JP2020186987A - Water quality measurement device - Google Patents

Water quality measurement device Download PDF

Info

Publication number
JP2020186987A
JP2020186987A JP2019091145A JP2019091145A JP2020186987A JP 2020186987 A JP2020186987 A JP 2020186987A JP 2019091145 A JP2019091145 A JP 2019091145A JP 2019091145 A JP2019091145 A JP 2019091145A JP 2020186987 A JP2020186987 A JP 2020186987A
Authority
JP
Japan
Prior art keywords
light receiving
water quality
light
unit
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019091145A
Other languages
Japanese (ja)
Other versions
JP7190232B2 (en
Inventor
功二 伴
Koji Ban
功二 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019091145A priority Critical patent/JP7190232B2/en
Publication of JP2020186987A publication Critical patent/JP2020186987A/en
Application granted granted Critical
Publication of JP7190232B2 publication Critical patent/JP7190232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a water quality measurement device which can measure the concentration of sludge with improved accuracy and which can appropriately take a measure of removal of dirt on an irradiation window.SOLUTION: Emission light of a light emitter 2 above an irradiation window 1 which is provided in a circulation path 10 of measurement water 11 is transmitted through the measurement water 11 and enters a light receptor 3 having a matrix structure by a plurality of light reception elements. A calculator 41 of a data processing device 4 for receiving data on the entrance of the light calculates the concentration of sludge of the measurement water 11 from the total amount of received light which is obtained by calculating a mean value of output values equal to or more than a predetermined threshold relative to the maximum output value of the light reception element group, and specifies coordinates of the light reception elements outputting values equal to or less than the predetermined threshold and outputs them to a display 9.SELECTED DRAWING: Figure 1

Description

本願は、水質測定装置に関するものである。 The present application relates to a water quality measuring device.

従来、流通管内の測定水に光を照射し、透過光および散乱光の少なくとも一方を検出器で受光して測定水の水質を測定する光学式水質測定装置において、流通管の管壁に設けた照射窓および受光窓と、流通管外部に設けた光源ランプおよび検出器等でなる光学系を備えたものが開示されている(例えば、特許文献1参照)。 Conventionally, in an optical water quality measuring device that irradiates the measurement water in the flow pipe with light and receives at least one of the transmitted light and the scattered light with a detector to measure the water quality of the measured water, it is provided on the pipe wall of the flow pipe. A device including an irradiation window and a light receiving window, and an optical system including a light source lamp and a detector provided outside the flow tube is disclosed (see, for example, Patent Document 1).

特開昭59−34135号公報JP-A-59-34135

しかしながら、上記特許文献1に示された技術は、測定水に光を照射して透過光および散乱光を受光し、その光量によって測定水の汚泥濃度を算出するものであり、受光部分の照射窓には測定水の汚泥が時間とともに付着するため、入光する光量が減少し、測定誤差が生じるという問題点がある。また、上記入光する光量の減少による光量変動が、汚れに起因する変動か、測定水の汚泥濃度の変動か判別できない為、実際の汚れ付着よりも早めに照射窓のメンテナンスを行う必要があり、保全コスト高となるという問題点がある。さらに、メンテナンス期間を定めるため、照射窓の汚れ具合を確認する等の試行作業を繰り返す必要があり、加えてメンテナンス周期および洗浄時間を決定したとしても、季節の違いまたは測定水の水質変化等で、想定よりも早く汚れが付着して測定値の異常が発生することもあり、定常運転においてもメンテナンスの手間、それに伴うコスト高となるという問題点がある。 However, the technique shown in Patent Document 1 irradiates the measurement water with light to receive transmitted light and scattered light, and calculates the sludge concentration of the measurement water based on the amount of the light, and the irradiation window of the light receiving portion. Has a problem that the sludge of the measurement water adheres with time, so that the amount of light entering is reduced and a measurement error occurs. In addition, since it is not possible to determine whether the fluctuation in the amount of light due to the decrease in the amount of incoming light is due to dirt or the fluctuation in the sludge concentration of the measured water, it is necessary to perform maintenance on the irradiation window earlier than the actual adhesion of dirt. There is a problem that the maintenance cost is high. Furthermore, in order to determine the maintenance period, it is necessary to repeat trial work such as checking the degree of dirt on the irradiation window, and even if the maintenance cycle and cleaning time are determined, due to seasonal differences or changes in the quality of the measured water, etc. However, dirt may adhere earlier than expected and abnormalities in the measured values may occur, and there is a problem that maintenance is troublesome and the cost is high even in steady operation.

本願は、上記のような課題を解決するための技術を開示するものであり、測定水の汚泥濃度を安定して精度良く測定できるとともに、照射窓のメンテナンスが適切に行えることで装置の維持管理の負担を軽減する水質測定装置を提供することを目的とする。 The present application discloses a technique for solving the above-mentioned problems, and can measure the sludge concentration of the measured water stably and accurately, and can maintain and manage the device by appropriately maintaining the irradiation window. It is an object of the present invention to provide a water quality measuring device that reduces the burden on the water quality.

