JP2020188676A - Rotary electric machine and in-wheel motor using the same - Google Patents

Rotary electric machine and in-wheel motor using the same Download PDF

Info

Publication number
JP2020188676A
JP2020188676A JP2020073515A JP2020073515A JP2020188676A JP 2020188676 A JP2020188676 A JP 2020188676A JP 2020073515 A JP2020073515 A JP 2020073515A JP 2020073515 A JP2020073515 A JP 2020073515A JP 2020188676 A JP2020188676 A JP 2020188676A
Authority
JP
Japan
Prior art keywords
stator
electric machine
rotary electric
magnet
stator core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020073515A
Other languages
Japanese (ja)
Inventor
兼重 宙
Chu Kaneshige
宙 兼重
角振 正浩
Masahiro Kadofuri
正浩 角振
石川 弘二
Koji Ishikawa
弘二 石川
智士 平田
Satoshi Hirata
智士 平田
哲弘 西出
Tetsuhiro Nishide
哲弘 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THK Co Ltd filed Critical THK Co Ltd
Publication of JP2020188676A publication Critical patent/JP2020188676A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

To provide a compact rotary electric machine which can smoothly drive a movement mechanism with a reduced component weight.SOLUTION: The rotary electric machine includes: a stator having a stator core on which an armature coil is wound; and a rotor having a magnet which is freely rotatably arranged by the intermediary of a predetermined gap to the stator to face the stator. The stator is attached to a movement mechanism which is movable in a revolving shaft direction. At least an opposite face of the magnet out of mutually opposite faces of the magnet and the stator core is formed in a sectional stepwise shape which expands to the radial direction along the movement direction of the stator, and a larger space than the gap is formed between a corner part of the magnet and the stator core.SELECTED DRAWING: Figure 3

Description

本発明は、磁束可変機構を有する回転電機及び、この回転電機を用いたインホイールモータに関するものである。 The present invention relates to a rotary electric machine having a magnetic flux variable mechanism and an in-wheel motor using this rotary electric machine.

従来、回転電機の低速及び高速での出力を調整することで、回転速度に応じた出力特性を得ることができる回転電機が知られている。このような回転電機は種々の構造が知られているが、例えば、固定子と、固定子に対して同軸をなして回転自在に設けられた回転子と、回転子に対する固定子の軸方向での相対位置を変化させる移動手段とを有し、固定子に電機子コイル及びコアが設けられ、コアに対峙するようにマグネットが設けられた回転電機が知られている。 Conventionally, there is known a rotary electric machine capable of obtaining output characteristics according to the rotation speed by adjusting the output of the rotary electric machine at low speed and high speed. Various structures are known for such a rotary electric machine. For example, in the axial direction of the stator, the rotor provided coaxially with the stator and rotatably provided, and the stator with respect to the stator. A rotary electric machine is known which has a moving means for changing the relative position of the stator, an armature coil and a core are provided on the stator, and a magnet is provided so as to face the core.

このような回転電機によれば、低速回転時には、固定子と回転子の対向面積が大きくなるように移動機構によって固定子を軸方向に移動させて固定子を通過する有効磁束が大きくなるようにして高トルク化を図り、高速回転時には、固定子と回転子との対向面積を少なくするように固定子を移動させて固定子を通過する有効磁束が小さくなるようにして高速回転を実現している。 According to such a rotating electric machine, at low speed rotation, the stator is moved in the axial direction by a moving mechanism so that the facing area between the stator and the rotor becomes large so that the effective magnetic flux passing through the stator becomes large. At the time of high-speed rotation, the stator is moved so as to reduce the facing area between the stator and the rotor so that the effective magnetic flux passing through the stator becomes small, and high-speed rotation is realized. There is.

また、固定子の軸方向に沿った移動に伴って出力特性の可変範囲をより一層大きくするために、種々の形態が知られている。例えば、図5に示すように固定子111が移動するに従い、固定子111と磁石114の相対する面積を減少させるために固定子111と磁石114の相対する面を階段状に構成することで、固定子111の軸方向の移動に伴って固定子111に作用する磁束を効果的に減少させて出力特性の可変範囲を大きくしている。 Further, various forms are known in order to further increase the variable range of the output characteristic as the stator moves along the axial direction. For example, as shown in FIG. 5, as the stator 111 moves, the facing surfaces of the stator 111 and the magnet 114 are formed in a stepped shape in order to reduce the area where the stator 111 and the magnet 114 face each other. The magnetic flux acting on the stator 111 with the axial movement of the stator 111 is effectively reduced to increase the variable range of the output characteristics.

