JP2020181857A - duct - Google Patents

duct Download PDF

Info

Publication number
JP2020181857A
JP2020181857A JP2019082306A JP2019082306A JP2020181857A JP 2020181857 A JP2020181857 A JP 2020181857A JP 2019082306 A JP2019082306 A JP 2019082306A JP 2019082306 A JP2019082306 A JP 2019082306A JP 2020181857 A JP2020181857 A JP 2020181857A
Authority
JP
Japan
Prior art keywords
duct
transition
flow passage
downstream side
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019082306A
Other languages
Japanese (ja)
Other versions
JP7300877B2 (en
Inventor
健志郎 神
Kenshiro Kami
健志郎 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP2019082306A priority Critical patent/JP7300877B2/en
Publication of JP2020181857A publication Critical patent/JP2020181857A/en
Application granted granted Critical
Publication of JP7300877B2 publication Critical patent/JP7300877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

To provide a duct in which a fluid is allowed to circulate evenly in a flat shaped second duct part.SOLUTION: A duct 10 includes: a first duct part 12; a second duct part 14 provided on a downstream side in a circulation direction of the first duct part 12, the second duct part being formed in a flat shape where a lateral dimension is wider than that of the first duct part 12 and a longitudinal dimension is narrower than that of the first duct part 12; and a connection 16 connecting between the first duct part 12 and the second duct part 14. The connection 16 is configured such that changes in reduction of a longitudinal dimension on the upstream side is sharp while changes in reduction of a longitudinal dimension on the downstream side is gentle.SELECTED DRAWING: Figure 1

Description

この発明は、空気等の流体が流通するダクトに関するものである。 The present invention relates to a duct through which a fluid such as air flows.

ダクトは、用途や周辺との取り合いなどに応じて、流通路の断面形状が途中で変化することがある。例えば、バッテリを冷却する空気が流通するバッテリトレイは、ファンから空気が送り込まれる導入部分を周囲との干渉を抑えるため幅狭に設定し、バッテリが配置される冷却部分を導入部分よりも扁平な幅広に設定することで、バッテリの配置スペースを広く確保している(例えば、特許文献1参照)。 The cross-sectional shape of the flow passage of the duct may change in the middle depending on the application and the connection with the surroundings. For example, in a battery tray through which air that cools a battery flows, the introduction part where air is sent from the fan is set narrow to suppress interference with the surroundings, and the cooling part where the battery is placed is flatter than the introduction part. By setting the width wide, a wide space for arranging the battery is secured (see, for example, Patent Document 1).

特開平9−272344号公報Japanese Unexamined Patent Publication No. 9-272344

特許文献1のように、導入部分から扁平な冷却部分に流通路の断面形状が変化すると、導入部分よりも広くなった冷却部分の側部において空気が流通し難くなり、冷却部分にて空気の流通が不均一になる問題が生じる。 When the cross-sectional shape of the flow passage changes from the introduction portion to the flat cooling portion as in Patent Document 1, it becomes difficult for air to flow in the side portion of the cooling portion that is wider than the introduction portion, and the air in the cooling portion. There is a problem of uneven distribution.

本発明は、従来の技術に係る前記問題に鑑み、これらを好適に解決するべく提案されたものであって、形状を途中で扁平形状に変化させても、扁平形状部分において流体を均等に流通させることができるダクトを提供することを目的とする。 The present invention has been proposed in view of the above-mentioned problems related to the prior art, and has been proposed to suitably solve these problems. Even if the shape is changed to a flat shape in the middle, the fluid is evenly distributed in the flat shape portion. The purpose is to provide a duct that can be made to.

前記課題を克服し、所期の目的を達成するため、本発明に係るダクトは、
流体が流通する流通路を画成するダクトであって、
第1ダクト部と、
前記第1ダクト部の流通方向下流側に設けられ、流体の流通方向と直交する横方向が、該第1ダクト部よりも広くなると共に、流体の流通方向と直交する縦方向が該第1ダクト部よりも狭くなる扁平形状に形成された第2ダクト部と、
流体の流通方向上流側から下流側へ向かうにつれて前記横方向の寸法が大きくなるように形成され、前記第1ダクト部と前記第2ダクト部とを繋ぐ接続部と、を備え、
前記接続部は、
前記第1ダクト部の前記流通方向の下流側に連ねて設けられ、第1移行面が傾斜することで前記流通方向の上流側から下流側へ向かうにつれて前記縦方向の寸法が小さくなる第1移行部と、
前記第1移行部の前記流通方向の下流側に連なると共に前記第2ダクト部の前記流通方向の上流側に連なるように設けられ、前記第1移行面に連なる第2移行面が該第1移行面と角度を変えて傾斜することで前記流通方向の上流側から下流側へ向かうにつれて前記縦方向の寸法が小さくなる第2移行部とを、有し、
前記流通方向に沿った単位距離当たりの前記縦方向の寸法変化が、前記第2移行部よりも前記第1移行部が大きく設定されていることを要旨とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, the duct according to the present invention is used.
It is a duct that defines the flow path through which fluid flows.
The first duct part and
The first duct is provided on the downstream side in the flow direction of the first duct portion, and the horizontal direction orthogonal to the flow direction of the fluid is wider than that of the first duct portion, and the vertical direction orthogonal to the flow direction of the fluid is the first duct. The second duct part formed in a flat shape that is narrower than the part,
It is formed so that the dimension in the lateral direction increases from the upstream side to the downstream side in the flow direction of the fluid, and includes a connecting portion connecting the first duct portion and the second duct portion.
The connection part
The first transition is provided so as to be connected to the downstream side of the first duct portion in the distribution direction, and the dimension in the vertical direction becomes smaller from the upstream side to the downstream side in the distribution direction due to the inclination of the first transition surface. Department and
A second transition surface is provided so as to be connected to the downstream side of the first transition portion in the distribution direction and to the upstream side of the second duct portion in the distribution direction, and the second transition surface connected to the first transition surface is the first transition. It has a second transition portion in which the dimension in the vertical direction becomes smaller from the upstream side to the downstream side in the distribution direction by inclining at a different angle from the surface.
It is a gist that the dimensional change in the vertical direction per unit distance along the distribution direction is set larger in the first transition portion than in the second transition portion.