本願に開示される水質測定装置は、
測定水の流通路に設けられた照射窓と、前記照射窓の上部に設けられて前記測定水に照射光を発光する発光部と、前記測定水からの入光を受信する複数の受光素子によってマトリクスに構成された受光部と、前記受光部からの入光のデータを受信するデータ処理装置と、表示部とが設けられた水質測定装置であって、
前記データ処理装置に設けられた演算部は、前記複数の受光素子の内の最大出力値に対して、所定のしきい値以上の出力値を有する複数の前記受光素子の出力の平均値を算出して、前記平均値に基づく総受光量で前記測定水の汚泥濃度を演算するとともに、前記複数の受光素子の内の最大出力値に対して、所定のしきい値以下の出力値を有する前記マトリクスに構成された受光素子の座標を特定し、前記受光部からの入光データと、前記汚泥濃度および前記特定された座標とを前記表示部に出力するものである。
The water quality measuring device disclosed in the present application is
An irradiation window provided in the flow path of the measurement water, a light emitting unit provided above the irradiation window to emit the irradiation light to the measurement water, and a plurality of light receiving elements for receiving the incoming light from the measurement water. It is a water quality measuring device provided with a light receiving unit configured in a matrix, a data processing device for receiving incoming light data from the light receiving unit, and a display unit.
The calculation unit provided in the data processing device calculates the average value of the outputs of the plurality of light receiving elements having an output value equal to or higher than a predetermined threshold value with respect to the maximum output value among the plurality of light receiving elements. Then, the sludge concentration of the measured water is calculated by the total light receiving amount based on the average value, and the output value having an output value equal to or less than a predetermined threshold value with respect to the maximum output value among the plurality of light receiving elements is obtained. The coordinates of the light receiving element configured in the matrix are specified, and the light input data from the light receiving unit, the sludge concentration, and the specified coordinates are output to the display unit.

本願に開示される水質測定装置は、上記のような構成を採用しているので、測定水の汚泥濃度を高精度で測定可能となり、また照射窓のメンテナンスに要する手間とコストを低減できるという効果がある。 Since the water quality measuring device disclosed in the present application adopts the above-mentioned configuration, it is possible to measure the sludge concentration of the measured water with high accuracy, and it is possible to reduce the labor and cost required for the maintenance of the irradiation window. There is.

実施の形態1による水質測定装置を示す図である。It is a figure which shows the water quality measuring apparatus according to Embodiment 1. FIG. 実施の形態1による汚れが付着していない照射窓を示す図である。It is a figure which shows the irradiation window which is not attached with the dirt by Embodiment 1. 実施の形態1による汚れが付着した照射窓を示す図である。It is a figure which shows the irradiation window which adhered the dirt by Embodiment 1. FIG. 実施の形態1による受光量を示す図である。It is a figure which shows the received light amount by Embodiment 1. FIG. 実施の形態1による選択後の受光素子の受光量を示す図である。It is a figure which shows the light receiving amount of the light receiving element after selection by Embodiment 1. FIG. 実施の形態1による検量線を示す図である。It is a figure which shows the calibration curve by Embodiment 1. FIG. 実施の形態2によるt=0における照射窓の汚れを示す図である。It is a figure which shows the dirt of the irradiation window at t = 0 by Embodiment 2. 実施の形態2によるt=to+1における照射窓の汚れを示す図である。It is a figure which shows the dirt of the irradiation window at t = to + 1 by Embodiment 2. FIG. 実施の形態2によるt=to+2における照射窓の汚れを示す図である。It is a figure which shows the dirt of the irradiation window in t = to + 2 by Embodiment 2. FIG. 実施の形態2によるt=to+3における照射窓の汚れを示す図である。It is a figure which shows the dirt of the irradiation window in t = to + 3 by Embodiment 2. FIG. 実施の形態3による水質測定装置を示す図である。It is a figure which shows the water quality measuring apparatus according to Embodiment 3.

実施の形態1.
実施の形態1を図に基づいて説明する。図1は上下水道処理設備、工場の排水処理設備、湖沼、河川等の水質管理設備における水質の汚泥濃度を測定する水質測定装置100を示す。この水質測定装置100は、例えば下水道処理設備における処理水であって、測定対象の測定水11の流通路10に設置される。水質測定装置100は、流通路10に設けられた照射窓1、発光部2、受光部3、データ処理装置4および表示部9とで構成されており、データ処理装置4には演算部41、記憶部42、検出部43が設けられる。上記表示部9は下水道処理設備を管理する技術員が所有する端末装置に設けられ、データ処理装置4の出力が表示部9に表示される。尚、これに限られることはなく、表示部9は、水質測定装置100の近傍に設けられてもよい。
Embodiment 1.
The first embodiment will be described with reference to the drawings. FIG. 1 shows a water quality measuring device 100 for measuring the sludge concentration of water quality in water and sewage treatment facilities, wastewater treatment facilities of factories, water quality management facilities such as lakes and rivers. The water quality measuring device 100 is, for example, treated water in a sewage treatment facility, and is installed in the flow passage 10 of the measurement water 11 to be measured. The water quality measuring device 100 is composed of an irradiation window 1, a light emitting unit 2, a light receiving unit 3, a data processing device 4, and a display unit 9 provided in the flow passage 10, and the data processing device 4 includes a calculation unit 41, A storage unit 42 and a detection unit 43 are provided. The display unit 9 is provided in a terminal device owned by a technician who manages the sewage treatment facility, and the output of the data processing device 4 is displayed on the display unit 9. The display unit 9 is not limited to this, and the display unit 9 may be provided in the vicinity of the water quality measuring device 100.

発光部2が出力する照射光7は測定水11を通過して入光8として受光部3で受信される。この場合、測定水11中の汚泥粒子5により散乱を受けた散乱光のうち、後方に散乱する後方散乱光の一部は照射窓1を透過して受光部3に入る。この入光を受信する受光部3は、データ処理装置4に送信し、データ処理装置4に設けられている演算部41において受光量および汚泥濃度に演算、変換される。
尚、図1には測定水11中の汚泥粒子5と、この汚泥粒子5に起因した汚れ6が受光部3の近傍の照射窓1に付着した状態も示している。
The irradiation light 7 output by the light emitting unit 2 passes through the measurement water 11 and is received by the light receiving unit 3 as incoming light 8. In this case, of the scattered light scattered by the sludge particles 5 in the measurement water 11, a part of the backscattered light scattered rearward passes through the irradiation window 1 and enters the light receiving unit 3. The light receiving unit 3 that receives the incoming light transmits it to the data processing device 4, and the calculation unit 41 provided in the data processing device 4 calculates and converts the light receiving amount and the sludge concentration.
Note that FIG. 1 also shows a state in which the sludge particles 5 in the measurement water 11 and the dirt 6 caused by the sludge particles 5 adhere to the irradiation window 1 in the vicinity of the light receiving unit 3.