特開2008−141900号公報Japanese Unexamined Patent Publication No. 2008-141900

しかし、従来の回転電機によれば、回転子の磁石114を階段状に形成して固定子111を移動機構によって回転子に対して抜き差しするように移動させると、抜き差しの動作中に固定子111と磁石114の角部が向かい合った状態となると吸引力が上昇することが分かった。 However, according to the conventional rotary electric machine, when the magnet 114 of the rotor is formed in a stepped shape and the stator 111 is moved so as to be inserted and removed from the rotor by a moving mechanism, the stator 111 is inserted and removed during the insertion and removal operation. It was found that the attractive force increased when the corners of the magnet 114 and the magnet 114 were facing each other.

このように固定子111の抜き差し動作中に吸引力が上昇してしまうと、移動機構を駆動させる駆動装置の出力を当該吸引力に抗して出力させる必要があり、駆動装置の大型化や重量の増加に繋がるという課題があった。 If the suction force increases during the insertion / removal operation of the stator 111 in this way, it is necessary to output the output of the drive device that drives the moving mechanism against the suction force, which increases the size and weight of the drive device. There was a problem that it would lead to an increase in the number of people.

本発明は、上記課題を解決するために成されたものであって、回転電機の小型化を図ると共に、部品重量を低減して円滑に移動機構を駆動させることができる回転電機及び、この回転電機を用いたインホイールモータを提供することを目的とする。 The present invention has been made to solve the above problems, and is a rotary electric motor capable of reducing the size of the rotary electric motor, reducing the weight of parts, and smoothly driving the moving mechanism, and the rotation thereof. An object of the present invention is to provide an in-wheel motor using an electric machine.

上記課題を解決する本発明に係る回転電機は、電機子コイルを巻回したステータコアを有する固定子と、前記固定子に対して所定のギャップを介して回転自在に配置されると共に前記固定子に対向する磁石を有する回転子とを備えた回転電機において、前記固定子は、回転軸方向に移動可能な移動機構に取り付けられ、前記磁石及び前記ステータコアの互いの対向面は、前記固定子の移動方向に沿って径方向に広がる断面階段形状に形成され、前記磁石の角部と前記ステータコアとの間に前記ギャップよりも大きい空間が形成されることを特徴とする。 The rotary electric machine according to the present invention for solving the above problems is rotatably arranged with respect to a stator having a stator core around which an armature coil is wound and the stator through a predetermined gap, and is placed on the stator. In a rotary armature including a rotor having opposing magnets, the stator is attached to a moving mechanism that is movable in the direction of the axis of rotation, and the magnets and the stator cores facing each other move the stator. It is formed in a stepped cross section extending in the radial direction along the direction, and is characterized in that a space larger than the gap is formed between the corner portion of the magnet and the stator core.

本発明に係る回転電機によれば、互いに向かい合う固定子のステータコアと回転子の磁石の対向面が階段形状に形成され、磁石の階段形状の角部に面取りが施されているので、固定子を抜き差しする際に、ステータコアと磁石との角部が向かい合うことによる吸引力の上昇を抑え、移動機構を構成する駆動装置等を小型化軽量化することで回転電機の小型化及び軽量化を図ることができる。 According to the rotary electric machine according to the present invention, the stator core of the stator facing each other and the facing surface of the magnet of the rotor are formed in a stepped shape, and the corners of the stepped shape of the magnet are chamfered. When inserting and removing, the increase in attractive force due to the corners of the stator core and magnet facing each other is suppressed, and the drive device, etc. that constitutes the moving mechanism is made smaller and lighter to reduce the size and weight of the rotary electric machine. Can be done.

本発明の実施形態に係る回転電機の軸方向断面図。A cross-sectional view of a rotary electric machine according to an embodiment of the present invention. 本発明の実施形態に係る回転電機の固定子及び回転子の断面状態を示す断面斜視図。The cross-sectional perspective view which shows the sectional state of the stator and the rotor of the rotary electric machine which concerns on embodiment of this invention. 図2におけるA部拡大図。FIG. 2 is an enlarged view of part A in FIG. ステータコアの変形例を示す図。The figure which shows the modification of the stator core. 本発明の実施形態に係るステータコア及び比較例のステータコアの磁石に対する抜差量と吸引力の関係を示すグラフ。The graph which shows the relationship between the pull-out amount and the attractive force with respect to the magnet of the stator core which concerns on embodiment of this invention and the stator core of a comparative example. 比較例のステータコアと磁石の形態を示す断面図。The cross-sectional view which shows the form of the stator core and the magnet of the comparative example.

以下、本発明に係る回転電機の実施形態について図面を参照しつつ説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, embodiments of the rotary electric machine according to the present invention will be described with reference to the drawings. It should be noted that the following embodiments do not limit the invention according to each claim, and not all combinations of features described in the embodiments are essential for the means for solving the invention. ..

