JP2020180557A - Capacity control device of engine driving compressor - Google Patents

Capacity control device of engine driving compressor Download PDF

Info

Publication number
JP2020180557A
JP2020180557A JP2019082280A JP2019082280A JP2020180557A JP 2020180557 A JP2020180557 A JP 2020180557A JP 2019082280 A JP2019082280 A JP 2019082280A JP 2019082280 A JP2019082280 A JP 2019082280A JP 2020180557 A JP2020180557 A JP 2020180557A
Authority
JP
Japan
Prior art keywords
flow path
receiving chamber
pressure receiving
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019082280A
Other languages
Japanese (ja)
Other versions
JP7284627B2 (en
Inventor
賛 早川
Tasuku Hayakawa
賛 早川
涼太郎 長吉
Ryotaro Nagayoshi
涼太郎 長吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2019082280A priority Critical patent/JP7284627B2/en
Publication of JP2020180557A publication Critical patent/JP2020180557A/en
Application granted granted Critical
Publication of JP7284627B2 publication Critical patent/JP7284627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

To provide an engine driving compressor with low fuel consumption and excellent startability.SOLUTION: A pressure receiving chamber 61 of a speed regulator 60 is communicated with a secondary side of a pressure regulator 70 connected to a receiver tank 32 on a primary side, and a valve closing pressure receiving chamber 51 of an intake control valve 50 is serially communicated with the pressure receiving chamber via a throttle 91. Other end 84b of a bypass flow path 84 bypassing a pressure regulator and communicating one end 84a with the receiver tank 32 is parallely communicated with the pressure receiving chamber of the speed regulator and the valve closing pressure receiving chamber of the intake control valve. An on-off valve 41 is provided to the bypass flow path 84 to form a starting load loosening mechanism 4. At the time of closing the on-off valve at which a capacity is controlled by compressed gas passing through the pressure regulator, and at the time of shifting to a non-load operation, after the rotation speed of the engine is reduced, fuel consumption improves by closing an intake port 21. At the starting time at which the capacity is controlled by the compressed gas passing through the bypass flow path 84, after the intake port of a compressor body is closed, the rotation speed of the engine is reduced and startability improves.SELECTED DRAWING: Figure 5

Description

本発明はエンジン駆動型圧縮機の容量制御装置に関し,より詳細には,消費側における圧縮気体の消費量に応じて,圧縮機本体の吸気量を制御する吸気制御と,エンジンの回転速度を制御する速度制御を行う,容量制御装置に関する。 The present invention relates to a capacity control device for an engine-driven compressor. More specifically, the present invention controls intake control for controlling the intake amount of the compressor body and control of engine rotation speed according to the consumption amount of compressed gas on the consumption side. It is related to the capacity control device that controls the speed.

圧縮機本体をエンジンによって駆動するエンジン駆動型圧縮機は,電源の確保が困難である土木作業現場や建築現場等の屋外における作業等において圧縮空気等の圧縮気体の供給源として広く使用されている。 An engine-driven compressor that drives the compressor body with an engine is widely used as a source of compressed gas such as compressed air in outdoor work such as civil engineering work sites and construction sites where it is difficult to secure a power source. ..

このようなエンジン駆動型圧縮機の一例として,後掲の特許文献1に記載されているエンジン駆動型圧縮機100の構成例を図7に示す。 As an example of such an engine-driven compressor, FIG. 7 shows a configuration example of the engine-driven compressor 100 described in Patent Document 1 described later.

このエンジン駆動型圧縮機100では,前述した圧縮機本体120とエンジン130の他,圧縮機本体120より潤滑油と共に吐出された圧縮気体を貯留して,圧縮気体と潤滑油とに分離するレシーバタンク132を備え,このレシーバタンク132内で潤滑油が分離された後の圧縮気体を,図示せざる空気作業機等が接続された消費側に供給することができるように構成されている。 In this engine-driven compressor 100, in addition to the compressor body 120 and the engine 130 described above, a receiver tank that stores the compressed gas discharged together with the lubricating oil from the compressor body 120 and separates the compressed gas and the lubricating oil. The 132 is provided so that the compressed gas after the lubricating oil is separated in the receiver tank 132 can be supplied to the consumption side to which an air work machine or the like (not shown) is connected.

