JP2020181906A - Polishing liquid composition - Google Patents

Polishing liquid composition Download PDF

Info

Publication number
JP2020181906A
JP2020181906A JP2019084416A JP2019084416A JP2020181906A JP 2020181906 A JP2020181906 A JP 2020181906A JP 2019084416 A JP2019084416 A JP 2019084416A JP 2019084416 A JP2019084416 A JP 2019084416A JP 2020181906 A JP2020181906 A JP 2020181906A
Authority
JP
Japan
Prior art keywords
polishing
component
liquid composition
polishing liquid
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019084416A
Other languages
Japanese (ja)
Inventor
将来 井上
Masaki Inoue
将来 井上
哲史 山口
Tetsushi Yamaguchi
哲史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2019084416A priority Critical patent/JP2020181906A/en
Publication of JP2020181906A publication Critical patent/JP2020181906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

To provide a polishing liquid composition which enables the increase in speed of polishing a silicon oxide film having a convex portion where a polished surface is formed with a fixed width in an embodiment.SOLUTION: The present invention relates to a polishing liquid composition for polishing a silicon oxide film having a convex portion where a polished surface is formed with a fixed width in an embodiment. The polishing liquid composition comprises: a cerium oxide particle (component A); a compound (component B) having a pyrrole skeleton and having a carboxylic acid group at a third position; and an aqueous medium. The component B is preferably at least one kind selected from pyrrole-3-carboxylic acid and a salt thereof. In the polishing liquid composition, the content of the component B is preferably 3.0 mmol/L or more.SELECTED DRAWING: None

Description

本発明は、酸化セリウム粒子を含有する研磨液組成物、これを用いた半導体基板の製造方法及び基板の研磨方法に関する。 The present invention relates to a polishing liquid composition containing cerium oxide particles, a method for producing a semiconductor substrate using the same, and a method for polishing the substrate.

ケミカルメカニカルポリッシング(CMP)技術とは、加工しようとする被研磨基板の表面と研磨パッドとを接触させた状態で研磨液をこれらの接触部位に供給しつつ被研磨基板及び研磨パッドを相対的に移動させることにより、被研磨基板の表面凹凸部分を化学的に反応させると共に機械的に除去して平坦化させる技術である。 Chemical mechanical polishing (CMP) technology is a method in which the surface of the substrate to be polished and the polishing pad are in contact with each other, and the polishing liquid is supplied to these contact points while the substrate to be polished and the polishing pad are relatively. This is a technique for chemically reacting the surface uneven portion of the substrate to be polished and mechanically removing it to flatten it by moving it.

現在では、半導体素子の製造工程における、層間絶縁膜の平坦化、シャロートレンチ素子分離構造(以下「素子分離構造」ともいう)の形成、プラグ及び埋め込み金属配線の形成等を行う際には、このCMP技術が必須の技術となっている。近年、半導体素子の多層化、高精細化が飛躍的に進み、半導体素子の歩留まり及びスループット(収量)の更なる向上が要求されるようになってきている。それに伴い、CMP工程に関しても、研磨傷フリーで且つより高速な研磨が望まれるようになってきている。例えば、シャロートレンチ素子分離構造の形成工程では、高研磨速度と共に、被研磨膜(例えば、酸化珪素膜)に対する研磨ストッパ膜(例えば、窒化珪素膜)の研磨選択性(換言すると、研磨ストッパ膜の方が被研磨膜よりも研磨されにくいという研磨の選択性)の向上が望まれている。 Currently, in the manufacturing process of semiconductor devices, flattening of the interlayer insulating film, formation of a shallow trench element separation structure (hereinafter, also referred to as "element separation structure"), formation of plugs and embedded metal wiring, etc. are performed. CMP technology has become an indispensable technology. In recent years, the number of layers and high definition of semiconductor elements has dramatically increased, and there is a demand for further improvement in the yield and throughput (yield) of semiconductor elements. Along with this, in the CMP process as well, polishing scratch-free and faster polishing has been desired. For example, in the process of forming the shallow trench element separation structure, the polishing selectivity of the polishing stopper film (for example, silicon nitride film) with respect to the film to be polished (for example, silicon oxide film) (in other words, the polishing stopper film) is high. It is desired to improve the polishing selectivity) that the film is less likely to be polished than the film to be polished.

特許文献1〜特許文献3には、水性担体、セリア研削材、複素環式アミン(例えば、環式モノカルボン酸)等の所定の値のpKaを有する官能基を有する研磨添加剤、及び親水性部分が500g/mol以上の数平均分子量を有する非イオン性界面活性剤を含むCMP(化学機械研磨)組成物を用いたシリコン含有基材を研磨するためのCMP研磨方法が開示されている。特許文献1及び3には、研磨添加剤の一例として、ピロール−2−カルボン酸が開示されている。 Patent Documents 1 to 3 include an aqueous carrier, a ceria grinding material, a polishing additive having a functional group having a predetermined value of pKa such as a heterocyclic amine (for example, a cyclic monocarboxylic acid), and hydrophilicity. A CMP polishing method for polishing a silicon-containing substrate using a CMP (Chemical Mechanical Polishing) composition containing a nonionic surfactant having a part having a number average molecular weight of 500 g / mol or more is disclosed. Patent Documents 1 and 3 disclose pyrrole-2-carboxylic acid as an example of a polishing additive.

特開2014−209662号公報Japanese Unexamined Patent Publication No. 2014-209662 特表2011−530166号公報Japanese Patent Publication No. 2011-530166 特表2006−520530号公報Special Table 2006-520530

近年の半導体分野においては高容量化が進んでいる。3次元NAND型フラッシュメモリ等の3次元半導体装置の製造過程においては、酸化珪素膜が厚くなり、酸化珪素膜の研磨速度の向上が要求されている。 In the semiconductor field in recent years, the capacity has been increasing. In the manufacturing process of a three-dimensional semiconductor device such as a three-dimensional NAND flash memory, the silicon oxide film becomes thicker, and it is required to improve the polishing speed of the silicon oxide film.

そこで、本発明は、酸化珪素膜の研磨速度を向上できる研磨液組成物、これを用いた半導体基板の製造方法及び基板の研磨方法を提供する。 Therefore, the present invention provides a polishing liquid composition capable of improving the polishing rate of the silicon oxide film, a method for manufacturing a semiconductor substrate using the same, and a method for polishing the substrate.

本発明は、一態様において、被研磨面が一定の幅で形成された凸部を有する酸化珪素膜を研磨するための研磨液組成物であって、酸化セリウム粒子(成分A)と、ピロール骨格を有し3位にカルボン酸基を有する化合物(成分B)と、水系媒体とを含有する、研磨液組成物に関する。 The present invention is, in one embodiment, a polishing liquid composition for polishing a silicon oxide film having a convex portion having a convex portion formed on a surface to be polished having a constant width, and comprises cerium oxide particles (component A) and a pyrrole skeleton. The present invention relates to a polishing liquid composition containing a compound (component B) having a carboxylic acid group at the 3-position and an aqueous medium.

本発明は、その他の態様において、本発明の研磨液組成物を用いて被研磨面を研磨する工程を含み、前記被研磨面が一定の幅で形成された凸部を有する酸化珪素膜の表面である、半導体基板の製造方法に関する。 In another aspect, the present invention includes a step of polishing a surface to be polished using the polishing liquid composition of the present invention, and the surface of a silicon oxide film having a convex portion formed by the surface to be polished having a constant width. The present invention relates to a method for manufacturing a semiconductor substrate.