図1は、本発明の実施形態に係る回転電機の軸方向断面図であり、図2は、本発明の実施形態に係る回転電機の固定子及び回転子の断面状態を示す断面斜視図であり、図3は、図2におけるA部拡大図であり、図4は、ステータコアの変形例を示す図であり、図5は、本発明の実施形態に係るステータコア及び比較例のステータコアの磁石に対する抜差量と吸引力の関係を示すグラフであり、図6は、比較例のステータコアと磁石の形態を示す断面図である。 FIG. 1 is an axial sectional view of a rotary electric machine according to an embodiment of the present invention, and FIG. 2 is a sectional perspective view showing a cross-sectional state of a stator and a rotor of the rotary electric machine according to the embodiment of the present invention. 3 is an enlarged view of part A in FIG. 2, FIG. 4 is a view showing a modified example of the stator core, and FIG. 5 is a drawing of the stator core according to the embodiment of the present invention and the stator core of the comparative example with respect to the magnet. It is a graph which shows the relationship between the difference amount and the attractive force, and FIG. 6 is a cross-sectional view which shows the form of the stator core and the magnet of the comparative example.

図1に示すように、本実施形態に係る回転電機10は、自動車等の車輪1に組み込まれる所謂インホイールモータとして用いられると好適である。車輪1は、自動車の車体に取り付けられると共に、車輪1を回転可能に支持する車軸4と、ホイール3とホイール3の外周面に取り付けられたゴムなどの弾性体からなるタイヤ2とを備えている。 As shown in FIG. 1, the rotary electric machine 10 according to the present embodiment is preferably used as a so-called in-wheel motor incorporated in a wheel 1 of an automobile or the like. The wheel 1 includes an axle 4 that is attached to the vehicle body of an automobile and rotatably supports the wheel 1, and a tire 2 that is attached to the wheel 3 and an elastic body such as rubber attached to the outer peripheral surface of the wheel 3. ..

本実施形態に係る回転電機10は、ホイール3の内部に配置されており、回転電機10の回転力をホイール3に伝達することで、当該回転電機10が取り付けられる自動車の駆動力を発生させている。 The rotary electric machine 10 according to the present embodiment is arranged inside the wheel 3, and by transmitting the rotational force of the rotary electric machine 10 to the wheel 3, the driving force of the automobile to which the rotary electric machine 10 is attached is generated. There is.

ホイールハウジング15は、中空の円盤状部材であって、バックヨーク13の径方向に延びるフランジ部を挟み込むように組み付けられている。また、ホイールハウジング15の内部には、後述する移動機構20が収納されている。さらに、ホイールハウジング15は、軸方向の両端に組み付けられたハブ部材16によって車軸4に対して回転可能に組み付けられている。 The wheel housing 15 is a hollow disk-shaped member, and is assembled so as to sandwich a flange portion extending in the radial direction of the back yoke 13. Further, a moving mechanism 20 described later is housed inside the wheel housing 15. Further, the wheel housing 15 is rotatably assembled with respect to the axle 4 by hub members 16 assembled at both ends in the axial direction.

また、固定子11は、車軸4の軸方向に移動可能な移動機構20に取り付けられている。移動機構20は、車軸4が固定子11の回転中心軸と同軸に配置され、車軸4の外周面に回転不能に組み付けられたボールスプラインナット部材24と、車軸4の外周面に回転可能に組み付けられたボールねじナット部材25とを備えている。 Further, the stator 11 is attached to a moving mechanism 20 that can move in the axial direction of the axle 4. In the moving mechanism 20, the axle 4 is arranged coaxially with the rotation center axis of the stator 11, and the ball spline nut member 24 is rotatably assembled to the outer peripheral surface of the axle 4 and rotatably assembled to the outer peripheral surface of the axle 4. The ball screw nut member 25 is provided.

また、ボールねじナット部材25は、出力軸に歯車28が取り付けられた駆動源としての駆動モータ27によって回転力が付与されるように構成されている。このように構成されることで、駆動モータ27が回転することにより歯車28が回転し、歯車28がボールねじナット部材25の外周面と歯合することでボールねじナット部材25へ駆動モータ27の回転力を伝達している。 Further, the ball screw nut member 25 is configured so that a rotational force is applied by a drive motor 27 as a drive source to which a gear 28 is attached to the output shaft. With this configuration, the gear 28 rotates as the drive motor 27 rotates, and the gear 28 meshes with the outer peripheral surface of the ball screw nut member 25 to bring the drive motor 27 to the ball screw nut member 25. It transmits the rotational force.

