JP2020190527A - Rice component measurement device, combine-harvester, and rice component measurement method - Google Patents

Rice component measurement device, combine-harvester, and rice component measurement method Download PDF

Info

Publication number
JP2020190527A
JP2020190527A JP2019097082A JP2019097082A JP2020190527A JP 2020190527 A JP2020190527 A JP 2020190527A JP 2019097082 A JP2019097082 A JP 2019097082A JP 2019097082 A JP2019097082 A JP 2019097082A JP 2020190527 A JP2020190527 A JP 2020190527A
Authority
JP
Japan
Prior art keywords
light
rice
unit
measurement
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019097082A
Other languages
Japanese (ja)
Other versions
JP7326026B2 (en
Inventor
良介 冨沢
Ryosuke Tomizawa
良介 冨沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2019097082A priority Critical patent/JP7326026B2/en
Publication of JP2020190527A publication Critical patent/JP2020190527A/en
Priority to JP2023062553A priority patent/JP7497550B2/en
Application granted granted Critical
Publication of JP7326026B2 publication Critical patent/JP7326026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Threshing Machine Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Combines (AREA)

Abstract

To provide a rice component measurement device, a combine-harvester, and a rice component measurement method each of which enables rice components to be more accurately measured with simple configuration.SOLUTION: A component measurement device 10 is provided in a combine-harvester 1 and comprises: a light irradiation unit 12a which can irradiate rice being a measurement target with measurement light in which a peak wavelength is present in at least one wavelength band out of a first wavelength band from 660 nm to 690 nm, a second wavelength band from 900 nm to 930 nm, and a third wavelength band from 950 nm to 980 nm; a light reception unit 12b receiving reflected light reflected from the measurement target when the measurement light impinges the measurement target; and an analysis unit 13 analyzing components of the measurement target using information of the reflected light received by the light reception unit.SELECTED DRAWING: Figure 1

Description

本発明は、米の成分を測定する米の成分測定装置、コンバイン、及び米の成分測定方法の技術に関する。 The present invention relates to a rice component measuring device for measuring rice components, a combine, and a technique for measuring rice components.

近年、農業分野において、収穫した農作物に含まれる栄養価等の成分を測定して、土壌の肥沃度等を測定する方法が知られている。 In recent years, in the agricultural field, a method of measuring soil fertility and the like by measuring components such as nutritional value contained in harvested crops has been known.

そして、農作物を収穫した地点の情報と、測定した栄養価データを結び付け、圃場における肥沃度の分布を表すマップを作成して作物育成管理を行う。例えば、このマップに基づき、肥沃度が均一となるように追肥を行い、または農薬散布等を行う。これにより、農作物の均質化と安定した収量を確保することが可能となる。 Then, the information on the point where the crop is harvested is linked with the measured nutritional value data, and a map showing the distribution of fertility in the field is created to manage the crop growth. For example, based on this map, topdressing is performed so that the fertility is uniform, or pesticides are sprayed. This makes it possible to ensure homogenization of crops and stable yields.

このため、収穫機(コンバイン)には収穫した農作物の成分を解析するための測定装置が搭載される。 For this reason, the harvester (combine) is equipped with a measuring device for analyzing the components of the harvested crops.

例えば、特許文献1には、収穫した農作物の穀粒に対して光を照射して、この照射した光の分光測定に基づいて測定値を出力する光学式測定装置を備えたコンバインについて開示されている。当該特許文献1では、光学式測定装置から出力される測定値から、農作物の水分や蛋白質の成分値を算出している。 For example, Patent Document 1 discloses a combine provided with an optical measuring device that irradiates grains of harvested crops with light and outputs a measured value based on the spectral measurement of the irradiated light. There is. In the patent document 1, the water content and protein component values of agricultural products are calculated from the measured values output from the optical measuring device.

特開2016−171749号公報Japanese Unexamined Patent Publication No. 2016-171749

しかしながら、上記特許文献1のように、光学式測定装置により農作物の成分を解析する場合、農作物の種類によって測定値と成分値との関係は異なっており、測定対象とする農作物に適した測定を行う必要がある。 However, as in Patent Document 1, when the components of agricultural products are analyzed by an optical measuring device, the relationship between the measured values and the component values differs depending on the type of agricultural product, and measurement suitable for the agricultural product to be measured can be performed. There is a need to do.

また、測定装置は、コンバインにおいて収穫された農作物を測定可能な限られた位置に搭載する必要があることから、簡易で小型な構造が望まれる。 Further, since the measuring device needs to be mounted at a limited position where the crops harvested in the combine can be measured, a simple and compact structure is desired.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは簡易な構成で米の成分をより正確に測定することができる米の成分測定装置、コンバイン、及び米の成分測定方法を提供することにある。 The present invention has been made to solve such a problem, and an object thereof is a rice component measuring device, a combine, and rice that can measure rice components more accurately with a simple configuration. To provide a method for measuring the components of rice.

上記した目的を達成するために、本発明に係る米の成分測定装置では、測定対象である米に、ピーク波長が、660nmから690nmの第1の波長帯域、900nmから930nmの第2の波長帯域、950nmから980nmの第3の波長帯域のうちの、少なくとも1つの波長帯域にある測定光を照射可能な光照射部と、前記測定光が前記測定対象に当たって反射した反射光を受光する受光部と、前記受光部が受光した反射光の情報から前記測定対象の成分を解析する解析部と、を備える。 In order to achieve the above object, in the rice component measuring apparatus according to the present invention, the peak wavelength of the rice to be measured is a first wavelength band of 660 nm to 690 nm and a second wavelength band of 900 nm to 930 nm. , A light irradiation unit capable of irradiating measurement light in at least one wavelength band of the third wavelength band from 950 nm to 980 nm, and a light receiving unit that receives the reflected light reflected by the measurement light hitting the measurement target. It also includes an analysis unit that analyzes the component to be measured from the information of the reflected light received by the light receiving unit.

また、本発明に係る米の成分測定装置では、測定対象である米に、ピーク波長が660nmから690nmの間にある測定光を照射可能な光照射部と、前記測定光が前記測定対象に当たって反射した反射光を受光する受光部と、前記受光部が受光した反射光の情報から前記測定対象の成分を解析する解析部と、を備える。 Further, in the rice component measuring apparatus according to the present invention, a light irradiation unit capable of irradiating the rice to be measured with measurement light having a peak wavelength between 660 nm and 690 nm and the measurement light reflected by the measurement target. It includes a light receiving unit that receives the reflected light, and an analysis unit that analyzes the component to be measured from the information of the reflected light received by the light receiving unit.

また、本発明に係る米の成分測定装置では、測定対象である米に、ピーク波長が900nmから930nmの間にある測定光を照射可能な光照射部と、前記測定光が前記測定対象に当たって反射した反射光を受光する受光部と、前記受光部が受光した反射光の情報から前記測定対象の成分を解析する解析部と、を備える。 Further, in the rice component measuring apparatus according to the present invention, a light irradiation unit capable of irradiating the rice to be measured with measurement light having a peak wavelength between 900 nm and 930 nm and the measurement light reflected by the measurement target. It includes a light receiving unit that receives the reflected light, and an analysis unit that analyzes the component to be measured from the information of the reflected light received by the light receiving unit.