次に、受光部3は、図2に示すように縦(Y軸、Y1、Y2、Y3、Y4、Y5)5個、横(X軸、X1、X2、X3、X4、X5)5個の計25個の受光素子3Aのマトリクスから構成された受光素子群30Aとしている。尚、図2は図1の矢印Aの方向から見た照射窓1の平面と、この照射窓1の上部に設置された受光部3の受光素子3Aを示したものであり、照射窓1の上下面にはマトリクス網の表示は施されていない。 Next, as shown in FIG. 2, the light receiving unit 3 has five vertical (Y-axis, Y1, Y2, Y3, Y4, Y5) and five horizontal (X-axis, X1, X2, X3, X4, X5). The light receiving element group 30A is composed of a matrix of a total of 25 light receiving elements 3A. Note that FIG. 2 shows the plane of the irradiation window 1 viewed from the direction of the arrow A in FIG. 1 and the light receiving element 3A of the light receiving unit 3 installed above the irradiation window 1. No matrix net is displayed on the upper and lower surfaces.

図2に示した照射窓1は、汚れ6が付着していない状態を示す図であるが、図3に示すように時間の経過に伴い汚れ6が付着して受光部3の一部分が覆われている場合について説明する。
図3、図4において受光部3の受光素子3Aの(X1、Y1〜Y5)の5個、および(X5、Y1〜Y3)の3個の大部分と、(X2、Y1〜Y4)の4個、(X4、Y1)の1個、(X5、Y4)の1個の小部分近傍の照射窓1に汚れ6が付着している。受光部3が出力する汚れ6の影響を受けた受光素子3Aからの入光データを受信する演算部41は、受光部3の34%が覆われ、実効的な受光面積は66%と演算する。
The irradiation window 1 shown in FIG. 2 is a diagram showing a state in which dirt 6 is not attached, but as shown in FIG. 3, dirt 6 is attached and a part of the light receiving portion 3 is covered with the passage of time. This case will be described.
In FIGS. 3 and 4, the five light receiving elements 3A of the light receiving unit 3 (X1, Y1 to Y5), most of the three (X5, Y1 to Y3), and the four of (X2, Y1 to Y4). Dirt 6 is attached to the irradiation window 1 in the vicinity of one small portion of one (X4, Y1) and one (X5, Y4). The calculation unit 41 that receives the incoming light data from the light receiving element 3A affected by the dirt 6 output by the light receiving unit 3 calculates that 34% of the light receiving unit 3 is covered and the effective light receiving area is 66%. ..

次に、データ処理装置4の演算部41による演算処理について説明する。演算部41は受光素子群30Aを構成する各受光素子3A中の最大出力値に対して所定のしきい値内の出力を有する複数の受光素子3Aの近傍の照射窓1が汚れ6の影響を受けていないものと選択し、これらをサンプルデータとして採用の上、前記サンプルデータ出力の平均値を求め、この平均値に基づいて総受光量を演算するものであり、上記所定のしきい値以下を出力する受光素子3Aのデータを除外している。その演算処理の具体例を以下に示す。 Next, the arithmetic processing by the arithmetic unit 41 of the data processing apparatus 4 will be described. In the calculation unit 41, the irradiation windows 1 in the vicinity of the plurality of light receiving elements 3A having outputs within a predetermined threshold value with respect to the maximum output value in each light receiving element 3A constituting the light receiving element group 30A are affected by the dirt 6. It is selected as not received, these are adopted as sample data, the average value of the sample data output is obtained, and the total received light amount is calculated based on this average value, which is equal to or less than the above-mentioned predetermined threshold value. The data of the light receiving element 3A that outputs the above is excluded. A specific example of the arithmetic processing is shown below.

位置(X、Y)における或る受光素子3Aの受光量をLXY、受光素子群30Aを構成する受光素子3Aの内の最大値を示す受光素子3Aの受光量をLmax、所定のしきい値係数をKとしてLXY≧K×Lmaxを満足する複数の受光素子3Aを採用する。この実施の形態1では、しきい値係数Kを0.95としているが、必ずしもこの値に固定されるものではなく、この水質測定装置100を運用する設備の測定水の実情に合わせて変更されるものである。 Position (X, Y) receiving amount L XY of certain light receiving element 3A in, Lmax the amount of light received by the light receiving element 3A showing the maximum value of the light receiving elements 3A constituting the light receiving element group 30A, a predetermined threshold value A plurality of light receiving elements 3A satisfying L XY ≧ K × L max with a coefficient of K are adopted. In the first embodiment, the threshold coefficient K is set to 0.95, but it is not necessarily fixed to this value, and is changed according to the actual condition of the measured water of the equipment operating the water quality measuring device 100. It is a thing.

