JP2020189273A - Ozone contact reaction tank - Google Patents

Ozone contact reaction tank Download PDF

Info

Publication number
JP2020189273A
JP2020189273A JP2019096097A JP2019096097A JP2020189273A JP 2020189273 A JP2020189273 A JP 2020189273A JP 2019096097 A JP2019096097 A JP 2019096097A JP 2019096097 A JP2019096097 A JP 2019096097A JP 2020189273 A JP2020189273 A JP 2020189273A
Authority
JP
Japan
Prior art keywords
treated water
ozone
reaction tank
gas
contact reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019096097A
Other languages
Japanese (ja)
Other versions
JP7360815B2 (en
Inventor
陽介 山西
Yosuke Yamanishi
陽介 山西
隆央 下山
Takao Shimoyama
隆央 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2019096097A priority Critical patent/JP7360815B2/en
Publication of JP2020189273A publication Critical patent/JP2020189273A/en
Application granted granted Critical
Publication of JP7360815B2 publication Critical patent/JP7360815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an ozone contact reaction tank capable of effectively separating ozone treated water from fine bubbles in a gas-liquid separation part.SOLUTION: The ozone contact reaction tank includes a descending flow channel 13 in which the treated water descends, an ascending flow channel 14 in which the treated water rises through the lower end of the descending flow channel, and a gas-liquid separation part 17 at the upper end of the ascending flow channel, with an inlet 15 of treated water and an ozone inlet 16 at the upper end of the descending flow channel, and a gas-liquid separation part 17 with an overflow weir 17a at the upper end of the ascending flow channel. It has a treated water outflow part 19 at the bottom of the gas-liquid separation part 17 via the treated water storage part 17b, and the gas discharge part 20 is provided at the top, and a treated water collision member 23, with which the ozone treated water 22 falling over the overflow weir collides with the treated water storage part is installed on an outer surface of the ascending flow channel.SELECTED DRAWING: Figure 1

Description

本発明は、オゾン接触反応槽に関し、詳しくは、被処理水中に注入したオゾン(オゾン含有ガス)をオゾン処理水から分離する気液分離部を備えたオゾン接触反応槽に関する。 The present invention relates to an ozone contact reaction tank, and more particularly to an ozone contact reaction tank provided with a gas-liquid separation unit that separates ozone (ozone-containing gas) injected into the water to be treated from the ozone-treated water.

各種水処理、特に上水の高度浄水処理に用いられているオゾン接触反応槽として、流下管内に流入する被処理水中にオゾンガス、通常は、無声放電によって酸素の一部をオゾン化したオゾン含有酸素を注入し、オゾンガスを同伴した被処理水が下降流路内を下降することによる水圧の上昇を利用して被処理水中にオゾンを溶解させ、溶解したオゾンで被処理水中の有機化合物などの除去対象物質を酸化、分解して除去する効果を促進させるものが知られている。 As an ozone contact reaction tank used for various water treatments, especially advanced water purification treatment of clean water, ozone gas in the water to be treated flowing into the flow pipe, usually ozone-containing oxygen obtained by ozoneizing a part of oxygen by silent discharge. Is injected, ozone is dissolved in the water to be treated by utilizing the increase in water pressure caused by the water to be treated accompanied by ozone gas descending in the descending flow path, and the dissolved ozone removes organic compounds in the water to be treated. Those that promote the effect of oxidizing, decomposing and removing the target substance are known.

このようなオゾン接触反応槽の具体例として、図4に示すように、下端の折り返し部で連通した金属やコンクリート製の内管11と外管12とからなる二重管の内管11内を下降流路13、内管11と外管12との間を上昇流路14とし、内管11の上端部に被処理水流入部15とオゾン注入部16とを設けるとともに、外管12の上端部を囲むようにして気液分離部17を設けた二重管構造のオゾン接触反応槽が用いられている(例えば、特許文献1参照。)。通常、このオゾン接触反応槽の後段には、気液分離部17で分離したオゾン処理水をろ過処理するための活性炭吸着池18が設けられており、気液分離部17の処理水流出部19から流出したオゾン処理水のろ過処理が行われ、気液分離部17で分離したオゾン含有ガスは、ガス排出部20からガス処理部に排出されてオゾンの無害化が行われる。 As a specific example of such an ozone contact reaction tank, as shown in FIG. 4, the inside of the inner pipe 11 of the double pipe composed of the inner pipe 11 and the outer pipe 12 made of metal or concrete communicating at the folded portion at the lower end is formed. The descending flow path 13, between the inner pipe 11 and the outer pipe 12 is an ascending flow path 14, and the water to be treated water inflow portion 15 and the ozone injection portion 16 are provided at the upper end portion of the inner pipe 11, and the upper end of the outer pipe 12 is provided. An ozone contact reaction tank having a double-tube structure in which a gas-liquid separation portion 17 is provided so as to surround the portions is used (see, for example, Patent Document 1). Normally, an activated carbon adsorption pond 18 for filtering the ozone-treated water separated by the gas-liquid separation unit 17 is provided in the subsequent stage of the ozone contact reaction tank, and the treated water outflow unit 19 of the gas-liquid separation unit 17 is provided. The ozone-treated water discharged from the ozone-treated water is filtered, and the ozone-containing gas separated by the gas-liquid separation unit 17 is discharged from the gas discharge unit 20 to the gas treatment unit to detoxify the ozone.

