JP2020186690A - System control method - Google Patents

System control method Download PDF

Info

Publication number
JP2020186690A
JP2020186690A JP2019092172A JP2019092172A JP2020186690A JP 2020186690 A JP2020186690 A JP 2020186690A JP 2019092172 A JP2019092172 A JP 2019092172A JP 2019092172 A JP2019092172 A JP 2019092172A JP 2020186690 A JP2020186690 A JP 2020186690A
Authority
JP
Japan
Prior art keywords
exhaust gas
ammonia
catalyst
nox
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019092172A
Other languages
Japanese (ja)
Inventor
北村 武昭
Takeaki Kitamura
武昭 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACR Co Ltd
Original Assignee
ACR Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACR Co Ltd filed Critical ACR Co Ltd
Priority to JP2019092172A priority Critical patent/JP2020186690A/en
Priority to PCT/JP2020/018210 priority patent/WO2020230638A1/en
Publication of JP2020186690A publication Critical patent/JP2020186690A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

To solve a problem that NOx elimination is deteriorated due to partial oxidation of ammonia in a range of 350°C to 500°C of an exhaust gas high temperature region regardless of NOx selective reduction in an SCR exhaust gas aftertreatment system.SOLUTION: Provided is a system control method in which a catalyst is zeolite containing copper and a consumption amount by partial oxidation of ammonia is supplied by controlling an ammonia amount that is an equimolar amount of NOx in exhaust gas, in an NOx selective catalytic reduction system using urea and/or ammonia.SELECTED DRAWING: Figure 3

Description

本発明は、自動車負荷走行に対応する排気ガス後処理装置のNOx浄化システム制御に関する。 The present invention relates to NOx purification system control of an exhaust gas aftertreatment device corresponding to automobile load traveling.

本発明の一実施の形態は、銅ゼオライト触媒および酸化窒素(NOx)を還元するために設計された排ガスシステムにおける、その制御に関する。さらに、特定の実施形態は、NOx選択還元剤としての尿素およびアンモニアの供給量を制御に関する。 One embodiment of the present invention relates to a copper zeolite catalyst and its control in an exhaust gas system designed to reduce nitrogen oxides (NOx). In addition, certain embodiments relate to controlling the supply of urea and ammonia as NOx selective reducing agents.

ディーゼル自動車のNOx浄化触媒は、排気ガス後処理装置で尿素水を噴霧し、その尿素水が加水分解して得られるアンモニアを還元剤として用いる(一般にSCR触媒といわれる選択的接触還元“Selective catalytic reduction”の略)触媒担体として、固体酸点にアンモニア吸着能が高い点で合成ゼオライトが知られている。 The NOx purification catalyst for diesel vehicles uses ammonia obtained by spraying urea water with an exhaust gas aftertreatment device and hydrolyzing the urea water as a reducing agent (selective catalytic reduction, generally referred to as an SCR catalyst). As a catalyst carrier, synthetic zeolite is known because it has a high ability to adsorb ammonia at the solid acid point.

前記排気ガス後処理装置では、幾つかの化学反応が起こり、それらの全てが、NOxを窒素に還元する。支配的な反応は、NOとNH3とが等量モルで進行する、反応式(1)に代表される。 In the exhaust gas aftertreatment device, several chemical reactions occur, all of which reduce NOx to nitrogen. The dominant reaction is represented by the reaction formula (1) in which NO and NH 3 proceed in equal amounts.

[化1]
4NO + 4NH3 + O2 → 4N2 + 6H2O ・・・(1)
[Chemical 1]
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O ・ ・ ・ (1)

SCR触媒として、シリカとアルミナを主成分とするCHA型結晶構造を有し、シリカのアルミナに対するモル割合が約15以上、及び銅のアルミニウムに対する原子割合が約0.25以上のような銅イオン交換ゼオライトを使用することが開示されている。(特許文献1)
この特許文献1に代表されるCuCHA触媒は、銅がイオン交換されたSSZ−13である。
As an SCR catalyst, copper ion exchange has a CHA-type crystal structure containing silica and alumina as main components, and the molar ratio of silica to alumina is about 15 or more, and the atomic ratio of copper to aluminum is about 0.25 or more. The use of zeolite is disclosed. (Patent Document 1)
The CuCHA catalyst represented by Patent Document 1 is SSZ-13 in which copper is ion-exchanged.

前記以外のSCR触媒として、リン酸化物、アルミナおよびシリカを主成分とするCHA型結晶構造を有するSAPO−34の鉄および/または銅のイオン交換ゼオライトを使用することが開示されている(特許文献2)。この特許文献2に代表される触媒は、銅がイオン交換されたSAPO−34である。 As an SCR catalyst other than the above, it is disclosed that an iron and / or copper ion-exchange zeolite of SAPO-34 having a CHA-type crystal structure containing phosphor oxide, alumina and silica as main components is used (Patent Document). 2). The catalyst represented by Patent Document 2 is SAPO-34 in which copper is ion-exchanged.

国際公開第2008/106519号International Publication No. 2008/106519 国際公開第2008/118434号International Publication No. 2008/118434

前記CuCHA触媒は、排ガス温度が200℃から350℃まで低温活性および熱水における熟成後の耐久活性は優れている。しかしながら、排ガス温度が350℃から500℃に至るにつれてNOx浄化率が低下しまう課題があった。 The CuCHA catalyst is excellent in low temperature activity from an exhaust gas temperature of 200 ° C. to 350 ° C. and durability activity after aging in hot water. However, there is a problem that the NOx purification rate decreases as the exhaust gas temperature rises from 350 ° C. to 500 ° C.

競争する、酸素との非選択的反応は、SCR触媒入り口の排ガス温度が350℃から500℃までの高温になるに従い、アンモニアの部分酸化反応が進行して、N2またはN2O(地球温暖化ガス)の生成が増加する。このように非選択的反応は、アンモニアがNOxの還元に使用されずアンモニアを消費する。その反応式(2)および反応式(3)に示す。 In the competing non-selective reaction with oxygen, as the exhaust gas temperature at the inlet of the SCR catalyst rises from 350 ° C to 500 ° C, the partial oxidation reaction of ammonia proceeds and N 2 or N 2 O (global warming). Chemical gas) production increases. Thus, the non-selective reaction consumes ammonia without using it for the reduction of NOx. It is shown in the reaction formula (2) and the reaction formula (3).