本発明に係るダクトによれば、形状を途中で扁平形状に変化させても、扁平形状部分において流体を均等に流通させることができる。 According to the duct according to the present invention, even if the shape is changed to a flat shape in the middle, the fluid can be evenly distributed in the flat shape portion.

本発明の実施例に係るダクトを示す概略斜視図である。It is a schematic perspective view which shows the duct which concerns on embodiment of this invention. 実施例のダクトを示す平面図である。It is a top view which shows the duct of an Example. 実施例のダクトを示す側面図である。It is a side view which shows the duct of an Example. 図3のA−A線断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 図2のB−B線断面図である。FIG. 2 is a cross-sectional view taken along the line BB of FIG. 解析試験に係るダクトを示す説明図である。It is explanatory drawing which shows the duct which concerns on the analysis test. 解析例1の解析試験の結果を示す図である。It is a figure which shows the result of the analysis test of analysis example 1. FIG. 解析例2の解析試験の結果を示す図である。It is a figure which shows the result of the analysis test of analysis example 2. 解析例3の解析試験の結果を示す図である。It is a figure which shows the result of the analysis test of analysis example 3. FIG. 解析例4の解析試験の結果を示す図である。It is a figure which shows the result of the analysis test of analysis example 4.

次に、本発明に係るダクトにつき、好適な実施例を挙げて、添付図面を参照して以下に説明する。なお、実施例では、流体として空気が流通するダクトを例示する。 Next, the duct according to the present invention will be described below with reference to the accompanying drawings with reference to suitable examples. In the embodiment, a duct through which air flows as a fluid is illustrated.

図1に示すように、実施例に係るダクト10は、ブロワーなどの送風装置によって送り込まれる空気(流体)が流通する流通路11が設けられている。ダクト10は、第1ダクト部12と、この第1ダクト部12の空気の流通方向下流側に設けられた第2ダクト部14と、第1ダクト部12および第2ダクト部14を繋ぐ接続部16とを備え、第1ダクト部12から接続部16を経て第2ダクト部14に空気が流通するようになっている。ダクト10は、第1ダクト部12の第1流通路11a(流通路)の断面形状と、第2ダクト部14の第2流通路11b(流通路)の断面形状とが異なっており、接続部16において接続流通路11c(流通路)の断面形状を変化させて、第1ダクト部12と第2ダクト部14とを繋いでいる。ダクト10は、合成樹脂の成形品などを用いることができる。ダクト10は、第1ダクト部12、接続部16および第2ダクト部14を滑らかに繋いだ一体成形品であっても、流通方向に割った形状の分割成形品を複数組み合わせたものであっても、各ダクト部12,14で分割した形状の分割成形品を組み合わせたものであっても、何れであってもよい。 As shown in FIG. 1, the duct 10 according to the embodiment is provided with a flow passage 11 through which air (fluid) sent by a blower such as a blower flows. The duct 10 is a connecting portion connecting the first duct portion 12, the second duct portion 14 provided on the downstream side of the first duct portion 12 in the air flow direction, the first duct portion 12, and the second duct portion 14. 16 is provided, and air flows from the first duct portion 12 to the second duct portion 14 via the connecting portion 16. In the duct 10, the cross-sectional shape of the first flow passage 11a (flow passage) of the first duct portion 12 and the cross-sectional shape of the second flow passage 11b (flow passage) of the second duct portion 14 are different, and the connecting portion. In No. 16, the cross-sectional shape of the connecting flow passage 11c (flow passage) is changed to connect the first duct portion 12 and the second duct portion 14. As the duct 10, a molded product of synthetic resin or the like can be used. The duct 10 is an integrally molded product in which the first duct portion 12, the connecting portion 16 and the second duct portion 14 are smoothly connected, but is a combination of a plurality of divided molded products having a shape divided in the distribution direction. It may be any combination of the divided molded products having the shape divided by the duct portions 12 and 14.

以下の説明では、ダクト10において、空気の流通方向上流側を、単に上流側といい、空気の流通方向下流側を、単に下流側という。また、流通路11を特に区別する場合、第1ダクト部12の流通路を第1流通路11aといい、第2ダクト部14の流通路を第2流通路11bといい、接続部16の流通路を接続流通路11cという。 In the following description, in the duct 10, the upstream side in the air flow direction is simply referred to as the upstream side, and the downstream side in the air flow direction is simply referred to as the downstream side. Further, when the flow passage 11 is particularly distinguished, the flow passage of the first duct portion 12 is referred to as a first flow passage 11a, the flow passage of the second duct portion 14 is referred to as a second flow passage 11b, and the distribution of the connecting portion 16 The road is called a connecting flow passage 11c.