特許第3648352号公報Japanese Patent No. 3648352

前記特許文献1に記載された気液分離部17は、外管12の上端を越流堰17aとして利用し、上昇流路14を上昇してきた過飽和オゾン処理水(外部から気泡として視認できる気泡(ミリバブル)とオゾン含有ガスが過剰に溶解したオゾン処理水)を越流堰17aの上端から気液分離部17の下部に設けられた処理水貯留部17bに貯まっているオゾン処理水に落下させるようにしているため、オゾン処理水中に混在するミリバブルと落下により過飽和から解放されて発生した微細気泡(マイクロバブル)とが大量に混入していた。さらに、落下した新たなオゾン処理水によって気泡の上昇が阻害されてしまい、オゾン処理水中の終末速度が遅いマイクロバブルが浮上・消滅せず、過飽和オゾン処理水に混在した状態で活性炭吸着池18に送られてしまう。 The gas-liquid separation unit 17 described in Patent Document 1 uses the upper end of the outer pipe 12 as an overflow weir 17a, and the supersaturated ozone-treated water (bubbles that can be visually recognized as bubbles from the outside) that has risen in the ascending flow path 14. Millibubbles) and ozone-treated water in which ozone-containing gas is excessively dissolved) are dropped from the upper end of the overflow weir 17a onto the ozone-treated water stored in the treated water storage section 17b provided at the bottom of the gas-liquid separation section 17. Therefore, a large amount of millibubbles mixed in the ozone-treated water and fine bubbles (microbubbles) generated by being released from hypersaturation by dropping were mixed. Furthermore, the rise of bubbles is hindered by the new ozone-treated water that has fallen, and the microbubbles with a slow terminal velocity in the ozone-treated water do not surface or disappear, and the activated carbon adsorption pond 18 is mixed with the hypersaturated ozone-treated water. Will be sent.

このため、活性炭吸着池18内で活性炭間の間隙を流れる際にオゾン処理水中のマイクロバブルがその間隙にトラップされ、さらに過飽和状態のオゾン処理水が供給されることによってマイクロバブルの成長を助長し、活性炭層内に気泡層が発生することがあった。活性炭層内で気泡層が発生すると、活性炭吸着池18におけるろ過抵抗が増大し、活性炭吸着池18の損失水頭を上昇させる要因となっていた。このため、水処理を中断して活性炭吸着池18の脱気工程を行わなければならないという問題があった。 Therefore, when the microbubbles in the ozone-treated water flow through the gap between the activated carbons in the activated carbon adsorption pond 18, the microbubbles in the ozone-treated water are trapped in the gap, and the supersaturated ozone-treated water is supplied to promote the growth of the microbubbles. , A bubble layer was sometimes generated in the activated carbon layer. When a bubble layer was generated in the activated carbon layer, the filtration resistance in the activated carbon adsorption pond 18 increased, which was a factor of increasing the head loss of the activated carbon adsorption pond 18. Therefore, there is a problem that the water treatment must be interrupted and the degassing step of the activated carbon adsorption pond 18 must be performed.

そこで本発明は、気液分離部におけるオゾン処理水と微細気泡との分離を効果的に行うことができ、後段での処理に悪影響を及ぼすことがない気液分離部、特に、活性炭吸着池での気泡層の発生を防止することができるオゾン接触反応槽を提供することを目的としている。 Therefore, the present invention can effectively separate ozone-treated water and fine bubbles in the gas-liquid separation section, and in the gas-liquid separation section, particularly in the activated carbon adsorption pond, which does not adversely affect the treatment in the subsequent stage. It is an object of the present invention to provide an ozone contact reaction tank capable of preventing the generation of a bubble layer.