[化2]
4NH3 +3O2 → 2N2 + 6H2O ・・・(2)

2NH3 +2O2 → N2O + 6H2O ・・・(3)
[Chemical 2]
4NH 3 + 3O 2 → 2N 2 + 6H 2 O ・ ・ ・ (2)

2NH 3 + 2O 2 → N 2 O + 6H 2 O ・ ・ ・ (3)

一方、SCR触媒入り口の排ガス温度が500℃を超えると、アンモニアの完全酸化反応が進行する。アンモニアがNOxの還元に使用されずアンモニアから直接NOxを生成する。高度の排ガス規制を満足するために、Cuゼオライト触媒を用いて高活性のNOx浄化を行う場合において、SCR触媒入り口排ガス温度が500℃以下になるよう、内燃機関のEGR等の排ガス冷却システムで温度制御する必要がある。ただし、PM燃焼を行う場合は、500℃以上の排ガスとなるが、酸素濃度が少なく還元雰囲気になるため、尿素噴霧を行うことなくNOxが還元されるため、500℃以下でSCRシステムを制御する、この限りでない。 On the other hand, when the exhaust gas temperature at the inlet of the SCR catalyst exceeds 500 ° C., the complete oxidation reaction of ammonia proceeds. Ammonia is not used to reduce NOx and produces NOx directly from ammonia. When performing highly active NOx purification using a Cu zeolite catalyst in order to satisfy high exhaust gas regulations, the temperature of the exhaust gas cooling system such as EGR of the internal combustion engine is adjusted so that the exhaust gas temperature at the inlet of the SCR catalyst is 500 ° C or less. Need to control. However, when PM combustion is performed, the exhaust gas becomes 500 ° C or higher, but since the oxygen concentration is low and the atmosphere is reduced, NOx is reduced without spraying urea, so the SCR system is controlled at 500 ° C or lower. , Not limited to this.

[化3]
4NH3 +5O2 → 4NO + 6H2O ・・・(4)
[Chemical 3]
4NH 3 + 5O 2 → 4NO + 6H 2 O ・ ・ ・ (4)

本発明は、車両走行負荷時の排ガス温度において、尿素水のNOx還元の浄化が、200℃低温から500℃高温に至るまで、一様にして93%以上を維持できるSCRシステム制御方法にある。 The present invention relates to an SCR system control method capable of uniformly maintaining NOx reduction purification of urea water at 93% or more from a low temperature of 200 ° C. to a high temperature of 500 ° C. at the exhaust gas temperature under a vehicle running load.

本発明は、尿素および/またはアンモニアを用い、NOxを選択触媒還元システムにおいて、触媒が、銅を含むゼオライトであって、アンモニアの部分酸化による消費量を、排ガス中のNOxと等モル量となるアンモニア量を制御して供給することを特徴とする、システム制御方法である。 In the present invention, urea and / or ammonia are used to select NOx. In a catalytic reduction system, the catalyst is a zeolite containing copper, and the consumption of ammonia due to partial oxidation is equal to that of NOx in the exhaust gas. It is a system control method characterized in that the amount of ammonia is controlled and supplied.

本発明は、NOx浄化に係わらず、前記反応式(2)および反応式(3)によるアンモニアの消費量を加味し、アンモニア供給量を制御することにある。(数1)に示す。 The present invention is to control the amount of ammonia supplied by taking into account the amount of ammonia consumed by the reaction formulas (2) and (3) regardless of NOx purification. Shown in (Equation 1).

本発明に用いる触媒担体として、特に限定されるものでないが、熱水による耐久性が高い材料固有の特性から、CHA型および/またはAEI型、AFX型の結晶構造からなるゼオライトが好ましい。 The catalyst carrier used in the present invention is not particularly limited, but a zeolite having a CHA type and / or AEI type and AFX type crystal structure is preferable because of the material-specific properties of high durability to hot water.

さらに、触媒金属は、低温活性の観点で銅が好ましく、その銅が、CuO換算で2.0質量%〜5.0質量%を含まれることが好ましい。 Further, the catalyst metal is preferably copper from the viewpoint of low temperature activity, and the copper is preferably contained in an amount of 2.0% by mass to 5.0% by mass in terms of CuO.

本発明の排ガス温度におけるNOx浄化率について、実施例1、実施例2、比較例1および比較例2とを比較したグラフである。It is a graph which compared Example 1, Example 2, Comparative Example 1 and Comparative Example 2 about the NOx purification rate at the exhaust gas temperature of this invention. 本発明の排ガス温度におけるNOx浄化率について、実施例3、実施例4、比較例3および比較例4とを比較したグラフである。It is a graph which compared Example 3, Example 4, Comparative Example 3 and Comparative Example 4 about the NOx purification rate at the exhaust gas temperature of this invention. 本発明の排ガス後処理装置のシステム図の一例である。This is an example of a system diagram of the exhaust gas aftertreatment device of the present invention.

本発明は、図3に示す、一般的な車両に用いられる公知の排ガス後処理装置システムであって、(数1)の排ガス温度が、SCR触媒入口の(9)温度センサーの測定値を用い、(数1)の触媒上流NOx体積濃度が、エンジン出口の(2)上流NOxセンサーの測定値を用いて、システム制御をおこなう。 The present invention is a known exhaust gas aftertreatment system used in a general vehicle as shown in FIG. 3, wherein the exhaust gas temperature of (Equation 1) uses the measured value of the temperature sensor (9) of the SCR catalyst inlet. , (Equation 1) catalyst upstream NOx volume concentration uses the measured value of (2) upstream NOx sensor at the engine outlet to control the system.

本発明の(数1)定数Cは、Cuゼオライト触媒において種々ゼオライトの酸性度で異なる固有値である。排ガス温度における定数Cは、本発明の実施例が示すモデルガス性能試験によって定めて、排ガス温度をSCR触媒入口の(9)温度センサーの測定し、本発明のシステム制御をおこなう。 The constant C (Equation 1) of the present invention is an eigenvalue that differs depending on the acidity of various zeolites in the Cu zeolite catalyst. The constant C in the exhaust gas temperature is determined by the model gas performance test shown in the embodiment of the present invention, the exhaust gas temperature is measured by the (9) temperature sensor at the inlet of the SCR catalyst, and the system of the present invention is controlled.