また、車軸4は、軸方向に貫通孔21が形成された中空軸であり、外表面の軸方向一端側に軸方向に沿って形成される図示しないボールスプライン溝が形成され、他端側に螺旋状のボールねじ溝23が形成されている。ボールスプライン溝およびボールねじ溝23は、車軸4の中央近傍で互いに重複するように隣接して形成されている。 Further, the axle 4 is a hollow shaft in which a through hole 21 is formed in the axial direction, and a ball spline groove (not shown) formed along the axial direction is formed on one end side in the axial direction of the outer surface and is formed on the other end side. A spiral ball screw groove 23 is formed. The ball spline groove and the ball screw groove 23 are formed adjacent to each other so as to overlap each other in the vicinity of the center of the axle 4.

また、車軸4の外表面には、後述する転動体が転走可能な一対の転走溝29,29が形成されている。転走溝29は、車軸4の周方向に沿って形成されており、車軸4の軸方向端側に形成されている。すなわち、転走溝29は、ボールスプライン溝及びボールねじ溝23のそれぞれよりも軸端側に配置されており、一対の転走溝29の間にボールスプライン溝及びボールねじ溝23が配置されている。 Further, a pair of rolling grooves 29, 29 on which a rolling element, which will be described later, can roll are formed on the outer surface of the axle 4. The rolling groove 29 is formed along the circumferential direction of the axle 4, and is formed on the axial end side of the axle 4. That is, the rolling groove 29 is arranged on the shaft end side of each of the ball spline groove and the ball screw groove 23, and the ball spline groove and the ball screw groove 23 are arranged between the pair of rolling grooves 29. There is.

ボールスプラインナット部材24は、円筒状の部材であって、内周に車軸4が挿通される。また、ボールスプラインナット部材24の内周面には、車軸4のボールスプライン溝に対応する第2ボールスプライン溝が形成されており、ボールスプライン溝及び第2ボールスプライン溝の間には、図示しない転動体等を介在させることで、車軸4の軸方向にボールスプラインナット部材24が移動可能に組み付けられている。また、ボールスプラインナット部材24の一端は、ベアリング26の内輪に挿入されていると共に、図1に示すように固定子11の移動基部30に取り付けられている。 The ball spline nut member 24 is a cylindrical member, and the axle 4 is inserted into the inner circumference thereof. Further, a second ball spline groove corresponding to the ball spline groove of the axle 4 is formed on the inner peripheral surface of the ball spline nut member 24, and is not shown between the ball spline groove and the second ball spline groove. The ball spline nut member 24 is movably assembled in the axial direction of the axle 4 by interposing a rolling element or the like. Further, one end of the ball spline nut member 24 is inserted into the inner ring of the bearing 26 and is attached to the moving base 30 of the stator 11 as shown in FIG.

ボールねじナット部材25は、内周にボールねじ溝23に対応する螺旋状の第2ボールねじ溝25aが形成された環状部材であり、外周面に歯車28が歯合する第3ねじ溝が形成されている。第2ボールねじ溝25aとボールねじ溝23の間には図示しない転動体などを介在させることで、ボールねじナット部材25は車軸4に対して回転可能に組み付けられている。また、ボールねじナット部材25の一端側は、ベアリング26の内輪に取り付けられている。 The ball screw nut member 25 is an annular member in which a spiral second ball screw groove 25a corresponding to the ball screw groove 23 is formed on the inner circumference, and a third screw groove in which the gear 28 meshes is formed on the outer peripheral surface. Has been done. The ball screw nut member 25 is rotatably assembled with respect to the axle 4 by interposing a rolling element (not shown) or the like between the second ball screw groove 25a and the ball screw groove 23. Further, one end side of the ball screw nut member 25 is attached to the inner ring of the bearing 26.

また、図1に示すように、ハブ部材16の車軸4が挿入される挿入孔の内周面には、車軸4の外表面に形成された転走溝29に対応する第2転走溝33が形成されており、転走溝29及び第2転走溝33の間には複数の転動体32が配列されている。 Further, as shown in FIG. 1, a second rolling groove 33 corresponding to a rolling groove 29 formed on the outer surface of the axle 4 is formed on the inner peripheral surface of the insertion hole into which the axle 4 of the hub member 16 is inserted. Is formed, and a plurality of rolling elements 32 are arranged between the rolling groove 29 and the second rolling groove 33.

このように構成された本実施形態に係る回転電機10は、移動機構20の駆動モータ27を回転させて歯車28を介してボールねじナット部材25を回転させると、ボールねじナット部材25が車軸4に形成されてボールねじ溝23に沿って軸方向に移動する。ボールねじナット部材25は、ベアリング26を介してボールスプラインナット部材24に組み付けられているので、移動基部30は固定子11と共に軸方向に移動される。 In the rotary electric machine 10 according to the present embodiment configured as described above, when the drive motor 27 of the moving mechanism 20 is rotated to rotate the ball screw nut member 25 via the gear 28, the ball screw nut member 25 becomes the axle 4 Is formed in the ball and moves in the axial direction along the ball screw groove 23. Since the ball screw nut member 25 is assembled to the ball spline nut member 24 via the bearing 26, the moving base portion 30 is moved axially together with the stator 11.