実施例のダクト10は、エンジンの運転制御を電気的な補助装置を用いて行う際に、それらを総合的に制御するマイクロコントローラであるエレクトリックコントロールユニット(ECU)を冷却するものである。図1に示すように、ダクト10は、第2ダクト部14にECUのヒートシンクHSを設置可能な設置部14aが設けられている。ダクト10は、開口する設置部14aにヒートシンクHSを嵌め合わせることで、第2流通路11bに臨むヒートシンクHSを、第2流通路11bに流通する空気によって冷却するように構成されている(図4および図5参照)。 The duct 10 of the embodiment cools an electric control unit (ECU), which is a microcontroller that comprehensively controls the operation of the engine when the operation is controlled by using an electric auxiliary device. As shown in FIG. 1, the duct 10 is provided with an installation portion 14a in which the heat sink HS of the ECU can be installed in the second duct portion 14. The duct 10 is configured to cool the heat sink HS facing the second flow passage 11b by the air flowing through the second flow passage 11b by fitting the heat sink HS into the opening installation portion 14a (FIG. 4). And see Figure 5).

図1〜図5に示すように、第1ダクト部12は、空気の流通方向と直交する横方向(以下、単に横方向という。)と、空気の流通方向と直交する縦方向(以下、単に縦方向という。)とが、同じまたは同じに近い寸法で、第1流通路11aの断面形状が形成されている。なお、ダクト10において、横方向は、断面形状において縦横に長短があれば、長い方の方向をいい、縦方向は、長い方の方向と直交する短い方の方向をいう。そして、流通路11の断面における横方向の寸法を横寸法といい、流通路11の断面における縦方向の寸法を縦寸法という。第1ダクト部12は、第1流通路11aの断面形状の扁平率が0または0に近く設定することで、断面形状に起因する流通路11における空気の圧力損失を抑制している。
扁平率=(横寸法−縦寸法)/横寸法
As shown in FIGS. 1 to 5, the first duct portion 12 has a horizontal direction orthogonal to the air flow direction (hereinafter, simply referred to as a horizontal direction) and a vertical direction orthogonal to the air flow direction (hereinafter, simply referred to as a horizontal direction). The cross-sectional shape of the first flow passage 11a is formed with the same or close dimensions as the vertical direction). In the duct 10, the horizontal direction means the longer direction if there are long and short in the vertical and horizontal directions in the cross-sectional shape, and the vertical direction means the short direction orthogonal to the long direction. The horizontal dimension in the cross section of the flow passage 11 is called the horizontal dimension, and the vertical dimension in the cross section of the flow passage 11 is called the vertical dimension. The first duct portion 12 suppresses the pressure loss of air in the flow passage 11 due to the cross-sectional shape by setting the flatness of the cross-sectional shape of the first flow passage 11a to 0 or close to 0.
Flattening = (horizontal dimension-vertical dimension) / horizontal dimension

図1〜図5に示すように、第2ダクト部14は、横方向が第1ダクト部12よりも広くなると共に、縦方向が第1ダクト部12よりも狭くなる扁平形状に形成されている。換言すると、第2ダクト部14は、第2流通路11bの断面形状の扁平率が、1に近くなるように設定してある。このように、第2ダクト部14は、ヒートシンクHSに応じて横寸法を広く確保することで、第2流通路11bを流通する空気によってヒートシンクHSを効率よく冷却し得るように構成されている。 As shown in FIGS. 1 to 5, the second duct portion 14 is formed in a flat shape in which the lateral direction is wider than the first duct portion 12 and the vertical direction is narrower than the first duct portion 12. .. In other words, the second duct portion 14 is set so that the flatness of the cross-sectional shape of the second flow passage 11b is close to 1. As described above, the second duct portion 14 is configured so that the heat sink HS can be efficiently cooled by the air flowing through the second flow passage 11b by ensuring a wide lateral dimension according to the heat sink HS.

図1、図2および図4に示すように、接続部16は、上流側から下流側へ向かうにつれて接続流通路11cの横寸法が大きくなるように形成されている。接続部16は、両方の横壁面が上流側から下流側に向かうにつれて互いに離れるように延びており、第1ダクト部12の横壁面と第2ダクト部14の横壁面とを滑らかに繋いでいる。図5に示すように、接続部16は、第1ダクト部12の下流側に連ねて設けられ、上流側から下流側へ向かうにつれて接続流通路11cの縦寸法が小さくなる第1移行部18を有している。また、接続部16は、第1移行部18の下流側に連なると共に第2ダクト部14の上流側に連なるように設けられ、上流側から下流側へ向かうにつれて第1移行部18よりもなだらかに接続流通路11cの縦寸法が小さくなるように変化する第2移行部20を有している。接続部16は、接続流通路11cの流通方向に沿った単位距離当たりの縦寸法の変化が、第2移行部20よりも第1移行部18が大きくなるように設定されている。 As shown in FIGS. 1, 2 and 4, the connecting portion 16 is formed so that the lateral dimension of the connecting flow passage 11c increases from the upstream side to the downstream side. The connecting portion 16 extends so as to separate from each other as both lateral wall surfaces move from the upstream side to the downstream side, and smoothly connects the lateral wall surface of the first duct portion 12 and the lateral wall surface of the second duct portion 14. .. As shown in FIG. 5, the connecting portions 16 are provided in a row on the downstream side of the first duct portion 12, and the first transition portion 18 whose vertical dimension of the connecting flow passage 11c becomes smaller from the upstream side to the downstream side is provided. Have. Further, the connecting portion 16 is provided so as to be connected to the downstream side of the first transition portion 18 and to the upstream side of the second duct portion 14, and is gentler than the first transition portion 18 from the upstream side to the downstream side. It has a second transition portion 20 that changes so that the vertical dimension of the connecting flow passage 11c becomes smaller. The connecting portion 16 is set so that the change in the vertical dimension per unit distance along the distribution direction of the connecting flow passage 11c is larger in the first transition portion 18 than in the second transition portion 20.