上記目的を達成するため、本発明のオゾン接触反応槽は、被処理水が下降する下降流路と、該下降流路の下端に連通して被処理水が上昇する上昇流路と、該上昇流路の上端に設けられた気液分離部とを備え、前記下降流路の上端部に被処理水の流入部及びオゾンの注入部が設けられ、前記上昇流路の上端部に、越流堰を有する気液分離部が設けられるとともに、該気液分離部の下部に処理水貯留部を介して処理水流出部が、上部にガス排出部がそれぞれ設けられたオゾン接触反応槽において、前記処理水貯留部に、前記越流堰を越えて落下するオゾン処理水が衝突する処理水衝突部材を前記上昇流路の外面に設けたことを特徴としている。 In order to achieve the above object, the ozone contact reaction tank of the present invention has a descending flow path in which the water to be treated descends, an ascending channel in which the water to be treated rises by communicating with the lower end of the descending flow path, and the ascending flow path. It is provided with a gas-liquid separation portion provided at the upper end of the flow path, an inflow portion of water to be treated and an ozone injection portion are provided at the upper end portion of the descending flow path, and an overflow is provided at the upper end portion of the ascending flow path. In an ozone contact reaction tank in which a gas-liquid separation section having a dam is provided, a treated water outflow section is provided below the gas-liquid separation section via a treated water storage section, and a gas discharge section is provided above the gas-liquid separation section. The treated water storage unit is characterized in that a treated water collision member with which ozone treated water falling over the overflow dam collides with the treated water storage portion is provided on the outer surface of the ascending flow path.

さらに、本発明のオゾン接触反応槽は、前記処理水衝突部材の上面の高さが処理水貯留部内の水面に対して面一に設定されていること、あるいは、越流堰側の基部から先端に向かう水勾配を有していることを特徴としている。また、前記処理水衝突部材が、コンクリートで形成されていること、あるいは、金属板で形成されていること、あるいは、金属製多孔板で形成されていることを特徴としている。 Further, in the ozone contact reaction tank of the present invention, the height of the upper surface of the treated water collision member is set flush with respect to the water surface in the treated water storage portion, or the tip from the base portion on the overflow weir side. It is characterized by having a water gradient toward. Further, the treated water collision member is characterized in that it is formed of concrete, a metal plate, or a perforated metal plate.

本発明のオゾン接触反応槽によれば、越流堰を越えて落下するオゾン処理水が処理水衝突部材に衝突する際のエネルギーによって処理水の過飽和が解消される他、落下したオゾン処理水が水中に流入しないため、マイクロバブルが気泡として存在しにくくなることから、気泡がほとんど存在しない状態のオゾン処理水を得ることができる。したがって、後段の活性炭吸着池内で気泡層を生じることがなくなり、損失水頭の上昇を防止できる。 According to the ozone contact reaction tank of the present invention, the oversaturation of the treated water is eliminated by the energy when the ozone-treated water falling over the overflow dam collides with the treated water collision member, and the dropped ozone-treated water is eliminated. Since it does not flow into water, microbubbles are less likely to exist as bubbles, so that ozone-treated water in a state in which almost no bubbles are present can be obtained. Therefore, it is possible to prevent the formation of a bubble layer in the activated carbon adsorption pond in the subsequent stage and prevent the head loss from rising.

本発明のオゾン接触反応槽の第1形態例を示す要部の断面図である。It is sectional drawing of the main part which shows the 1st form example of the ozone contact reaction tank of this invention. 本発明のオゾン接触反応槽の第2形態例を示す要部の断面図である。It is sectional drawing of the main part which shows the 2nd form example of the ozone contact reaction tank of this invention. 本発明のオゾン接触反応槽の第3形態例を示す要部の断面図である。It is sectional drawing of the main part which shows the 3rd form example of the ozone contact reaction tank of this invention. 従来のオゾン接触反応槽の一例を示す系統図である。It is a system diagram which shows an example of the conventional ozone contact reaction tank.

図1は、本発明のオゾン接触反応槽の第1形態例を示す要部の断面図である。なお、以下の説明において、前記図4に示したオゾン接触反応槽の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。 FIG. 1 is a cross-sectional view of a main part showing an example of the first embodiment of the ozone contact reaction tank of the present invention. In the following description, the same components as the components of the ozone contact reaction tank shown in FIG. 4 will be designated by the same reference numerals, and detailed description thereof will be omitted.