そして,図7のエンジン駆動型圧縮機100では,消費側に安定した圧力の圧縮気体を供給することができるようにするために,レシーバタンク132内の圧力に応じて,圧縮機本体120の吸気を制御すると共に,エンジン130の回転速度を制御する,容量制御装置105が設けられている。 Then, in the engine-driven compressor 100 of FIG. 7, the intake air of the compressor main body 120 is taken in accordance with the pressure in the receiver tank 132 so that the compressed gas having a stable pressure can be supplied to the consumption side. The capacity control device 105 is provided to control the rotation speed of the engine 130 as well as to control the engine 130.

このような容量制御装置105として,図7に示すエンジン駆動圧縮機100は,圧縮機本体120の吸気口121を開閉するバタフライバルブ151と,圧縮気体の導入を受けて前記バタフライバルブ151を閉じるアンローダレギュレータ152により構成される吸気制御弁150と,圧縮気体の導入を受けてエンジン130のガバナレバー135を低速側に移動させるスピードレギュレータ160と,レシーバタンク132に連通された圧力レギュレータ170を備え,圧力レギュレータ170の二次側に連通された制御流路181を分岐して,一方の流路181aをスピードレギュレータ160に,他方の流路181bをアンローダレギュレータ152にそれぞれ並列に連通した構成の容量制御装置105を備えている。 As such a capacity control device 105, the engine drive compressor 100 shown in FIG. 7 has a butterfly valve 151 that opens and closes the intake port 121 of the compressor main body 120, and an unloader that closes the butterfly valve 151 in response to the introduction of compressed gas. It is equipped with an intake control valve 150 composed of a regulator 152, a speed regulator 160 that moves the governor lever 135 of the engine 130 to the low speed side in response to the introduction of compressed gas, and a pressure regulator 170 that is communicated with the receiver tank 132. A capacitance control device 105 having a configuration in which the control flow path 181 communicated with the secondary side of 170 is branched and one flow path 181a is connected to the speed regulator 160 and the other flow path 181b is connected to the unloader regulator 152 in parallel. It has.

これにより,図7に示すエンジン駆動圧縮機100では,消費側において圧縮気体の消費が行われる等してレシーバタンク132内の圧力が圧力レギュレータ170の作動開始圧力未満になると,圧力レギュレータ170が閉じてアンローダレギュレータ152の受圧室及びスピードレギュレータ160の受圧室のいずれにも作動圧力が導入されず,吸気制御弁150は圧縮機本体120の吸気口121を全開と成すと共に,スピードレギュレータ160は,エンジン130のガバナレバー135を高速位置に移動して全負荷運転を開始する。 As a result, in the engine drive compressor 100 shown in FIG. 7, when the pressure in the receiver tank 132 becomes less than the operation start pressure of the pressure regulator 170 due to the consumption of compressed gas on the consumption side, the pressure regulator 170 closes. No working pressure is introduced into either the pressure receiving chamber of the unloader regulator 152 or the pressure receiving chamber of the speed regulator 160, the intake control valve 150 opens the intake port 121 of the compressor body 120 fully, and the speed regulator 160 is the engine. The governor lever 135 of 130 is moved to a high speed position to start full load operation.