このように、本実施形態に係る回転電機10は、移動機構20の駆動モータ27によってボールねじナット部材25を回転移動させることで、固定子11を回転子12に対して抜き差しするように軸方向に移動可能となっているため、固定子11の回転子12に対する相対位置に応じて出力特性を可変することができる。 As described above, in the rotary electric machine 10 according to the present embodiment, the ball screw nut member 25 is rotationally moved by the drive motor 27 of the moving mechanism 20, so that the stator 11 is inserted and removed from the rotor 12 in the axial direction. Since the stator 11 can be moved to the rotor 12, the output characteristics can be changed according to the relative position of the stator 11 with respect to the rotor 12.

図1に示すように、回転子12は、導電性のある金属などからなるバックヨーク13と、固定子11に対向するように配置された磁石14を有しており、バックヨーク13はホイール3に取り付けられたホイールハウジング15に組み付けられており、ホイール3は、回転子12の回転に伴って回転する。 As shown in FIG. 1, the rotor 12 has a back yoke 13 made of a conductive metal or the like, and a magnet 14 arranged so as to face the stator 11, and the back yoke 13 has a wheel 3. It is assembled to the wheel housing 15 attached to the wheel 3, and the wheel 3 rotates with the rotation of the rotor 12.

本実施形態に係る回転電機10は、図2に示すようにステータコア11aに巻回された電機子コイル11bが周方向に沿って配置される固定子11と、図1に示すように固定子11に対して所定のギャップを介して回転自在に配置される回転子12とを備えている。なお、電機子コイルの巻回方法は、従来周知の種々の巻き方を採用することが可能である。 The rotary electric machine 10 according to the present embodiment has a stator 11 in which an armature coil 11b wound around a stator core 11a is arranged along the circumferential direction as shown in FIG. 2, and a stator 11 as shown in FIG. It is provided with a rotor 12 that is rotatably arranged with respect to a predetermined gap. As the winding method of the armature coil, various conventionally known winding methods can be adopted.

図3に示すように、磁石14とステータコア11aの互いの対向面は、固定子11の軸方向に沿って径方向に広がる階段形状に形成されており、例えば、3段の段付き形状となっている。このように磁石14とステータコア11aの対向面を階段形状とすることで、後述する移動機構による固定子11の移動に伴って、磁石14とステータコア11aの間のギャップが大きくなるように構成されている。 As shown in FIG. 3, the facing surfaces of the magnet 14 and the stator core 11a are formed in a stepped shape extending in the radial direction along the axial direction of the stator 11, for example, a three-step stepped shape. ing. By forming the facing surface between the magnet 14 and the stator core 11a in a stepped shape in this way, the gap between the magnet 14 and the stator core 11a is increased as the stator 11 moves by the moving mechanism described later. There is.

さらに、磁石14の階段形状における角部には、面取り部Cが設けられ、角部とステータコア11aの間にギャップよりも大きな空間Sが形成されている。この空間Sの断面形状は、略三角形に形成することができる。 Further, a chamfered portion C is provided at the corner portion of the stepped shape of the magnet 14, and a space S larger than the gap is formed between the corner portion and the stator core 11a. The cross-sectional shape of this space S can be formed into a substantially triangular shape.

さらに、空間Sの断面形状の径方向長さと軸方向長さの比は、1:1〜1:√3に構成すると好適である。このように、磁石14の階段形状の角部とステータコア11aの間に空間Sを形成することで、固定子11の移動に伴って角部同士が互いに向かい合った場合であっても、角部同士が接近することによる吸引力の上昇を低減させることができる。 Further, it is preferable that the ratio of the radial length to the axial length of the cross-sectional shape of the space S is set to 1: 1 to 1: √3. By forming the space S between the staircase-shaped corners of the magnet 14 and the stator core 11a in this way, even when the corners face each other as the stator 11 moves, the corners face each other. It is possible to reduce the increase in suction force due to the approaching magnets.

さらに、磁石14の階段形状の角部に面取り部Cを形成することで、固定子11の移動に伴って角部同士が互いに向かい合った場合であっても、角部同士が接近することによる吸引力の上昇を低減させることができる。 Further, by forming the chamfered portion C at the corner portion of the stepped shape of the magnet 14, even if the corner portions face each other due to the movement of the stator 11, the corner portions are attracted by approaching each other. The increase in force can be reduced.