図3および図5に示すように、実施例の接続部16の上壁面は、第1ダクト部12の上壁面および第2ダクト部14の上壁面(設置部14a)と同一平面上に揃っており、第1ダクト部12から第2ダクト部14に向けて直線的に延びている。接続部16における第1移行部18は、下壁面(以下、第1移行面18aという。)が上流側から下流側へ向かうにつれて上壁面側に近づくように傾斜しており、これにより第1移行部18の接続流通路11cが下流側に向かうにつれて縦寸法が小さくなる。接続部16の第2移行部20は、第1移行面18aの下流側に連なる下壁面(以下、第2移行面20aという。)が上流側から下流側へ向かうにつれて上壁面側に近づくように傾斜しており、これにより第2移行部20の接続流通路11cが下流側に向かうにつれて縦寸法が小さくなる。第2移行面20aは、第1移行面18aと角度を変えて延在しており、第1移行面18aの角度が、第2移行面20aの角度より急になっている。なお、図面では、各ダクト部12,14と接続部16との接続部分とを、直線が交差するように角張って描いているが、各ダクト部12,14と接続部16との接続部分を、曲線で滑らかに連なるように形成してもよい。同様に、第1移行面18aと第2移行面20aとの接続部分を、曲線で滑らかに連なるように形成してもよい。 As shown in FIGS. 3 and 5, the upper wall surface of the connection portion 16 of the embodiment is aligned with the upper wall surface of the first duct portion 12 and the upper wall surface of the second duct portion 14 (installation portion 14a). It extends linearly from the first duct portion 12 toward the second duct portion 14. The first transition portion 18 in the connection portion 16 is inclined so that the lower wall surface (hereinafter, referred to as the first transition surface 18a) approaches the upper wall surface side from the upstream side to the downstream side, whereby the first transition portion 18 is formed. The vertical dimension becomes smaller as the connecting flow passage 11c of the portion 18 moves toward the downstream side. The second transition portion 20 of the connection portion 16 is such that the lower wall surface (hereinafter referred to as the second transition surface 20a) connected to the downstream side of the first transition surface 18a approaches the upper wall surface side from the upstream side to the downstream side. It is inclined, so that the vertical dimension becomes smaller as the connecting flow passage 11c of the second transition portion 20 moves toward the downstream side. The second transition surface 20a extends at a different angle from the first transition surface 18a, and the angle of the first transition surface 18a is steeper than the angle of the second transition surface 20a. In the drawing, the connection portions between the duct portions 12, 14 and the connection portion 16 are drawn at an angle so that the straight lines intersect, but the connection portions between the duct portions 12, 14 and the connection portion 16 are shown. , May be formed so as to be smoothly connected in a curved line. Similarly, the connecting portion between the first transition surface 18a and the second transition surface 20a may be formed so as to be smoothly connected by a curved line.

図5に示すように、接続部16は、流通方向における中間位置で第1移行部18から第2移行部20に変わるように構成されている。また、第1移行部18は、該第1移行部18の接続流通路11cの断面積が、第1ダクト部12の第1流通路11aの断面積と同じまたは近くなるように、横寸法の変化に対応して縦寸法が変化するように設定されている。第1移行部18は、流通方向の中間位置まで、第1流通路11aの下流端の断面積をほぼ一定に保ったまま断面形状の縦横が変化している。第1移行部18の横寸法は、両側の横壁面が互いに離れることで変化するのに対して、縦寸法が、第1移行面18aが傾斜することによって変化する。同様に、第2移行部20の横寸法は、両側の横壁面が互いに離れることで変化するのに対して、縦寸法が、第2移行面20aが傾斜することによって変化する。そして、第2移行部20は、接続部16の中間位置まで断面積を基準に傾斜させた第1移行面18aに連なる第2移行面20aを、第2ダクト部14の下壁面に滑らかに連なるように繋げることで形成される。 As shown in FIG. 5, the connecting portion 16 is configured to change from the first transition portion 18 to the second transition portion 20 at an intermediate position in the distribution direction. Further, the first transition portion 18 has a lateral dimension so that the cross-sectional area of the connecting flow passage 11c of the first transition portion 18 is the same as or close to the cross-sectional area of the first flow passage 11a of the first duct portion 12. The vertical dimension is set to change in response to the change. The vertical and horizontal directions of the first transition portion 18 are changed up to the intermediate position in the distribution direction while keeping the cross-sectional area of the downstream end of the first flow passage 11a substantially constant. The horizontal dimension of the first transition portion 18 changes when the lateral wall surfaces on both sides are separated from each other, whereas the vertical dimension changes when the first transition surface 18a is inclined. Similarly, the horizontal dimension of the second transition portion 20 changes when the lateral wall surfaces on both sides are separated from each other, whereas the vertical dimension changes when the second transition surface 20a is inclined. Then, the second transition portion 20 smoothly connects the second transition surface 20a connected to the first transition surface 18a inclined with reference to the cross-sectional area to the intermediate position of the connection portion 16 to the lower wall surface of the second duct portion 14. It is formed by connecting like this.