本発明は、その他の態様において、本発明の研磨液組成物を用いて被研磨面を研磨する工程を含み、前記被研磨面が一定の幅で形成された凸部を有する酸化珪素膜の表面である、研磨方法に関する。 In another aspect, the present invention includes a step of polishing the surface to be polished using the polishing liquid composition of the present invention, and the surface of a silicon oxide film having a convex portion formed by the surface to be polished having a constant width. It relates to a polishing method.

本発明によれば、一定の幅で形成された凸部を有する酸化珪素膜の研磨速度を向上できる研磨液組成物を提供できる。本発明の研磨液組成物は、半導体基板の製造方法の酸化珪素膜を研磨する工程や、酸化珪素膜を研磨する方法に用いれば、生産性の向上に寄与し得る。 According to the present invention, it is possible to provide a polishing liquid composition capable of improving the polishing rate of a silicon oxide film having a convex portion formed with a constant width. The polishing liquid composition of the present invention can contribute to the improvement of productivity when used in the step of polishing the silicon oxide film in the method of manufacturing a semiconductor substrate or in the method of polishing the silicon oxide film.

本発明者らが鋭意検討した結果、酸化セリウム(以下、「セリア」ともいう)粒子を砥粒として含む研磨液組成物において、ピロール骨格を有し3位にカルボン酸基を有する化合物(成分B)が含まれていると、酸化珪素膜の研磨に用いた場合に研磨速度の向上が可能となるという知見に基づく。 As a result of diligent studies by the present inventors, a compound having a pyrrole skeleton and a carboxylic acid group at the 3-position (component B) in an abrasive liquid composition containing cerium oxide (hereinafter, also referred to as “ceria”) particles as abrasive grains. ) Is included, based on the finding that the polishing speed can be improved when used for polishing a silicon oxide film.

本発明は、一又は複数の実施形態において、酸化セリウム粒子(成分A)と、ピロール骨格を有し3位にカルボン酸基を有する化合物(成分B)と、水系媒体とを含有する、研磨液組成物に関する。本発明の研磨液組成物によれば、酸化珪素膜の研磨速度を向上できる。 The present invention, in one or more embodiments, is a polishing solution containing cerium oxide particles (component A), a compound having a pyrrole skeleton and a carboxylic acid group at the 3-position (component B), and an aqueous medium. Regarding the composition. According to the polishing liquid composition of the present invention, the polishing speed of the silicon oxide film can be improved.

本発明の効果発現のメカニズムの詳細は明らかではないが、以下のように推察される。酸化珪素膜を研磨するための、酸化セリウム粒子を含む研磨液組成物のpH領域では、酸化セリウム粒子は正に強く帯電しているため、酸化セリウム粒子が、酸化珪素膜との強い相互作用によって、酸化セリウム粒子の動きが制限される。本発明の研磨液組成物は、前記成分Bを含むことによって、酸化セリウム粒子のζ(ゼータ)電位が適度に小さい値になることによって、研磨時に酸化セリウム粒子と酸化珪素膜の接触が適度に生じ、その結果として研磨速度が向上したと推察される。但し、本発明はこれらのメカニズムに限定して解釈されなくてもよい。 The details of the mechanism of effect manifestation of the present invention are not clear, but it is presumed as follows. In the pH range of the polishing liquid composition containing the cerium oxide particles for polishing the silicon oxide film, the cerium oxide particles are positively charged, so that the cerium oxide particles interact strongly with the silicon oxide film. , The movement of cerium oxide particles is restricted. When the polishing liquid composition of the present invention contains the component B, the ζ (zeta) potential of the cerium oxide particles becomes a moderately small value, so that the contact between the cerium oxide particles and the silicon oxide film becomes appropriate during polishing. It is presumed that this occurred, and as a result, the polishing speed was improved. However, the present invention does not have to be construed as being limited to these mechanisms.

[酸化セリウム(セリア)粒子(成分A)]
本発明の研磨液組成物は、研磨砥粒としてセリア粒子(以下、単に「成分A」ともいう)を含有する。成分Aは、1種類でもよいし、2種以上の組合せであってもよい。
[Cerium oxide (ceria) particles (component A)]
The polishing liquid composition of the present invention contains ceria particles (hereinafter, also simply referred to as “component A”) as polishing abrasive grains. The component A may be one kind or a combination of two or more kinds.

成分Aの製造方法、形状、及び表面状態については特に限定されなくてもよい。成分Aとしては、例えば、コロイダルセリア、不定形セリア、セリアコートシリカ等が挙げられる。コロイダルセリアは、例えば、特表2010−505735号公報の実施例1〜4に記載の方法で、ビルドアッププロセスにより得ることができる。不定形セリアとしては、例えば、粉砕セリアが挙げられる。粉砕セリアの一実施形態としては、例えば、炭酸セリウムや硝酸セリウムなどのセリウム化合物を焼成、粉砕して得られる焼成粉砕セリアが挙げられる。粉砕セリアのその他の実施形態としては、例えば、無機酸や有機酸の存在下でセリア粒子を湿式粉砕することにより得られる単結晶粉砕セリアが挙げられる。湿式粉砕時に使用される無機酸としては、例えば硝酸が挙げられ、有機酸としては、例えば、カルボキシル基を有する有機酸が挙げられ、具体的には、ピコリン酸、グルタミン酸、アスパラギン酸、アミノ安息香酸及びp−ヒドロキシ安息香酸から選ばれる少なくとも1種が挙げられる。湿式粉砕方法としては、例えば、遊星ビーズミル等による湿式粉砕が挙げられる。セリアコートシリカとしては、例えば、特開2015−63451号公報の実施例1〜14もしくは特開2013−119131号公報の実施例1〜4に記載の方法で、シリカ粒子表面の少なくとも一部が粒状セリアで被覆された構造を有する複合粒子が挙げられ、該複合粒子は、例えば、シリカ粒子にセリアを沈着させることで得ることができる。 The production method, shape, and surface condition of the component A are not particularly limited. Examples of the component A include colloidal ceria, amorphous ceria, ceria-coated silica and the like. Colloidal ceria can be obtained by a build-up process, for example, by the method described in Examples 1 to 4 of JP-A-2010-505735. Examples of the amorphous ceria include crushed ceria. One embodiment of crushed ceria includes, for example, fired crushed ceria obtained by firing and crushing a cerium compound such as cerium carbonate or cerium nitrate. Other embodiments of pulverized ceria include, for example, single crystal pulverized ceria obtained by wet pulverizing ceria particles in the presence of an inorganic acid or an organic acid. Examples of the inorganic acid used during wet grinding include nitric acid, and examples of the organic acid include an organic acid having a carboxyl group. Specifically, picolin acid, glutamic acid, aspartic acid, and aminobenzoic acid. And at least one selected from p-hydroxybenzoic acid. Examples of the wet pulverization method include wet pulverization using a planetary bead mill or the like. As the ceria-coated silica, for example, at least a part of the surface of the silica particles is granular by the method described in Examples 1 to 14 of JP2015-63451 or Examples 1 to 4 of JP2013-119131. Examples thereof include composite particles having a structure coated with ceria, and the composite particles can be obtained, for example, by depositing ceria on silica particles.

成分Aの形状としては、例えば、略球状、多面体状、ラズベリー状が挙げられる。 Examples of the shape of the component A include a substantially spherical shape, a polyhedral shape, and a raspberry shape.