また、階段形状における各段の軸方向の長さL1〜L3は、軸方向に等分し同一の長さとしても構わないが、回転軸方向長さはそれぞれ異なるように形成すると好適である。このように各段の回転軸方向長さを異なる長さとすることで、後述する移動機構による固定子11の軸方向への移動に伴って、吸引力が上昇するタイミングを分散させて、吸引力の最大値を下げることが可能となる。 Further, the axial lengths L1 to L3 of each step in the staircase shape may be equally divided in the axial direction to have the same length, but it is preferable to form the lengths in the rotation axis direction so as to be different from each other. By setting the length of each stage in the rotation axis direction to a different length in this way, the timing at which the suction force increases with the movement of the stator 11 in the axial direction by the movement mechanism described later is dispersed, and the suction force is dispersed. It is possible to lower the maximum value of.

なお、ステータコア11aの磁石14との対向面の形状は、断面階段形状に限らず、図4に示すように、固定子11の移動方向に対して傾斜するテーパ形状に形成されていても構わない。 The shape of the surface of the stator core 11a facing the magnet 14 is not limited to the cross-sectional staircase shape, and may be formed in a tapered shape that is inclined with respect to the moving direction of the stator 11 as shown in FIG. ..

このようにステータコア11a´をテーパ形状に形成することで、階段形状のステータコア11aでは、固定子11を引き抜いた際に階段形状の複数の段差部分に生じる渦電流による損失が生じるところ、テーパ形状とすることで、段差部分をステータコア11a´の端面のみにすることができるので、渦電流eによる損失を低減することができる。 By forming the stator core 11a'in a tapered shape in this way, in the stepped stator core 11a, a loss due to eddy currents generated in a plurality of stepped portions of the staircase shape occurs when the stator 11 is pulled out. By doing so, the stepped portion can be formed only on the end surface of the stator core 11a', so that the loss due to the eddy current e can be reduced.

より具体的には、図5に示すように、固定子11を回転子12に対して最も挿入した状態においては、固定子11と回転子12の対向面積が最も大きく、固定子11と回転子12の間のギャップも最も小さい状態であることから、回転電機10の出力特性は、高トルク・低回転となる。このような状態では、自動車の発進時など速度は遅いが高トルクが必要な場合に最も出力特性が適した状態となる。 More specifically, as shown in FIG. 5, when the stator 11 is most inserted into the rotor 12, the facing area between the stator 11 and the rotor 12 is the largest, and the stator 11 and the rotor 12 have the largest facing area. Since the gap between the 12 is also the smallest, the output characteristics of the rotary electric machine 10 are high torque and low rotation. In such a state, the output characteristics are most suitable when a high torque is required although the speed is slow, such as when the vehicle starts.

また、この状態では、逆起電力が上昇することから電機子コイル11bへの給電を停止し、車輪1を制動させる減速時には、逆起電力が上昇することで、効率的に発電を行うことができ、高効率の回生ブレーキとして作用させることが可能となる。 Further, in this state, since the counter electromotive force increases, the power supply to the armature coil 11b is stopped, and during deceleration for braking the wheel 1, the counter electromotive force increases, so that power can be generated efficiently. It can act as a highly efficient regenerative brake.

駆動モータ27を回転させてボールねじナット部材25に回転力を付与すると、ボールねじナット部材25の回転に伴って、ボールねじナット部材25が車軸4のボールねじ溝23に沿って回転しながら軸方向へ移動する。 When the drive motor 27 is rotated to apply a rotational force to the ball screw nut member 25, the ball screw nut member 25 rotates along the ball screw groove 23 of the axle 4 as the ball screw nut member 25 rotates. Move in the direction.

ここで、固定子11が回転子12に対して抜き出され、互いの階段形状の角部が最も近接した図5の真ん中の状態では、最も吸引力が上昇しているものの、抜差量2.5〜5(mm)の間の傾きが小さくなっており、比較例と比較して吸引力のピークも小さくなっていることから磁石14の角部に面取り部Cを設け、角部とステータコア11aの間に空間Sを形成したことによる吸引力の抑制効果が確認できる。 Here, in the state where the stator 11 is pulled out with respect to the rotor 12 and the corners of the staircase shape are closest to each other in the middle of FIG. 5, the suction force is most increased, but the pull-out amount is 2. .Since the inclination between 5 and 5 (mm) is small and the peak of attractive force is also small as compared with the comparative example, a chamfered portion C is provided at the corner of the magnet 14, and the corner and the stator core are provided. It can be confirmed that the suction force is suppressed by forming the space S between the 11a.

移動機構20を駆動させると、固定子11が回転子12から最も抜き出された状態となり、固定子11と回転子12の対向面積は最も小さく、固定子11と回転子12の間のギャップが最も大きな状態となる。この状態では、逆起電力が下降し、回転電機10の出力特性は、低トルク・高回転となる。このように固定子11を回転子12から最も抜き出した状態では、トルクを必要としない高速走行時に最も出力特性が適した状態となる。 When the moving mechanism 20 is driven, the stator 11 is most extracted from the rotor 12, the facing area between the stator 11 and the rotor 12 is the smallest, and the gap between the stator 11 and the rotor 12 is large. It will be in the largest state. In this state, the counter electromotive force decreases, and the output characteristics of the rotary electric machine 10 become low torque and high rotation. In the state where the stator 11 is most extracted from the rotor 12 in this way, the output characteristics are most suitable for high-speed traveling which does not require torque.