前述したダクト10は、第1ダクト部12と第1ダクト部12よりも扁平形状に形成された第2ダクト部14とを繋ぐ接続部16を、接続流通路11cにおける上流側の縦寸法の縮小変化を急にしている。一方、接続流通路11cにおける下流側の縦寸法の縮小変化を緩くすることで、接続部16の横壁面に沿う空気(流体)の流れの剥離を抑えることができる。これにより、ダクト10は、第2ダクト部14の第2流通路11bの横方向において空気を均一に流通させることができる。従って、ダクト10によれば、第2ダクト部14に設置されたヒートシンクHSを、第2流通路11bに流通する空気によって効率よく冷却することができる。そして、ダクト10は、扁平形状の第2ダクト部14に変化させても該第2ダクト部14で空気を均一に流通させることができるので、第1ダクト部12を、圧力損失を低減し得る断面形状など、第2ダクト部14と異なる自由な形状で形成することができる。 In the duct 10 described above, the connecting portion 16 connecting the first duct portion 12 and the second duct portion 14 formed in a flatter shape than the first duct portion 12 is reduced in the vertical dimension on the upstream side in the connecting flow passage 11c. The change is rapid. On the other hand, by relaxing the reduction change of the vertical dimension on the downstream side in the connecting flow passage 11c, it is possible to suppress the separation of the air (fluid) flow along the lateral wall surface of the connecting portion 16. As a result, the duct 10 can uniformly circulate air in the lateral direction of the second flow passage 11b of the second duct portion 14. Therefore, according to the duct 10, the heat sink HS installed in the second duct portion 14 can be efficiently cooled by the air flowing through the second flow passage 11b. Then, even if the duct 10 is changed to the flat second duct portion 14, air can be uniformly circulated through the second duct portion 14, so that the pressure loss of the first duct portion 12 can be reduced. It can be formed in a free shape different from that of the second duct portion 14, such as a cross-sectional shape.

ダクト10は、接続部16の流通方向における中間位置で第1移行部18から第2移行部20に変わるように構成することで、接続部16の縦方向での空気の剥離を抑えて、第2ダクト部14の第2流通路11bにおいて空気を均一に流通させることができる。 By configuring the duct 10 so as to change from the first transition portion 18 to the second transition portion 20 at an intermediate position in the distribution direction of the connection portion 16, the separation of air in the vertical direction of the connection portion 16 is suppressed, and the first 2 Air can be uniformly circulated in the second flow passage 11b of the duct portion 14.

第1移行部18は、該第1移行部18の接続流通路11cの断面積が、第1ダクト部12の第1流通路11aの断面積と同じまたは近くなるように、横寸法の変化に対応して縦寸法を変化させることで、接続部16の横壁面に沿う空気の流れの剥離を抑えることができる。これにより、ダクト10は、第2ダクト部14の第2流通路11bの横方向において空気を均一に流通させることができる。 The first transition portion 18 is changed in lateral dimension so that the cross-sectional area of the connecting flow passage 11c of the first transition portion 18 is the same as or close to the cross-sectional area of the first flow passage 11a of the first duct portion 12. By changing the vertical dimension correspondingly, it is possible to suppress the separation of the air flow along the lateral wall surface of the connecting portion 16. As a result, the duct 10 can uniformly circulate air in the lateral direction of the second flow passage 11b of the second duct portion 14.

(流体解析)
流体解析によって、風速分布を算出することでダクトの形状の検証を行った。図6に示すように、解析例に係るダクト10は、第1ダクト部12の第1流通路11aの横寸法、第2ダクト部14の第2流通路11bの横寸法は何れも同じであり、接続部16の横壁面が上流側から下流側へ向かうにつれて互いに離れるように対称な関係で延在している。なお、接続部16の横寸法は、接続部16の流通方向中間位置(P2)の値であり、何れの解析例でも同じである。P1は、第1ダクト部12の下流端であり、P2は、接続部16の流通方向中間位置であって接続部16の下壁面の傾斜が切り替わる位置であり、P3は、第2ダクト部14の上流端である。なお、解析例のダクト10は、上壁面が直線的に延在している。解析例1〜4の横寸法、縦寸法および断面積は、表1に記載の通りである。
(Fluid analysis)
The shape of the duct was verified by calculating the wind speed distribution by fluid analysis. As shown in FIG. 6, in the duct 10 according to the analysis example, the lateral dimension of the first flow passage 11a of the first duct portion 12 and the lateral dimension of the second flow passage 11b of the second duct portion 14 are the same. , The lateral wall surface of the connecting portion 16 extends in a symmetrical relationship so as to be separated from each other from the upstream side to the downstream side. The horizontal dimension of the connecting portion 16 is the value of the intermediate position (P2) in the distribution direction of the connecting portion 16, and is the same in all the analysis examples. P1 is the downstream end of the first duct portion 12, P2 is the intermediate position of the connection portion 16 in the distribution direction, and P3 is the position where the inclination of the lower wall surface of the connection portion 16 is switched, and P3 is the second duct portion 14. It is the upstream end of. The upper wall surface of the duct 10 in the analysis example extends linearly. The horizontal dimensions, vertical dimensions, and cross-sectional areas of Analysis Examples 1 to 4 are as shown in Table 1.