また、本発明に係る米の成分測定装置では、測定対象である米に、ピーク波長が950nmから980nmの間にある測定光を照射可能な光照射部と、前記測定光が前記測定対象に当たって反射した反射光を受光する受光部と、前記受光部が受光した反射光の情報から前記測定対象の成分を解析する解析部と、を備える。 Further, in the rice component measuring apparatus according to the present invention, a light irradiation unit capable of irradiating the rice to be measured with measurement light having a peak wavelength between 950 nm and 980 nm, and the measurement light reflected by the measurement target. It includes a light receiving unit that receives the reflected light, and an analysis unit that analyzes the component to be measured from the information of the reflected light received by the light receiving unit.

また、上述の米の成分測定装置において、前記光照射部は、ピーク波長が700nmから900nmの間にある測定光も照射可能であってもよい。 Further, in the above-mentioned rice component measuring apparatus, the light irradiation unit may be capable of irradiating measurement light having a peak wavelength between 700 nm and 900 nm.

上記した目的を達成するために、本発明に係るコンバインでは、上述の米の成分測定装置を備える。 In order to achieve the above-mentioned object, the combine according to the present invention is provided with the above-mentioned rice component measuring device.

上記した目的を達成するために、本発明に係る米の成分測定方法では、測定対象である米に、ピーク波長が、660nmから690nmの第1の波長帯域、900nmから930nmの第2の波長帯域、950nmから980nmの第3の波長帯域のうちの、少なくとも1つの波長帯域にある測定光を照射する光照射工程と、前記測定光が前記測定対象に当たって反射した反射光を受光する受光工程と、前記受光工程にて受光した反射光の情報から前記測定対象の成分を解析する解析工程と、を備える。 In order to achieve the above object, in the rice component measuring method according to the present invention, the peak wavelength of the rice to be measured is a first wavelength band of 660 nm to 690 nm and a second wavelength band of 900 nm to 930 nm. A light irradiation step of irradiating the measurement light in at least one wavelength band of the third wavelength band from 950 nm to 980 nm, and a light receiving step of receiving the reflected light reflected by the measurement light hitting the measurement target. The present invention includes an analysis step of analyzing the component to be measured from the information of the reflected light received in the light receiving step.

上記手段を用いる本発明によれば、簡易な構成で米の成分をより正確に測定することができる。 According to the present invention using the above means, the components of rice can be measured more accurately with a simple structure.

本発明の実施形態に係る米の成分測定装置を備えたコンバインの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the combine provided with the rice component measuring apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る測定部の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the measuring part which concerns on embodiment of this invention. サンプル米の分光スペクトルを示す説明図である。It is explanatory drawing which shows the spectral spectrum of the sample rice. (a)サンプル米の蛋白質の破壊検査結果を示す説明図と、(b)サンプル米の水分の破壊検査結果を示す説明図である。(A) It is explanatory drawing which shows the protein destruction test result of a sample rice, and (b) is an explanatory diagram which shows the water content destruction test result of a sample rice. (a)米の蛋白質におけるPLS係数と測定光の波長との関係図と、(b)米の水分量におけるPLS係数と波長との関係図である。(A) The relationship diagram between the PLS coefficient and the wavelength of the measured light in the protein of rice, and (b) the relationship diagram between the PLS coefficient and the wavelength in the water content of rice.

以下、本発明の一実施形態を図面に基づき説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1には本実施形態に係る米の成分測定装置を備えたコンバインの概略構成図が示されており、図2には測定部の構成を示す概略構成図が示されている。以下これらの図に基づき本発明の実施形態の構成について説明する。 FIG. 1 shows a schematic configuration diagram of a combine equipped with a rice component measuring device according to the present embodiment, and FIG. 2 shows a schematic configuration diagram showing a configuration of a measuring unit. Hereinafter, the configuration of the embodiment of the present invention will be described based on these figures.

図1に示すようにコンバイン1は履帯走行式の自脱型コンバインであり、図示しないエンジンによって駆動される左右一対の履帯によって自走可能である。当該コンバインにより穀物(稲)を刈り取り、穀粒(米)を収穫する。 As shown in FIG. 1, the combine 1 is a track-traveling type self-propelled combine, and can be self-propelled by a pair of left and right tracks driven by an engine (not shown). Grains (rice) are harvested by the combine harvester and grains (rice) are harvested.

コンバイン1は、駆動部2により上下動可能な刈取部3が車体前部に設けられている。駆動部2は例えば油圧アクチュエータであり、刈取部3に対して、図1にて点線で示す刈取位置と、実線で示す待機位置との間において上下昇降可能である。 The combine 1 is provided with a cutting portion 3 at the front portion of the vehicle body that can be moved up and down by the drive portion 2. The drive unit 2 is, for example, a hydraulic actuator, and can move up and down with respect to the cutting unit 3 between the cutting position shown by the dotted line in FIG. 1 and the standby position shown by the solid line.

刈取部3は、刈取位置にて、圃場に植立する穀物の穀稈を刈り取り、第1の搬送部4を介して脱穀部5へ刈取穀稈を供給するように構成されている。刈取部3は、図示しないがバリカンのように刈刃と受刃を備えており、刈刃の往復運動によって地面近傍の高さで作物の刈り取りを行う。 The cutting section 3 is configured to cut the grain culms of the grains to be planted in the field at the cutting position and supply the cut grain culms to the threshing section 5 via the first transport section 4. Although not shown, the cutting unit 3 is provided with a cutting blade and a receiving blade like a hair clipper, and the crop is cut at a height near the ground by the reciprocating motion of the cutting blade.

コンバイン1は、穀物の刈り取りを行わないときは走行等の妨げとならないように刈取部3を待機位置に上昇させ、刈り取りを行うときに刈取位置に下降させる。このような駆動部2による刈取部3の昇降は、図示しない昇降レバーにより操作可能である。駆動部2は、例えば、刈取部3を上昇させる際には0V、下降させる際には5Vというように、図示しない制御部から発信される2値の駆動信号に応じて昇降する。このため、駆動信号が5Vであるときは刈取部3が刈取位置にあり、コンバイン1が穀物を刈り取る状態であると判断することができる。 The combine 1 raises the cutting unit 3 to the standby position so as not to interfere with running or the like when the grain is not cut, and lowers it to the cutting position when cutting. The raising and lowering of the cutting section 3 by the driving section 2 can be operated by a lifting lever (not shown). The drive unit 2 moves up and down according to a binary drive signal transmitted from a control unit (not shown), for example, 0 V when raising the cutting unit 3 and 5 V when lowering the cutting unit 3. Therefore, when the drive signal is 5V, it can be determined that the cutting unit 3 is in the cutting position and the combine 1 is in the state of cutting the grain.

第1の搬送部4は、搬送チェーンや掻き込みベルト等で構成され、刈取部3で刈取った穀稈を整列させて脱穀部5へ送る構成をなしている。 The first transport section 4 is composed of a transport chain, a scraping belt, or the like, and has a configuration in which the grain culms cut by the cutting section 3 are aligned and sent to the threshing section 5.