本形態例に示すオゾン接触反応槽21は、基本的に従来と同様の構成を有しており、内管11と外管12とからなる二重管の上部に、外管12の上端部を囲むようにして気液分離部17が設けられている。内管11の上部は、気液分離部17の天板を貫通し、上端部に、被処理水流入部15とオゾン注入部16とが設けられている。 The ozone contact reaction tank 21 shown in this embodiment has basically the same configuration as the conventional one, and the upper end of the outer tube 12 is placed on the upper part of the double tube composed of the inner tube 11 and the outer tube 12. A gas-liquid separation unit 17 is provided so as to surround the gas-liquid separation unit 17. The upper part of the inner pipe 11 penetrates the top plate of the gas-liquid separation part 17, and the water to be treated water inflow part 15 and the ozone injection part 16 are provided at the upper end part.

気液分離部17は、外管12と同軸の円筒状に形成されており、底板には、気泡を分離したオゾン処理水を抜き出して後段の設備、例えば活性炭吸着池(図示せず)に送出するための処理水流出部19が設けられるとともに、天板には、分離した気体(オゾン含有ガス)を抜き出してオゾン無害化処理設備に送出するためのガス排出部20が設けられている。なお、処理水流出部19の直後には、処理水貯留部17bに貯まる処理水の水面を一定に保持するための堰などが設けられている。 The gas-liquid separation unit 17 is formed in a cylindrical shape coaxial with the outer tube 12, and ozone-treated water from which bubbles have been separated is extracted from the bottom plate and sent to a subsequent facility, for example, an activated carbon adsorption pond (not shown). A treated water outflow section 19 is provided for this purpose, and a gas discharge section 20 is provided on the top plate for extracting the separated gas (ozone-containing gas) and sending it to the ozone detoxification treatment facility. Immediately after the treated water outflow section 19, a weir or the like for keeping the surface of the treated water stored in the treated water storage section 17b constant is provided.

そして、外管12の上部外周には、外管12の上端に形成された越流堰17aを越えて落下する過飽和オゾン処理水22を衝突させるための処理水衝突部材23が設けられている。この処理水衝突部材23は、コンクリートによってリング状に外管12と一体的に形成されたもので、内周部が外管12の外周面に接しており、外周部と気液分離部17の内周面との間には、流下部24となる空間が設けられている。また、処理水衝突部材23の上面は、気液分離部下部の処理水貯留部17bに貯まる処理水の設定水面に対して面一になるように、水平方向に配置されている。 A treated water collision member 23 for colliding the supersaturated ozone-treated water 22 that falls over the overflow weir 17a formed at the upper end of the outer pipe 12 is provided on the upper outer periphery of the outer pipe 12. The treated water collision member 23 is integrally formed with the outer pipe 12 in a ring shape by concrete, and the inner peripheral portion is in contact with the outer peripheral surface of the outer pipe 12, and the outer peripheral portion and the gas-liquid separation portion 17 A space serving as a flow bottom 24 is provided between the inner peripheral surface and the inner peripheral surface. Further, the upper surface of the treated water collision member 23 is arranged in the horizontal direction so as to be flush with the set water surface of the treated water stored in the treated water storage portion 17b below the gas-liquid separation portion.

このオゾン接触反応槽21において、内管11の上部で被処理水中に注入されたオゾン含有ガスは、内管11内の下降流路13を10m以上下方まで流下する際の圧力上昇によって水中に圧入されて溶解し、被処理水中の除去対象物質がオゾンと反応して酸化され、分解、除去される。その後、内管11と外管12との間の上昇流路14を上昇する際の圧力低下に伴い、不安定な過飽和状態となり、上昇流路を流れる際の衝撃でミリバブルと過飽和オゾン処理水とが混在した状態となる。大径の気泡、例えば、外部から気泡として視認できるミリバブル(気泡粒径100μm以上)は、自身の浮上力によって上昇流路14の上端で浮上・消滅し、気体となってガス排出部20から排出される。このとき、水への溶解度の観点から、オゾン含有ガス中の酸素は、オゾンよりも溶解した状態では不安定であり、酸素が気泡を生成する主たる要因となっている。 In the ozone contact reaction tank 21, the ozone-containing gas injected into the water to be treated at the upper part of the inner pipe 11 is press-fitted into the water due to the pressure increase when flowing down the descending flow path 13 in the inner pipe 11 to 10 m or more. The substance to be removed in the water to be treated reacts with ozone to be oxidized, decomposed and removed. After that, as the pressure drops when ascending the ascending flow path 14 between the inner pipe 11 and the outer pipe 12, an unstable supersaturated state is reached, and the impact when flowing through the ascending flow path causes millibubbles and supersaturated ozone-treated water. Will be in a mixed state. Large-diameter bubbles, for example, millibubbles (bubble particle size of 100 μm or more) that can be visually recognized as bubbles from the outside, rise and disappear at the upper end of the ascending flow path 14 due to their own levitation force, and become gas and are discharged from the gas discharge unit 20. Will be done. At this time, from the viewpoint of solubility in water, oxygen in the ozone-containing gas is more unstable in a dissolved state than ozone, and oxygen is a main factor for generating bubbles.