図3、図4に示す例では、(X2、Y5)の1個、(X3、Y1〜Y5)の5個、(X4、Y3〜Y5)の3個、(X5、Y5)の1個の計10個の受光素子3Aの出力値が、最大値の95%以内に収まっている、つまり汚れ6の影響を受けていないとして演算する。この演算処理を行うベースとなる選択後の受光素子3Aの分布を図5に示す。図4は入光した実値の受光量の分布図であり、この図4は表示部9に出力される。図5は前記95%以内の受光素子3Aであると選択された受光量を示すものである。そしてこの際、最大値の95%以内に収まっていない、汚れ6の影響を受けている他の受光素子3Aは、当該受光素子3Aの座標が記憶部42に記憶される。 In the examples shown in FIGS. 3 and 4, one of (X2, Y5), five of (X3, Y1 to Y5), three of (X4, Y3 to Y5), and one of (X5, Y5). The calculation is performed assuming that the output values of the total of 10 light receiving elements 3A are within 95% of the maximum value, that is, they are not affected by the dirt 6. FIG. 5 shows the distribution of the light receiving element 3A after selection, which is the base for performing this arithmetic processing. FIG. 4 is a distribution diagram of the amount of received light of the actual value received, and FIG. 4 is output to the display unit 9. FIG. 5 shows the light receiving amount selected to be the light receiving element 3A within 95%. At this time, the coordinates of the light receiving element 3A, which is not within 95% of the maximum value and is affected by the dirt 6, are stored in the storage unit 42.

さらに、演算部41は、上記10個の受光素子3Aの出力値の平均値、図5から明らかなように10(a.u.)を算出し、この平均値に基づく総受光量(平均値×素子数)で測定水11の汚泥濃度を演算部41に格納された図6に示す検量線に基づき演算し、その時点の汚泥濃度値として表示部9に出力する。さらに、表示部9には、汚れ6の影響を受けている受光素子3Aの座標が表示される。表示部9では管理基準値の汚泥濃度を超過した場合、アラーム信号を発生する。尚、上記演算部41で処理された経過、結果はデータ処理装置4の記憶部42に記憶される。 Further, the calculation unit 41 calculates the average value of the output values of the above 10 light receiving elements 3A, 10 (au) as is clear from FIG. 5, and the total light receiving amount (average value) based on the average value. × Number of elements) calculates the sludge concentration of the measured water 11 based on the calibration curve shown in FIG. 6 stored in the calculation unit 41, and outputs the sludge concentration value at that time to the display unit 9. Further, the display unit 9 displays the coordinates of the light receiving element 3A affected by the dirt 6. When the sludge concentration of the control standard value is exceeded, the display unit 9 generates an alarm signal. The process and result of processing by the calculation unit 41 are stored in the storage unit 42 of the data processing device 4.

上記実施の形態1に対して、受光部が、マトリクスを形成しない1個の受光素子で形成されている比較例の場合、汚れが付着していない場合の受光量を10(a.u.)とすると、6(a.u.)程度となり、この結果図6で後述するように測定水11の汚泥濃度は実際の汚泥濃度より過大に測定されることになる。 In the case of the comparative example in which the light receiving portion is formed of one light receiving element that does not form a matrix with respect to the first embodiment, the amount of light received when no dirt is attached is 10 (au). Then, it becomes about 6 (au), and as a result, the sludge concentration of the measured water 11 is measured excessively more than the actual sludge concentration as described later in FIG.

図6の検量線に示すように、実施の形態1では汚れの影響を除外した信頼性の向上した汚泥濃度の測定が可能であるが、比較例では汚れ付着による誤差を含むため汚泥濃度が高く算出されることになる。 As shown in the calibration curve of FIG. 6, in the first embodiment, it is possible to measure the sludge concentration with improved reliability excluding the influence of dirt, but in the comparative example, the sludge concentration is high because an error due to dirt adhesion is included. It will be calculated.

尚、上記実施の形態1では、受光部3が縦(Y軸)5個、横(X軸)5個の25個の受光素子3Aのマトリクスで構成の受光素子群30Aの例を示したが、これに限られることはなく、例えば、縦(Y軸)50個、横(X軸)50個等のマトリクスでもよく、さらに増加させてもよい。 In the first embodiment, an example of the light receiving element group 30A in which the light receiving unit 3 is composed of a matrix of 25 light receiving elements 3A having 5 vertical (Y-axis) and 5 horizontal (X-axis) is shown. The matrix is not limited to this, and may be, for example, a matrix of 50 vertical (Y-axis), 50 horizontal (X-axis), or the like, or may be further increased.

また、照射窓1の形状は方形としたが、測定水11の流通方向に長軸をおく長方形としてもよい。加えて、データ処理装置4に設けられた検出部43は演算部41の演算によって受光量が減少して汚れが付着している可能性のある受光素子3Aが管理基準の所定の個数、例えば総数25個の内の15個に達した場合に、表示部9にアラーム信号を出力することで、適切なタイミングで照射窓1のメンテナンスを実施することが可能となり、余分な汚れ具合の確認作業の実施を少なくし、その確認作業実施の為の水質測定の運用停止を行うことがなくなり、コスト低減、設備の高い信頼性運転が可能となるという効果がある。 Further, although the shape of the irradiation window 1 is square, it may be a rectangle having a long axis in the flow direction of the measurement water 11. In addition, the detection unit 43 provided in the data processing device 4 has a predetermined number, for example, the total number of light receiving elements 3A of the management standard, which may have a reduced amount of light received by the calculation of the calculation unit 41 and may be dirty. By outputting an alarm signal to the display unit 9 when 15 of the 25 are reached, it is possible to perform maintenance on the irradiation window 1 at an appropriate timing, and it is possible to check the degree of excess dirt. There is an effect that the number of implementations is reduced, the operation of water quality measurement for the confirmation work is not stopped, the cost is reduced, and the equipment can be operated with high reliability.