流体解析(定常解析)の条件は、次の通りである。定常解析において、ダクト10の入口側(圧力測定面)の流量を30m/hrとし、ダクト10の出口側(流体流出面)の圧力を0Paとした。ECUを冷却するヒートシンクHSが配置される第2ダクト部14の第2流通路11bは、幅200mm×長さ150mm×高さ15mmである。第2流通路11bの空気(流体)の流通方向と直交する方向における断面積は3000mmであり、第2流通路11b内に配置されたヒートシンクHSの断面積は1510mmであるので、第2流通路11bにおいて空気が流通可能な断面積は1490mmである。上記の条件から、第2流通路11b内の平均流速の理論値は、5.6m/sである。 The conditions for fluid analysis (steady state analysis) are as follows. In the steady-state analysis, the flow rate on the inlet side (pressure measurement surface) of the duct 10 was set to 30 m 3 / hr, and the pressure on the outlet side (fluid outflow surface) of the duct 10 was set to 0 Pa. The second flow passage 11b of the second duct portion 14 in which the heat sink HS for cooling the ECU is arranged has a width of 200 mm, a length of 150 mm, and a height of 15 mm. Since the cross-sectional area in the direction perpendicular to the flow direction of the air (fluid) in the second flow path 11b is 3000 mm 2, the cross-sectional area of the arranged heat sink HS to the second flow path 11b is a 1510Mm 2, second The cross-sectional area through which air can flow in the flow passage 11b is 1490 mm 2 . From the above conditions, the theoretical value of the average flow velocity in the second flow passage 11b is 5.6 m / s.

表1に示すように、第1移行部18の縦寸法の変化を緩くして第2移行部20の縦寸法の変化を急に設定した解析例4および接続部16の上流から下流にかけて縦寸法の変化量を同じにした解析例3は、第2ダクト部14のヒートシンクHSが配置されている領域において、流速5.6m/sの領域の割合が、それぞれ62%、66%となっている。これに対して、解析例1および解析例2は、第2ダクト部14のヒートシンクHSが配置されている領域において、流速5.6m/sの領域の割合がそれぞれ84%、74%となっており、空気の流れが解析例3および解析例4に比べて均一になっていることが判る。そして、解析例1が示すように、第1移行部18の接続流通路11cの断面積が、第1ダクト部12の第1流通路11aの断面積と同じになるように、横寸法の変化に対応して縦寸法を変化させることで、第2ダクト部14のヒートシンクHSが配置されている領域において、空気の流れを均一にすることができることが判る。 As shown in Table 1, the analysis example 4 in which the change in the vertical dimension of the first transition portion 18 is relaxed and the change in the vertical dimension of the second transition portion 20 is suddenly set, and the vertical dimension from the upstream to the downstream of the connection portion 16. In Analysis Example 3 in which the amount of change is the same, the ratios of the regions having a flow velocity of 5.6 m / s in the regions where the heat sink HS of the second duct portion 14 is arranged are 62% and 66%, respectively. .. On the other hand, in Analysis Example 1 and Analysis Example 2, the ratios of the regions having a flow velocity of 5.6 m / s were 84% and 74%, respectively, in the regions where the heat sink HS of the second duct portion 14 was arranged. It can be seen that the air flow is more uniform than that of Analysis Example 3 and Analysis Example 4. Then, as shown in Analysis Example 1, the lateral dimension is changed so that the cross-sectional area of the connecting flow passage 11c of the first transition portion 18 is the same as the cross-sectional area of the first flow passage 11a of the first duct portion 12. It can be seen that the air flow can be made uniform in the area where the heat sink HS of the second duct portion 14 is arranged by changing the vertical dimension corresponding to.