成分Aの平均一次粒子径は、研磨速度向上の観点から、5nm以上が好ましく、10nm以上がより好ましく、20nm以上が更に好ましく、そして、研磨傷発生の抑制の観点から、300nm以下が好ましく、200nm以下がより好ましく、150nm以下が更に好ましい。本発明において成分Aの平均一次粒子径は、BET(窒素吸着)法によって算出されるBET比表面積S(m2/g)を用いて算出される。BET比表面積は、実施例に記載の方法により測定できる。 The average primary particle size of the component A is preferably 5 nm or more, more preferably 10 nm or more, further preferably 20 nm or more, and preferably 300 nm or less, preferably 200 nm, from the viewpoint of suppressing the occurrence of polishing scratches. The following is more preferable, and 150 nm or less is further preferable. In the present invention, the average primary particle size of the component A is calculated using the BET specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method. The BET specific surface area can be measured by the method described in Examples.

本発明の研磨液組成物中の成分Aの含有量は、成分A、成分B及び水の合計含有量を100質量%とすると、研磨速度向上の観点から、0.01質量%以上が好ましく、 0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.3質量%以上が更に好ましく、そして、同様の観点から、6質量%以下が好ましく、3質量%以下がより好ましく、1.0質量%以下が更に好ましく、0.6質量%以下が更に好ましい。より具体的には、成分Aの含有量は、0.01質量%以上6質量%以下が好ましく、0.05質量%以上3質量%以下がより好ましく、0.1質量%以上1.0質量%以下が更に好ましく、0.3質量%以上0.6質量%以下が更に好ましい。成分Aが2種以上のセリア粒子の組合せである場合、成分Aの含有量はそれらの合計含有量をいう。 The content of component A in the polishing liquid composition of the present invention is preferably 0.01% by mass or more from the viewpoint of improving the polishing speed, assuming that the total content of component A, component B and water is 100% by mass. 0.05% by mass or more is more preferable, 0.1% by mass or more is further preferable, 0.3% by mass or more is further preferable, and from the same viewpoint, 6% by mass or less is preferable, and 3% by mass or less is more preferable. It is preferable, 1.0% by mass or less is more preferable, and 0.6% by mass or less is further preferable. More specifically, the content of the component A is preferably 0.01% by mass or more and 6% by mass or less, more preferably 0.05% by mass or more and 3% by mass or less, and 0.1% by mass or more and 1.0% by mass. % Or less is more preferable, and 0.3% by mass or more and 0.6% by mass or less is further preferable. When the component A is a combination of two or more kinds of ceria particles, the content of the component A means the total content thereof.

[ピロール骨格を有し3位にカルボン酸基を有する化合物(成分B)]
本発明の研磨液組成物に含まれる成分Bは、ピロール骨格を有し3位にカルボン酸基を有する化合物であり、ピロール骨格を有しβ位にカルボン酸基を有する化合物とも呼ばれる。本発明において、成分Bは、研磨速度向上の観点から、ピロール−3−カルボン酸及びその塩から選ばれる少なくとも1種が好ましい。上記の塩としては、アルカリ金属塩、アルカリ土類金属塩、有機アミン塩、アンモニウム塩等が挙げられる。成分Bは、1種類単独で用いてもよいし、2種以上の組合せであってもよい。成分Bは、研磨速度向上の観点から、Cl、Br,NO2等の電子吸引基を含んでいないことが好ましい。
[Compound having a pyrrole skeleton and a carboxylic acid group at the 3-position (component B)]
The component B contained in the polishing liquid composition of the present invention is a compound having a pyrrole skeleton and a carboxylic acid group at the 3-position, and is also called a compound having a pyrrole skeleton and a carboxylic acid group at the β-position. In the present invention, the component B is preferably at least one selected from pyrrole-3-carboxylic acid and salts thereof from the viewpoint of improving the polishing rate. Examples of the above-mentioned salt include alkali metal salts, alkaline earth metal salts, organic amine salts, ammonium salts and the like. The component B may be used alone or in combination of two or more. From the viewpoint of improving the polishing rate, the component B preferably does not contain an electron-withdrawing group such as Cl, Br, NO 2 .

本発明の研磨液組成物中の成分Bの含有量は、研磨速度向上の観点から、3.0mmol/L以上が好ましく、3.5mmol/L以上がより好ましく、3.8mmol/L以上が更に好ましく、4.0mmol/L更により好ましく、そして、同様の観点から、15.0mmol/L以下が好ましく、12.0mmol/L以下がより好ましく、11.0mmol/L以下が更に好ましく、10.0mmol/L以下が更により好ましい。より具体的には、成分Bの含有量は、3.0mmol/L以上15.0mmol/L以下が好ましく、3.5mmol/L以上12.0mmol/L以下がより好ましく、3.8mmol/L以上11.0mmol/L以下が更に好ましく、4.0mmol/L以上10.0mmol/L以下が更に好ましい。成分Bが2種以上の組合せである場合、成分Bの含有量はそれらの合計の含有量をいう。 The content of component B in the polishing liquid composition of the present invention is preferably 3.0 mmol / L or more, more preferably 3.5 mmol / L or more, and further preferably 3.8 mmol / L or more from the viewpoint of improving the polishing rate. Preferably, 4.0 mmol / L is even more preferable, and from the same viewpoint, 15.0 mmol / L or less is preferable, 12.0 mmol / L or less is more preferable, and 11.0 mmol / L or less is further preferable, 10.0 mmol. / L or less is even more preferable. More specifically, the content of the component B is preferably 3.0 mmol / L or more and 15.0 mmol / L or less, more preferably 3.5 mmol / L or more and 12.0 mmol / L or less, and 3.8 mmol / L or more. It is more preferably 11.0 mmol / L or less, further preferably 4.0 mmol / L or more and 10.0 mmol / L or less. When the component B is a combination of two or more kinds, the content of the component B means the total content thereof.

本発明の研磨液組成物中における成分Aと成分Bとの質量比A/B(成分Aの含有量/成分Bの含有量)は、研磨速度向上の観点から、0.01以上が好ましく、0.1以上がより好ましく、1.0以上が更に好ましく、4.0以上が更に好ましく、そして、6000以下が好ましく、200以下がより好ましく、50以下が更に好ましく、15以下が更に好ましい。より具体的には、質量比A/Bは、0.01以上6000以下が好ましく、0.1以上200以下がより好ましく、1.0以上50以下が更に好ましく、4.0以上15以下が更により好ましい。 The mass ratio A / B of component A and component B (content of component A / content of component B) in the polishing liquid composition of the present invention is preferably 0.01 or more from the viewpoint of improving the polishing speed. 0.1 or more is more preferable, 1.0 or more is further preferable, 4.0 or more is further preferable, and 6000 or less is more preferable, 200 or less is more preferable, 50 or less is further preferable, and 15 or less is further preferable. More specifically, the mass ratio A / B is preferably 0.01 or more and 6000 or less, more preferably 0.1 or more and 200 or less, further preferably 1.0 or more and 50 or less, and further preferably 4.0 or more and 15 or less. More preferred.