脱穀部5は、図示しないが円筒型の扱ぎ胴が備えられており、扱ぎ胴には多数の扱ぎ歯が取付けられている。この扱ぎ胴が回転することよって穀稈が脱穀され、穂先から穀粒を分離する。当該脱穀部5は第2の搬送部6を介して貯留部7に接続されている。 Although not shown, the threshing section 5 is provided with a cylindrical handling cylinder, and a large number of handling teeth are attached to the handling cylinder. The rotation of this handling cylinder causes the culm to be threshed, and the grains are separated from the tips. The threshing section 5 is connected to the storage section 7 via a second transport section 6.

第2の搬送部6は脱穀された穀粒を貯留部7に搬送する通路を有している。当該第2の搬送部6には、例えば脱穀物から穀粒を選別する選別機構が設けられていてもよい。 The second transport unit 6 has a passage for transporting the threshed grains to the storage unit 7. The second transport unit 6 may be provided with a sorting mechanism for sorting grains from threshing, for example.

貯留部7は、第2の搬送部6から供給される穀粒を蓄えるタンクである。貯留部7には排出オーガ8が接続されており、当該排出オーガ8により貯留部7に蓄えられた穀粒を外部に排出可能である。 The storage unit 7 is a tank for storing grains supplied from the second transport unit 6. A discharge auger 8 is connected to the storage unit 7, and the grains stored in the storage unit 7 can be discharged to the outside by the discharge auger 8.

また、コンバイン1は、穀粒(米)の成分を測定する成分測定装置10を備えている。 Further, the combine 1 is provided with a component measuring device 10 for measuring the components of grains (rice).

成分測定装置10は、CPU、記憶装置、センサ類を備えたコンピュータからなり、機能的には、主に刈取判定部11と、測定部12、解析部13、位置情報取得部14を有している。また成分測定装置10は外部装置20と通信可能である。 The component measuring device 10 includes a computer including a CPU, a storage device, and sensors, and functionally mainly includes a cutting determination unit 11, a measuring unit 12, an analysis unit 13, and a position information acquisition unit 14. There is. Further, the component measuring device 10 can communicate with the external device 20.

刈取判定部11は、コンバイン1による穀物の刈り取り状態を判定する機能を有している。具体的には、刈取判定部11は、駆動部2の駆動信号から、刈取部3が刈取位置にあるときには穀物を刈り取る状態であると判定し、刈取部3が待機位置にあるときには刈り取る状態にないと判定する。 The cutting determination unit 11 has a function of determining the cutting state of the grain by the combine 1. Specifically, the cutting determination unit 11 determines from the drive signal of the drive unit 2 that the grain is in a cutting state when the cutting unit 3 is in the cutting position, and is in a cutting state when the cutting unit 3 is in the standby position. Judge that there is no.

測定部12は、第2の搬送部6を通る脱穀された穀粒(米)に測定光を照射して穀粒に当たって反射した反射光を受光することで、穀粒の光学的な測定値を検出する機能を有している。 The measuring unit 12 irradiates the deciduous grain (rice) passing through the second transporting unit 6 with the measuring light and receives the reflected light reflected by the grain to obtain an optical measurement value of the grain. It has a function to detect.

具体的には図2に示すように、測定部12は、光照射部12aと受光部12bを有している。 Specifically, as shown in FIG. 2, the measuring unit 12 has a light irradiation unit 12a and a light receiving unit 12b.

光照射部12aは、ベース基板30に第1から第4の発光素子31a〜31dが、それぞれ同じ一方向に第1から第4の測定光P1〜P4を出射するよう、並んで設けられている。第1から第4の発光素子31a〜31dは、それぞれ特定の波長をピーク波長(ピーク値)とする第1から第4の測定光P1〜P4を出射可能なパルス発振型のレーザダイオード(PLD)である。なお、第1から第4の発光素子31a〜31dは、各測定光が混ざらないように順次発光させるのが好ましく、第1から第4の発光素子31a〜31dの発光順序や発光タイミングは解析部13又は他の図示しない制御部により制御される。 The light irradiation unit 12a is provided side by side on the base substrate 30 so that the first to fourth light emitting elements 31a to 31d emit the first to fourth measurement lights P1 to P4 in the same direction. .. The first to fourth light emitting elements 31a to 31d are pulse oscillation type laser diodes (PLDs) capable of emitting the first to fourth measurement lights P1 to P4 having specific wavelengths as peak wavelengths (peak values), respectively. Is. It is preferable that the first to fourth light emitting elements 31a to 31d emit light in sequence so that the measured lights are not mixed, and the light emitting order and the light emitting timing of the first to fourth light emitting elements 31a to 31d are determined by the analysis unit. It is controlled by 13 or another control unit (not shown).

第1から第4の発光素子31a〜31dから出射する第1から第4の測定光P1〜P4のピーク波長は、660nmから690nm(第1の波長帯域)、700nmから900nm(第4の波長帯域)、900nmから930nm(第2の波長帯域)、950nmから980nm(第3の波長帯域)の波長帯域のうち、重複なくいずれかの波長帯域内にあるのが好ましい。本実施形態では、第1の発光素子31aが出射する第1の測定光P1のピーク波長は680nm、第2の発光素子31bが出射する第2の測定光P2のピーク波長は800nm、第3の発光素子31cが出射する第3の測定光P3のピーク波長は920nm、第4の発光素子31dが出射する第4の測定光P4のピーク波長は970nmとして説明するが、それぞれの測定光は対応する波長帯域内にピーク波長があればよい。 The peak wavelengths of the first to fourth measurement lights P1 to P4 emitted from the first to fourth light emitting elements 31a to 31d are 660 nm to 690 nm (first wavelength band) and 700 nm to 900 nm (fourth wavelength band). ), 900 nm to 930 nm (second wavelength band), 950 nm to 980 nm (third wavelength band), and preferably within one of the wavelength bands without duplication. In the present embodiment, the peak wavelength of the first measurement light P1 emitted by the first light emitting element 31a is 680 nm, the peak wavelength of the second measurement light P2 emitted by the second light emitting element 31b is 800 nm, and the third The peak wavelength of the third measurement light P3 emitted by the light emitting element 31c is 920 nm, and the peak wavelength of the fourth measurement light P4 emitted by the fourth light emitting element 31d is 970 nm, but the respective measurement lights correspond to each other. It suffices if the peak wavelength is within the wavelength band.

またベース基板30には、第1から第4の発光素子31a〜31dに対応して、第1から第4のレンズ32a〜32dと第1から第4のミラー33a〜33dがそれぞれ設けられている。 Further, the base substrate 30 is provided with first to fourth lenses 32a to 32d and first to fourth mirrors 33a to 33d, respectively, corresponding to the first to fourth light emitting elements 31a to 31d. ..

第1から第4のレンズ32a〜32dは、対応する第1から第4の発光素子31a〜31dから出射される第1から第4の測定光P1〜P4を、それぞれの出射光軸Lr1〜Lr4に平行な光束とする。 The first to fourth lenses 32a to 32d refer the first to fourth measurement lights P1 to P4 emitted from the corresponding first to fourth light emitting elements 31a to 31d to the respective emission optical axes Lr1 to Lr4. The luminous flux is parallel to.