実施の形態2.
実施の形態2は、汚れ6の変動を時系列的に検出可能とするものである。受光部3は前述した実施の形態1で示した25個の受光素子3Aのマトリクスで構成された受光素子群30Aとしており、t=0からt=to+3における時系列における汚れ変動を測定するものである。図7では測定開始時点のt=toにおいて、受光部3の3個の受光素子3Aの近傍の照射窓1に汚れ6Aが付着しているものとしており、その受光素子3Aの座標を(X1、Y2)、(X1、Y5)、(X5、Y5)とする。
Embodiment 2.
In the second embodiment, the fluctuation of the dirt 6 can be detected in time series. The light receiving unit 3 is a light receiving element group 30A composed of a matrix of 25 light receiving elements 3A shown in the above-described first embodiment, and measures stain fluctuations in a time series from t = 0 to t = to + 3. is there. In FIG. 7, at t = to at the start of measurement, it is assumed that dirt 6A is attached to the irradiation window 1 in the vicinity of the three light receiving elements 3A of the light receiving unit 3, and the coordinates of the light receiving element 3A are (X1, Let it be Y2), (X1, Y5), (X5, Y5).

すなわち図7で、上記座標における照射窓1に汚れ6Aが付着し、これら3個の受光素子3A近傍の照射窓1をハッチングを施して示している。この汚れ6Aは照射窓1に付着して固着した状態であり、この図8〜図10に示す汚れ6Bは測定水11中の汚泥粒子5が時間とともに流動している状態を示している。時系列順に図8は図7のt=toから30秒〜1分経過後のt=to+1の時点における照射窓1の汚れ6A、6Bを、図9は図8から30秒〜1分経過後のt=to+2の、図10は図9から30秒〜1分経過後のt=to+3の時点にわたるタイムフレーム状態での照射窓1の汚れ6A、6Bを示している。 That is, in FIG. 7, dirt 6A adheres to the irradiation window 1 at the above coordinates, and the irradiation window 1 in the vicinity of these three light receiving elements 3A is hatched. The dirt 6A is in a state of being adhered to and fixed to the irradiation window 1, and the dirt 6B shown in FIGS. 8 to 10 shows a state in which the sludge particles 5 in the measurement water 11 are flowing with time. In chronological order, FIG. 8 shows the stains 6A and 6B of the irradiation window 1 at the time of t = to + 1 after 30 seconds to 1 minute from t = to in FIG. 7, and FIG. 9 shows stains 6A and 6B after 30 seconds to 1 minute from FIG. FIG. 10 shows the stains 6A and 6B of the irradiation window 1 in the time frame state over the time point of t = to + 3 after 30 seconds to 1 minute from FIG. 9 of t = to + 2.

図8のt=to+1の状態では、測定水11中の汚泥粒子5により照射窓1への透過が妨げられ、受光量が減少した受光素子3Aが2個存在するため、その座標の(X2、Y4)、(X3、Y1)の照射窓1には汚れ6Bが付着したような状態となる。図9のt=to+2の状態では、測定水11中の汚泥濃度に変化がないとすると、汚泥粒子5が移動して座標の(X3、Y4)、(X4、Y2)の照射窓1に汚れ6Bが付着したような状態となる。次に、図10のt=to+3の状態では同様に汚泥粒子5が移動して座標の(X4、Y4)、(X5、Y3)に汚れ6Bが付着したような状態となる。 In the state of t = to + 1 in FIG. 8, since the sludge particles 5 in the measurement water 11 hinder the transmission to the irradiation window 1 and there are two light receiving elements 3A in which the amount of light received is reduced, the coordinates (X2, The irradiation windows 1 of Y4) and (X3, Y1) are in a state where dirt 6B is attached. In the state of t = to + 2 in FIG. 9, assuming that there is no change in the sludge concentration in the measurement water 11, the sludge particles 5 move and stain the irradiation windows 1 at the coordinates (X3, Y4) and (X4, Y2). It will be in a state where 6B is attached. Next, in the state of t = to + 3 in FIG. 10, the sludge particles 5 move in the same manner, and the dirt 6B adheres to the coordinates (X4, Y4) and (X5, Y3).

上記のように、図7〜図10に示した座標(X1、Y2)、(X1、Y5)、(X5、Y5)の汚れ6Aは照射窓1に固着しており、各受光素子3Aの受光量には時間変化が生じない。一方、図8〜図10に示した汚れ6Bによる座標(X2、Y4)、(X3、Y1)、(X3、Y4)、(X4、Y2)、(X4、Y4)、(X5、Y3)の各受光素子3Aの受光量は、時間変化を含む。 As described above, the dirt 6A at the coordinates (X1, Y2), (X1, Y5), and (X5, Y5) shown in FIGS. 7 to 10 is fixed to the irradiation window 1 and receives light from each light receiving element 3A. The amount does not change over time. On the other hand, the coordinates (X2, Y4), (X3, Y1), (X3, Y4), (X4, Y2), (X4, Y4), (X5, Y3) according to the stain 6B shown in FIGS. 8 to 10 The light receiving amount of each light receiving element 3A includes a time change.

従って、演算部41では時間間隔毎の比較により、受光量が減少して変動しない受光素子3Aの特定を行ってサンプルデータから除外し、残る他の受光素子3Aの受光量から実施の形態1で示したものと同様に、汚泥濃度への変換を行うことで高信頼性のある汚泥濃度の測定が可能となる。 Therefore, in the calculation unit 41, the light receiving element 3A whose light receiving amount decreases and does not fluctuate is specified by comparison for each time interval, excluded from the sample data, and the light receiving amount of the other remaining light receiving elements 3A is used in the first embodiment. Similar to the one shown, the conversion to the sludge concentration enables highly reliable measurement of the sludge concentration.