[水系媒体]
本発明の研磨液組成物に含まれる水系媒体としては、蒸留水、イオン交換水、純水及び超純水等の水、又は、水と溶媒との混合溶媒等が挙げられる。上記溶媒としては、水と混合可能な溶媒(例えば、エタノール等のアルコール)が挙げられる。水系媒体が、水と溶媒との混合溶媒の場合、混合媒体全体に対する水の割合は、本発明の効果が妨げられない範囲であれば特に限定されなくてもよく、経済性の観点から、例えば、95質量%以上が好ましく、98質量%以上がより好ましく、実質的に100質量%が更に好ましい。被研磨基板の表面清浄性の観点から、水系媒体としては、水が好ましく、イオン交換水及び超純水がより好ましく、超純水が更に好ましい。本発明の研磨液組成物中の水系媒体の含有量は、成分A、成分B、及び必要に応じて配合される後述する任意成分を除いた残余とすることができる。
[Aqueous medium]
Examples of the aqueous medium contained in the polishing liquid composition of the present invention include distilled water, ion-exchanged water, water such as pure water and ultrapure water, or a mixed solvent of water and a solvent. Examples of the solvent include a solvent that can be mixed with water (for example, an alcohol such as ethanol). When the aqueous medium is a mixed solvent of water and a solvent, the ratio of water to the entire mixed medium may not be particularly limited as long as the effect of the present invention is not hindered, and from the viewpoint of economy, for example, , 95% by mass or more is preferable, 98% by mass or more is more preferable, and substantially 100% by mass is further preferable. From the viewpoint of surface cleanliness of the substrate to be polished, water is preferable, ion-exchanged water and ultrapure water are more preferable, and ultrapure water is further preferable as the aqueous medium. The content of the aqueous medium in the polishing liquid composition of the present invention can be the residue excluding component A, component B, and any component described later, which is blended as needed.

[任意成分]
本発明の研磨液組成物は、pH調整剤、界面活性剤、増粘剤、分散剤、防錆剤、防腐剤、塩基性物質、研磨速度向上剤、窒化珪素膜研磨抑制剤、ポリシリコン膜研磨抑制剤等の任意成分をさらに含有することができる。本発明の研磨液組成物が任意成分をさらに含有する場合、本発明の研磨液組成物中の任意成分の含有量は、研磨速度向上の観点から、0.001質量%以上が好ましく、0.0025質量%以上がより好ましく、0.01質量%以上が更に好ましく、そして、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましい。より具体的には、任意成分の含有量は、0.001質量%以上1質量%以下が好ましく、0.0025質量%以上0.5質量%以下がより好ましく、0.01質量%以上0.1質量%以下が更に好ましい。
[Arbitrary component]
The polishing liquid composition of the present invention includes a pH adjuster, a surfactant, a thickener, a dispersant, a rust preventive, a preservative, a basic substance, a polishing speed improver, a silicon nitride film polishing inhibitor, and a polysilicon film. Any component such as a polishing inhibitor can be further contained. When the polishing liquid composition of the present invention further contains an arbitrary component, the content of the optional component in the polishing liquid composition of the present invention is preferably 0.001% by mass or more from the viewpoint of improving the polishing speed, and 0. 0025 mass% or more is more preferable, 0.01 mass% or more is further preferable, 1 mass% or less is preferable, 0.5 mass% or less is more preferable, and 0.1 mass% or less is further preferable. More specifically, the content of the optional component is preferably 0.001% by mass or more and 1% by mass or less, more preferably 0.0025% by mass or more and 0.5% by mass or less, and 0.01% by mass or more and 0. It is more preferably 1% by mass or less.

[研磨液組成物]
本発明の研磨液組成物は、例えば、成分A、成分B及び水系媒体、並びに、所望により上述した任意成分を公知の方法で配合する工程を含む製造方法によって製造できる。例えば、本発明の研磨液組成物は、少なくとも成分A、成分B及び水系媒体を配合してなるものとすることができる。成分Aが複数種類のセリア粒子の組合せである場合、成分Aは、複数種類のセリア粒子をそれぞれ配合することにより得ることができる。成分Bが複数種類のピロール骨格を有し3位にカルボン酸基を有する化合物の組合せである場合、成分Bは、複数種類のピロール骨格を有し3位にカルボン酸基を有する化合物をそれぞれ配合することにより得ることができる。本発明において「配合する」とは、成分A、成分B及び水系媒体、並びに必要に応じて上述した任意成分を同時に又は順に混合することを含む。混合する順序は特に限定されない。前記配合は、例えば、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器を用いて行うことができる。本発明の研磨液組成物の製造方法における各成分の配合量は、上述した本発明の研磨液組成物中の各成分の含有量と同じとすることができる。
[Abrasive liquid composition]
The polishing liquid composition of the present invention can be produced, for example, by a production method including a step of blending component A, component B, an aqueous medium, and optionally the above-mentioned optional component by a known method. For example, the polishing liquid composition of the present invention can be made by blending at least component A, component B and an aqueous medium. When the component A is a combination of a plurality of types of ceria particles, the component A can be obtained by blending the plurality of types of ceria particles, respectively. When the component B is a combination of compounds having a plurality of types of pyrrole skeletons and a carboxylic acid group at the 3-position, the component B contains a compound having a plurality of types of pyrrole skeletons and a carboxylic acid group at the 3-position. Can be obtained by doing. In the present invention, "blending" includes mixing component A, component B, an aqueous medium, and, if necessary, any of the above-mentioned components simultaneously or in order. The order of mixing is not particularly limited. The compounding can be performed using, for example, a mixer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill. The blending amount of each component in the method for producing the polishing liquid composition of the present invention can be the same as the content of each component in the polishing liquid composition of the present invention described above.

本発明の研磨液組成物の実施形態は、全ての成分が予め混合された状態で市場に供給される、いわゆる1液型であってもよいし、使用時に混合される、いわゆる2液型であってもよい。2液型の研磨液組成物の一実施形態としては、成分Aを含む第1液と、成分Bを含む第2液とから構成され、使用時に第1液と第2液とが混合されるものが挙げられる。第1液と第2液との混合は、研磨対象の表面への供給前に行われてもよいし、これらは別々に供給されて被研磨基板の表面上で混合されてもよい。第1液及び第2液はそれぞれ必要に応じて上述した任意成分を含有することができる。 The embodiment of the polishing liquid composition of the present invention may be a so-called one-component type in which all the components are premixed and supplied to the market, or a so-called two-component type in which all the components are mixed at the time of use. There may be. One embodiment of the two-component polishing liquid composition is composed of a first liquid containing component A and a second liquid containing component B, and the first liquid and the second liquid are mixed at the time of use. Things can be mentioned. The first liquid and the second liquid may be mixed before being supplied to the surface to be polished, or they may be supplied separately and mixed on the surface of the substrate to be polished. The first liquid and the second liquid can each contain the above-mentioned optional components, if necessary.

本発明の研磨液組成物のpHは、研磨速度向上の観点から、3.5以上が好ましく、4以上がより好ましく、4.5以上が更に好ましく、そして、9以下が好ましく、8.5以下がより好ましく、8以下が更に好ましい。より具体的には、pHは、3.5以上9以下が好ましく、4以上8.5以下がより好ましく、4.5以上8以下が更に好ましい。本発明において、研磨液組成物のpHは、25℃における値であって、pHメータを用いて測定でき、具体的には、実施例に記載の方法で測定できる。 The pH of the polishing liquid composition of the present invention is preferably 3.5 or more, more preferably 4 or more, further preferably 4.5 or more, and preferably 9 or less, and 8.5 or less, from the viewpoint of improving the polishing speed. Is more preferable, and 8 or less is further preferable. More specifically, the pH is preferably 3.5 or more and 9 or less, more preferably 4 or more and 8.5 or less, and further preferably 4.5 or more and 8 or less. In the present invention, the pH of the polishing liquid composition is a value at 25 ° C. and can be measured using a pH meter, and specifically, can be measured by the method described in Examples.