一方、マイクロバブル(気泡粒径1〜100μm程度)は、一部が再溶解して消滅し、他の一部が成長して浮上・消滅するが、大部分の気泡は越流堰17aを越え、処理水衝突部材23に向かって落下する。処理水衝突部材23の上面に落下した過飽和オゾン処理水22は、処理水衝突部材23に衝突する際のエネルギーによって過飽和状態が解放され、処理水衝突部材23の上面に水面がなく、落下した過飽和オゾン処理水22が水中に流入しないため、マイクロバブルが気泡として存在しにくくなり、前記ミリバブル以上の気泡と同様にしてオゾン処理水中から排出される。 On the other hand, some of the microbubbles (bubble size of about 1 to 100 μm) are redissolved and disappear, and the other part grows and rises and disappears, but most of the bubbles cross the overflow weir 17a. , It falls toward the treated water collision member 23. The supersaturated ozone-treated water 22 that has fallen on the upper surface of the treated water collision member 23 is released from the supersaturated state by the energy when it collides with the treated water collision member 23, and there is no water surface on the upper surface of the treated water collision member 23. Since the ozone-treated water 22 does not flow into the water, microbubbles are less likely to exist as bubbles, and are discharged from the ozone-treated water in the same manner as the bubbles having a millibubble or more.

これにより、処理水貯留部17bには、マイクロバブルが低減したオゾン処理水が貯留された状態になる。このようにして、後段の活性炭吸着池内で気泡層を発生させる大きな原因となるマイクロバブルをオゾン処理水中から排除することにより、活性炭吸着池での気泡層の発生を防止して、損失水頭の上昇を防止できる。したがって、活性炭吸着池の脱気工程を行う必要がなくなり、水処理効率の向上が図れる。 As a result, the treated water storage unit 17b is in a state in which ozone-treated water with reduced microbubbles is stored. In this way, by eliminating the microbubbles, which are a major cause of generating a bubble layer in the activated carbon adsorption pond in the subsequent stage, from the ozone-treated water, the generation of the bubble layer in the activated carbon adsorption pond is prevented and the head loss rises. Can be prevented. Therefore, it is not necessary to perform the degassing step of the activated carbon adsorption pond, and the water treatment efficiency can be improved.

一方、外部からは存在が視認できないウルトラファインバブル(気泡粒径1μm以下)は、オゾン処理水中に分散した状態のまま処理水流出部18から流出していくが、水中に停滞しているため、活性炭吸着池内で気泡層を発生させることはない。 On the other hand, ultrafine bubbles (bubble size of 1 μm or less), whose existence cannot be visually recognized from the outside, flow out from the treated water outflow section 18 in a state of being dispersed in the ozone-treated water, but because they are stagnant in the water. No bubble layer is generated in the activated carbon adsorption pond.

また、このような処理水衝突部材23を設けることにより、越流堰17aを越えた新たなオゾン処理水が、処理水衝突部材23の上面を外周方向に流れてスムーズに気液分離部17の下部に貯まっているオゾン処理水の水面部分に流入するので、貯まっているオゾン処理水に複雑な流れを発生させることがなく、新たな気泡の発生も防止できる。 Further, by providing such a treated water collision member 23, new ozone-treated water that has crossed the overflow weir 17a flows in the outer peripheral direction on the upper surface of the treated water collision member 23, and the gas-liquid separation unit 17 smoothly. Since it flows into the surface portion of the ozone-treated water stored in the lower part, it is possible to prevent the generation of new bubbles without generating a complicated flow in the stored ozone-treated water.