また、さらにこの実施の形態2では、演算部41はt=toからt=to+3に渡る数分間におけるタイムフレーム間の比較から、受光量が減少して変動しない受光素子3Aを特定して表示部9に出力するとともに、検出部43はこの特定された受光素子3Aの個数が管理基準の所定の個数例えば25個の内の15個に達した場合に表示部9にアラーム信号を出力することで、技術員は特定された個数、箇所の照射窓1のメンテナンスが容易に行えるという効果がある。さらにまた、時間間隔毎の比較から、汚泥濃度の低下が、固着した汚れ6に基づくものか、あるいは測定水11中の汚泥粒子5によるものかの判定が容易となり、照射窓1のメンテナンスのタイミングをより適切に定めることが可能となり、高精度で経済的な運用が実現可能となる。 Further, in the second embodiment, the calculation unit 41 identifies the light receiving element 3A that does not fluctuate due to the decrease in the light receiving amount from the comparison between the time frames in several minutes from t = to to t = to + 3, and the display unit. In addition to outputting to 9, the detection unit 43 outputs an alarm signal to the display unit 9 when the number of the specified light receiving elements 3A reaches a predetermined number of management standards, for example, 15 out of 25. There is an effect that the technician can easily maintain the specified number and location of the irradiation windows 1. Furthermore, from the comparison for each time interval, it becomes easy to determine whether the decrease in sludge concentration is due to the adhered dirt 6 or the sludge particles 5 in the measurement water 11, and the timing of maintenance of the irradiation window 1 Can be determined more appropriately, and highly accurate and economical operation can be realized.

尚、上記時間間隔を30秒〜1分としたが、この水質測定装置100を運用する設備における測定水の水質に対応して、例えば3分〜5分間隔等、適宜変更してもよい。 Although the time interval is set to 30 seconds to 1 minute, it may be appropriately changed to, for example, an interval of 3 minutes to 5 minutes, depending on the water quality of the measured water in the equipment operating the water quality measuring device 100.

実施の形態3.
次に、実施の形態3として、人工知能部44を用いた水質測定装置100を図に基づいて説明する。図11に示すように、この実施の形態3のデータ処理装置4Aは、実施の形態1で示したデータ処理装置4に人工知能部44を追加して設けたものである。図11は下水道処理設備内で運用されている既設の複数、例えば機場A、機場Bに加えて機場Cに増設する場合を示す。上記機場A、機場Bには、実施の形態1による水質測定装置100が運用されている。
Embodiment 3.
Next, as the third embodiment, the water quality measuring device 100 using the artificial intelligence unit 44 will be described with reference to the drawings. As shown in FIG. 11, the data processing device 4A of the third embodiment is provided by adding the artificial intelligence unit 44 to the data processing device 4 shown in the first embodiment. FIG. 11 shows a case where a plurality of existing sewage treatment facilities are operated, for example, an extension is made to the sewage plant C in addition to the sewage treatment plants A and B. The water quality measuring device 100 according to the first embodiment is operated at the airport A and the airport B.

次に、機場Cに設置される水質測定装置100のデータ処理装置4の人工知能部44は、予め機場A、機場Bのデータ処理装置4の記憶部42に格納されている同種類の各種データから、図11の機場A、機場Bに示すデータを取得する。尚、以下は図11の機場Aについて詳述するが機場Bについても同様である。 Next, the artificial intelligence unit 44 of the data processing device 4 of the water quality measuring device 100 installed in the machine field C has various data of the same type stored in advance in the storage unit 42 of the data processing device 4 of the machine field A and the machine field B. From, the data shown in the airport A and the airport B in FIG. 11 are acquired. In the following, the airport A in FIG. 11 will be described in detail, but the same applies to the airport B.

実施の形態1で示した図3と同様の、汚れあり20J、汚れなし20Hに関する測定時刻の異なるCA1、CA2、CA3、図4の受光量21Rに関するCA1〜CA3、選択後の受光量21Nに関するCA1〜CA3、および汚泥濃度22Gに関するCA1〜CA3を取得する。同様に機場Bの各CB1、CB2、CB3についても取得する。 Similar to FIG. 3 shown in the first embodiment, CA1, CA2, CA3 having different measurement times for 20J with dirt and 20H without dirt, CA1 to CA3 for the light receiving amount 21R in FIG. 4, and CA1 for the light receiving amount 21N after selection. ~ CA3, and CA1 to CA3 for sludge concentration 22G. Similarly, each CB1, CB2, and CB3 of the airport B is also acquired.

人工知能部44は、図11に示された汚れあり20J、汚れなし20H、受光量21R、選択後の受光量21N、汚泥濃度22Gの各CA毎のセット、つまりCA1毎、CA2毎、CA3毎のセットのデータについて学習を行う。この学習は、例えば汚れあり20Jの図形パターンに基づいて実施の形態1で述べた演算部41が行う処理を模擬したマトリクス配置の受光素子3Aからしきい値に達していない受光素子3Aの除外以降の動作を行うものである。学習の成果は人工知能部44内に格納される。 The artificial intelligence unit 44 is a set of 20J with dirt, 20H without dirt, 21R of light receiving amount, 21N of light receiving amount after selection, and 22G of sludge concentration for each CA shown in FIG. 11, that is, every CA1, every CA2, and every CA3. Learn about the set of data. In this learning, for example, after excluding the light receiving element 3A that has not reached the threshold value from the light receiving element 3A in the matrix arrangement that simulates the processing performed by the calculation unit 41 described in the first embodiment based on the graphic pattern of 20J with dirt. It is the one that performs the operation of. The result of learning is stored in the artificial intelligence unit 44.

次に、機場Cにおける水質測定装置100の動作を述べる。図11に示す照射窓1に付着した汚れ6の影響を受ける受光部3の出力はデータ処理装置4Aに入力されると、人工知能部44は格納された学習の成果を用いて、例えば上記受光部3からの入光データがセットされたCA1と同一であると判断すると、その結果の汚泥濃度と特定された座標を創出して表示部9に出力する。尚、機場A、機場Bの2機場に加え、他機場のデータも学習対象のデータとすることで、上記判断がより高精度となる。 Next, the operation of the water quality measuring device 100 in the machine field C will be described. When the output of the light receiving unit 3 affected by the dirt 6 adhering to the irradiation window 1 shown in FIG. 11 is input to the data processing device 4A, the artificial intelligence unit 44 uses the stored learning result to, for example, receive the above light reception. When it is determined that the incoming light data from the unit 3 is the same as the set CA1, the sludge concentration as a result and the specified coordinates are created and output to the display unit 9. In addition to the two airports A and B, the data of other airports are also used as the data to be learned, so that the above determination can be made more accurate.