本発明において「研磨液組成物中の各成分の含有量」とは、研磨時、すなわち、研磨液組成物の研磨への使用を開始する時点での前記各成分の含有量をいう。本発明の研磨液組成物は、その安定性が損なわれない範囲で濃縮された状態で保存および供給されてもよい。この場合、製造・輸送コストを低くできる点で好ましい。そしてこの濃縮液は、必要に応じて水で適宜希釈して研磨工程で使用することができる。希釈割合としては5〜100倍が好ましい。 In the present invention, the "content of each component in the polishing liquid composition" refers to the content of each component at the time of polishing, that is, at the time when the use of the polishing liquid composition for polishing is started. The polishing liquid composition of the present invention may be stored and supplied in a concentrated state as long as its stability is not impaired. In this case, it is preferable in that the manufacturing / transportation cost can be reduced. Then, this concentrated solution can be appropriately diluted with water and used in the polishing step, if necessary. The dilution ratio is preferably 5 to 100 times.

[被研磨膜]
本発明の研磨液組成物を用いて研磨される被研磨膜は、酸化珪素膜であり、表面が一定の幅で形成された凸部を有する酸化珪素膜である。したがって、本発明の研磨液組成物は、酸化珪素膜の研磨を必要とする工程に使用できる。一又は複数の実施形態において、本発明の研磨液組成物は、半導体基板の素子分離構造を形成する工程で行われる酸化珪素膜の研磨、層間絶縁膜を形成する工程で行われる酸化珪素膜の研磨、埋め込み金属配線を形成する工程で行われる酸化珪素膜の研磨、又は、埋め込みキャパシタを形成する工程で行われる酸化珪素膜の研磨に好適に使用できる。その他の一又は複数の実施形態において、本発明の研磨液組成物は、3次元NAND型フラッシュメモリ等の3次元半導体装置の製造に好適に使用できる。
[Film to be polished]
The film to be polished using the polishing liquid composition of the present invention is a silicon oxide film, which is a silicon oxide film having convex portions whose surface is formed with a constant width. Therefore, the polishing liquid composition of the present invention can be used in a step requiring polishing of the silicon oxide film. In one or more embodiments, the polishing liquid composition of the present invention comprises polishing a silicon oxide film performed in a step of forming an element separation structure of a semiconductor substrate, and polishing a silicon oxide film performed in a step of forming an interlayer insulating film. It can be suitably used for polishing, polishing of a silicon oxide film performed in a process of forming an embedded metal wiring, or polishing of a silicon oxide film performed in a process of forming an embedded capacitor. In one or more other embodiments, the polishing liquid composition of the present invention can be suitably used for manufacturing a three-dimensional semiconductor device such as a three-dimensional NAND flash memory.

[研磨液キット]
本発明は、その他の態様において、本発明の研磨液組成物を製造するためのキット(以下、「本発明の研磨液キット」ともいう)に関する。本発明の研磨液キットの一実施形態としては、例えば、成分A及び水系媒体を含む研磨材分散液と、成分Bを含む添加剤水溶液と、を相互に混合されない状態で含む、研磨液キット(2液型研磨液組成物)が挙げられる。前記研磨材分散液と前記添加剤水溶液とは、使用時に混合され、必要に応じて水系媒体を用いて希釈される。前記研磨材分散液に含まれる水系媒体は、研磨液組成物の調製に使用する水系媒体の全量でもよいし、一部でもよい。前記添加剤水溶液には、研磨液組成物の調製に使用する水系媒体の一部が含まれていてもよい。前記研磨材分散液及び前記添加剤水溶液にはそれぞれ必要に応じて、上述した任意成分が含まれていてもよい。本発明の研磨液キットによれば、研磨速度を確保しつつ、研磨選択性の向上が可能な研磨液組成物が得られうる。
[Abrasive liquid kit]
The present invention relates to a kit for producing the polishing liquid composition of the present invention (hereinafter, also referred to as "polishing liquid kit of the present invention") in another aspect. As one embodiment of the polishing liquid kit of the present invention, for example, a polishing liquid kit containing a polishing material dispersion liquid containing the component A and an aqueous medium and an additive aqueous solution containing the component B in a state where they are not mixed with each other. Two-component abrasive liquid composition) can be mentioned. The abrasive dispersion and the additive aqueous solution are mixed at the time of use and diluted with an aqueous medium if necessary. The aqueous medium contained in the abrasive dispersion may be the total amount or a part of the aqueous medium used for preparing the abrasive composition. The additive aqueous solution may contain a part of an aqueous medium used for preparing the polishing liquid composition. The abrasive dispersion liquid and the additive aqueous solution may each contain the above-mentioned optional components, if necessary. According to the polishing liquid kit of the present invention, it is possible to obtain a polishing liquid composition capable of improving polishing selectivity while ensuring a polishing speed.

[半導体基板の製造方法]
本発明は、一態様において、本発明の研磨液組成物を用いて酸化珪素膜を研磨する工程(以下、「本発明の研磨液組成物を用いた研磨工程」ともいう)を含む、半導体基板の製造方法(以下、「本発明の半導体基板の製造方法」ともいう。)に関する。本発明の半導体基板の製造方法によれば、酸化珪素膜の研磨速度向上が可能であるため、品質が向上した半導体基板を効率よく製造できるという効果が奏されうる。
[Manufacturing method of semiconductor substrate]
In one aspect, the present invention includes a step of polishing a silicon oxide film using the polishing liquid composition of the present invention (hereinafter, also referred to as “polishing step using the polishing liquid composition of the present invention”). (Hereinafter, also referred to as "the method for manufacturing the semiconductor substrate of the present invention"). According to the method for manufacturing a semiconductor substrate of the present invention, the polishing speed of the silicon oxide film can be improved, so that an effect that a semiconductor substrate with improved quality can be efficiently manufactured can be achieved.

本発明の半導体基板の製造方法の具体例としては、まず、シリコン基板を酸化炉内で酸素に晒すことよりその表面に二酸化シリコン層を成長させ、次いで、当該二酸化シリコン層上に窒化珪素(Si34)膜又はポリシリコン膜等の研磨ストッパ膜を、例えばCVD法(化学気相成長法)にて形成する。次に、シリコン基板と前記シリコン基板の一方の主面側に配置された研磨ストッパ膜とを含む基板、例えば、シリコン基板の二酸化シリコン層上に研磨ストッパ膜が形成された基板に、フォトリソグラフィー技術を用いてトレンチを形成する。次いで、例えば、シランガスと酸素ガスを用いたCVD法により、トレンチ埋め込み用の被研磨膜である酸化珪素(SiO2)膜を形成し、研磨ストッパ膜が被研磨膜(酸化珪素膜)で覆われた被研磨基板を得る。酸化珪素膜の形成により、前記トレンチは酸化珪素膜の酸化珪素で満たされ、研磨ストッパ膜の前記シリコン基板側の面の反対面は酸化珪素膜によって被覆される。このようにして形成された酸化珪素膜のシリコン基板側の面の反対面は、下層の凸凹に対応して形成された段差を有する。次いで、CMP法により、酸化珪素膜を、少なくとも研磨ストッパ膜のシリコン基板側の面の反対面が露出するまで研磨し、より好ましくは、酸化珪素膜の表面と研磨ストッパ膜の表面とが面一になるまで酸化珪素膜を研磨する。本発明の研磨液組成物は、このCMP法による研磨を行う工程に用いることができる。酸化珪素膜の下層の凹凸に対応して形成された凸部の幅は、研磨速度向上の観点から、好ましくは0.5μm以上であり、より好ましくは10μm以上であり、同様の観点から、4000μm以下が好ましい。また、凹部の幅は、好ましくは0.5μm以上であり、より好ましくは10μm以上であり、同様の観点から、4000μm以下が好ましい。 As a specific example of the method for manufacturing a semiconductor substrate of the present invention, first, a silicon dioxide layer is grown on the surface of the silicon substrate by exposing it to oxygen in an oxidation furnace, and then silicon nitride (Si) is placed on the silicon dioxide layer. 3 N 4 ) A polishing stopper film such as a film or a silicon silicon film is formed by, for example, a CVD method (chemical vapor deposition method). Next, a photolithography technique is applied to a substrate including a silicon substrate and a polishing stopper film arranged on one main surface side of the silicon substrate, for example, a substrate in which a polishing stopper film is formed on a silicon dioxide layer of a silicon substrate. Is used to form a trench. Next, for example, by a CVD method using silane gas and oxygen gas, a silicon oxide (SiO 2 ) film which is a film to be polished for trench embedding is formed, and the polishing stopper film is covered with the film to be polished (silicon oxide film). Obtain a substrate to be polished. By forming the silicon oxide film, the trench is filled with silicon oxide of the silicon oxide film, and the opposite surface of the polishing stopper film on the silicon substrate side is covered with the silicon oxide film. The opposite surface of the surface of the silicon oxide film thus formed on the silicon substrate side has a step formed corresponding to the unevenness of the lower layer. Next, the silicon oxide film is polished by the CMP method until at least the opposite surface of the polishing stopper film on the silicon substrate side is exposed, and more preferably, the surface of the silicon oxide film and the surface of the polishing stopper film are flush with each other. Polish the silicon oxide film until The polishing liquid composition of the present invention can be used in the step of performing polishing by this CMP method. The width of the convex portion formed corresponding to the unevenness of the lower layer of the silicon oxide film is preferably 0.5 μm or more, more preferably 10 μm or more from the viewpoint of improving the polishing speed, and 4000 μm from the same viewpoint. The following is preferable. The width of the recess is preferably 0.5 μm or more, more preferably 10 μm or more, and from the same viewpoint, 4000 μm or less is preferable.