(変更例)
前述した構成に限らず、例えば以下のように変更してもよい。
(1)実施例では、角筒形状のダクトを例示したが、円筒形状やその他形状であってもよい。
(2)実施例では、第2ダクト部が短尺となる縦方向が上下方向に向いているが、これに限らず、第2ダクト部が長尺となる横方向が上下方向に向くなど、任意に向きを設定することができる。
(3)実施例では、接続流通路の横寸法を、上流側から下流側へ向かうにつれて徐変して大きくなるように形成しているが、これに限らず、接続部の流通方向の一部の範囲において接続流通路の横寸法が変化しない領域を設けてもよい。
(4)実施例では、各ダクト部および接続部の上壁面を同一平面上に揃えていたが、これに限らない。例えば、各ダクト部および接続部の上壁面を、第1ダクト部から第2ダクト部に亘って直線的に傾斜するように揃えてもよく、該上壁面を傾斜面や平面や曲面などを組み合わせて形成してもよい。
(5)本発明に係るダクトは、ECUの冷却用途に限らず、バッテリやその他の冷却に用いてもよく、また冷却用途以外の用途に用いてもよい。
(6)ダクトに流通させる流体としては、空気に限らず、冷媒などのガス(気体)、水などの液体であってもよい。
(Change example)
The configuration is not limited to the above, and may be changed as follows, for example.
(1) In the embodiment, a square tube-shaped duct is illustrated, but a cylindrical shape or other shape may be used.
(2) In the embodiment, the vertical direction in which the second duct portion is short is oriented in the vertical direction, but the present invention is not limited to this, and the horizontal direction in which the second duct portion is long is oriented in the vertical direction. You can set the orientation to.
(3) In the embodiment, the lateral dimension of the connecting flow passage is formed so as to gradually change and increase from the upstream side to the downstream side, but the present invention is not limited to this and is a part of the distribution direction of the connecting portion. A region may be provided in which the lateral dimension of the connecting flow passage does not change within the range of.
(4) In the embodiment, the upper wall surfaces of the duct portions and the connecting portions are aligned on the same plane, but the present invention is not limited to this. For example, the upper wall surface of each duct portion and the connecting portion may be aligned so as to be linearly inclined from the first duct portion to the second duct portion, and the upper wall surface may be combined with an inclined surface, a flat surface, a curved surface, or the like. May be formed.
(5) The duct according to the present invention is not limited to the cooling application of the ECU, and may be used for cooling the battery or other applications, or may be used for applications other than the cooling application.
(6) The fluid to be circulated in the duct is not limited to air, but may be a gas (gas) such as a refrigerant or a liquid such as water.

10 ダクト,11 流通路,11a 第1流通路(第1ダクト部の流通路),
11b 第2流通路(第2ダクト部の流通路),11c 接続流通路(接続部の流通路),
12 第1ダクト部,14 第2ダクト部,16 接続部,18 第1移行部,
18a 第1移行面,20 第2移行部,20a 第2移行面
10 ducts, 11 flow passages, 11a first flow passages (flow passages in the first duct section),
11b 2nd flow passage (flow passage of the 2nd duct part), 11c connection flow passage (flow passage of the connection part),
12 1st duct part, 14 2nd duct part, 16 connection part, 18 1st transition part,
18a 1st transition surface, 20 2nd transition part, 20a 2nd transition surface

Claims (5)

流体が流通する流通路を画成するダクトであって、
第1ダクト部と、
前記第1ダクト部の流通方向下流側に設けられ、流体の流通方向と直交する横方向が、該第1ダクト部よりも広くなると共に、流体の流通方向と直交する縦方向が該第1ダクト部よりも狭くなる扁平形状に形成された第2ダクト部と、
流体の流通方向上流側から下流側へ向かうにつれて前記横方向の寸法が大きくなるように形成され、前記第1ダクト部と前記第2ダクト部とを繋ぐ接続部と、を備え、
前記接続部は、
前記第1ダクト部の前記流通方向の下流側に連ねて設けられ、第1移行面が傾斜することで前記流通方向の上流側から下流側へ向かうにつれて前記縦方向の寸法が小さくなる第1移行部と、
前記第1移行部の前記流通方向の下流側に連なると共に前記第2ダクト部の前記流通方向の上流側に連なるように設けられ、前記第1移行面に連なる第2移行面が該第1移行面と角度を変えて傾斜することで前記流通方向の上流側から下流側へ向かうにつれて前記縦方向の寸法が小さくなる第2移行部とを、有し、
前記流通方向に沿った単位距離当たりの前記縦方向の寸法変化が、前記第2移行部よりも前記第1移行部が大きく設定されている
ことを特徴とするダクト。
It is a duct that defines the flow path through which fluid flows.
The first duct part and
The first duct is provided on the downstream side in the flow direction of the first duct portion, and the horizontal direction orthogonal to the flow direction of the fluid is wider than that of the first duct portion, and the vertical direction orthogonal to the flow direction of the fluid is the first duct. The second duct part formed in a flat shape that is narrower than the part,
It is formed so that the dimension in the lateral direction increases from the upstream side to the downstream side in the flow direction of the fluid, and includes a connecting portion connecting the first duct portion and the second duct portion.
The connection part
The first transition is provided so as to be connected to the downstream side of the first duct portion in the distribution direction, and the dimension in the vertical direction becomes smaller from the upstream side to the downstream side in the distribution direction due to the inclination of the first transition surface. Department and
A second transition surface is provided so as to be connected to the downstream side of the first transition portion in the distribution direction and to the upstream side of the second duct portion in the distribution direction, and the second transition surface connected to the first transition surface is the first transition. It has a second transition portion in which the dimension in the vertical direction becomes smaller from the upstream side to the downstream side in the distribution direction by inclining at a different angle from the surface.
A duct characterized in that the dimensional change in the vertical direction per unit distance along the distribution direction is set larger in the first transition portion than in the second transition portion.
前記接続部は、前記流通方向における中間位置で前記第1移行部から前記第2移行部に変わる請求項1記載のダクト。 The duct according to claim 1, wherein the connecting portion changes from the first transition portion to the second transition portion at an intermediate position in the distribution direction. 前記第1移行部は、該第1移行部の流通路の断面積が、前記第1ダクト部の流通路の断面積と同じまたは近くなるように、前記横方向の寸法の変化に対応して前記縦方向の寸法が変化している請求項1または2記載のダクト。 The first transition portion responds to the lateral dimensional change so that the cross-sectional area of the flow passage of the first transition portion is equal to or close to the cross-sectional area of the flow passage of the first duct portion. The duct according to claim 1 or 2, wherein the vertical dimension is changed. 前記第2ダクト部は、該第2ダクト部の流通路に臨むように設置されたヒートシンクを、該流通路に流通する流体により冷却可能に構成されている請求項1〜3の何れか一項に記載のダクト。 The second duct portion is any one of claims 1 to 3, wherein the heat sink installed so as to face the flow passage of the second duct portion can be cooled by the fluid flowing through the flow passage. The duct described in. 前記流体は空気である請求項1〜4の何れか一項に記載のダクト。 The duct according to any one of claims 1 to 4, wherein the fluid is air.
JP2019082306A 2019-04-23 2019-04-23 duct Active JP7300877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019082306A JP7300877B2 (en) 2019-04-23 2019-04-23 duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019082306A JP7300877B2 (en) 2019-04-23 2019-04-23 duct