以上のように、この実施の形態3の水質測定装置100によると、実施の形態1での効果に加え、データ処理装置4の演算部41の負荷が低減されるという効果がある。 As described above, according to the water quality measuring device 100 of the third embodiment, in addition to the effect of the first embodiment, there is an effect that the load of the calculation unit 41 of the data processing device 4 is reduced.

実施の形態4.
上記各実施の形態では、水質測定に光照射を用い、受光部3を設ける例を示したが、光照射に代替して音波、超音波、マイクロ波のいずれかを用い、受光部3に代替して測音素子を用いても、上記各実施の形態と同様に行うことができ、同様の効果を奏することができる。
Embodiment 4.
In each of the above embodiments, an example is shown in which light irradiation is used for water quality measurement and the light receiving unit 3 is provided, but instead of light irradiation, any one of sound waves, ultrasonic waves, and microwaves is used to replace the light receiving unit 3. Even if the sound measuring element is used, the same can be performed in the same manner as in each of the above-described embodiments, and the same effect can be obtained.

本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

1 照射窓、2 発光部、3 受光部、3A 受光素子、4,4A データ処理装置、
5 汚泥粒子、6,6A,6B 汚れ、7 照射光、8 入光、9 表示部、
10 流通路、11 測定水、41 演算部、42 記憶部、43 検出部、
44 人工知能部、100 水質測定装置。
1 irradiation window, 2 light emitting part, 3 light receiving part, 3A light receiving element, 4, 4A data processing device,
5 sludge particles, 6,6A, 6B dirt, 7 irradiation light, 8 incoming light, 9 display unit,
10 flow path, 11 measurement water, 41 calculation unit, 42 storage unit, 43 detection unit,
44 Artificial intelligence department, 100 Water quality measuring device.

Claims (8)

測定水の流通路に設けられた照射窓と、前記照射窓の上部に設けられて前記測定水に照射光を発光する発光部と、前記測定水からの入光を受信する複数の受光素子によってマトリクスに構成された受光部と、前記受光部からの入光のデータを受信するデータ処理装置と、表示部とが設けられた水質測定装置であって、
前記データ処理装置に設けられた演算部は、前記複数の受光素子の内の最大出力値に対して、所定のしきい値以上の出力値を有する複数の前記受光素子の出力の平均値を算出して、前記平均値に基づく総受光量で前記測定水の汚泥濃度を演算するとともに、前記複数の受光素子の内の最大出力値に対して、所定のしきい値以下の出力値を有する前記マトリクスに構成された受光素子の座標を特定し、前記受光部からの入光データと、前記汚泥濃度および前記特定された座標とを前記表示部に出力する水質測定装置。
An irradiation window provided in the flow path of the measurement water, a light emitting unit provided above the irradiation window to emit the irradiation light to the measurement water, and a plurality of light receiving elements for receiving the incoming light from the measurement water. It is a water quality measuring device provided with a light receiving unit configured in a matrix, a data processing device for receiving incoming light data from the light receiving unit, and a display unit.
The calculation unit provided in the data processing device calculates the average value of the outputs of the plurality of light receiving elements having an output value equal to or higher than a predetermined threshold value with respect to the maximum output value among the plurality of light receiving elements. Then, the sludge concentration of the measured water is calculated by the total light receiving amount based on the average value, and the output value having an output value equal to or less than a predetermined threshold value with respect to the maximum output value among the plurality of light receiving elements is obtained. A water quality measuring device that specifies the coordinates of a light receiving element configured in a matrix and outputs the incoming light data from the light receiving unit, the sludge concentration, and the specified coordinates to the display unit.
前記演算部は、所定の時間間隔毎に3回以上に渡って演算を行うものであり、前記時間間隔は30秒〜60秒とする請求項1に記載の水質測定装置。 The water quality measuring device according to claim 1, wherein the calculation unit performs calculations three or more times at predetermined time intervals, and the time intervals are 30 seconds to 60 seconds. 前記データ処理装置に設けられた検出部は、前記測定水の汚泥濃度が所定の管理基準値を超過した時、前記表示部に警報を出力する請求項1または請求項2に記載の水質測定装置。 The water quality measuring device according to claim 1 or 2, wherein the detection unit provided in the data processing device outputs an alarm to the display unit when the sludge concentration of the measured water exceeds a predetermined control reference value. .. 前記データ処理装置に設けられた検出部は、前記所定のしきい値以下の出力値を有する前記受光素子の数が所定の個数以上である時、前記表示部に警報を出力する請求項1から請求項3のいずれか1項に記載の水質測定装置。 From claim 1, the detection unit provided in the data processing device outputs an alarm to the display unit when the number of the light receiving elements having an output value equal to or less than the predetermined threshold value is a predetermined number or more. The water quality measuring device according to any one of claims 3. 前記所定のしきい値は、前記測定水の汚れの実情に合わせて適宜設定される請求項1から請求項4のいずれか1項に記載の水質測定装置。 The water quality measuring device according to any one of claims 1 to 4, wherein the predetermined threshold value is appropriately set according to the actual situation of contamination of the measured water. 前記マトリクスは、Y軸、X軸の双方が同数で計25個以上の発光素子で構成されている請求項1から請求項5のいずれか1項に記載の水質測定装置。 The water quality measuring device according to any one of claims 1 to 5, wherein the matrix is composed of a total of 25 or more light emitting elements having the same number on both the Y-axis and the X-axis. 前記照射窓の形状は方形または前記測定水の流通方向に長軸をおく長方形のいずれかとする請求項1から請求項6のいずれか1項に記載の水質測定装置。 The water quality measuring device according to any one of claims 1 to 6, wherein the shape of the irradiation window is either a rectangle or a rectangle having a long axis in the flow direction of the measured water. 請求項1の水質測定装置が同一の水質管理施設内に既設設備として複数台設置されており、該水質管理施設に新設する水質測定装置には、請求項1に記載の水質測定装置の前記データ処理装置に加えて人工知能部が設けられており、前記人工知能部は、前記既設設備の前記水質測定装置の記憶部に格納されている同一の計測タイミングでの前記受光部の入光データと、前記総受光量と、前記汚泥濃度とを1セットとした複数のセットのデータを取得後、学習してその成果を格納し、前記新設の水質測定装置の前記データ処理装置の、前記受光部からの出力を入力すると前記人工知能部は、前記受光部からの入光データに基づき、前記学習の成果を用いて前記測定水の汚泥濃度と前記特定された座標とを創出し、前記受光部からの入光データとともに、前記表示部に出力する水質測定装置。 A plurality of water quality measuring devices according to claim 1 are installed as existing equipment in the same water quality management facility, and the water quality measuring device newly installed in the water quality management facility includes the data of the water quality measuring device according to claim 1. An artificial intelligence unit is provided in addition to the processing device, and the artificial intelligence unit is stored in the storage unit of the water quality measuring device of the existing equipment with the incoming light data of the light receiving unit at the same measurement timing. After acquiring data of a plurality of sets in which the total light receiving amount and the sludge concentration are set as one set, learning is performed and the result is stored, and the light receiving unit of the data processing device of the newly installed water quality measuring device. When the output from is input, the artificial intelligence unit creates the sludge concentration of the measured water and the specified coordinates by using the result of the learning based on the incoming light data from the light receiving unit, and the light receiving unit. A water quality measuring device that outputs light input data from the display to the display unit.
JP2019091145A 2019-05-14 2019-05-14 Water quality measuring device Active JP7190232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019091145A JP7190232B2 (en) 2019-05-14 2019-05-14 Water quality measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019091145A JP7190232B2 (en) 2019-05-14 2019-05-14 Water quality measuring device