CMP法による研磨では、被研磨基板の表面と研磨パッドとを接触させた状態で、本発明の研磨液組成物をこれらの接触部位に供給しつつ被研磨基板及び研磨パッドを相対的に移動させることにより、被研磨基板の表面の凹凸部分を平坦化させる。なお、本発明の半導体基板の製造方法において、シリコン基板の二酸化シリコン層と研磨ストッパ膜との間に他の絶縁膜が形成されていてもよいし、被研磨膜(例えば、酸化珪素膜)と研磨ストッパ膜(例えば、窒化珪素膜)との間に他の絶縁膜が形成されていてもよい。 In polishing by the CMP method, the substrate to be polished and the polishing pad are relatively moved while the polishing liquid composition of the present invention is supplied to these contact sites in a state where the surface of the substrate to be polished is in contact with the polishing pad. As a result, the uneven portion on the surface of the substrate to be polished is flattened. In the method for manufacturing a semiconductor substrate of the present invention, another insulating film may be formed between the silicon dioxide layer of the silicon substrate and the polishing stopper film, or the film to be polished (for example, a silicon oxide film). Another insulating film may be formed between the polishing stopper film (for example, a silicon nitride film).

本発明の研磨液組成物を用いた研磨工程において、研磨パッドの回転数は、例えば、30〜200r/分、被研磨基板の回転数は、例えば、30〜200r/分、研磨パッドを備えた研磨装置に設定される研磨荷重は、例えば、20〜500g重/cm2、研磨液組成物の供給速度は、例えば、10〜500mL/分以下に設定できる。研磨液組成物が2液型研磨液組成物の場合、第1液及び第2液のそれぞれの供給速度(又は供給量)を調整することで、被研磨膜及び研磨ストッパ膜のそれぞれの研磨速度や、被研磨膜と研磨ストッパ膜との研磨速度比(研磨選択性)を調整できる。 In the polishing step using the polishing liquid composition of the present invention, the polishing pad was provided with a polishing pad having a rotation speed of, for example, 30 to 200 r / min, and a substrate to be polished having a rotation speed of, for example, 30 to 200 r / min. The polishing load set in the polishing apparatus can be set to, for example, 20 to 500 g weight / cm 2 , and the supply speed of the polishing liquid composition can be set to, for example, 10 to 500 mL / min or less. When the polishing liquid composition is a two-component polishing liquid composition, the polishing speeds of the film to be polished and the polishing stopper film can be adjusted by adjusting the supply rates (or amounts) of the first liquid and the second liquid, respectively. In addition, the polishing rate ratio (polishing selectivity) between the film to be polished and the polishing stopper film can be adjusted.

本発明の研磨液組成物を用いた研磨工程において、被研磨膜(酸化珪素膜)の研磨速度は、生産性向上の観点から、50nm/分以上が好ましく、80nm/分以上がより好ましく、90nm/分以上が更に好ましい。 In the polishing step using the polishing liquid composition of the present invention, the polishing rate of the film to be polished (silicon oxide film) is preferably 50 nm / min or more, more preferably 80 nm / min or more, and 90 nm from the viewpoint of improving productivity. / Minute or more is more preferable.

[研磨方法]
本発明は、一態様において、本発明の研磨液組成物を用いて被研磨膜を研磨する工程を含む、研磨方法(以下、本発明の研磨方法ともいう)に関する。本発明の研磨方法を使用することにより、酸化珪素膜の研磨速度向上が可能であるため、品質が向上した半導体基板の生産性を向上できるという効果が奏されうる。具体的な研磨の方法及び条件は、上述した本発明の半導体基板の製造方法と同じようにすることができる。
[Polishing method]
The present invention relates to a polishing method (hereinafter, also referred to as the polishing method of the present invention) including a step of polishing a film to be polished using the polishing liquid composition of the present invention in one aspect. By using the polishing method of the present invention, it is possible to improve the polishing speed of the silicon oxide film, so that the effect of improving the productivity of the semiconductor substrate with improved quality can be achieved. The specific polishing method and conditions can be the same as the above-described method for manufacturing the semiconductor substrate of the present invention.

1.研磨液組成物の調製(実施例1〜2及び比較例1〜11)
セリア粒子(成分A)、添加剤(成分B又は非成分B)及び水を混合して実施例1〜2及び比較例1〜11の研磨液組成物を得た。研磨液組成物中の各成分の含有量(有効分)は、成分Aが0.5質量%、成分B又は非成分Bが表1に示す含有量(質量%、mmol/L)とした。水の含有量は、成分Aと成分B又は非成分Bとを除いた残余である。実施例1〜2及び比較例1〜11の研磨液組成物のpHは5.0であった。pH調整はアンモニアもしくは硝酸を用いて実施した。
1. 1. Preparation of polishing liquid composition (Examples 1 and 2 and Comparative Examples 1 to 11)
Ceria particles (component A), additives (component B or non-component B) and water were mixed to obtain polishing liquid compositions of Examples 1 and 2 and Comparative Examples 1 to 11. The content (effective content) of each component in the polishing liquid composition was 0.5% by mass of component A and the content (% by mass, mmol / L) of component B or non-component B shown in Table 1. The water content is the remainder after excluding component A and component B or non-component B. The pH of the polishing liquid compositions of Examples 1 and 2 and Comparative Examples 1 to 11 was 5.0. The pH adjustment was carried out using ammonia or nitric acid.