本発明の前記モデルガス評価試験において、前記定数Cは、比較例1及び2が示すように、各排ガス温度においてNO、NH3、NO2、N2Oの触媒入口濃度およびNO、NH3、NO2、N2Oの触媒出口の濃度を測定値から求める。 In the model gas evaluation test of the present invention, as shown in Comparative Examples 1 and 2, the constant C is the catalyst inlet concentration of NO, NH 3 , NO 2 , N 2 O and NO, NH 3 , NO, NH 3 , at each exhaust gas temperature. Obtain the concentrations of the catalyst outlets of NO 2 and N 2 O from the measured values.

まず、各排ガス温度において、NOx浄化率を(数2)に従い求める。
(数2)
NOx浄化率={1−([NO]出口+[NO2]出口/[NO]入口+[NO2]入口)}×100
First, at each exhaust gas temperature, the NOx purification rate is obtained according to (Equation 2).
(Number 2)
NOx purification rate = {1-([NO] outlet + [NO 2 ] outlet / [NO] inlet + [NO 2 ] inlet)} x 100

次に、各排ガス温度において、定数Cを(数3)に従い求める。
(数3)
定数C={[NH3] 出口+([NOx]入口×[NOx浄化率] ×2) + [NOx] 出口+2*[N2O] 出口}/([NOx]入口+2*[N2O])
但し、[NOx]=[NO]+[NO2] として表す。

本発明は、(数3)から求めた前記定数Cを、(数1)に当て嵌めて、実際の自動車負荷走行に対応する排気ガス後処理装置のNOx浄化システム制御において、図3に示すエンジン出口の(2)上流NOxセンサーの測定値とSCR触媒入口の(9)温度センサーの測定値とを演算して、表1に示すANR(NH3/NOx)でシステム制御をおこなう。
Next, at each exhaust gas temperature, the constant C is obtained according to (Equation 3).
(Number 3)
Constant C = {[NH 3 ] Exit + ([NO x ] entrance x [NO x purification rate] x 2) + [NO x ] Exit + 2 * [N 2 O] Exit} / ([NOx] entrance + 2 * [N 2 O])
However, it is expressed as [NOx] = [NO] + [NO 2 ].

According to the present invention, the constant C obtained from (Equation 3) is applied to (Equation 1) to control the NOx purification system of the exhaust gas aftertreatment device corresponding to the actual vehicle load driving, the engine shown in FIG. The measured value of the (2) upstream NOx sensor at the outlet and the measured value of the (9) temperature sensor at the inlet of the SCR catalyst are calculated, and the system is controlled by the ANR (NH 3 / NO x ) shown in Table 1.

以下、本発明の実施例および比較例によって、本発明をさらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されることはない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples.

(参考例1)
参考例1は、CHA型SSZ−13ゼオライトを合成し、銅がイオン交換されたCuCHA触媒を作製した。
(Reference example 1)
In Reference Example 1, CHA-type SSZ-13 zeolite was synthesized to prepare a CuCHA catalyst in which copper was ion-exchanged.

(ゼオライト原料の調整)
まず、ガラス容器にイオン交換水と、攪拌しながら、擬ベーマイト(Pural SB)を加え、室温で20分間攪拌する。次いで、攪拌しながらアダマンチルトリメチルアンモニウムヒドロキシド(TMAdaOH)をゆっくり加え、1時間室温になるまで保持する。その後、コロイダルシリカ(Ludox AS40)を加え、5分間攪拌を継続し、懸濁液がpHが8.4で、次の組成物を調製した。
(Adjustment of zeolite raw material)
First, ion-exchanged water and pseudo-boehmite (Pural SB) are added to a glass container while stirring, and the mixture is stirred at room temperature for 20 minutes. Then, adamantyltrimethylammonium hydroxide (TMadaOH) is slowly added with stirring, and the mixture is kept at room temperature for 1 hour. Then, colloidal silica (Ludox AS40) was added, and stirring was continued for 5 minutes, and the suspension had a pH of 8.4, and the following composition was prepared.

0.033(Al23):1.0(SiO2):0.19(TMAdaOH):46(H2O) 0.033 (Al 2 O 3 ): 1.0 (SiO 2 ): 0.19 (TMadaOH): 46 (H 2 O)

(水熱合成)
得られた懸濁液を攪拌付きオートクレーブ(加圧滅菌器)に移し、密閉して、50rpm速度で攪拌しながら72時間150℃で加熱後、室温まで徐冷した。オートクレーブから得られたゲル組成物を取り出し、その上澄み液取り分け、上澄み液のpHは10.6であった。上澄み液を取り除いたゲル組成物に、等体積量のイオン交換水を加え、振り混ぜて、遠心分離機にて、洗浄、固液分離を、繰り返し行った。
(Hydrothermal synthesis)
The obtained suspension was transferred to an autoclave with stirring (pressure sterilizer), sealed, heated at 150 ° C. for 72 hours while stirring at a speed of 50 rpm, and then slowly cooled to room temperature. The gel composition obtained from the autoclave was taken out and the supernatant was set aside, and the pH of the supernatant was 10.6. An equal volume of ion-exchanged water was added to the gel composition from which the supernatant had been removed, the mixture was shaken, and washing and solid-liquid separation were repeated with a centrifuge.

(CHA型合成ゼオライト)
耐熱容器に、得られたゲル組成物を移し、乾燥を120℃で12時間後、20メッシュの篩網を通して粒度調整をおこなった。
得られた合成ゼオライトをX線回折(X-ray Diffraction)分析の結果から、主な回折ピークの相対強度(I)と格子面間隔(d)とを、国際合成ゼオライト学会のX線回折パターン・データベースおよびICDDのPDFと照らして、最大酸素環員数が8と、3次元構造を有するCHA型SSZ−13からなるゼオライトと同定した。
(CHA type synthetic zeolite)
The obtained gel composition was transferred to a heat-resistant container, dried at 120 ° C. for 12 hours, and then the particle size was adjusted through a 20-mesh sieve net.
Based on the results of X-ray diffraction analysis of the obtained synthetic zeolite, the relative intensities (I) and lattice plane spacing (d) of the main diffraction peaks were determined by the X-ray diffraction pattern of the International Society for Synthetic Zeolite. In light of the database and the PDF of the ICDD, it was identified as a zeolite consisting of CHA-type SSZ-13 having a maximum oxygen ring number of 8 and a three-dimensional structure.