これに対して図6に示した比較例のようにステータコア111と磁石114との角部がステータコア111の移動に伴って互いに対向するように形成すると、図5に示すように、ステータコア111を抜き差しする際に、角部が最も近接して対向する状態で吸引力がより上昇してしまう。 On the other hand, when the corners of the stator core 111 and the magnet 114 are formed so as to face each other as the stator core 111 moves as in the comparative example shown in FIG. 6, the stator core 111 is inserted and removed as shown in FIG. When doing so, the suction force increases further when the corners are closest to each other and face each other.

本実施形態に係る回転電機10は、ホイールハウジング15の軸方向両端に配置されたハブ部材16によって車軸4に対して回転保持されているので、ハブ部材16を小型化することで回転電機10の軽量化を図ることができ、軽量化に伴って必要な回転数までの到達時間を早くして応答性能を向上させることができる。 Since the rotary electric machine 10 according to the present embodiment is rotationally held with respect to the axle 4 by hub members 16 arranged at both ends in the axial direction of the wheel housing 15, the rotary electric machine 10 can be reduced in size by reducing the size of the hub member 16. It is possible to reduce the weight, and it is possible to improve the response performance by shortening the arrival time to the required number of revolutions with the weight reduction.

さらに、回転軸と駆動軸とを同軸に配置しているので、回転電機10の小型化を図ることが可能となる。さらに、本実施形態に係る回転電機10は、ボールねじナット部材25と車軸4の外表面に形成されたボールねじ溝23による減速効果を有することから駆動モータ27の出力を小さくすることが可能となり、当該駆動モータ27を小型化することで、回転電機10の更なる小型化を図ることが可能となる。 Further, since the rotating shaft and the driving shaft are arranged coaxially, it is possible to reduce the size of the rotating electric machine 10. Further, the rotary electric machine 10 according to the present embodiment has a deceleration effect due to the ball screw nut member 25 and the ball screw groove 23 formed on the outer surface of the axle 4, so that the output of the drive motor 27 can be reduced. By downsizing the drive motor 27, the rotary electric machine 10 can be further downsized.

さらに、移動機構20は、ボールねじナット部材25及びボールスプラインナット部材24によって固定子11の移動を行っているため、応答性がよく高エネルギー効率の固定子11の移動制御を行うことが可能となる。また、移動機構20による移動量は、ボールねじナット部材25の回転量によって制御しているので、求められる出力特性に応じて固定子11の位置を任意に設定することで、最も適した出力特性で回転電機10を駆動させることが可能となる。 Further, since the moving mechanism 20 moves the stator 11 by the ball screw nut member 25 and the ball spline nut member 24, it is possible to control the movement of the stator 11 with good responsiveness and high energy efficiency. Become. Further, since the amount of movement by the moving mechanism 20 is controlled by the amount of rotation of the ball screw nut member 25, the most suitable output characteristic can be obtained by arbitrarily setting the position of the stator 11 according to the required output characteristic. It is possible to drive the rotary electric machine 10 with.

なお、上述した実施形態においては、車軸4とボールスプラインナット部材24並びにボールねじナット部材25は、転動体を介して組み付けた場合について説明を行ったが、これらの部材は、転動体を介さずに互いに滑り合うように組み付けても構わない。また、上述した本実施形態に係る回転電機10においては、本実施形態に係る回転電機10を自動車の車輪1に適用した場合について説明を行ったが、その用途は自動車に限られず、例えば、風力発電機やプレス加工機などに適用しても構わない。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれうることが、特許請求の範囲の記載から明らかである。 In the above-described embodiment, the case where the axle 4, the ball spline nut member 24, and the ball screw nut member 25 are assembled via the rolling element has been described, but these members do not pass through the rolling element. You may assemble them so that they slide against each other. Further, in the rotary electric machine 10 according to the present embodiment described above, the case where the rotary electric machine 10 according to the present embodiment is applied to the wheel 1 of an automobile has been described, but the application is not limited to the automobile, for example, wind power. It may be applied to a generator or a press processing machine. It is clear from the description of the claims that the form with such changes or improvements may be included in the technical scope of the present invention.

4 車軸, 10 回転電機, 11 固定子, 11a,11a´ ステータコア, 12 回転子, 14 磁石, 20 移動機構, C 面取り部, S 空間。 4 axles, 10 rotors, 11 stators, 11a, 11a'stator cores, 12 rotors, 14 magnets, 20 moving mechanisms, C chamfers, S space.