そして,消費側における圧縮気体の消費が停止する等して,レシーバタンク132内の圧力が圧力レギュレータ170の作動開始圧力以上に上昇すると,圧力レギュレータ170が開き始めてアンローダレギュレータ152の受圧室及びスピードレギュレータ160の受圧室に対する作動圧力の導入が開始され,導入された圧縮気体の圧力に応じて吸気制御弁150は圧縮機本体120の吸気口121を絞ると共に,スピードレギュレータ160は,エンジン130の回転速度を低下させる。 Then, when the pressure in the receiver tank 132 rises above the operation start pressure of the pressure regulator 170 due to the stop of consumption of compressed gas on the consumption side, the pressure regulator 170 starts to open and the pressure receiving chamber of the unloader regulator 152 and the speed regulator The introduction of the operating pressure into the pressure receiving chamber of 160 is started, the intake control valve 150 throttles the intake port 121 of the compressor main body 120 according to the pressure of the introduced compressed gas, and the speed regulator 160 sets the rotation speed of the engine 130. To reduce.

その後も圧縮気体の消費が停止した状態が継続する等してレシーバタンク132内の圧力が所定の無負荷運転開始圧力以上に上昇すると,圧力レギュレータ170が全開となり,吸気制御弁150により圧縮機本体120の吸気口121が閉ざされると共に,スピードレギュレータ160がエンジン130を低速として無負荷運転に移行し,消費側における圧縮気体の消費が再開される等してレシーバタンク132内の圧力が低下すると,前述の動作を繰り返す。 After that, when the pressure in the receiver tank 132 rises above the predetermined no-load operation start pressure, such as when the consumption of compressed gas continues to stop, the pressure regulator 170 is fully opened, and the compressor main body is operated by the intake control valve 150. When the intake port 121 of 120 is closed, the speed regulator 160 shifts to no-load operation at a low speed of the engine 130, and the consumption of compressed gas on the consuming side is restarted, the pressure in the receiver tank 132 drops. The above operation is repeated.

このように,容量制御装置105は,エンジン駆動圧縮機100の運転中,消費側における圧縮気体の消費量に応じて圧縮機本体120の吸気制御とエンジン130の速度制御を行うことで,消費側に対し安定した圧力の圧縮気体を供給することができるように構成されている。 In this way, the capacity control device 105 performs intake control of the compressor main body 120 and speed control of the engine 130 according to the consumption amount of the compressed gas on the consumption side during operation of the engine drive compressor 100, thereby performing the consumption side. It is configured to be able to supply a compressed gas with a stable pressure.

なお,エンジン駆動圧縮機100では,エンジン130に圧縮機本体120が連結されていることから,エンジン130には,常に圧縮機本体120の回転抵抗が負荷として掛かっている一方,不安定な運転状態にある始動直後のエンジン130に負荷が掛かると,エンジンは容易に停止する。 In the engine drive compressor 100, since the compressor main body 120 is connected to the engine 130, the rotational resistance of the compressor main body 120 is always applied to the engine 130 as a load, but the operating state is unstable. When a load is applied to the engine 130 immediately after starting, the engine is easily stopped.

そのため,特許文献1に記載の容量制御装置105には,エンジン駆動圧縮機100の始動時に,エンジン130が圧縮機本体120から受ける負荷を低減することを目的として,圧力レギュレータ170の一次側と二次側を連通するバイパス流路184と,このバイパス流路184を開閉する開閉弁141から成る始動負荷軽減機構104を設けている。 Therefore, the capacity control device 105 described in Patent Document 1 includes the primary side and the secondary side of the pressure regulator 170 for the purpose of reducing the load received by the engine 130 from the compressor main body 120 when the engine drive compressor 100 is started. A starting load reducing mechanism 104 including a bypass flow path 184 communicating with the next side and an on-off valve 141 for opening and closing the bypass flow path 184 is provided.