得られたCHA型SSZ−13合成ゼオライトの組成は、ICP分析した結果、SiO2が94.65wt%、Al23が5.35wt%で、SiO2/Al23のmol比(SAR)は、30.00であった。 The resulting composition of the CHA type SSZ-13 synthetic zeolite, as a result of ICP analysis, SiO 2 is 94.65wt%, Al 2 O 3 is at 5.35wt%, mol ratio of SiO 2 / Al 2 O 3 ( SAR ) Was 30.00.

次いで、前記CHA型SSZ−13合成ゼオライト100gのNH4 +状CHAを400mLの1.0Mの硝酸銅(II)溶液と混合することにより、CuCHA粉末触媒を製造した。酢酸で、pHを3.5に調節した。スラリーを80℃で1時間攪拌させて、NH4 +状CHAと銅イオンとの間のイオン交換反応を行った。得られた混合物を次にろ過し、800mLの脱イオン水で、ろ液が透明で無色になるまで洗浄した。そして洗浄したサンプルを90℃に乾燥した。 Next, a CuCHA powder catalyst was produced by mixing 100 g of the CHA-type SSZ-13 synthetic zeolite with NH 4 + -like CHA in 400 mL of a 1.0 M copper (II) nitrate solution. The pH was adjusted to 3.5 with acetic acid. Slurry was stirred for 1 hour at 80 ° C., it was subjected to ion exchange reaction between the NH 4 + form CHA and the copper ions. The resulting mixture was then filtered and washed with 800 mL of deionized water until the filtrate was clear and colorless. The washed sample was then dried to 90 ° C.

次に得られたCuCHA生成物を、700℃で2時間か焼した。得られたCuCHA触媒は、ICP分析で測定して、CuOを2.8質量%含んでいた。 The resulting CuCHA product was then baked at 700 ° C. for 2 hours. The obtained CuCHA catalyst contained 2.8% by mass of CuO as measured by ICP analysis.

(参考例2)
参考例2は、触媒担体の合成ゼオライトをCHA型SAPO−34合成ゼオライトに代えた以外は、参考例1と同様にして、銅がイオン交換されたCuCHA触媒を作製した。
(Reference example 2)
In Reference Example 2, a CuCHA catalyst in which copper was ion-exchanged was prepared in the same manner as in Reference Example 1 except that the synthetic zeolite of the catalyst carrier was replaced with CHA-type SAPO-34 synthetic zeolite.

(ゼオライト原料の調整)
まず、ガラス容器にイオン交換水と、85質量%オルトリン酸とを攪拌しながら混合する。そこに、擬ベーマイト(Pural SB)を加え、室温で20分間攪拌する。次いで、攪拌しながらテトラエチルアンモニウムヒドロキシド(TEAOH)をゆっくり加え、1時間室温になるまで保持する。その後、コロイダルシリカ(Ludox AS40)を加え、5分間攪拌を継続し、懸濁液がpHが8.1で、次の組成物を調製した。
(Adjustment of zeolite raw material)
First, ion-exchanged water and 85% by mass orthophosphoric acid are mixed in a glass container with stirring. Pseudo-boehmite (Pural SB) is added thereto, and the mixture is stirred at room temperature for 20 minutes. Then, tetraethylammonium hydroxide (TEAOH) is slowly added with stirring, and the mixture is kept at room temperature for 1 hour. Then, colloidal silica (Ludox AS40) was added, and stirring was continued for 5 minutes, and the suspension had a pH of 8.1 to prepare the following composition.

1.0(Al23):1.0(P25):0.3(SiO2):1.0(TEAOH):64(H2O) 1.0 (Al 2 O 3 ): 1.0 (P 2 O 5 ): 0.3 (SiO 2 ): 1.0 (TEAOH): 64 (H 2 O)

(水熱合成)
得られた懸濁液を攪拌付きオートクレーブ(加圧滅菌器)に移し、密閉して、50rpm速度で攪拌しながら72時間170℃で加熱後、室温まで徐冷した。オートクレーブから得られたゲル組成物を取り出し、その上澄み液取り分け、上澄み液のpHは10.2であった。上澄み液を取り除いたゲル組成物に、等体積量のイオン交換水を加え、振り混ぜて、遠心分離機にて、洗浄、固液分離を、繰り返し行った。
(Hydrothermal synthesis)
The obtained suspension was transferred to an autoclave with stirring (pressure sterilizer), sealed, heated at 170 ° C. for 72 hours while stirring at a speed of 50 rpm, and then slowly cooled to room temperature. The gel composition obtained from the autoclave was taken out and the supernatant was set aside, and the pH of the supernatant was 10.2. An equal volume of ion-exchanged water was added to the gel composition from which the supernatant had been removed, the mixture was shaken, and washing and solid-liquid separation were repeated with a centrifuge.

(CHA型合成ゼオライト)
耐熱容器に、得られたゲル組成物を移し、乾燥を120℃で12時間後、20メッシュの篩網を通して粒度調整をおこなった。
得られた合成ゼオライトをX線回折(X-ray Diffraction)分析の結果から、主な回折ピークの相対強度(I)と格子面間隔(d)とを、国際合成ゼオライト学会のX線回折パターン・データベースおよびICDDのPDFと照らして、最大酸素環員数が8と、3次元構造を有するCHA型SAPO―34からなるゼオライトと同定した。
(CHA type synthetic zeolite)
The obtained gel composition was transferred to a heat-resistant container, dried at 120 ° C. for 12 hours, and then the particle size was adjusted through a 20-mesh sieve net.
From the results of X-ray diffraction analysis of the obtained synthetic zeolite, the relative intensity (I) and lattice plane spacing (d) of the main diffraction peaks were determined by the X-ray diffraction pattern of the International Society of Synthetic Zeolite. In light of the database and the PDF of the ICDD, it was identified as a zeolite consisting of CHA-type SAPO-34 having a maximum oxygen ring number of 8 and a three-dimensional structure.

