side switching element 8 (Japanese Patent Laid-Open No. 2011-193663). ) To generate an alternating magnetic field from a magnetic circuit composed of the transmitting coil 1 and the soft magnetic core 3.

これと別個に発熱体として共鳴コイル2と共鳴コンデンサー6よりなるLC共振回路を形成して共鳴コイル2と発熱磁性コア4による磁気回路を構成する。 Separately from this, an LC resonance circuit composed of the resonance coil 2 and the resonance capacitor 6 is formed as a heating element to constitute a magnetic circuit composed of the resonance coil 2 and the heating magnetic core 4.

発信コイル1と共鳴コイル2は同じ周波数で共振するように、両回路中のLとCを設定して、発信コイル1に通電して発振させると、その磁力より共鳴コイル2に起電力が生じて両磁気回路は共鳴により磁気結合状態を維持する。 When L and C in both circuits are set so that the transmitting coil 1 and the resonant coil 2 resonate at the same frequency and the transmitting coil 1 is energized and oscillated, an electromotive force is generated in the resonant coil 2 due to the magnetic force. Both magnetic circuits maintain the magnetic coupling state by resonance.

このとき発信コイル1は軟磁性コア3により低発熱状態であり、交番磁界は共鳴コイル2の起電力に寄与して共鳴コイル2自体の抵抗によるジュール熱を発すると供に自ら交番磁界を発生する。 At this time, the transmitting coil 1 is in a low heat generation state due to the soft magnetic core 3, and the alternating magnetic field contributes to the electromotive force of the resonance coil 2 and generates Joule heat due to the resistance of the resonance coil 2 itself. .

自ら発生する交番磁界及び発信コイル1と共鳴コイル2の相互における交番磁界により発熱磁性コア4に交番磁界が加わり、内部発生した磁気ヒステリシス及び渦電流により発熱磁性コア4が誘導加熱されることに成る An alternating magnetic field is applied to the heat generating magnetic core 4 by the alternating magnetic field generated by itself and the alternating magnetic field between the transmitting coil 1 and the resonance coil 2, and the heat generating magnetic core 4 is induction-heated by the magnetic hysteresis and eddy current generated inside.

これにより、発熱磁性コア4の誘導加熱と共鳴コイル2自体の抵抗によるジュール熱により発熱体として磁気共鳴電力伝送した熱量を発生する。 As a result, the amount of heat transferred as magnetic heating power as a heating element is generated by induction heating of the heat generating magnetic core 4 and Joule heat due to the resistance of the resonance coil 2 itself.

発熱体が加熱されて温度が上昇すると、Lとしての発熱磁性コア4の透磁率が変化し、加えてCとしての共鳴コンデンサー6の容量が変化してLC共振周波数が変化する。 When the heating element is heated and the temperature rises, the magnetic permeability of the heat generating magnetic core 4 as L changes, and in addition, the capacitance of the resonance capacitor 6 as C changes and the LC resonance frequency changes.

共鳴コイル2の周波数特性が変化すると、共鳴により磁気結合している発信コイル1の周波数特性も変化して発熱体の温度変化が発信コイル1の周波数変化として非接触にて検出が可能となる。 When the frequency characteristic of the resonance coil 2 changes, the frequency characteristic of the transmission coil 1 magnetically coupled by resonance also changes, and the temperature change of the heating element can be detected as a frequency change of the transmission coil 1 in a non-contact manner.

また、発熱体の温度変化が発信コイル1の周波数変化となるのは、共鳴だけに寄らず従来の電磁誘導加熱に於いても加熱部の透磁率の温度変化によっても同様に変化するので、従来型の電磁誘導加熱にても加熱部の電気特性が既知であれば温度推定が可能となる。 In addition, the change in the temperature of the heating element becomes the change in the frequency of the transmitting coil 1 because it changes not only in the resonance but also in the conventional electromagnetic induction heating and the temperature change in the permeability of the heating part. Even in the electromagnetic induction heating of the mold, the temperature can be estimated if the electrical characteristics of the heating part are known.

発振側の磁気回路は損失の少ない物で構成し、磁気コアとしてフェライト等の軟磁性材料を用い、発熱体側はコイル材にニクロム等の抵抗発熱体として磁性コアも鉄損の大きい軟鉄等を用いる。 The magnetic circuit on the oscillation side is made up of a material with low loss, and a soft magnetic material such as ferrite is used as the magnetic core. On the heating element side, the resistance heating element such as nichrome is used as the coil material, and the soft magnetic core having a large iron loss is used as the magnetic core. .