研磨液組成物の調製に用いた成分A、成分B及び非成分Bを以下に示す。
コロイダルセリア[平均一次粒径26nm、BET比表面積32m2/g、SOLVAY社製の「HC30」](成分A)
ピロール−3−カルボン酸(東京化成工業社製)(成分B)
ピコリン酸(MATRIX SCIENTIFIC社製)(非成分B)
ピロール−2−カルボン酸(東京化成工業社製)(非成分B)
ピロール−2−アルデヒド(東京化成工業社製)(非成分B)
ピロール−2−カルボキシレート(東京化成工業社製)(非成分B)
4ニトロピロール−2−カルボン酸ハイドレート(東京化成工業社製)(非成分B)
The components A, B and non-component B used in the preparation of the polishing liquid composition are shown below.
Colloidal ceria [average primary particle size 26 nm, BET specific surface area 32 m 2 / g, "HC30" manufactured by SOLVAY] (component A)
Pyrrole-3-carboxylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) (Component B)
Picolinic acid (manufactured by MATRIX SCIENTIFIC) (non-ingredient B)
Pyrrole-2-carboxylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) (non-ingredient B)
Pyrrole-2-aldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) (non-ingredient B)
Pyrrole-2-carboxylate (manufactured by Tokyo Chemical Industry Co., Ltd.) (Non-ingredient B)
4 Nitropyrrole-2-carboxylic acid hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.) (non-ingredient B)

2.各パラメータの測定方法
(1)研磨液組成物のpH
研磨液組成物の25℃におけるpH値は、pHメータ(東亜電波工業社製、「HM−30G」)を用いて測定した値であり、pHメータの電極を研磨液組成物へ浸漬して1分後の数値である。
2. Measurement method of each parameter (1) pH of polishing liquid composition
The pH value of the polishing liquid composition at 25 ° C. is a value measured using a pH meter (manufactured by Toa Denpa Kogyo Co., Ltd., "HM-30G"), and the electrode of the pH meter is immersed in the polishing liquid composition 1 It is a numerical value after minutes.

(2)研磨液組成物のζ電位の測定方法
研磨液組成物をCELL−K:0,137に入れ、AgilentTechnologies社製「ZataProbeG3750A」を用いて、以下の条件でゼータ電位の測定を行い、その結果を表1に示した。
試料: 密度:7.13g/mL、比誘電率:7.0
分散媒: 粘度:0.892cp、比誘電率:78
温度:25℃
(2) Method for measuring the ζ potential of the polishing liquid composition The polishing liquid composition was placed in CELL-K: 0,137, and the zeta potential was measured under the following conditions using “ZataProbe G3750A” manufactured by Asilent Technologies. The results are shown in Table 1.
Sample: Density: 7.13 g / mL, Relative permittivity: 7.0
Dispersion medium: Viscosity: 0.892 cp, Relative permittivity: 78
Temperature: 25 ° C

(2)セリア粒子(成分A)の平均一次粒径
セリア粒子(成分A)の平均一次粒径(nm)は、下記BET(窒素吸着)法によって得られる比表面積S(m2/g)を用い、セリア粒子の真密度を7.2g/cm3として算出した。
(2) Average primary particle size of ceria particles (component A) The average primary particle size (nm) of ceria particles (component A) is the specific surface area S (m 2 / g) obtained by the following BET (nitrogen adsorption) method. The true density of the ceria particles was calculated as 7.2 g / cm 3 .

(3)セリア粒子(成分A)のBET比表面積
比表面積は、セリア分散液を120℃で3時間熱風乾燥した後、メノウ乳鉢で細かく粉砕しサンプルを得た。測定直前に120℃の雰囲気下で15分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置「フローソーブIII2305」、島津製作所製)を用いて窒素吸着法(BET法)により測定した。
(3) BET Specific Surface Area of Ceria Particles (Component A) The specific surface area of the ceria dispersion was obtained by drying the ceria dispersion at 120 ° C. for 3 hours with hot air and then finely pulverizing it in an agate mortar. Immediately before the measurement, it was dried in an atmosphere of 120 ° C. for 15 minutes, and then measured by the nitrogen adsorption method (BET method) using a specific surface area measuring device (micromeritic automatic specific surface area measuring device "Flowsorb III2305", manufactured by Shimadzu Corporation). ..

3.研磨液組成物(実施例1〜2及び比較例1〜11)の評価
[評価用サンプル]
<パターン基板>
評価用サンプルとして市販のCMP特性評価用ウエハ(Advantec社製の「T−TEOS MIT864 PTウエハ」、直径200mm)を用意し、これを40mm×40mmに切断した。この評価用サンプルは、シリコン基板上に1層目として膜厚150nmの窒化珪素膜と2層目として膜厚450nmの酸化珪素膜が凸部として配置されており、凹部も同様に膜厚450nmの酸化珪素膜が配置され、凸部と凹部の段差が350nmになるよう、エッチングにより線状凹凸パターンが形成されている。酸化珪素膜はP−TEOSにより形成されており、凸部及び凹部の線幅がそれぞれ500μmのものと、100μmのものと、25μmのものを、測定対象として使用した。
3. 3. Evaluation of Abrasive Liquid Composition (Examples 1 and 2 and Comparative Examples 1 to 11) [Evaluation Sample]
<Pattern board>
A commercially available CMP characteristic evaluation wafer (“T-TEOS MIT864 PT wafer” manufactured by Advantec, diameter 200 mm) was prepared as an evaluation sample, and the wafer was cut into 40 mm × 40 mm. In this evaluation sample, a silicon nitride film having a film thickness of 150 nm as a first layer and a silicon oxide film having a film thickness of 450 nm as a second layer are arranged as convex portions on a silicon substrate, and the concave portions also have a film thickness of 450 nm. A silicon oxide film is arranged, and a linear uneven pattern is formed by etching so that the step between the convex portion and the concave portion is 350 nm. The silicon oxide film was formed of P-TEOS, and those having convex and concave line widths of 500 μm, 100 μm, and 25 μm were used as measurement targets.

[研磨条件]
研磨装置:片面研磨機[テクノライズ製「TR15M−TRK1」、定盤径380mm]研磨パッド:硬質ウレタンパッド[ニッタ・ハース社製「IC−1000/Suba400」]
定盤回転数:90rpm
ヘッド回転数:90rpm
研磨荷重:300g重/cm2
研磨液供給量:50mL/分
研磨時間:1分間
[Polishing conditions]
Polishing device: Single-sided polishing machine [Technorise "TR15M-TRK1", surface plate diameter 380 mm] Polishing pad: Hard urethane pad [Nitta Haas "IC-1000 / Suba400"]
Surface plate rotation speed: 90 rpm
Head rotation speed: 90 rpm
Polishing load: 300 g weight / cm 2
Abrasive liquid supply: 50 mL / min Polishing time: 1 minute

[研磨速度の測定]
実施例1〜2及び比較例1〜11の各研磨液組成物を用いて、上記研磨条件でパターン基板を研磨した。研磨後、超純水を用いて洗浄し、乾燥して、試験片を後述の光干渉式膜厚測定装置による測定対象とした。
研磨前及び研磨後において、光干渉式膜厚測定装置(SCREENセミコンダクターソリューションズ社製「VM−1230」)を用いて、酸化珪素膜の膜厚を測定した。酸化珪素膜の研磨速度は下記式により算出した。算出結果を表1に示した。また、比較例1を1とした相対値についても表1に示した。
酸化珪素膜の研磨速度(nm/分)
=[研磨前の酸化珪素膜厚さ(nm)−研磨後の酸化珪素膜厚さ(nm)]/研磨時間(分)
[Measurement of polishing speed]
The pattern substrate was polished under the above-mentioned polishing conditions using each polishing liquid composition of Examples 1 and 2 and Comparative Examples 1 to 11. After polishing, it was washed with ultrapure water and dried, and the test piece was used as a measurement target by the optical interference type film thickness measuring device described later.
Before and after polishing, the film thickness of the silicon oxide film was measured using a light interference type film thickness measuring device (“VM-1230” manufactured by SCREEN Semiconductor Solutions). The polishing rate of the silicon oxide film was calculated by the following formula. The calculation results are shown in Table 1. Table 1 also shows the relative values with Comparative Example 1 as 1.
Polishing rate of silicon oxide film (nm / min)
= [Silicon oxide film thickness before polishing (nm) -Silicon oxide film thickness after polishing (nm)] / Polishing time (minutes)