Publications (2)

Publication Number Publication Date
JP2020181857A true JP2020181857A (en) 2020-11-05
JP7300877B2 JP7300877B2 (en) 2023-06-30

Family

ID=73024789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019082306A Active JP7300877B2 (en) 2019-04-23 2019-04-23 duct

Country Status (1)

Country Link
JP (1) JP7300877B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168697A (en) * 1988-09-09 1990-06-28 Hitachi Ltd Cooling device for electronic equipment and radiating fin therefor
US5077601A (en) * 1988-09-09 1991-12-31 Hitachi, Ltd. Cooling system for cooling an electronic device and heat radiation fin for use in the cooling system
JP2004006811A (en) * 2002-04-18 2004-01-08 Hitachi Ltd Electrical appliance, its cooling system and motor-driven vehicle
US20040020231A1 (en) * 2002-04-18 2004-02-05 Takayoshi Nakamura Electrical apparatus, cooling system therefor, and electric vehicle
US20070068652A1 (en) * 2005-09-29 2007-03-29 Samsung Electronics Co., Ltd. Heatsink
JP2008205371A (en) * 2007-02-22 2008-09-04 Mitsubishi Materials Corp Liquid-cooled type cooler and unit for mounting power element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168697A (en) * 1988-09-09 1990-06-28 Hitachi Ltd Cooling device for electronic equipment and radiating fin therefor
US5077601A (en) * 1988-09-09 1991-12-31 Hitachi, Ltd. Cooling system for cooling an electronic device and heat radiation fin for use in the cooling system
JP2004006811A (en) * 2002-04-18 2004-01-08 Hitachi Ltd Electrical appliance, its cooling system and motor-driven vehicle
US20040020231A1 (en) * 2002-04-18 2004-02-05 Takayoshi Nakamura Electrical apparatus, cooling system therefor, and electric vehicle
US20070068652A1 (en) * 2005-09-29 2007-03-29 Samsung Electronics Co., Ltd. Heatsink
JP2007096306A (en) * 2005-09-29 2007-04-12 Samsung Electronics Co Ltd Heat sink
JP2008205371A (en) * 2007-02-22 2008-09-04 Mitsubishi Materials Corp Liquid-cooled type cooler and unit for mounting power element

Also Published As

Publication number Publication date
JP7300877B2 (en) 2023-06-30

Similar Documents

Publication Publication Date Title
JP2015124748A (en) Cooling device
US20090239463A1 (en) Diffuser for a heating, ventilating, and air conditioning system
US20160361978A1 (en) Personal air flow device for a vehicle
RU2019123026A (en) FAN MODULE AND ALSO A SYSTEM OF ONE OR SEVERAL FAN UNITS IN THE FLOW DUCT
CN105546648B (en) Air conditioner indoor unit and air-conditioning system
US11554868B2 (en) Three dimensional pinched airflow nozzle and methods for use thereof
CN105588189A (en) Wall-mounted air conditioner indoor unit and air conditioner
US9908387B2 (en) Air conditioning device for vehicle
JP2020181857A (en) duct
US3185068A (en) Air distribution devices
CN202485120U (en) Duct-type air conditioner
JP6324732B2 (en) Cooler
JP5736011B2 (en) Intermediate elements for air ducts in vehicle air conditioners
US3242847A (en) Methods of air distribution through elongated slots
JPH0666439A (en) Clean room and air supply unit
US11506222B2 (en) Fan housing, fan and operating system having a fan
JP4597769B2 (en) Clean room and its design and construction method
CN107021230A (en) Cabin air compressor bracket
EP3064851B1 (en) A system for supplying air to a room
WO2019109891A1 (en) Air conditioner
US20210131699A1 (en) Indoor unit and air conditioner
JP6214157B2 (en) Air supply chamber
JP2020189526A (en) Air conditioner for vehicle
JP7126073B2 (en) Flow control piping
JP3639021B2 (en) Filter unit for tunnel type clean room

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230620

R150 Certificate of patent or registration of utility model

Ref document number: 7300877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150