また、共鳴コンデンサー6は共鳴コイル2の絶縁体に高誘電率のセラミック等を用いてコイル自体の寄生容量を用いることで部品としては省略可能である。 The resonance capacitor 6 can be omitted as a component by using a high dielectric constant ceramic or the like for the insulator of the resonance coil 2 and using the parasitic capacitance of the coil itself.

また、磁気コアも必須構成要素ではないので、これも省略することが出来、共鳴コイル2に銅線を用いて負荷としてセラミック等の発熱体を接続することも可能である Further, since the magnetic core is not an essential component, it can also be omitted, and it is possible to connect a heating element such as ceramic as a load using a copper wire to the resonance coil 2.

セラミック等の温度により発熱量が変化する発熱体を用いると、温度により発熱量が変化して一定の温度に保たれる効果もある。 When a heating element whose calorific value changes with temperature, such as ceramic, is used, there is an effect that the calorific value changes depending on the temperature and is kept at a constant temperature.

また、温度により抵抗あるいは回路接点を持つものを共鳴コイル2に直列に入れることにより、共鳴磁気結合をオン/オフして温度調節機能を持たせることも可能である。 Further, by inserting a resistor or a circuit contact depending on the temperature in series in the resonance coil 2, it is possible to turn on / off the resonance magnetic coupling to provide a temperature adjustment function.

これら、各要素の組み合わせは用途に応じて形状材質等を選定する。 For the combination of these elements, a shape material or the like is selected according to the application.

また本実施例では発振回路を(特開2011−193663号公報)の簡易な自励発振回路としているが、共鳴に依る磁気結合が成されればその手段は選ばない。 In this embodiment, the oscillation circuit is a simple self-excited oscillation circuit (Japanese Patent Laid-Open No. 2011-193663), but any means can be used as long as the magnetic coupling is achieved by resonance.

図2に平面発熱体(実施例2)を示し、これを説明する。   FIG. 2 shows a planar heating element (Example 2), which will be described.

軟磁性コア3の上面に発信コイル1を平面的な渦巻状に形成して、発振回路9により交番磁界を発生させる。 The transmitting coil 1 is formed in a planar spiral shape on the upper surface of the soft magnetic core 3, and an alternating magnetic field is generated by the oscillation circuit 9.

発生した交番磁界は磁力線10にて平面的な渦巻状に形成した共鳴コイル2に起電力を発生して、共鳴コイル2と発信コイル1は共鳴磁気結合状態となり、発熱磁性コア4に誘導加熱及び自己抵抗により発熱することに成る。 The generated alternating magnetic field generates an electromotive force in the resonance coil 2 formed in a planar spiral shape by the magnetic lines of force 10, and the resonance coil 2 and the transmission coil 1 are in a resonance magnetic coupling state. Heat is generated by self-resistance.

共鳴磁気結合状態となった磁力線10は強磁性体にて遮断しない限りは、アルミ等の非磁性体は渦電流による発熱を伴って磁力線10は透過するので、磁気共鳴の磁力線10中に非磁性体を置くことにより選択的な加熱も可能と成る。 Unless the magnetic field lines 10 in the resonance magnetic coupling state are blocked by a ferromagnetic material, a non-magnetic material such as aluminum transmits the magnetic field lines 10 accompanied by heat generation by eddy currents. Selective heating is also possible by placing the body.

平面配置では相互磁気回路の面積が大きくなり伝送距離および伝送効率が高い特徴があり、磁力線10の遮断に対しても共鳴磁気結合状態を継続しやすい特徴がある。 The planar arrangement has a feature that the area of the mutual magnetic circuit is increased and the transmission distance and transmission efficiency are high, and the resonance magnetic coupling state is easily maintained even when the magnetic field lines 10 are interrupted.

図3に平面コイル発熱型(実施例3)を示し、これを説明する。   FIG. 3 shows a planar coil heating type (Example 3), which will be described.

筐体11の上面に発信コイル1を配置し、その上面に被加熱物13の充満した鍋12を載せて共鳴コイル2を入れて鍋12を透過した磁力線10にて電力が伝達されて鍋12内部から被加熱物13を加熱するものである。 The transmitter coil 1 is disposed on the upper surface of the housing 11, the pan 12 filled with the object to be heated 13 is placed on the upper surface thereof, the resonance coil 2 is inserted, and the electric power is transmitted through the magnetic field lines 10 that pass through the pan 12. The object 13 is heated from the inside.