図2は、本発明のオゾン接触反応槽の第2形態例を示す要部の断面図である。本形態例では、内周部に外管12の外径に対応した開口25aを有するリング形状の金属板、例えば鋼板で形成した処理水衝突部材25を、気液分離部17の下部に貯まるオゾン処理水の設定水面に対して面一になるように装着している。また、処理水衝突部材25の下面と外管12の外周面との間には、処理水衝突部材25の強度を確保するための頬杖25bを設けている。 FIG. 2 is a cross-sectional view of a main part showing a second embodiment example of the ozone contact reaction tank of the present invention. In this embodiment, a ring-shaped metal plate having an opening 25a corresponding to the outer diameter of the outer pipe 12 on the inner peripheral portion, for example, a treated water collision member 25 formed of a steel plate is stored in the lower part of the gas-liquid separation portion 17. It is installed so that it is flush with the set water surface of the treated water. Further, a cheek cane 25b for ensuring the strength of the treated water collision member 25 is provided between the lower surface of the treated water collision member 25 and the outer peripheral surface of the outer pipe 12.

このような金属製の処理水衝突部材25を設けることによっても、前記第1形態例で示したコンクリート製の処理水衝突部材23と同様の作用効果を得ることができ、処理水流出部19から送出するオゾン処理水中の微細気泡(マイクロバブル)を排除することができる。 By providing such a metal treated water collision member 25, the same action and effect as the concrete treated water collision member 23 shown in the first embodiment can be obtained, and the treated water outflow portion 19 can be used. It is possible to eliminate fine bubbles (microbubbles) in the ozone-treated water to be sent out.

図3は、本発明のオゾン接触反応槽の第3形態例を示す要部の断面図である。本形態例では、多数の通孔26aを有する金属製多孔板を使用した処理水衝突部材26を、気液分離部17の下部に貯まるオゾン処理水の水面全体を覆うようにして設けている。越流堰17aを越えて落下する過飽和状態のオゾン処理水は、処理水衝突部材26に衝突した際のエネルギーによってオゾン処理水中の過飽和が解消され、部材26の上面に水面がなく、水中に流入しないため、微細気泡が生成されにくく、オゾン処理水は処理水衝突部材26の多数の通孔26aを通過して気液分離部17の下部に流下する。 FIG. 3 is a cross-sectional view of a main part showing a third embodiment example of the ozone contact reaction tank of the present invention. In this embodiment, the treated water collision member 26 using a metal perforated plate having a large number of through holes 26a is provided so as to cover the entire surface of the ozone-treated water stored in the lower part of the gas-liquid separation portion 17. The supersaturated ozone-treated water that falls over the overflow dam 17a is eliminated by the energy generated when it collides with the treated water collision member 26, and the ozone-treated water has no water surface on the upper surface of the member 26 and flows into the water. Therefore, it is difficult for fine bubbles to be generated, and the ozone-treated water passes through a large number of through holes 26a of the treated water collision member 26 and flows down to the lower part of the gas-liquid separation unit 17.

処理水衝突部材26における通孔26aの大きさは、表面張力によって処理水衝突部材26の上にオゾン処理水が滞留することがなく、越流堰17aから落下したオゾン処理水に適度な衝突エネルギーを与えることができるように設定すればよく、落下したオゾン処理水が衝突する内周部分の通孔を小さく、外周部分の通孔を大きく形成して衝突エネルギーと流下性の適切化を図ることもできる。さらに、内周側に無孔板を、外周側に有孔板を配置することも可能である。 The size of the through hole 26a in the treated water collision member 26 is such that the ozone treated water does not stay on the treated water collision member 26 due to surface tension, and the ozone treated water dropped from the overflow dam 17a has an appropriate collision energy. It suffices to set so that the water can be given, and the through-holes in the inner peripheral part where the fallen ozone-treated water collides are made small, and the through-holes in the outer peripheral part are made large to optimize the collision energy and flowability. You can also. Further, it is also possible to arrange a non-perforated plate on the inner peripheral side and a perforated plate on the outer peripheral side.

なお、オゾン接触反応槽の構造は、前記各例の構造に限るものではなく、各種構造を採用することができ、後段の設備も任意である。さらに、処理水衝突部材の上面でのオゾン処理水の滞留を防止するため、処理水衝突部材の上面に、越流堰側の基部から処理水貯留部の外周側先端に向かって僅かに傾斜した水勾配を設けることもできる。 The structure of the ozone contact reaction tank is not limited to the structure of each of the above examples, and various structures can be adopted, and the equipment at the subsequent stage is also optional. Further, in order to prevent the ozone-treated water from staying on the upper surface of the treated water collision member, the upper surface of the treated water collision member is slightly inclined from the base on the overflow weir side toward the outer peripheral end of the treated water storage part. A water gradient can also be provided.