得られたCHA型合成SAPO−34ゼオライトの組成は、ICP分析した結果、P25が44.50wt%、SiO2が9.60wt%、Al23が45.90wt%で、SiO2/Al23のmol比(SAR)は、0.355であった。 As a result of ICP analysis, the composition of the obtained CHA-type synthetic SAPO-34 zeolite was 44.50 wt% for P 2 O 5 , 9.60 wt% for SiO 2 , 45.90 wt% for Al 2 O 3 , and SiO 2 The mol ratio (SAR) of / Al 2 O 3 was 0.355.

次いで、参考例1と同様にして、前記CHA型SAPO−34合成ゼオライト100gのNH4 +状CHAを400mLの1.0Mの硝酸銅(II)溶液と混合することにより、CuCHA粉末触媒を製造した。酢酸で、pHを3.5に調節した。スラリーを80℃で1時間攪拌させて、NH4 +状CHAと銅イオンとの間のイオン交換反応を行った。得られた混合物を次にろ過し、800mLの脱イオン水で、ろ液が透明で無色になるまで洗浄した。そして洗浄したサンプルを90℃に乾燥した。 Next, in the same manner as in Reference Example 1, a CuCHA powder catalyst was produced by mixing 100 g of the CHA-type SAPO-34 synthetic zeolite with NH 4 + -like CHA with 400 mL of a 1.0 M copper (II) nitrate solution. .. The pH was adjusted to 3.5 with acetic acid. Slurry was stirred for 1 hour at 80 ° C., it was subjected to ion exchange reaction between the NH 4 + form CHA and the copper ions. The resulting mixture was then filtered and washed with 800 mL of deionized water until the filtrate was clear and colorless. The washed sample was then dried to 90 ° C.

次に得られたCuCHA生成物を、700℃で2時間か焼した。得られたCuCHA触媒は、ICP分析で測定して、CuOを2.8質量%含んでいた。 The resulting CuCHA product was then baked at 700 ° C. for 2 hours. The obtained CuCHA catalyst contained 2.8% by mass of CuO as measured by ICP analysis.

(参考例3)
参考例3は、触媒担体の合成ゼオライトをAEI型SSZ−39合成ゼオライトに代えた以外は、参考例1と同様にして、銅がイオン交換されたCuAEI触媒を作製した。
(Reference example 3)
In Reference Example 3, a CuAEI catalyst in which copper was ion-exchanged was prepared in the same manner as in Reference Example 1 except that the synthetic zeolite of the catalyst carrier was replaced with AEI type SSZ-39 synthetic zeolite.

(ゼオライト原料の調整)
まず、ガラス容器にイオン交換水を入れ、そこへ攪拌しながら、1NのNaOHと、N,N−ジエチル−シス−2,6−ジメチルピペラジニウムカチオンヒドロキシド(DEDMPOH)とを所定量加えて室温で20分間攪拌する。次に、NH4 +状のY型ゼオライトとコロイダルシリカ(Ludox AS40)をと所定量加え、5分間攪拌を継続し、懸濁液がpHが9.2で、次の組成物を調製した。
(Adjustment of zeolite raw material)
First, ion-exchanged water is placed in a glass container, and a predetermined amount of 1N NaOH and N, N-diethyl-cis-2,6-dimethylpiperazinium cation hydroxide (DEDMPOH) are added to the glass container while stirring. Stir at room temperature for 20 minutes. Then, NH 4 + form Y-type zeolite and colloidal silica (Ludox AS40) with a predetermined amount was added, stirring was continued for 5 minutes, the suspension is at a pH of 9.2, were prepared following composition.

0.06(Al23):1.0(SiO2):0.35(DEDMPOH):43(H2O) 0.06 (Al 2 O 3 ): 1.0 (SiO 2 ): 0.35 (DEDMPOH): 43 (H 2 O)

(水熱合成)
得られた懸濁液を攪拌付きオートクレーブ(加圧滅菌器)に移し、密閉して、50rpm速度で攪拌しながら7日間140℃で加熱後、室温まで徐冷した。オートクレーブから得られたゲル組成物を取り出し、その上澄み液取り分け、上澄み液のpHは11.3であった。上澄み液を取り除いたゲル組成物に、等体積量のイオン交換水を加え、振り混ぜて、遠心分離機にて、洗浄、固液分離を、繰り返し行った。
(Hydrothermal synthesis)
The obtained suspension was transferred to an autoclave with stirring (pressure sterilizer), sealed, heated at 140 ° C. for 7 days while stirring at a speed of 50 rpm, and then slowly cooled to room temperature. The gel composition obtained from the autoclave was taken out and the supernatant was set aside, and the pH of the supernatant was 11.3. An equal volume of ion-exchanged water was added to the gel composition from which the supernatant had been removed, the mixture was shaken, and washing and solid-liquid separation were repeated with a centrifuge.

(AEI型合成ゼオライト)
耐熱容器に、得られたゲル組成物を移し、乾燥を120℃で12時間後、20メッシュの篩網を通して粒度調整をおこなった。
得られた合成ゼオライトをX線回折(X-ray Diffraction)分析の結果から、主な回折ピークの相対強度(I)と格子面間隔(d)とを、国際合成ゼオライト学会のX線回折パターン・データベースおよびICDDのPDFと照らして、最大酸素環員数が8と、3次元構造を有するAEI型SSZ−39からなるゼオライトと同定した。
(AEI type synthetic zeolite)
The obtained gel composition was transferred to a heat-resistant container, dried at 120 ° C. for 12 hours, and then the particle size was adjusted through a 20-mesh sieve net.
From the results of X-ray diffraction analysis of the obtained synthetic zeolite, the relative intensity (I) and lattice plane spacing (d) of the main diffraction peaks were determined by the X-ray diffraction pattern of the International Society of Synthetic Zeolite. In light of the database and the PDF of the ICDD, it was identified as a zeolite consisting of AEI type SSZ-39 having a maximum oxygen ring number of 8 and a three-dimensional structure.