鍋12の材質が強磁性体である鉄等でなければ、様々な材質の鍋12を用いる事が出来る。 If the material of the pan 12 is not ferromagnetic or the like, the pan 12 made of various materials can be used.

断熱容器でもある磁器製の鍋12に被加熱物13として水とする代表的な鍋料理としたばあい、共鳴コイル2を単純にニクロム線の渦巻とし、共鳴コンデンサー6の働きとして共鳴コイル2周囲の水は誘電率が高く共鳴コイル2自身の寄生容量として働くので、ニクロム線の渦巻のみで発熱体を構成でき、鍋12自身に内蔵することも容易である。 When the porcelain pan 12 which is also an insulated container is used as a typical pan dish using water as the object to be heated 13, the resonance coil 2 is simply made of a nichrome wire spiral, and the resonance capacitor 6 functions as a surrounding of the resonance coil 2. Since this water has a high dielectric constant and acts as a parasitic capacitance of the resonance coil 2 itself, a heating element can be constituted only by the spiral of the nichrome wire and can be easily incorporated in the pan 12 itself.

また鍋12を弁当等の容器として発泡断熱材内面に抵抗発熱材を渦巻状に印刷すれば、低コストで使い捨て容器にも利用可能と成る。殆どの発泡材は誘電率も高いので水と同様に共鳴コイル2自身の寄生容量として働き、導電性塗料を印刷するのみで発熱体を構成可能と成る。 Moreover, if the resistance heating material is spirally printed on the inner surface of the foam heat insulating material using the pan 12 as a container such as a lunch box, it can be used for a disposable container at low cost. Since most foam materials have a high dielectric constant, they act as a parasitic capacitance of the resonance coil 2 itself like water, and a heating element can be configured only by printing a conductive paint.

また弁当容器等に用いる場合は、発信コイル1が一台で複数の共鳴コイル2との共鳴磁気結合状態を為すことが可能で、弁当等を多段複列に並べた状態で同時に加熱保温が可能であり、断熱容器により放熱も少ないためランニング及び装置コストが低く、弁当等の取り出しも容易となる。 In addition, when used for a lunch box, etc., it is possible to achieve a resonance magnetic coupling state with a plurality of resonance coils 2 with a single transmission coil 1, and it is possible to heat and heat at the same time in a state where lunch boxes are arranged in multiple stages and multiple rows. In addition, since the heat insulating container also reduces heat radiation, the running and device costs are low, and the lunch box and the like can be easily taken out.

これらの発熱体は放り込み型、シール型、埋設型など様々な様態が考えられ、いずれにおいても電気回路装置と呼ばれるほどのものでなくアルミ箔等安価な材料を用いて非常に安価に提供可能である。 These heating elements can be in various forms such as throw-in type, seal type, and embedded type, and all of them can be provided at a very low price by using inexpensive materials such as aluminum foil instead of what is called an electric circuit device. is there.

図4に巻線コイル発熱型(実施例4)を示し、これを説明する。   FIG. 4 shows a winding coil heating type (Example 4), which will be described.

円柱状の軟磁性コア3に発信コイル1を円筒状に巻いたコイルに発振回路9にて交番磁界を発生させる。このとき軟磁性コア3と発信コイル1の相互磁力線の角度がほぼ直交とならければ磁気共鳴による磁気結合は継続されるので、厳格な相互位置関係は考慮しなくてよい。 An oscillating circuit 9 generates an alternating magnetic field in a coil obtained by winding the transmitting coil 1 in a cylindrical shape on a cylindrical soft magnetic core 3. At this time, if the angles of the mutual magnetic lines of force between the soft magnetic core 3 and the transmitting coil 1 are substantially orthogonal, the magnetic coupling by magnetic resonance is continued, so that a strict mutual positional relationship need not be considered.

円柱状の発熱磁性コア4に共鳴コイル2を円筒状に巻いたコイルにて共振回路を形成した発熱体を被加熱物13の充たされた湯呑み14の中に入れて飲料である被加熱物13を加熱・保温するものである。 An object to be heated, which is a beverage, is prepared by placing a heating element in which a resonance circuit is formed by a coil in which a resonance coil 2 is wound in a cylindrical shape on a cylindrical heat generating magnetic core 4 in a water cup 14 filled with an object to be heated 13. 13 is heated and kept warm.