第1から第4のミラー33a〜33dは、それぞれ対応する第1から第4の発光素子31a〜31dから出射される第1から第4の測定光P1〜P4を、各出射光軸Lr1〜Lr4と直交する第1の照射光軸L1上に反射するように設けられている。また、第1から第3のミラー33a〜33cは、ダイクロイックミラーであり、それぞれ対応する測定光P1〜P3以外の波長帯域の光については透過する。なお、第4のミラー33dについては、測定光P4を反射するミラーであればよい。つまり、これら第1から第4のミラー33a〜33dは、第1から第4の発光素子31a〜31dの第1から第4の測定光P1〜P4を同一の第1の照射光軸L1に向かわせる機能を有している。 The first to fourth mirrors 33a to 33d refer to the first to fourth measurement lights P1 to P4 emitted from the corresponding first to fourth light emitting elements 31a to 31d, respectively, with the respective emission optical axes Lr1 to Lr4. It is provided so as to reflect on the first irradiation optical axis L1 orthogonal to the above. Further, the first to third mirrors 33a to 33c are dichroic mirrors, and transmit light in a wavelength band other than the corresponding measurement lights P1 to P3. The fourth mirror 33d may be a mirror that reflects the measurement light P4. That is, these first to fourth mirrors 33a to 33d direct the first to fourth measurement lights P1 to P4 of the first to fourth light emitting elements 31a to 31d toward the same first irradiation optical axis L1. It has a function to dodge.

さらにベース基板30には、照射光軸L上に第5のレンズ34と、光ファイバ35の入射部35aが設けられている。第5のレンズ34は第1の照射光軸L1を進行する第1から第4の測定光P1〜P4を、光ファイバ35の入射部35aに集光する。 Further, the base substrate 30 is provided with a fifth lens 34 and an incident portion 35a of the optical fiber 35 on the irradiation optical axis L. The fifth lens 34 collects the first to fourth measurement lights P1 to P4 traveling on the first irradiation optical axis L1 on the incident portion 35a of the optical fiber 35.

光ファイバ35は、入射部35aから入射された第1から第4の測定光P1〜P4の光軸を第2の照射光軸L2に変更する機能を有する。また、光ファイバ35は、第1から第4の測定光P1〜P4をミキシングさせつつ内部を進行させる。そして、この光ファイバ35は、入射部35aから入射された第1から第4の測定光P1〜P4を、出射部35bから第2の照射光軸L2上で第6のレンズ36へ向けて出射させる。 The optical fiber 35 has a function of changing the optical axes of the first to fourth measurement lights P1 to P4 incident from the incident portion 35a to the second irradiation optical axis L2. Further, the optical fiber 35 advances inside while mixing the first to fourth measurement lights P1 to P4. Then, the optical fiber 35 emits the first to fourth measurement lights P1 to P4 incident from the incident portion 35a from the emitting portion 35b toward the sixth lens 36 on the second irradiation optical axis L2. Let me.

第2の照射光軸L2上には、第6のレンズ36、第5のミラー37、シリンドリカルレンズ38が並んで設けられている。 A sixth lens 36, a fifth mirror 37, and a cylindrical lens 38 are provided side by side on the second irradiation optical axis L2.

第6のレンズ36は、光ファイバ35の出射部35bから出射される第1から第4の測定光P1〜P4を、第2の照射光軸L2に平行な光束とする機能を有する。第5のミラー37は、入射される平行光束(第1から第4の測定光P1〜P4)の一部をシリンドリカルレンズ38に向けて透過するとともに、残部を第7のレンズ39が配置された分岐光軸Lb上へと反射する。この第7のレンズ39は、第5のミラー37により反射された平行光束(第1から第4の測定光P1〜P4)を、分岐光軸Lb上で測定光監視部40に集光する。この測定光監視部40は、測定光の波長に応じた4つのPD(Photodiode)で形成されており、受光した第1から第4の測定光P1〜P4の発光量を電気信号(検出出力(受光値))を解析部13へ出力する。 The sixth lens 36 has a function of making the first to fourth measurement lights P1 to P4 emitted from the exit portion 35b of the optical fiber 35 a light flux parallel to the second irradiation optical axis L2. In the fifth mirror 37, a part of the incident parallel light flux (first to fourth measurement lights P1 to P4) is transmitted toward the cylindrical lens 38, and the rest is arranged with the seventh lens 39. It reflects on the branched optical axis Lb. The seventh lens 39 collects the parallel light flux (first to fourth measurement lights P1 to P4) reflected by the fifth mirror 37 on the measurement light monitoring unit 40 on the branched optical axis Lb. The measurement light monitoring unit 40 is formed of four PDs (Photodiodes) according to the wavelength of the measurement light, and outputs an electric signal (detection output (detection output (detection output)) of the amount of light emitted from the first to fourth measurement lights P1 to P4 received. The received light value)) is output to the analysis unit 13.

シリンドリカルレンズ38は、第2の照射光軸L2に直交する平面で見て、一方向のみに屈折力を持つ光学部材であり、第5のミラー37を経た第1から第4の測定光P1〜P4を第2の照射光軸L2に直交する平面での一方向に拡大する。ここで、第1から第4の測定光P1〜P4は、光ファイバ35の出射部35bから出射される際には、上述したように照射光軸Lに直交する平面で見ると円形状とされる。このため、第5のミラー37を経た断面円形状の第1から第4の測定光P1〜P4は、シリンドリカルレンズ38により一方向のみが所定の大きさ寸法に拡大された楕円形状とされる。 The cylindrical lens 38 is an optical member having a refractive power in only one direction when viewed in a plane orthogonal to the second irradiation optical axis L2, and the first to fourth measurement lights P1 to pass through the fifth mirror 37. P4 is magnified in one direction on a plane orthogonal to the second irradiation optical axis L2. Here, when the first to fourth measurement lights P1 to P4 are emitted from the emission portion 35b of the optical fiber 35, they are circular when viewed in a plane orthogonal to the irradiation optical axis L as described above. Orthogonal. Therefore, the first to fourth measurement lights P1 to P4 having a circular cross section passed through the fifth mirror 37 have an elliptical shape enlarged in only one direction to a predetermined size by the cylindrical lens 38.

このように構成された光照射部12aは、第1から第4の発光素子31a〜31dより、特定のピーク波長の第1から第4の測定光P1〜P4を、上述した光学系を介して、脱穀された穀粒に照射する。 The light irradiation unit 12a configured in this way transmits the first to fourth measurement lights P1 to P4 having a specific peak wavelength from the first to fourth light emitting elements 31a to 31d via the above-mentioned optical system. Irradiate the threshed grains.

第1から第4の測定光P1〜P4が穀粒に当たって反射した反射光Prを受光する受光部12bは、受光素子50と増幅回路51とA/D(アナログ・デジタル)変換器52とを有する。 The light receiving unit 12b that receives the reflected light Pr reflected by the first to fourth measurement lights P1 to P4 hitting the grain has a light receiving element 50, an amplifier circuit 51, and an A / D (analog / digital) converter 52. ..

受光素子50は、受光面に光が入射するとその光量に応じた電気信号を出力する機能を有する。この受光素子50は、本実施形態では4つのPD(Photodiode)で形成されており、電気信号(検出出力(受光値))を増幅回路51へ向けて出力する。なお、受光素子50から出力される電気信号には、穀粒からの反射光Prの光量に応じた分に加えて、外乱光の光量に応じた分も含まれている。 The light receiving element 50 has a function of outputting an electric signal corresponding to the amount of light when light is incident on the light receiving surface. In this embodiment, the light receiving element 50 is formed of four PDs (Photodiodes), and outputs an electric signal (detection output (light receiving value)) toward the amplifier circuit 51. The electric signal output from the light receiving element 50 includes not only the amount corresponding to the amount of reflected light Pr from the grain but also the amount corresponding to the amount of ambient light.