得られたAEI型SSZ−39ゼオライトの組成は、ICP分析した結果、SiO2が89.65wt%、Al23が10.35wt%で、SiO2/Al23のmol比(SAR)は、14.7であった。 The composition of the obtained AEI type SSZ-39 zeolites, as a result of ICP analysis, SiO 2 is 89.65wt%, Al 2 O 3 is at 10.35wt%, mol ratio of SiO 2 / Al 2 O 3 ( SAR) Was 14.7.

次いで、実施例1と同様にして、前記AEI型SSZ−39合成ゼオライト100gのNH4 +状AEIを400mLの1.0Mの硝酸銅(II)溶液と混合することにより、CuAEI粉末触媒を製造した。酢酸で、pHを3.5に調節した。スラリーを80℃で1時間攪拌させて、NH4 +状AEIと銅イオンとの間のイオン交換反応を行った。得られた混合物を次にろ過し、800mLの脱イオン水で、ろ液が透明で無色になるまで洗浄した。そして洗浄したサンプルを90℃に乾燥した。 Then, in the same manner as in Example 1, the NH 4 + form AEI of said AEI type SSZ-39 synthesized zeolite 100g by mixing copper (II) nitrate solution of 1.0M of 400 mL, to prepare a CuAEI powder catalyst .. The pH was adjusted to 3.5 with acetic acid. Slurry was stirred for 1 hour at 80 ° C., it was subjected to ion exchange reaction between the NH 4 + form AEI and copper ions. The resulting mixture was then filtered and washed with 800 mL of deionized water until the filtrate was clear and colorless. The washed sample was then dried to 90 ° C.

次に得られたCuAEI生成物を、700℃で2時間か焼した。得られたCuAEI触媒は、ICP分析で測定して、CuOを2.8質量%含んでいた。 The resulting CuAEI product was then baked at 700 ° C. for 2 hours. The obtained CuAEI catalyst contained 2.8% by mass of CuO as measured by ICP analysis.

(参考例4)
参考例4は、触媒担体の合成ゼオライトをAEI型SAPO−18合成ゼオライトに代えた以外は、参考例1と同様にして、銅がイオン交換されたCuAEI触媒を作製した。
(Reference example 4)
In Reference Example 4, a CuAEI catalyst in which copper was ion-exchanged was prepared in the same manner as in Reference Example 1 except that the synthetic zeolite of the catalyst carrier was replaced with the AEI type SAPO-18 synthetic zeolite.

(ゼオライト原料の調整)
まず、ガラス容器にイオン交換水と、85質量%オルトリン酸とを攪拌しながら混合する。そこに、擬ベーマイト(Pural SB)を加え、室温で20分間攪拌する。次いで、攪拌しながらテトラエチルアンモニウムヒドロキシド(TEAOH)をゆっくり加え、1時間室温になるまで保持する。その後、コロイダルシリカ(Ludox AS40)を加え、5分間攪拌を継続し、懸濁液がpHが7.8で、次の組成物を調製した。
(Adjustment of zeolite raw material)
First, ion-exchanged water and 85% by mass orthophosphoric acid are mixed in a glass container with stirring. Pseudo-boehmite (Pural SB) is added thereto, and the mixture is stirred at room temperature for 20 minutes. Then, tetraethylammonium hydroxide (TEAOH) is slowly added with stirring, and the mixture is kept at room temperature for 1 hour. Then, colloidal silica (Ludox AS40) was added, and stirring was continued for 5 minutes, and the suspension had a pH of 7.8, and the following composition was prepared.

1.0(Al23):0.98(P25):0.075(SiO2):1.0(TEAOH):64(H2O) 1.0 (Al 2 O 3 ): 0.98 (P 2 O 5 ): 0.075 (SiO 2 ): 1.0 (TEAOH): 64 (H 2 O)

(水熱合成)
得られた懸濁液を攪拌付きオートクレーブ(加圧滅菌器)に移し、密閉して、50rpm速度で攪拌しながら120時間215℃で加熱後、室温まで徐冷した。オートクレーブから得られたゲル組成物を取り出し、その上澄み液取り分け、上澄み液のpHは9.2であった。上澄み液を取り除いたゲル組成物に、等体積量のイオン交換水を加え、振り混ぜて、遠心分離機にて、洗浄、固液分離を、繰り返し行った。
(Hydrothermal synthesis)
The obtained suspension was transferred to an autoclave with stirring (pressure sterilizer), sealed, heated at 215 ° C. for 120 hours while stirring at a speed of 50 rpm, and then slowly cooled to room temperature. The gel composition obtained from the autoclave was taken out and the supernatant was set aside, and the pH of the supernatant was 9.2. An equal volume of ion-exchanged water was added to the gel composition from which the supernatant had been removed, the mixture was shaken, and washing and solid-liquid separation were repeated with a centrifuge.

(AEI型合成ゼオライト)
耐熱容器に、得られたゲル組成物を移し、乾燥を120℃で12時間後、20メッシュの篩網を通して粒度調整をおこなった。
得られた合成ゼオライトをX線回折(X-ray Diffraction)分析の結果から、主な回折ピークの相対強度(I)と格子面間隔(d)とを、国際合成ゼオライト学会のX線回折パターン・データベースおよびICDDのPDFと照らして、最大酸素環員数が8と、3次元構造を有するAEI型SAPO−18からなるゼオライトと同定した。
(AEI type synthetic zeolite)
The obtained gel composition was transferred to a heat-resistant container, dried at 120 ° C. for 12 hours, and then the particle size was adjusted through a 20-mesh sieve net.
From the results of X-ray diffraction analysis of the obtained synthetic zeolite, the relative intensity (I) and lattice plane spacing (d) of the main diffraction peaks were determined by the X-ray diffraction pattern of the International Society of Synthetic Zeolite. In light of the database and the PDF of the ICDD, it was identified as a zeolite consisting of AEI-type SAPO-18 having a maximum oxygen ring number of 8 and a three-dimensional structure.

得られたAEI型SAPO−18ゼオライトの組成は、ICP分析した結果、P25が61.00wt%、SiO2が1.80wt%、Al23が37.20wt%で、SiO2/Al23のmol比(SAR)は、0.082であった。 As a result of ICP analysis, the composition of the obtained AEI type SAPO-18 zeolite was 61.00 wt% for P 2 O 5 , 1.80 wt% for SiO 2 , and 37.20 wt% for Al 2 O 3 , and SiO 2 /. The mol ratio (SAR) of Al 2 O 3 was 0.082.