共鳴コイル2に感温スイッチ15を付加して、飲料の適温で発熱温度を制御することで常時飲み頃温度に保持することが容易である。 By adding the temperature sensitive switch 15 to the resonance coil 2 and controlling the heat generation temperature at an appropriate temperature of the beverage, it is easy to always keep the temperature at the time of drinking.

感温スイッチ15は被加熱物13の温度が低い時は導通して共鳴コイル2に起電力を生じさせて発熱し、温度が上がると共鳴コイル2の回路を開き熱量の発生を停止させて温度によって発熱量を簡単に制御出来るようにするものである。 When the temperature of the object to be heated 13 is low, the temperature sensitive switch 15 is turned on to generate an electromotive force in the resonance coil 2 to generate heat, and when the temperature rises, the circuit of the resonance coil 2 is opened to stop the generation of the amount of heat. This makes it possible to easily control the heat generation amount.

また、温度に拠って抵抗値の変化するセラミックヒータ等を発熱体としても温度制御が可能である。 Further, temperature control is possible even with a ceramic heater or the like whose resistance value changes depending on the temperature as a heating element.

本実施例では、食器である湯呑み14に共鳴コイル2を別個に投入する利用法を示し、食器の種類を問わず利用が可能であり、複数の食器に対して複数の共鳴コイル2を用いて複数の加熱保温が可能であり、共鳴コイル2の形状も焼き石鍋様の石の形状を模しても良いし、様々な意匠を凝らした形状及び発熱温度の設定も可能である。 In the present embodiment, a method of using the resonance coil 2 separately in the cup 14 which is tableware is shown, and it can be used regardless of the type of tableware, and a plurality of resonance coils 2 are used for a plurality of tableware. A plurality of heat insulations are possible, the shape of the resonance coil 2 may be similar to the shape of a grilled stone pan-like stone, and various shapes and elaborate designs and heat generation temperatures can be set.

意匠を凝らした形状に、共鳴コイル2の起電力にてLEDによる発光装飾、モーターによる飲料の撹拌等の動力を付加することも容易であるので用途に応じて形状及び機能を追加できる。 Since it is easy to add power such as light emitting decoration by LED and stirring of beverage by a motor by electromotive force of the resonance coil 2 to a shape with elaborate design, the shape and function can be added according to the application.

例えば、御膳に発信コイル1を設置してバッテリー駆動して、御膳上の全ての食器内料理を保温するといった利用法も可能である。このような方法を取ることにより配膳等に時間が掛かっても常時温かい料理を提供可能と成る。 For example, it is possible to use such a method that the transmitter coil 1 is installed in the Gotake and the battery is driven to keep all dishes in the tableware warm. By adopting such a method, it is possible to provide a dish that is always warm even if it takes a long time for serving.

また、このような方法で提供される食器は内容物の温度を保っていても、食器自身の断熱性により食器外部の温度が低く、熱損失が少なくなると同時に手に取るときも熱くなく安全快適も提供可能と成る。 Also, even if the tableware provided in this way maintains the temperature of the contents, the outside temperature of the tableware is low due to the heat insulation of the tableware itself, heat loss is reduced and at the same time it is not hot and safe to pick up. Can also be provided.

図5に磁路発熱型(実施例5)を示し、これを説明する。   FIG. 5 shows a magnetic path heating type (Example 5), which will be described.

コの字型の軟磁性コア3に共鳴コイル2にて共鳴磁気回路とコの字型の軟磁性コア3に発振回路9に接続された発信コイル1による磁気発生回路の相互に磁力線10が発生する位置に被加熱物13を設置する。 Magnetic field lines 10 are generated between the resonance magnetic circuit in the U-shaped soft magnetic core 3 by the resonance coil 2 and the magnetic generation circuit by the transmission coil 1 connected to the oscillation circuit 9 in the U-shaped soft magnetic core 3. The object to be heated 13 is installed at the position to be heated.

発振回路9により発信コイル1が励磁されると被加熱物13を介して共鳴コイル2が共鳴磁気結合され、コの字型の軟磁性コア3による空隙に交番磁力線が集中する。 When the transmission coil 1 is excited by the oscillation circuit 9, the resonance coil 2 is resonantly magnetically coupled via the object to be heated 13, and alternating magnetic field lines are concentrated in the gap formed by the U-shaped soft magnetic core 3.