Claims (5)

電機子コイルを巻回したステータコアを有する固定子と、前記固定子に対して所定のギャップを介して回転自在に配置されると共に前記固定子に対向する磁石を有する回転子とを備えた回転電機において、
前記固定子は、回転軸方向に移動可能な移動機構に取り付けられ、
前記磁石及び前記ステータコアの互いの対向面のうち、少なくとも前記磁石の対向面は、前記固定子の移動方向に沿って径方向に広がる断面階段形状に形成され、
前記磁石の角部と前記ステータコアとの間に前記ギャップよりも大きい空間が形成されることを特徴とする回転電機。
A rotary electric machine having a stator having a stator core around which an armature coil is wound, and a rotor having a magnet that is rotatably arranged with respect to the stator through a predetermined gap and has a magnet facing the stator. In
The stator is attached to a moving mechanism that can move in the direction of the axis of rotation.
Of the facing surfaces of the magnet and the stator core, at least the facing surface of the magnet is formed in a cross-sectional stepped shape extending in the radial direction along the moving direction of the stator.
A rotary electric machine characterized in that a space larger than the gap is formed between the corner portion of the magnet and the stator core.
請求項1に記載の回転電機において、
前記階段形状の各段における前記回転軸方向長さは、それぞれ異なることを特徴とする回転電機。
In the rotary electric machine according to claim 1,
A rotary electric machine characterized in that the length in the direction of the rotation axis in each step of the staircase shape is different.
請求項1または2に記載の回転電機において、
前記空間は、径方向長さと軸方向長さの比が1:1〜1:√3であることを特徴とする回転電機。
In the rotary electric machine according to claim 1 or 2.
The space is a rotary electric machine characterized in that the ratio of the radial length to the axial length is 1: 1 to 1: √3.
請求項1から3の何れか1項に記載の回転電機において、
前記ステータコアの対向面は、前記固定子の移動方向に沿って径方向に広がる断面階段状、または、前記固定子の移動方向に対して傾斜した断面テーパ形状に形成されることを特徴とする回転電機。
In the rotary electric machine according to any one of claims 1 to 3,
The facing surface of the stator core is formed in a stepped cross section extending in the radial direction along the moving direction of the stator or a tapered cross section inclined with respect to the moving direction of the stator. Electric.
請求項1から4の何れか1項に記載の回転電機を用いたインホイールモータ。 An in-wheel motor using the rotary electric machine according to any one of claims 1 to 4.
JP2020073515A 2019-05-13 2020-04-16 Rotary electric machine and in-wheel motor using the same Pending JP2020188676A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019090940 2019-05-13
JP2019090940 2019-05-13

Publications (1)

Publication Number Publication Date
JP2020188676A true JP2020188676A (en) 2020-11-19

Family

ID=73223313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020073515A Pending JP2020188676A (en) 2019-05-13 2020-04-16 Rotary electric machine and in-wheel motor using the same

Country Status (1)

Country Link
JP (1) JP2020188676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024044092A1 (en) * 2022-08-26 2024-02-29 Iacovelli Beneddetto Improved intrinsically adapting variable generators and motors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024044092A1 (en) * 2022-08-26 2024-02-29 Iacovelli Beneddetto Improved intrinsically adapting variable generators and motors

Similar Documents

Publication Publication Date Title
US7960888B2 (en) Electric motor with field weakening
JP5460566B2 (en) Axial gap type rotating electrical machine
EP2023465A2 (en) Motor and electric power steering apparatus
US5917263A (en) Switched reluctance motor
JP6327474B2 (en) Outer rotor type variable field motor
JP4791013B2 (en) Brushless motor
JP4482708B2 (en) Permanent magnet rotating electric machine
JP6654902B2 (en) Rotary motor
JP4734516B2 (en) DC brushless motor
JP5766480B2 (en) Motor unit with reduction gear
JP2015070765A (en) Rotary electric machine
WO2009058575A1 (en) Stator lamination
JP2020188676A (en) Rotary electric machine and in-wheel motor using the same
JP2939725B2 (en) Linear actuator
JP2009095147A (en) Variable field magnet motor
JP6410037B2 (en) Outer rotor type variable field motor
JPH05300712A (en) Variable torque-constant type wheel motor
JP7319087B2 (en) Rotating electric machine and in-wheel motor using this rotating electric machine
JP6316072B2 (en) Motor yoke, motor with reduction gear, motor yoke manufacturing method, and motor casing manufacturing method
JP2008148516A (en) Rotary electric machine
JP7271281B2 (en) Rotating electric machine and in-wheel motor using this rotating electric machine
WO2013056458A1 (en) Electric motor
JP4664820B2 (en) vehicle
JP2015082921A (en) Dynamo-electric machine
WO2021039065A1 (en) Motor, and method for manufacturing motor