これにより,開閉弁141を操作してバイパス流路184を開いた状態でエンジン駆動圧縮機100を始動すると,圧力レギュレータ170をバイパスしてバイパス流路184がレシーバタンク132内の圧縮気体をアンローダレギュレータ152の受圧室とスピードレギュレータ160の受圧室にそれぞれ導入し,その結果,エンジン駆動圧縮機100の始動運転を,圧縮機本体120の吸気口121を閉じると共に,エンジン130の回転速度を低速とした,無負荷運転の状態で行うことができるものとなっている(特許文献1の図5参照)。 As a result, when the engine drive compressor 100 is started with the on-off valve 141 operated to open the bypass flow path 184, the bypass flow path 184 bypasses the pressure regulator 170 and the bypass flow path 184 unloads the compressed gas in the receiver tank 132. It was introduced into the pressure receiving chamber of 152 and the pressure receiving chamber of the speed regulator 160, respectively. As a result, the starting operation of the engine drive compressor 100 was performed by closing the intake port 121 of the compressor main body 120 and reducing the rotation speed of the engine 130. , It can be performed in the state of no-load operation (see FIG. 5 of Patent Document 1).

特開2002−168177号公報JP-A-2002-168177

前掲の特許文献1に記載の容量制御装置105の構成では,圧力レギュレータ170の二次側に連通された制御流路181を分岐して,一方の流路181aをスピードレギュレータ160の受圧室に,他方の流路181bをアンローダレギュレータ152の受圧室にそれぞれ並列に連通する構成を採用する。 In the configuration of the capacitance control device 105 described in Patent Document 1 described above, the control flow path 181 communicating with the secondary side of the pressure regulator 170 is branched, and one flow path 181a is used as the pressure receiving chamber of the speed regulator 160. A configuration is adopted in which the other flow path 181b communicates with the pressure receiving chamber of the unloader regulator 152 in parallel.

その結果,レシーバタンク132内の圧力が上昇して全負荷運転から無負荷運転へ移行する際,アンローダレギュレータ152の受圧室とスピードレギュレータ160の受圧室には,略同時に作動圧力の導入が開始されることから,エンジン130の回転速度の低下と,圧縮機本体120の吸気口121の閉塞を,略同時に行うことができるようになっている。 As a result, when the pressure in the receiver tank 132 rises and shifts from full-load operation to no-load operation, the introduction of operating pressure into the pressure receiving chamber of the unloader regulator 152 and the pressure receiving chamber of the speed regulator 160 is started almost at the same time. Therefore, it is possible to reduce the rotation speed of the engine 130 and close the intake port 121 of the compressor main body 120 at substantially the same time.

しかし,エンジン駆動圧縮機100の燃費向上という観点からは,全負荷運転から無負荷運転へ移行する際,先ず,エンジン130の回転速度を低下させ,その後,圧縮機本体120の吸気口121を閉じる動作を行う構成とする方が,有利である。 However, from the viewpoint of improving the fuel efficiency of the engine-driven compressor 100, when shifting from full-load operation to no-load operation, the rotation speed of the engine 130 is first reduced, and then the intake port 121 of the compressor body 120 is closed. It is more advantageous to have a configuration that operates.

その一方で,エンジン130の回転速度の低下と吸気制御弁150の動作タイミングを前述した順番で行うために,大規模な構成要素の追加や,電子制御の採用を行う場合,装置構成が複雑となるだけでなく,部品点数の増加や高価な電子制御装置の追加によって容量制御装置の製造コストが嵩むことになる。 On the other hand, in order to reduce the rotation speed of the engine 130 and operate the intake control valve 150 in the order described above, the device configuration becomes complicated when large-scale components are added or electronic control is adopted. Not only that, the manufacturing cost of the capacity control device increases due to the increase in the number of parts and the addition of an expensive electronic control device.

そこで,上記の課題を解決するために,本発明の発明者らは鋭意研究を重ねた結果,大規模な構成要素の追加や電子制御化を行うことなく,配管接続の変更によって,全負荷運転から無負荷運転に移行する際に,先ずエンジンの回転速度が低下し,次いで吸気制御弁を閉じる動作を行う,新たな容量制御装置の開発に成功した。 Therefore, in order to solve the above problems, the inventors of the present invention have conducted extensive research, and as a result, full-load operation is performed by changing the pipe connection without adding a large-scale component or electronically controlling it. We succeeded in developing a new capacity control device that first slows down the engine speed and then closes the intake control valve when shifting from to no-load operation.