このとき、被加熱物13が強磁性体の導体であればヒステリシス及び渦電流により発熱し、非磁性体の導体であれば渦電流により発熱する。 At this time, if the object to be heated 13 is a ferromagnetic conductor, it generates heat due to hysteresis and eddy current, and if it is a non-magnetic conductor, it generates heat due to eddy current.

磁気共鳴による磁力線10を軟磁性コア3により集中させることにより被加熱物13の局所的加熱が可能となる。 By concentrating the magnetic lines of force 10 due to magnetic resonance with the soft magnetic core 3, the object to be heated 13 can be locally heated.

被加熱物13が強磁性体の場合は磁力線10が強磁性体の内部に集中して透過してしまう形状の時は一般的な磁気誘導加熱となるが、十分に薄い鉄板様な形状であれば磁気共鳴加熱として利用可能である。 If the object to be heated 13 is a ferromagnetic material, the magnetic field lines 10 are concentrated in the inside of the ferromagnetic material and transmitted through a general magnetic induction heating. It can be used as magnetic resonance heating.

以上のように用途により、実施例を単独及び複合して構成する。   As described above, the embodiments are configured individually and in combination depending on the application.

本発明により構成された方法は、産業面において様々な分野に応用可能であり、利用態毎に代表的なものを以下に列記する。   The method constituted by the present invention can be applied to various fields in the industrial field, and typical ones are listed below for each usage state.

調理機器等に於ける利用。
1 IH調理器では困難であった平面を擁しない調理器具が利用できるようになる。
2 誘導加熱自体が不可能な不導体である土鍋、ガラス鍋等においても調理が可能となる。
3 断熱性の鍋を内部から加熱するので熱損失が小さく省エネルギーとなる。
4 断熱性の高い保温器等に於いても加熱保温が可能となる。
5 食器自身を調理器とすることが出来る。
Use in cooking equipment.
1 It becomes possible to use cooking utensils that do not have a flat surface, which is difficult with IH cookers.
2 Cooking is also possible in clay pots, glass pots, etc., which are nonconductors that cannot be induction heated.
3 Since the heat-insulating pan is heated from the inside, heat loss is small and energy is saved.
4 Heat insulation is possible even in a heat insulator with high heat insulation.
5. The tableware itself can be used as a cooker.

従来の誘導加熱に加えて
1 誘導加熱可能領域が拡張する。
2 熱処理等において部分焼入れ、部分融解等の選択的加熱範囲が可能となる。
3 真空、保護雰囲気等の密閉断熱容器内での誘導加熱が可能となる
4 非接触にて加熱部の温度管理が可能となる。。
In addition to the conventional induction heating, 1 induction heating possible area is expanded.
2 Selective heating ranges such as partial quenching and partial melting are possible in heat treatment and the like.
3 Induction heating in a sealed heat-insulated container such as a vacuum or a protective atmosphere is possible. 4 Temperature control of the heating part can be performed in a non-contact manner. .

発熱体を複数同時加熱することで
1 弁当などの使い捨て容器などを同時に複数同時加熱及び保温が可能となる。
2 発熱特性の異なる発熱体を同時に加熱して容器内の温度分布を任意に設定できる。
By simultaneously heating a plurality of heating elements, a plurality of disposable containers such as one lunch can be simultaneously heated and kept warm.
2 Heating elements having different heat generation characteristics can be heated simultaneously to arbitrarily set the temperature distribution in the container.

遠隔発熱が可能となることで
1 衣類、靴、ソックスなどに発熱体を織り込み、遠隔から直接保温する。
2 電気毛布等のコードレス化が可能となる。
By enabling remote heat generation 1 Weave a heating element in clothing, shoes, socks, etc., and keep warm directly from a distance.
2 It becomes possible to make cordless such as electric blankets.