増幅回路51は、入力された電気信号を適宜増幅してA/D変換器52へ向けて出力する。A/D変換器52は、入力された電気信号(受光値)をデジタル信号に変換して解析部13へ向けて出力する。 The amplifier circuit 51 appropriately amplifies the input electric signal and outputs it to the A / D converter 52. The A / D converter 52 converts the input electric signal (light received value) into a digital signal and outputs it to the analysis unit 13.

図1に戻り、解析部13は、受光部が受光した反射光Prの情報から測定対象である米の成分を解析する機能を有している。 Returning to FIG. 1, the analysis unit 13 has a function of analyzing the component of rice to be measured from the information of the reflected light Pr received by the light receiving unit.

詳しくは、解析部13は、図示しない記憶部に予め検量線が記憶されており、当該検量線と反射光Prの情報を用いて、穀粒の蛋白質と水分の推定を行う。この推定のため、まず解析部13は、第1から第4の発光素子31a〜31dが出射した第1から第4の測定光P1〜P4の発光量と、第1から第4の測定光P1〜P4に対応する第1から第4の反射光Pr1〜Pr4の受光値とに基づいて、第1から第4の測定光P1〜P4に対する穀粒の第1から第4の反射率R1〜R4を算出する。この測定光P1〜P4の発光量は、発光素子における設定値と測定光監視部にて受光した受光値から算出可能である。 Specifically, the analysis unit 13 stores a calibration curve in advance in a storage unit (not shown), and estimates the protein and water content of the grain by using the information of the calibration curve and the reflected light Pr. For this estimation, the analysis unit 13 first determines the amount of light emitted from the first to fourth measurement lights P1 to P4 emitted by the first to fourth light emitting elements 31a to 31d and the first to fourth measurement lights P1. Based on the received values of the first to fourth reflected lights Pr1 to Pr4 corresponding to P4, the first to fourth reflectances R1 to R4 of the grains with respect to the first to fourth measured lights P1 to P4. Is calculated. The amount of light emitted from the measured lights P1 to P4 can be calculated from the set value of the light emitting element and the received light value received by the measurement light monitoring unit.

本実施形態において、解析部13は、第1から第4の測定光P1〜P4に対する第1から第4の反射率R1〜R4を用いて蛋白質を推定し、第2から第4の測定光P2〜P4に対する第2から第4の反射率R2〜R4を用いて水分の推定を行う。具体的には、解析部13は、第1から第4の反射率R1〜R4に応じて検量線に基づく推定係数を記憶しており、測定された反射率に推定係数を乗算し、各項を足し合わせることで蛋白質及び水分の量の推定データを算出する。そして、解析部13は、推定した蛋白質及び水分の推定データを外部装置20に提供する。 In the present embodiment, the analysis unit 13 estimates the protein using the first to fourth reflectances R1 to R4 with respect to the first to fourth measurement lights P1 to P4, and the second to fourth measurement lights P2. Moisture is estimated using the second to fourth reflectances R2 to R4 with respect to ~ P4. Specifically, the analysis unit 13 stores the estimation coefficient based on the calibration curve according to the first to fourth reflectances R1 to R4, multiplies the measured reflectance by the estimation coefficient, and each term. To calculate the estimated data of the amount of protein and water by adding. Then, the analysis unit 13 provides the estimated protein and water estimation data to the external device 20.

位置情報取得部14は、当該コンバイン1の位置情報を取得する機能を有しており、例えばGPS(Global Positioning System)等のGNSS(Global Navigation Satellite System)受信機である。 The position information acquisition unit 14 has a function of acquiring the position information of the combine 1, and is, for example, a GNSS (Global Navigation Satellite System) receiver such as a GPS (Global Positioning System).

また、本実施形態では、コンバイン1の外部に、成分測定装置10の外部装置20を備えた圃場管理システムが構築されている。 Further, in the present embodiment, a field management system including an external device 20 of the component measuring device 10 is constructed outside the combine 1.

外部装置20は、例えば、パーソナルコンピュータやタブレット端末であり、記憶部21と圃場評価部22を備えている。 The external device 20 is, for example, a personal computer or a tablet terminal, and includes a storage unit 21 and a field evaluation unit 22.

記憶部21は、解析部13により推定した穀粒の蛋白質及び水分の推定データ(成分情報)及び位置情報取得部14により取得したコンバイン1の位置情報等の各種データを格納する記憶媒体であり、例えば、ハードディスクやメモリである。記憶部21は、無線又は有線の通信手段や取外し可能なメモリを介して解析部13及び位置情報取得部14か情報を取得可能である。 The storage unit 21 is a storage medium that stores various data such as the estimation data (component information) of the protein and water content of the grain estimated by the analysis unit 13 and the position information of the combine 1 acquired by the position information acquisition unit 14. For example, a hard disk or memory. The storage unit 21 can acquire information from the analysis unit 13 and the position information acquisition unit 14 via a wireless or wired communication means or a removable memory.

圃場評価部22は、対象とする圃場の刈り取りを終えた後、記憶部21に記憶された蛋白質及び水分の推定データ及び位置情報の履歴を取り出して、当該圃場における米の成分分布を生成可能である。つまり、圃場評価部22によれば、このコンバイン1により収穫を行った圃場に対し、当該圃場における米の蛋白質及び水分に基づく肥沃度マップ等の評価データを生成することができる。具体的には、圃場評価部22はコンピュータにより作動するアプリケーションプログラムである。 The field evaluation unit 22 can generate the component distribution of rice in the field by taking out the estimation data of the protein and water stored in the storage unit 21 and the history of the position information after finishing the cutting of the target field. is there. That is, according to the field evaluation unit 22, it is possible to generate evaluation data such as a fertility map based on the protein and water content of rice in the field harvested by the combine 1. Specifically, the field evaluation unit 22 is an application program operated by a computer.

以上のように、本実施形態におけるコンバイン1に搭載された米の成分測定装置10は、測定部12の光照射部12aが、脱穀後の穀粒(米)に対して、ピーク波長が680nmの第1の測定光P1、ピーク波長が800nmの第2の測定光P2、ピーク波長が920nmの第3の測定光P3、ピーク波長が970nmの第4の測定光P4を測定対象である穀粒(米)に照射する(光照射工程)。 As described above, in the rice component measuring device 10 mounted on the combine 1 in the present embodiment, the light irradiation unit 12a of the measuring unit 12 has a peak wavelength of 680 nm with respect to the grain (rice) after grain removal. A grain whose measurement target is a first measurement light P1, a second measurement light P2 having a peak wavelength of 800 nm, a third measurement light P3 having a peak wavelength of 920 nm, and a fourth measurement light P4 having a peak wavelength of 970 nm. Irradiate rice) (light irradiation step).