Figure 2020181906
Figure 2020181906

表1に示されるように、成分Bを含む研磨液組成物を用いた実施例1〜2は、成分Bを含まない研磨液組成物を用いた比較例1〜11に比べて、凸部の研磨速度が向上していた。具体的には、例えば、実施例2と比較例5とを比較すると、幅500μmのパターンの研磨においては、実施例2の研磨速度は比較例5の4.2倍も大きく、幅100μmのパターンの研磨においては、実施例2の研磨速度は比較例5の2.4倍も大きく、幅25μmのパターンの研磨においては、実施例2の研磨速度は比較例5の2倍も大きかった。 As shown in Table 1, Examples 1 and 2 using the polishing liquid composition containing the component B have a convex portion as compared with Comparative Examples 1 to 11 using the polishing liquid composition not containing the component B. The polishing speed was improved. Specifically, for example, comparing Example 2 and Comparative Example 5, in polishing a pattern having a width of 500 μm, the polishing speed of Example 2 is 4.2 times faster than that of Comparative Example 5, and a pattern having a width of 100 μm is obtained. In the polishing of Example 2, the polishing speed of Example 2 was 2.4 times higher than that of Comparative Example 5, and in the polishing of a pattern having a width of 25 μm, the polishing speed of Example 2 was twice as high as that of Comparative Example 5.

本発明の研磨液組成物は、高密度化又は高集積化用の半導体基板の製造方法において有用である。 The polishing liquid composition of the present invention is useful in a method for producing a semiconductor substrate for high density or high integration.

Claims (10)

被研磨面が一定の幅で形成された凸部を有する酸化珪素膜を研磨するための研磨液組成物であって、酸化セリウム粒子(成分A)と、ピロール骨格を有し3位にカルボン酸基を有する化合物(成分B)と、水系媒体とを含有する、研磨液組成物。 A polishing liquid composition for polishing a silicon oxide film having a convex portion formed on a surface to be polished with a constant width, which has cerium oxide particles (component A) and a pyrrole skeleton and a carboxylic acid at the 3-position. A polishing liquid composition containing a compound having a group (component B) and an aqueous medium. 前記幅が0.5μm以上である、請求項1に記載の研磨液組成物。 The polishing liquid composition according to claim 1, wherein the width is 0.5 μm or more. 成分Bは、ピロール−3−カルボン酸及びその塩から選ばれる少なくとも1種である、請求項1又は2に記載の研磨液組成物。 The polishing liquid composition according to claim 1 or 2, wherein the component B is at least one selected from pyrrole-3-carboxylic acid and a salt thereof. 成分Bの含有量が、3.0mmol/L以上である、請求項1から3のいずれかの項に記載の研磨液組成物。 The polishing liquid composition according to any one of claims 1 to 3, wherein the content of the component B is 3.0 mmol / L or more. 成分Aの含有量が、0.01質量%以上6質量%以下である、請求項1から4のいずれかの項に記載の研磨液組成物。 The polishing liquid composition according to any one of claims 1 to 4, wherein the content of the component A is 0.01% by mass or more and 6% by mass or less. 成分Aと成分Bとの質量比A/Bが、0.01以上6000以下である、請求項1から5のいずれかの項に記載の研磨液組成物。 The polishing liquid composition according to any one of claims 1 to 5, wherein the mass ratio A / B of the component A to the component B is 0.01 or more and 6000 or less. 請求項1から6のいずれかの項に記載の研磨液組成物を用いて被研磨面を研磨する工程を含み、前記被研磨面が一定の幅で形成された凸部を有する酸化珪素膜の表面である、半導体基板の製造方法。 A silicon oxide film comprising a step of polishing a surface to be polished using the polishing liquid composition according to any one of claims 1 to 6, and having a convex portion formed on the surface to be polished with a constant width. A method for manufacturing a semiconductor substrate, which is a surface. 前記幅が0.5μm以上である、請求項7に記載の半導体基板の製造方法。 The method for manufacturing a semiconductor substrate according to claim 7, wherein the width is 0.5 μm or more. 請求項1から6のいずれかの項に記載の研磨液組成物を用いて被研磨面を研磨する工程を含み、前記被研磨面が一定の幅で形成された凸部を有する酸化珪素膜の表面である、研磨方法。 A silicon oxide film comprising a step of polishing a surface to be polished using the polishing liquid composition according to any one of claims 1 to 6, and having a convex portion formed on the surface to be polished with a constant width. The polishing method that is the surface. 前記幅が0.5μm以上である、請求項9に記載の研磨方法。 The polishing method according to claim 9, wherein the width is 0.5 μm or more.
JP2019084416A 2019-04-25 2019-04-25 Polishing liquid composition Pending JP2020181906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019084416A JP2020181906A (en) 2019-04-25 2019-04-25 Polishing liquid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019084416A JP2020181906A (en) 2019-04-25 2019-04-25 Polishing liquid composition

Publications (1)

Publication Number Publication Date
JP2020181906A true JP2020181906A (en) 2020-11-05

Family

ID=73024811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019084416A Pending JP2020181906A (en) 2019-04-25 2019-04-25 Polishing liquid composition

Country Status (1)

Country Link
JP (1) JP2020181906A (en)

Similar Documents

Publication Publication Date Title
TWI542676B (en) CMP polishing solution and grinding method using the same
JP5157908B2 (en) Polishing agent for semiconductor integrated circuit device, polishing method, and method for manufacturing semiconductor integrated circuit device
WO2010067844A1 (en) Polishing solution for cmp and polishing method using the polishing solution
US20080086950A1 (en) Semiconductor polishing compound
TW201634657A (en) Polishing agent, polishing method and method for manufacturing semiconductor integrated circuit device
KR20170065533A (en) Cmp polishing agent, method for manufacturing same, and method for polishing substrate
JP7187770B2 (en) Polishing agent, polishing method, and polishing additive
WO2018124017A1 (en) Cerium oxide abrasive grains
WO2020066786A1 (en) Polishing liquid composition for silicon oxide film
JP7236270B2 (en) Polishing liquid composition
JP7326048B2 (en) Polishing liquid composition for silicon oxide film
JP5375025B2 (en) Polishing liquid
JP7209583B2 (en) Polishing liquid composition for silicon oxide film
KR101197163B1 (en) Cmp slurry
JP6191433B2 (en) Abrasive and polishing method
JP2023142077A (en) Polishing liquid composition for silicon oxide films
JP2020181906A (en) Polishing liquid composition
JP2022060878A (en) Polishing liquid composition for silicon oxide film
JP7045171B2 (en) Abrasive liquid composition
TW201718793A (en) Polishing composition
WO2016021325A1 (en) Polishing liquid for cmp and polishing method using same
JP7252073B2 (en) Polishing liquid composition for silicon oxide film
JP2024058420A (en) Polishing composition for silicon oxide film
JP2022137999A (en) Polishing liquid composition for silicon oxide film
JP2022061016A (en) Polishing liquid composition for silicon oxide film