1 発信コイル
2 共鳴コイル
3 軟磁性コア
4 発熱磁性コア
5 共振コンデンサー
6 共鳴コンデンサー
7 ハイサイドスイッチング素子
8 ローサイドスイッチング素子
9 発振回路
10磁力線
11 筐体
12 鍋
13 被加熱物
14 湯呑み
15 感温スイッチ
DESCRIPTION OF SYMBOLS 1 Transmission coil 2 Resonance coil 3 Soft magnetic core 4 Exothermic magnetic core 5 Resonance capacitor 6 Resonance capacitor 7 High side switching element 8 Low side switching element 9 Oscillation circuit 10 Magnetic field line 11 Case 12 Pot 13 Heated object 14 Hot water cup 15 Temperature switch

Claims (4)

磁気誘導加熱に於いて、発熱体にLC共振回路を形成し、磁気共鳴による電力伝達手段により電源部より隔離した場所にて熱量を発生させる磁気共鳴発熱体。 In magnetic induction heating, a magnetic resonance heating element that forms an LC resonance circuit in a heating element and generates heat at a location isolated from a power source by means of power transmission by magnetic resonance. 共鳴コイルに伝送された電流を抵抗体によるジュール熱に直接熱源加熱とした、請求項1の磁気共鳴発熱体。 2. The magnetic resonance heating element according to claim 1, wherein the current transmitted to the resonance coil is directly heated by Joule heat generated by the resistor. 磁気共鳴より生じる交番磁界により導体に生じる誘導ジュール熱とした請求項1の磁気共鳴発熱体。 The magnetic resonance heating element according to claim 1, wherein the induction Joule heat is generated in a conductor by an alternating magnetic field generated by magnetic resonance. 磁気誘導加熱に於いて、加熱体の透磁率及び静電容量の温度変化により生じるLC共振回路の共振周波数の変化量から発熱体の温度を非接触計測する加熱温度推定法。 A heating temperature estimation method for non-contact measurement of the temperature of the heating element from the amount of change in the resonance frequency of the LC resonance circuit caused by the temperature change of the magnetic permeability and capacitance of the heating element in magnetic induction heating.
JP2016232700A 2016-11-30 2016-11-30 Magnetic resonance heat generator Pending JP2018092709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016232700A JP2018092709A (en) 2016-11-30 2016-11-30 Magnetic resonance heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016232700A JP2018092709A (en) 2016-11-30 2016-11-30 Magnetic resonance heat generator

Publications (1)

Publication Number Publication Date
JP2018092709A true JP2018092709A (en) 2018-06-14

Family

ID=62566325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016232700A Pending JP2018092709A (en) 2016-11-30 2016-11-30 Magnetic resonance heat generator

Country Status (1)

Country Link
JP (1) JP2018092709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333001A (en) * 2019-06-06 2019-10-15 容小明 Temperature-detecting device in utensil
JP2020191225A (en) * 2019-05-22 2020-11-26 昭電工業株式会社 Heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020191225A (en) * 2019-05-22 2020-11-26 昭電工業株式会社 Heater
JP7297239B2 (en) 2019-05-22 2023-06-26 昭電工業株式会社 heating device
CN110333001A (en) * 2019-06-06 2019-10-15 容小明 Temperature-detecting device in utensil

Similar Documents

Publication Publication Date Title
EP3618569B1 (en) Induction heating type cooktop having improved use convenience
CN100449210C (en) Electromagnetic range capable of automatic control temperature
KR102156220B1 (en) Heating cooking system, induction heating cooker, and electric appliance
US9955529B2 (en) Smart cookware
US3530499A (en) Electrically heated appliance unit
KR101513698B1 (en) Temperature sensor and induction heating cooker having the same
US8558145B2 (en) Heat retaining bottle
EP2907363B1 (en) A wireless cooking appliance operated on an induction heating cooktop
US20150257576A1 (en) Wireless cooking appliance operated on an induction heating cooktop
EP2048914B1 (en) A cooking device having an induction heating element
CN101485231B (en) Hob allowing the temperature of a culinary article to be detected
US20090084777A1 (en) Cooking device having an induction heating element
CN102680128A (en) Non-contact temperature measurement method and device using same
TW200640300A (en) Cooker
CN101484053B (en) Culinary article allowing its temperature to be detected by a hob
CN102679416A (en) Microwave oven adopting non-contact type electromagnetic induction temperature measurement and temperature measuring method
KR100688016B1 (en) Electric cooker equipped with heater unit
JP2018092709A (en) Magnetic resonance heat generator
US11555867B2 (en) Electric pot having improved relay installation position
US11265972B2 (en) Support structure for object to be heated
CN111345115A (en) Temperature limiting or regulating device for kitchen appliances
Pascual et al. Small-sized immersible water heaters for domestic induction heating technology
JP3925388B2 (en) Induction heating device
JP2004171929A (en) Induction heating device
CN209801541U (en) Cooking device for induction cooking on a ceramic surface