Publications (2)

Publication Number Publication Date
JP2020186987A true JP2020186987A (en) 2020-11-19
JP7190232B2 JP7190232B2 (en) 2022-12-15

Family

ID=73221600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019091145A Active JP7190232B2 (en) 2019-05-14 2019-05-14 Water quality measuring device

Country Status (1)

Country Link
JP (1) JP7190232B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141281A (en) * 1974-10-04 1976-04-07 Yamakawa Denshi Kk KYODOHOJISOCHI
JPS5934135A (en) * 1982-08-20 1984-02-24 Mitsubishi Electric Corp Optical type apparatus for measuring water quality
JP2020134306A (en) * 2019-02-19 2020-08-31 株式会社日立製作所 Water quality meter, analysis unit and flow cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141281A (en) * 1974-10-04 1976-04-07 Yamakawa Denshi Kk KYODOHOJISOCHI
JPS5934135A (en) * 1982-08-20 1984-02-24 Mitsubishi Electric Corp Optical type apparatus for measuring water quality
JP2020134306A (en) * 2019-02-19 2020-08-31 株式会社日立製作所 Water quality meter, analysis unit and flow cell

Also Published As

Publication number Publication date
JP7190232B2 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
KR101429989B1 (en) Noise filtering and self-adjusting sampling period method, multi-quality measurement system using the method
JPH10318905A (en) Monitoring system of state of measuring device in clean room and monitoring method using the same
RU2015118362A (en) EMPLOYMENT DETECTION METHOD AND SYSTEM
KR20090078501A (en) Apparatus and method for prediction of influent flow rate and influent components using artificial neural network
CN203101366U (en) Online water quality detecting device and online water quality monitoring system for water supplying network
CN109643335A (en) System and method for modeling, analyzing, detect and monitor fluid network
KR20210086478A (en) System and Method for Providing Information on Buried material's Defects
JP2013113648A (en) Radiation measuring device
JP2020186987A (en) Water quality measurement device
US20170082480A1 (en) Real-time condition based monitoring (cbm) based ultrasonic meter (usm) accuracy performance detection and notification
JP7129899B2 (en) PIPE CONDITION DETECTION SYSTEM, METHOD AND SENSOR TERMINAL
CN114323636A (en) Monitoring method and device for gear fatigue test, electronic equipment and storage medium
US20180204435A1 (en) Determination Of A Lead Time For The Replacement Of An Optical Smoke Detector As A Function Of Its Contamination
CN107247871A (en) Item detection time checking method for early warning and device
KR20180083480A (en) The method of water quality forecasting based on IoT (Internet of Things)
CN113685923B (en) Dust-free workshop environment regulation and control method and system for mask production
KR101036335B1 (en) Performance diagnostic apparatus of integrated management system and the method thereof
Agbulos et al. An application of lean concepts and simulation for drainage operations maintenance crews
KR20160126609A (en) Building energy analysis system and method
JP2015040815A (en) Radioactive material moving path estimation method and decontamination method
KR101990784B1 (en) Multi-channel turbidity meter and turbidity system using the meter
Schneider et al. How well can inaccurate sensors quantify and improve the performance of a fleet of on-site wastewater treatment plants?
JP3549167B2 (en) Gas pipe leak detection device
JP6607699B2 (en) Detection apparatus and detection method
JP2016045033A (en) measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221129

R151 Written notification of patent or utility model registration

Ref document number: 7190232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151