そして、測定部12の受光部12bが、第1から第4の測定光P1〜P4が穀粒に当たって反射した第1から第4の反射光Pr1〜Pr4を受光して(受光工程)、解析部13がこの第1から第4の反射光Pr1〜Pr4の情報から米の蛋白質及び水分を解析する(解析工程)。 Then, the light receiving unit 12b of the measuring unit 12 receives the first to fourth reflected lights Pr1 to Pr4 reflected by the first to fourth measurement lights P1 to P4 hitting the grains (light receiving step), and the analysis unit. 13 analyzes the protein and water content of rice from the information of the first to fourth reflected lights Pr1 to Pr4 (analysis step).

ここで、図3から図5を参照すると、図3にはサンプル米の分光スペクトルを示す説明図が、図4(a)にはサンプル米の蛋白質の破壊検査結果を示す説明図が、図4(b)にはサンプル米の水分の破壊検査結果を示す説明図が、図5(a)には米の蛋白質におけるPLS係数と測定光の波長との関係図が、図5(b)には米の水分量におけるPLS係数と波長との関係図がそれぞれ示されており、以下これらの図に基づき、本実施形態の効果について説明する。 Here, referring to FIGS. 3 to 5, FIG. 3 shows an explanatory diagram showing the spectral spectrum of the sample rice, and FIG. 4 (a) shows an explanatory diagram showing the results of the protein destruction test of the sample rice. (B) is an explanatory diagram showing the results of the water destruction test of the sample rice, FIG. 5 (a) is a diagram showing the relationship between the PLS coefficient of the rice protein and the wavelength of the measurement light, and FIG. The relationship diagram between the PLS coefficient and the wavelength in the water content of rice is shown, and the effect of this embodiment will be described below based on these diagrams.

肥料を与えずに生育させた米、堆肥を与えて生育させた米、有機肥料を与えて生育させた米、化学肥料を与えて生育させた米等、様々な条件で生育させた米をサンプル米(図3、図4ではAからPの16種類)として、それぞれについて分光スペクトルを測定した結果、図3に示すような波長と反射率との関係が得られた。図3に示すように、各サンプル米において、反射率の大小の違いはあるが、波長に応じて類似した変化傾向を示すことがわかる。 Samples of rice grown under various conditions, such as rice grown without fertilizer, rice grown with compost, rice grown with organic fertilizer, rice grown with chemical fertilizer, etc. As a result of measuring the spectral spectra of rice (16 types from A to P in FIGS. 3 and 4), the relationship between the wavelength and the reflectance as shown in FIG. 3 was obtained. As shown in FIG. 3, it can be seen that each sample rice shows a similar tendency of change depending on the wavelength, although there is a difference in the reflectance.

また、そのサンプル米に対して破壊検査により蛋白質と水分の実測値を検出した結果、蛋白質については図4(a)、水分については図4(b)に示すような結果が得られた。 Further, as a result of detecting the measured values of protein and water content in the sample rice by destructive inspection, the results shown in FIG. 4 (a) for protein and FIG. 4 (b) for water content were obtained.

そして、図3の分光スペクトルの結果と、図4の蛋白質及び水分の実測値(真値)を用いてPLS回帰(Partial Least Squares)(部分最小二乗法)によるケモメトリクス(計量化学)解析を行った結果、図5に示すような結果が得られた。具体的には、蛋白質及び水分の実測値を応答変数とし、各波長における反射率を説明変数(予測変数)とし、1次から4次までのPLS係数を算出した。 Then, using the results of the spectral spectrum of FIG. 3 and the measured values (true values) of the proteins and waters of FIG. 4, chemometrics (chemometrics) analysis is performed by PLS regression (Partial Least Squares) (partial least squares method). As a result, the result shown in FIG. 5 was obtained. Specifically, the measured values of protein and water were used as response variables, and the reflectance at each wavelength was used as an explanatory variable (prediction variable), and PLS coefficients from the first order to the fourth order were calculated.

米の蛋白質のPLS係数を示す図5(a)から、660nmから690nm(第1の波長帯域)、900nmから930nm(第2の波長帯域)、950nmから980nm(第3の波長帯域)の波長帯域において、波長に対する係数の変化が大きいことから、これらの波長帯域が米の蛋白質に対して特徴波長であることがわかる。 From FIG. 5 (a) showing the PLS coefficient of the rice protein, the wavelength band of 660 nm to 690 nm (first wavelength band), 900 nm to 930 nm (second wavelength band), and 950 nm to 980 nm (third wavelength band). Since the change in the coefficient with respect to the wavelength is large, it can be seen that these wavelength bands are characteristic wavelengths for the rice protein.

また、米の水分のPLS係数を示す図5(b)から、900nmから930nm(第2の波長帯域)、950nmから980nm(第3の波長帯域)の波長帯域において、波長に対する係数の変化が大きいことから、これらの波長帯域が米の蛋白質に対して特徴波長であることがわかる。 Further, from FIG. 5B showing the PLS coefficient of water content of rice, the change in the coefficient with respect to the wavelength is large in the wavelength band from 900 nm to 930 nm (second wavelength band) and 950 nm to 980 nm (third wavelength band). From this, it can be seen that these wavelength bands are characteristic wavelengths for rice proteins.

このような解析の結果から、本実施形態の成分測定装置10は、660nmから690nm(第1の波長帯域)内の680nmをピーク波長とする第1の測定光P1、900nmから930nm(第2の波長帯域)内の920nmをピーク波長とする第3の測定光P3、及び950nmから980nm(第3の波長帯域)内の970nmをピーク波長とする第4の測定光P4を用いることにより、米の蛋白質をより正確に推定することができる。 From the results of such analysis, the component measuring apparatus 10 of the present embodiment has a first measurement light P1 having a peak wavelength of 680 nm within 660 nm to 690 nm (first wavelength band), and 900 nm to 930 nm (second wavelength band). By using the third measurement light P3 having a peak wavelength of 920 nm in the wavelength band) and the fourth measurement light P4 having a peak wavelength of 970 nm in the 950 nm to 980 nm (third wavelength band), the rice can be used. The protein can be estimated more accurately.

また、本実施形態の成分測定装置10は、900nmから930nm(第2の波長帯域)内の920nmをピーク波長とする第3の測定光P3、及び950nmから980nm(第3の波長帯域)内の970nmをピーク波長とする第4の測定光P4を用いることにより、米の水分をより正確に推定することができることがわかる。 Further, the component measuring device 10 of the present embodiment has a third measurement light P3 having a peak wavelength of 920 nm within 900 nm to 930 nm (second wavelength band) and 950 nm to 980 nm (third wavelength band). It can be seen that the water content of rice can be estimated more accurately by using the fourth measurement light P4 having a peak wavelength of 970 nm.

このような米の成分測定に適した特定の波長の測定光を照射して、その反射光から成分の解析を行う構成とすることで、広帯域の波長を含む光を照射して反射光を分光する分光分析よりも分光器等を必要とせず、構成を簡素化することができ、且つ解析処理工数も簡略化できる。 By irradiating the measurement light of a specific wavelength suitable for the component measurement of rice and analyzing the component from the reflected light, the reflected light is separated by irradiating the light including a wide band wavelength. Compared to the spectroscopic analysis performed, a spectroscope or the like is not required, the configuration can be simplified, and the number of analysis processing steps can be simplified.

したがって、本実施形態の米の成分測定装置10及び当該成分測定装置10を備えたコンバイン1によれば、簡易な構成で米の成分をより正確に測定することができる。 Therefore, according to the rice component measuring device 10 of the present embodiment and the combine 1 provided with the component measuring device 10, the rice component can be measured more accurately with a simple configuration.