11…内管、12…外管、13…下降流路、14…上昇流路、15…被処理水流入部、16…オゾン注入部、17…気液分離部、17a…越流堰、17b…処理水貯留部、18…活性炭吸着池、19…処理水流出部、20…ガス排出部、21…オゾン接触反応槽、22…オゾン処理水、23…処理水衝突部材、24…流下部、25…処理水衝突部材、25a…開口、25b…頬杖、26…処理水衝突部材、26a…通孔 11 ... Inner pipe, 12 ... Outer pipe, 13 ... Downstream, 14 ... Upstream, 15 ... Water inflow part to be treated, 16 ... Ozone injection part, 17 ... Gas-liquid separation part, 17a ... Overflow dam, 17b ... Treated water storage part, 18 ... Activated carbon adsorption pond, 19 ... Treated water outflow part, 20 ... Gas discharge part, 21 ... Ozone contact reaction tank, 22 ... Ozone treated water, 23 ... Treated water collision member, 24 ... Flowing down, 25 ... Treated water collision member, 25a ... Opening, 25b ... Cheek cane, 26 ... Treated water collision member, 26a ... Through hole

Claims (6)

被処理水が下降する下降流路と、該下降流路の下端に連通して被処理水が上昇する上昇流路と、該上昇流路の上端に設けられた気液分離部とを備え、前記下降流路の上端部に被処理水の流入部及びオゾンの注入部が設けられ、前記上昇流路の上端部に、越流堰を有する気液分離部が設けられるとともに、該気液分離部の下部に処理水貯留部を介して処理水流出部が、上部にガス排出部がそれぞれ設けられたオゾン接触反応槽において、前記処理水貯留部に、前記越流堰を越えて落下するオゾン処理水が衝突する処理水衝突部材を前記上昇流路の外面に設けたことを特徴とするオゾン接触反応槽。 It is provided with a descending flow path in which the water to be treated descends, an ascending flow path in which the water to be treated rises by communicating with the lower end of the descending flow path, and a gas-liquid separation portion provided at the upper end of the ascending flow path. An inflow portion of water to be treated and an ozone injection portion are provided at the upper end of the descending flow path, and a gas-liquid separation portion having an overflow dam is provided at the upper end of the ascending flow path, and the gas-liquid separation is provided. In an ozone contact reaction tank in which a treated water outflow section is provided at the lower part of the section via a treated water storage section and a gas discharge section is provided at the upper part, ozone that falls into the treated water storage section over the overflow dam. An ozone contact reaction tank characterized in that a treated water collision member with which the treated water collides is provided on the outer surface of the ascending flow path. 前記処理水衝突部材は、上面の高さが処理水貯留部内の設定水面に対して面一に設定されていることを特徴とする請求項1記載のオゾン接触反応槽。 The ozone contact reaction tank according to claim 1, wherein the height of the upper surface of the treated water collision member is set flush with respect to the set water surface in the treated water storage unit. 前記処理水衝突部材は、上面が越流堰側の基部から先端に向かう水勾配を有していることを特徴とする請求項1記載のオゾン接触反応槽。 The ozone contact reaction tank according to claim 1, wherein the treated water collision member has an upper surface having a water gradient from a base portion on the overflow weir side toward the tip end. 前記処理水衝突部材は、コンクリートで形成されていることを特徴とする請求項1乃至3のいずれか1項記載のオゾン接触反応槽。 The ozone contact reaction tank according to any one of claims 1 to 3, wherein the treated water collision member is made of concrete. 前記処理水衝突部材は、金属板で形成されていることを特徴とする請求項1乃至3のいずれか1項記載のオゾン接触反応槽。 The ozone contact reaction tank according to any one of claims 1 to 3, wherein the treated water collision member is formed of a metal plate. 前記処理水衝突部材は、金属製多孔板で形成されていることを特徴とする請求項1乃至3のいずれか1項記載のオゾン接触反応槽。 The ozone contact reaction tank according to any one of claims 1 to 3, wherein the treated water collision member is formed of a perforated metal plate.
JP2019096097A 2019-05-22 2019-05-22 Ozone contact reaction tank Active JP7360815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019096097A JP7360815B2 (en) 2019-05-22 2019-05-22 Ozone contact reaction tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096097A JP7360815B2 (en) 2019-05-22 2019-05-22 Ozone contact reaction tank