次いで、実施例1と同様にして、前記AEI型SAPO−18合成ゼオライト100gのNH4 +状AEIを400mLの1.0Mの硝酸銅(II)溶液と混合することにより、CuAEI粉末触媒を製造した。酢酸で、pHを3.5に調節した。スラリーを80℃で1時間攪拌させて、NH4 +状AEIと銅イオンとの間のイオン交換反応を行った。得られた混合物を次にろ過し、800mLの脱イオン水で、ろ液が透明で無色になるまで洗浄した。そして洗浄したサンプルを90℃に乾燥した。 Next, in the same manner as in Example 1, a CuAEI powder catalyst was produced by mixing 100 g of the AEI-type SAPO-18 synthetic zeolite with NH 4 + -like AEI with 400 mL of a 1.0 M copper (II) nitrate solution. .. The pH was adjusted to 3.5 with acetic acid. Slurry was stirred for 1 hour at 80 ° C., it was subjected to ion exchange reaction between the NH 4 + form AEI and copper ions. The resulting mixture was then filtered and washed with 800 mL of deionized water until the filtrate was clear and colorless. The washed sample was then dried to 90 ° C.

次に得られたCuAEI生成物を、700℃で2時間か焼した。得られたCuAEI触媒は、ICP分析で測定して、CuOを2.8質量%含んでいた。 The resulting CuAEI product was then baked at 700 ° C. for 2 hours. The obtained CuAEI catalyst contained 2.8% by mass of CuO as measured by ICP analysis.

参考例1〜参考例4の銅を含むSCR触媒粉を、コロイド状シリカバインダー(固形分20質量%)とスラリー液を作製し、公知のコージェライト製ハニカムフロースルー型基材に堆積させた。 The SCR catalyst powder containing copper of Reference Examples 1 to 4 was prepared with a colloidal silica binder (solid content: 20% by mass) and a slurry liquid, and deposited on a known cordierite honeycomb flow-through type substrate.

(スラリー配合)
イオン交換水: 30g
SCR触媒粉: 30g
コロイド状シリカバインダー: 15g
(Slurry combination)
Ion-exchanged water: 30 g
SCR catalyst powder: 30 g
Colloidal silica binder: 15g

前記スラリー液をボールミルにて分散させ、前記ハニカム基材の容積当たり200g/Lに堆積させた。その後、80℃で乾燥、500℃でか焼させて、本発明のシステム制御を用いた排ガス浄化性能試験を行った。 The slurry liquid was dispersed by a ball mill and deposited at 200 g / L per volume of the honeycomb base material. Then, it was dried at 80 ° C. and calcinated at 500 ° C., and an exhaust gas purification performance test using the system control of the present invention was performed.

(排ガス浄化性能試験)
触媒入口温度:200℃、250℃、300℃、350℃、400℃、450℃、50 0℃
空間速度(SV):50000/h
NO:500ppm
NH3:実施例1〜実施例4は、本発明の指数で供給
比較例1〜比較例4は、500ppmで一定
CO2:10%
2:10%
2O:10%
2:BALANCE
排ガス濃度検出器:FT−IR
触媒入口及び出口の検出濃度ガス成分:NO、NH3、NO2、N2O、CO2、H2
但し、O2は計算上での濃度調整。
(Exhaust gas purification performance test)
Catalyst inlet temperature: 200 ° C, 250 ° C, 300 ° C, 350 ° C, 400 ° C, 450 ° C, 500 ° C
Space velocity (SV): 50,000 / h
NO: 500ppm
NH 3 : Examples 1 to 4 are supplied by the index of the present invention Comparative Examples 1 to 4 are constant CO 2 : 10% at 500 ppm.
O 2 : 10%
H 2 O: 10%
N 2 : BALANCE
Exhaust gas concentration detector: FT-IR
Detected concentration gas components at catalyst inlet and outlet: NO, NH 3 , NO 2 , N 2 O, CO 2 , H 2 O
However, O 2 is a calculated concentration adjustment.

表1に、実施例1〜実施例4および比較例1〜比較例4におけるNOx排ガス濃度とNH3供給制御濃度との関係を、ANR(NH3/NOx)として示す。 Table 1 shows the relationship between the NOx exhaust gas concentration and the NH 3 supply control concentration in Examples 1 to 4 and Comparative Examples 1 to 4 as ANR (NH 3 / NOx).

表2に、実施例1〜実施例4および比較例1〜比較例4におけるNOx浄化性能の結果を示す。 Table 2 shows the results of NOx purification performance in Examples 1 to 4 and Comparative Examples 1 to 4.

表3に、実施例1〜実施例4および比較例1〜比較例4における前記NH3スリップ(SCR触媒下流漏れ)濃度の結果を示す。 Table 3 shows the results of the NH 3 slip (SCR catalyst downstream leakage) concentration in Examples 1 to 4 and Comparative Examples 1 to 4.

上記の結果により、NOx浄化率において、実施例1〜実施例4は、比較例1〜比較例4と比較して、350℃から500℃まで範囲で明らかに向上した。 Based on the above results, the NOx purification rate of Examples 1 to 4 was clearly improved in the range of 350 ° C. to 500 ° C. as compared with Comparative Examples 1 to 4.

一方、NH3スリップ(漏洩)において、実施例1〜実施例4は、比較例1〜比較例4と比較して、排ガス高温域350℃から500℃までの範囲で少量の漏洩が認められるが、本発明の対象SCR触媒の下段に設けられるAMOX触媒(アンモニア酸化触媒)で、浄化できる十分な範囲である。また、排ガス低高温域では、SCR触媒の低温活性に依存するため、実施例1〜実施例4は、比較例1〜比較例4と比較して、同等のNH3スリップ(漏洩)量であった。 On the other hand, in the NH 3 slip (leakage), in Examples 1 to 4, a small amount of leakage is observed in the exhaust gas high temperature range of 350 ° C. to 500 ° C. as compared with Comparative Examples 1 to 4. The AMOX catalyst (ammonia oxidation catalyst) provided below the target SCR catalyst of the present invention is in a sufficient range for purification. Further, in the low and high temperature region of the exhaust gas, since it depends on the low temperature activity of the SCR catalyst, Examples 1 to 4 have the same amount of NH 3 slip (leakage) as those of Comparative Examples 1 to 4. It was.