また、(第4の波長帯域)は他の3つの波長帯域に比べて安定した特性を示しており、このような安定した波長帯域をリファレンスとして使用することでロバスト性を向上させることができる。 Further, (fourth wavelength band) exhibits stable characteristics as compared with the other three wavelength bands, and robustness can be improved by using such a stable wavelength band as a reference.

以上で本発明の一実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。 Although the description of one embodiment of the present invention is completed above, the aspect of the present invention is not limited to this embodiment.

例えば、図2で示した測定部12の構成は一例であり、光照射部から各波長の測定光を照射して、受光部にてその反射光を受光できる構成であれば、この構成に限定されるものではない。 For example, the configuration of the measuring unit 12 shown in FIG. 2 is an example, and is limited to this configuration as long as the light irradiating unit irradiates the measuring light of each wavelength and the light receiving unit can receive the reflected light. It is not something that is done.

また、上記実施形態では、光照射部12aから第1から第4の測定光P1〜P4を照射可能であることで、米の蛋白質及び水分について十分な推定精度を確保することができるという利点があるが、必ずしも4つ全ての測定光を照射できる構成とする必要はない。少なくとも第1の測定光、第3の測定光、第4の測定光のうちのいずれか一つの測定光を照射できればよい。例えば、米の蛋白質のみを測定する場合には、第1の測定光、第3の測定光、及び第4の測定光のうちの一つを照射できればよい。米の水分のみを測定する場合には、第3の測定光又は第4の測定光が照射できればよい。 Further, in the above embodiment, since the first to fourth measurement lights P1 to P4 can be irradiated from the light irradiation unit 12a, there is an advantage that sufficient estimation accuracy can be ensured for the protein and water content of rice. However, it is not always necessary to irradiate all four measurement lights. It suffices if at least one of the first measurement light, the third measurement light, and the fourth measurement light can be irradiated. For example, when measuring only the protein of rice, it suffices to be able to irradiate one of the first measurement light, the third measurement light, and the fourth measurement light. When measuring only the water content of rice, it is sufficient that the third measurement light or the fourth measurement light can be irradiated.

また、上記実施形態では、測定部12を脱穀部5の下流の第2の搬送部6に設けられているが、測定部12の配置はこれに限られず、他の位置に配置してもよい。 Further, in the above embodiment, the measuring unit 12 is provided in the second transport unit 6 downstream of the threshing unit 5, but the arrangement of the measuring unit 12 is not limited to this, and may be arranged at another position. ..

また、上記実施形態では、記憶部21及び圃場評価部22がコンバイン1の外部に設けられているが、この構成に限られるものではない。例えば、コンバイン内の成分測定装置に少なくとも記憶部を有しており、圃場評価部を外部に設けてもよいし、記憶部と圃場評価部の両方をコンバイン内の成分測定装置に設けてもよい。 Further, in the above embodiment, the storage unit 21 and the field evaluation unit 22 are provided outside the combine 1, but the configuration is not limited to this. For example, the component measuring device in the combine may have at least a storage unit, and the field evaluation unit may be provided externally, or both the storage unit and the field evaluation unit may be provided in the component measuring device in the combine. ..

また、上記実施形態では、解析部13がコンバイン1の内部に設けられているが、解析部を外部装置に備えてもよい。 Further, in the above embodiment, the analysis unit 13 is provided inside the combine 1, but the analysis unit may be provided in the external device.

1 コンバイン
2 駆動部
3 刈取部
4 第1の搬送部
5 脱穀部
6 第2の搬送部
7 貯留部
10 成分測定装置
11 刈取判定部
12 測定部
12a 光照射部
12b 受光部
13 解析部
14 位置情報取得部
20 外部装置
21 記憶部
22 圃場評価部
1 Combine 2 Drive unit 3 Mowing unit 4 1st transport unit 5 Threshing unit 6 2nd transport unit 7 Storage unit 10 Component measurement device 11 Mowing judgment unit 12 Measuring unit 12a Light irradiation unit 12b Light receiving unit 13 Analysis unit 14 Position information Acquisition unit 20 External device 21 Storage unit 22 Field evaluation unit

Claims (7)

測定対象である米に、ピーク波長が、660nmから690nmの第1の波長帯域、900nmから930nmの第2の波長帯域、950nmから980nmの第3の波長帯域のうちの、少なくとも1つの波長帯域にある測定光を照射可能な光照射部と、
前記測定光が前記測定対象に当たって反射した反射光を受光する受光部と、
前記受光部が受光した反射光の情報から前記測定対象の成分を解析する解析部と、
を備える米の成分測定装置。
The peak wavelength of the rice to be measured is at least one of the first wavelength band of 660 nm to 690 nm, the second wavelength band of 900 nm to 930 nm, and the third wavelength band of 950 nm to 980 nm. A light irradiation unit that can irradiate a certain measurement light,
A light receiving unit that receives the reflected light that the measurement light hits the measurement target and is reflected.
An analysis unit that analyzes the component to be measured from the information of the reflected light received by the light receiving unit, and an analysis unit.
A rice component measuring device equipped with.
測定対象である米に、ピーク波長が660nmから690nmの間にある測定光を照射可能な光照射部と、
前記測定光が前記測定対象に当たって反射した反射光を受光する受光部と、
前記受光部が受光した反射光の情報から前記測定対象の成分を解析する解析部と、
を備える米の成分測定装置。
A light irradiation unit capable of irradiating the rice to be measured with measurement light having a peak wavelength between 660 nm and 690 nm,
A light receiving unit that receives the reflected light that the measurement light hits the measurement target and is reflected.
An analysis unit that analyzes the component to be measured from the information of the reflected light received by the light receiving unit, and an analysis unit.
A rice component measuring device equipped with.
測定対象である米に、ピーク波長が900nmから930nmの間にある測定光を照射可能な光照射部と、
前記測定光が前記測定対象に当たって反射した反射光を受光する受光部と、
前記受光部が受光した反射光の情報から前記測定対象の成分を解析する解析部と、
を備える米の成分測定装置。
A light irradiation unit capable of irradiating the rice to be measured with measurement light having a peak wavelength between 900 nm and 930 nm,
A light receiving unit that receives the reflected light that the measurement light hits the measurement target and is reflected.
An analysis unit that analyzes the component to be measured from the information of the reflected light received by the light receiving unit, and an analysis unit.
A rice component measuring device equipped with.
測定対象である米に、ピーク波長が950nmから980nmの間にある測定光を照射可能な光照射部と、
前記測定光が前記測定対象に当たって反射した反射光を受光する受光部と、
前記受光部が受光した反射光の情報から前記測定対象の成分を解析する解析部と、
を備える米の成分測定装置。
A light irradiation unit capable of irradiating the rice to be measured with measurement light having a peak wavelength between 950 nm and 980 nm,
A light receiving unit that receives the reflected light that the measurement light hits the measurement target and is reflected.
An analysis unit that analyzes the component to be measured from the information of the reflected light received by the light receiving unit, and an analysis unit.
A rice component measuring device equipped with.
前記光照射部は、ピーク波長が700nmから900nmの間にある測定光も照射可能である請求項1から4のいずれか一項に記載の米の成分測定装置。 The rice component measuring apparatus according to any one of claims 1 to 4, wherein the light irradiating unit can also irradiate measurement light having a peak wavelength between 700 nm and 900 nm. 請求項1から5のいずれか一項に記載の米の成分測定装置を備えるコンバイン。 A combine comprising the rice component measuring apparatus according to any one of claims 1 to 5. 測定対象である米に、ピーク波長が、660nmから690nmの第1の波長帯域、900nmから930nmの第2の波長帯域、950nmから980nmの第3の波長帯域のうちの、少なくとも1つの波長帯域にある測定光を照射する光照射工程と、
前記測定光が前記測定対象に当たって反射した反射光を受光する受光工程と、
前記受光工程にて受光した反射光の情報から前記測定対象の成分を解析する解析工程と、
を備える米の成分測定方法。
The peak wavelength of the rice to be measured is at least one of the first wavelength band of 660 nm to 690 nm, the second wavelength band of 900 nm to 930 nm, and the third wavelength band of 950 nm to 980 nm. A light irradiation process that irradiates a certain measurement light,
A light receiving step of receiving the reflected light reflected by the measurement light hitting the measurement target,
An analysis step of analyzing the component to be measured from the information of the reflected light received in the light receiving step, and an analysis step.
A method for measuring the composition of rice.
JP2019097082A 2019-05-23 2019-05-23 Rice component measuring device, combine harvester, and rice component measuring method Active JP7326026B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019097082A JP7326026B2 (en) 2019-05-23 2019-05-23 Rice component measuring device, combine harvester, and rice component measuring method
JP2023062553A JP7497550B2 (en) 2019-05-23 2023-04-07 Rice component measuring device, combine, and rice component measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019097082A JP7326026B2 (en) 2019-05-23 2019-05-23 Rice component measuring device, combine harvester, and rice component measuring method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023062553A Division JP7497550B2 (en) 2019-05-23 2023-04-07 Rice component measuring device, combine, and rice component measuring method