Publications (2)

Publication Number Publication Date
JP2020189273A true JP2020189273A (en) 2020-11-26
JP7360815B2 JP7360815B2 (en) 2023-10-13

Family

ID=73454218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096097A Active JP7360815B2 (en) 2019-05-22 2019-05-22 Ozone contact reaction tank

Country Status (1)

Country Link
JP (1) JP7360815B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572821A (en) * 1983-05-10 1986-02-25 Societe Lyonnaise Des Eaux Et De L'eclairage Apparatus for dissolving ozone in a fluid
JPH0780480A (en) * 1993-09-14 1995-03-28 Masanori Yoshinaga Water purifying apparatus
JPH0938672A (en) * 1995-07-26 1997-02-10 Meidensha Corp Pressurization type lower injection system multistage ozone contact vessel
JPH09299995A (en) * 1996-05-20 1997-11-25 Meidensha Corp Antifoaming device in sewage sludge treatment
JPH10263566A (en) * 1997-03-27 1998-10-06 Nkk Corp Water treating device
JPH11675A (en) * 1997-06-12 1999-01-06 Nkk Corp Ozone contact reaction tank
JP3150115U (en) * 2009-02-13 2009-04-30 アーストラストエンジニアリング株式会社 Gas separator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572821A (en) * 1983-05-10 1986-02-25 Societe Lyonnaise Des Eaux Et De L'eclairage Apparatus for dissolving ozone in a fluid
JPH0780480A (en) * 1993-09-14 1995-03-28 Masanori Yoshinaga Water purifying apparatus
JPH0938672A (en) * 1995-07-26 1997-02-10 Meidensha Corp Pressurization type lower injection system multistage ozone contact vessel
JPH09299995A (en) * 1996-05-20 1997-11-25 Meidensha Corp Antifoaming device in sewage sludge treatment
JPH10263566A (en) * 1997-03-27 1998-10-06 Nkk Corp Water treating device
JPH11675A (en) * 1997-06-12 1999-01-06 Nkk Corp Ozone contact reaction tank
JP3150115U (en) * 2009-02-13 2009-04-30 アーストラストエンジニアリング株式会社 Gas separator

Also Published As

Publication number Publication date
JP7360815B2 (en) 2023-10-13

Similar Documents

Publication Publication Date Title
JP2617502B2 (en) Gas purification method and apparatus
JP3419765B2 (en) Ozone oxidizer
JP5395627B2 (en) Gas-liquid dissolving device
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
JP2008296097A (en) Method and apparatus for ultraviolet water treatment
JP4392416B2 (en) Diffuser for diffuser and diffuser
JP2020189273A (en) Ozone contact reaction tank
JP4528828B2 (en) Water treatment process and apparatus by fluid flow
JP6278796B2 (en) Deodorization device
JP2601379B2 (en) Gas deodorization and oxidation treatment method, liquid ozone oxidation treatment method, and pretreatment method for aerobic biological treatment
JP2007090165A (en) Liquid cyclone
JP2005218955A (en) Gas/liquid contactor
JP2006255699A (en) Flue gas purification device having improved oxidation device in scrubbing liquid sump
JP2012250172A (en) Apparatus and method for decomposing hydrogen peroxide
JP5894857B2 (en) Waste water treatment apparatus and waste water treatment method
JP2005254029A (en) Solid-liquid separation mechanism and organic wastewater treatment apparatus
JP2007075674A (en) Microbubble generator and sanitary washing device equipped with it
JPH10225696A (en) Pressurization type ozone treating device
KR100760771B1 (en) Apparatus separating water and oil adapted to device raising an air bubble capable to generate oxygen
CN105036294A (en) Novel filler tower capable of improving utilization efficiency of gas
JP2003094047A (en) Oil-contaminated water purifying method and apparatus therefor
JPWO2013084855A1 (en) Method for treating hydrogen peroxide-containing water
JP2005161174A (en) Gas dissolving method and gas dissolving device
JP2002307054A (en) Ozone water producing apparatus and gas-liquid separator thereof
JPH05146796A (en) Device for purifying closed natural water area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231002

R150 Certificate of patent or registration of utility model

Ref document number: 7360815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150