Claims (4)

尿素および/またはアンモニアを用い、NOxを選択触媒還元システムにおいて、
触媒が、銅を含むゼオライトであって、
アンモニアの部分酸化による消費量を、排ガス中のNOxと等モル量となるアンモニア量を制御して供給することを特徴とする、システム制御方法。
NOx with urea and / or ammonia in a selective catalytic reduction system
The catalyst is a copper-containing zeolite,
A system control method characterized in that the amount of ammonia consumed by partial oxidation is supplied by controlling the amount of ammonia that is equivalent to the amount of NOx in the exhaust gas.
前記触媒の入口排ガス温度と、前記尿素の加水分解からなるアンモニアガスおよび/またはアンモニアガスの供給量との関係式が、以下を満たすことを特徴とする、請求項1に記載のシステム制御方法。
The system control method according to claim 1, wherein the relational expression between the inlet exhaust gas temperature of the catalyst and the supply amount of ammonia gas and / or ammonia gas composed of hydrolysis of urea satisfies the following.
前記ゼオライトが、CHA型、AEI型およびAFX型の結晶構造からなる、請求項1または請求項2に記載のシステム制御方法。 The system control method according to claim 1 or 2, wherein the zeolite has a CHA-type, AEI-type, and AFX-type crystal structure. 前記ゼオライトが、2.0質量%〜5.0質量%のCuOを含むことを特徴とする、請求項1から請求項3のいずれか1項に記載のシステム制御方法。 The system control method according to any one of claims 1 to 3, wherein the zeolite contains 2.0% by mass to 5.0% by mass of CuO.
JP2019092172A 2019-05-15 2019-05-15 System control method Pending JP2020186690A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019092172A JP2020186690A (en) 2019-05-15 2019-05-15 System control method
PCT/JP2020/018210 WO2020230638A1 (en) 2019-05-15 2020-04-30 System control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019092172A JP2020186690A (en) 2019-05-15 2019-05-15 System control method

Publications (1)

Publication Number Publication Date
JP2020186690A true JP2020186690A (en) 2020-11-19

Family

ID=73220931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019092172A Pending JP2020186690A (en) 2019-05-15 2019-05-15 System control method

Country Status (2)

Country Link
JP (1) JP2020186690A (en)
WO (1) WO2020230638A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517210A (en) * 2005-11-30 2009-04-30 キャタピラー インコーポレイテッド Multi-stage system for selective catalytic reduction
JP2009293605A (en) * 2008-06-09 2009-12-17 Hino Motors Ltd Control device for exhaust treatment device
JP2015196115A (en) * 2014-03-31 2015-11-09 株式会社キャタラー Scr catalyst and exhaust gas purification catalyst system
JP2017524520A (en) * 2014-08-13 2017-08-31 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Catalyst system for reducing nitrogen oxides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517210A (en) * 2005-11-30 2009-04-30 キャタピラー インコーポレイテッド Multi-stage system for selective catalytic reduction
JP2009293605A (en) * 2008-06-09 2009-12-17 Hino Motors Ltd Control device for exhaust treatment device
JP2015196115A (en) * 2014-03-31 2015-11-09 株式会社キャタラー Scr catalyst and exhaust gas purification catalyst system
JP2017524520A (en) * 2014-08-13 2017-08-31 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Catalyst system for reducing nitrogen oxides

Also Published As

Publication number Publication date
WO2020230638A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
RU2595336C2 (en) Method of producing zeolites and zeolite-like structures doped with metals, and methods for use thereof for catalytic reduction of nitrogen oxides
JP5169779B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
US20150290632A1 (en) IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION
CN107376989B (en) Cu-AEI molecular sieve catalyst synthesis and application
JP5987010B2 (en) Method for treating a gas containing nitric oxide (NOx) using a composition containing zirconium, cerium and niobium as a catalyst
JP2014139440A (en) Catalyst, system and method utilizing non-zeolite type metal including molecular sieve having cha crystal structure
EP3388392B1 (en) Copper-containing zeolites having a low alkali metal content, method of making thereof, and their use as scr catalysts
WO2014062944A1 (en) Mixed metal 8-ring small pore molecular sieve catalyst compositions, catalytic articles, systems and methods
WO2011073390A2 (en) Process for preparation of copper containing molecular sieves with the cha structure, catalysts, systems and methods
JP4957176B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
CN110961144A (en) Symbiotic composite molecular sieve with CHA/LEV topological structure, preparation method thereof and SCR application thereof
JP2021524373A (en) A catalyst containing a very high purity AFX-structured zeolite and at least one transition metal for the selective reduction of NOx.
US20220193645A1 (en) Rapid synthesis of a catalyst comprising a zeolite having an afx structure and at least one transition metal for selective nox reduction
CN111001437A (en) AEI/AFX structure symbiotic composite molecular sieve, preparation method and SCR application thereof
CN111013648A (en) Symbiotic composite molecular sieve with CHA/KFI structure, preparation method thereof and SCR application thereof
CN110961145A (en) Symbiotic composite molecular sieve with CHA/AFX structure, preparation method thereof and SCR application thereof
US20150231620A1 (en) IRON-ZEOLITE CHABAZITE CATALYST FOR USE IN NOx REDUCTION AND METHOD OF MAKING
JP6171255B2 (en) NOx selective reduction catalyst, method for producing the same, and NOx purification method using the same
WO2020230638A1 (en) System control method
WO2020230639A1 (en) Catalyst, catalyst product and catalyst production method
CN112188929B (en) For NO X Selectively reduced catalyst comprising a mixture of AFX-structure zeolite and BEA-structure zeolite and at least one transition metal
CN110961146A (en) Symbiotic composite molecular sieve with CHA/RTH topological structure, preparation method thereof and SCR application thereof
CN110961147A (en) AEI/RTH structure symbiotic composite molecular sieve, preparation method and SCR application thereof
CN114746181A (en) Rare earth element-containing zeolitic materials having AEI framework type and coated monolithic substrates
CN111001436A (en) Intergrowth composite molecular sieve with AEI/KFI structure, preparation method thereof and SCR application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230425