Publications (2)

Publication Number Publication Date
JP2020190527A true JP2020190527A (en) 2020-11-26
JP7326026B2 JP7326026B2 (en) 2023-08-15

Family

ID=73454534

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019097082A Active JP7326026B2 (en) 2019-05-23 2019-05-23 Rice component measuring device, combine harvester, and rice component measuring method
JP2023062553A Active JP7497550B2 (en) 2019-05-23 2023-04-07 Rice component measuring device, combine, and rice component measuring method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023062553A Active JP7497550B2 (en) 2019-05-23 2023-04-07 Rice component measuring device, combine, and rice component measuring method

Country Status (1)

Country Link
JP (2) JP7326026B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271419A (en) * 1996-01-23 1996-10-18 Iseki & Co Ltd Quality decision system for rice and taste analyzer
JPH09243557A (en) * 1996-03-06 1997-09-19 Iseki & Co Ltd Unhulled rice moisture sensor of grain straw
JP2013118857A (en) * 2011-12-08 2013-06-17 Kubota Corp Combined harvester
JP2014163871A (en) * 2013-02-27 2014-09-08 Seiko Epson Corp Component analyzer and component analyzing method
JP2018004412A (en) * 2016-06-30 2018-01-11 パナソニックIpマネジメント株式会社 Determination method of degree of ripeness of fruits and determination apparatus of degree of ripeness of fruits
JP2018132396A (en) * 2017-02-15 2018-08-23 パナソニックIpマネジメント株式会社 Organic substance analyzer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675345B (en) 2012-09-21 2017-12-01 中国科学院地质与地球物理研究所 A kind of accelerometer and its manufacturing process
JP6494344B2 (en) 2015-03-16 2019-04-03 株式会社クボタ Combine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271419A (en) * 1996-01-23 1996-10-18 Iseki & Co Ltd Quality decision system for rice and taste analyzer
JPH09243557A (en) * 1996-03-06 1997-09-19 Iseki & Co Ltd Unhulled rice moisture sensor of grain straw
JP2013118857A (en) * 2011-12-08 2013-06-17 Kubota Corp Combined harvester
JP2014163871A (en) * 2013-02-27 2014-09-08 Seiko Epson Corp Component analyzer and component analyzing method
JP2018004412A (en) * 2016-06-30 2018-01-11 パナソニックIpマネジメント株式会社 Determination method of degree of ripeness of fruits and determination apparatus of degree of ripeness of fruits
JP2018132396A (en) * 2017-02-15 2018-08-23 パナソニックIpマネジメント株式会社 Organic substance analyzer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
松野 玄: ""近赤外分光分析法のプロセスモニタリングへの応用(2) −検量線の作成とアプリケーション例−"", THE CHEMICAL TIMES 2006 NO.2, vol. 通巻200号, JPN6023017526, April 2006 (2006-04-01), pages 10 - 14, ISSN: 0005051272 *

Also Published As

Publication number Publication date
JP7326026B2 (en) 2023-08-15
JP7497550B2 (en) 2024-06-11
JP2023083357A (en) 2023-06-15

Similar Documents

Publication Publication Date Title
US7265831B2 (en) Spectrometric measuring head for harvesting machines and other equipment used in agriculture
KR102582905B1 (en) Combine, and grain-evaluation control device for combine
EP1577663B1 (en) Food analyser for self-propelled food loading units, and operating method therefor
US20130250280A1 (en) Plant treatment based on a water invariant chlorophyll index
US7408145B2 (en) Light sensing instrument with modulated polychromatic source
US9921162B2 (en) Determination of a fungal infection of a plant by chlorophyll fluorescence induced by different excitation wavelengths
US6449932B1 (en) Optoelectronic apparatus for detecting damaged grain
US7400405B2 (en) Pesticide detector and method
FR2916850A1 (en) PLANT VEGETABLE ANALYSIS APPARATUS, METHOD FOR MONITORING OR CARTOGRAPHY OF CONDITION OR EVOLUTION OF CULTURE, AND METHOD FOR MANAGING PLANT TREATMENT
US20120092663A1 (en) Transmission raman spectroscopy analysis of seed composition
JP6473664B2 (en) Wavelength sensor device for plants
US20110186752A1 (en) Method and device for determining the ratio between the contents of chlorophyll and of a chromophore compound in a vegetable tissue without independently measuring said contents
KR20010006689A (en) Method and apparatus for estimating quality of grains
JP7326026B2 (en) Rice component measuring device, combine harvester, and rice component measuring method
JP2020085622A (en) Article inspection device
JP2023137889A (en) Grain component sensor and grain component analyzer
KR200404482Y1 (en) Portable Data Aquisition Apparatus for Internal Qualtity of Fruits
CN110462397B (en) Monitoring device, system and method for monitoring fruit condition
JP7294567B2 (en) Grain measuring devices, combines and field management systems
JP7418782B2 (en) measurement analysis system
Maiwald et al. Portable shifted excitation Raman difference spectroscopy for agri-photonics: from on-site precision agriculture to smart farming
Saeys et al. Potential for on-site and on-line analysis of hog manure using visual and near-infrared reflectance spectroscopy
Song et al. Winter wheat GPC estimation with fluorescence-based sensor measurements of canopy
TH45600A (en) Combined optical box for spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230802

R150 Certificate of patent or registration of utility model

Ref document number: 7326026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150