しかし,新たに開発した容量制御装置では,全負荷運転から無負荷運転への移行の際には吸気制御弁の閉弁動作に先立ち,エンジンの回転速度を低下させることで燃費の向上を得ることができたものの,この容量制御装置の構成に,図7を参照して説明した容量制御装置105に倣い,圧力レギュレータ170をバイパスするバイパス流路184と,このバイパス流路184を開閉する開閉弁141から成る始動負荷軽減機構104を設けた場合,バイパス流路184を開いて行う始動時においても,通常運転時と同様,エンジン130の回転速度を低下した後,吸気制御弁150が圧縮機本体120の吸気口121を閉じることになる。 However, with the newly developed capacity control device, when shifting from full-load operation to no-load operation, fuel efficiency is improved by reducing the engine speed prior to the valve closing operation of the intake control valve. However, the configuration of this capacitance control device follows the capacitance control device 105 described with reference to FIG. 7, and a bypass flow path 184 that bypasses the pressure regulator 170 and an on-off valve that opens and closes the bypass flow path 184. When the starting load reducing mechanism 104 composed of 141 is provided, even at the time of starting by opening the bypass flow path 184, the intake control valve 150 is set to the compressor main body after the rotation speed of the engine 130 is reduced as in the normal operation. The intake port 121 of 120 will be closed.

その結果,圧縮機本体120の吸気口121が開いたままの高い負荷が掛かった状態で,始動時の不安定な状態にあるエンジン130の回転速度を低下させ,その後に,圧縮機本体120の吸気口121を閉じて負荷を軽減させる構成となるため,回転速度を低下させた際に,エンジン130がストールしてしまうという新たな問題が発生した。 As a result, the rotation speed of the engine 130, which is in an unstable state at the time of starting, is reduced while the intake port 121 of the compressor body 120 is kept open and a high load is applied, and then the compressor body 120 Since the intake port 121 is closed to reduce the load, a new problem has arisen in which the engine 130 stalls when the rotation speed is reduced.

本発明は,これらの問題を解決すべく成されたもので,構成部品の大幅な追加や,電子制御化することなく,機械式の容量制御装置を,配管構成の変更により,全負荷運転から無負荷運転に移行する際に,エンジンの回転速度を低下させた後に,吸気制御弁を閉じる動作を行わせることができるように改変することで,エンジン駆動圧縮機の燃費を改善することができる容量制御装置を提供することを第1の目的とする。 The present invention has been made to solve these problems, and the mechanical capacity control device can be operated from full load operation by changing the piping configuration without significant addition of component parts or electronic control. The fuel efficiency of the engine-driven compressor can be improved by modifying the intake control valve so that it can be closed after the engine speed is reduced when shifting to no-load operation. The first object is to provide a capacity control device.

また,本発明は,前述したように,通常運転時に全負荷運転から無負荷運転に移行する際,エンジンの回転速度を低下させた後,吸気制御弁が閉じる動作を行う構成でありながら,始動時には,エンジンの速度低下と同時に,又は,エンジンの速度低下に先立って,吸気制御弁を閉弁して負荷の軽減を図るという,通常運転時の動作とは相反する動作を両立させることができる始動負荷軽減機構を備えた容量制御装置を提供することを第2の目的とする。 Further, as described above, the present invention has a configuration in which the intake control valve closes after the engine speed is reduced when shifting from full-load operation to no-load operation during normal operation. Occasionally, at the same time as the engine speed decreases, or prior to the engine speed decrease, the intake control valve is closed to reduce the load, which is contrary to the operation during normal operation. A second object is to provide a capacity control device provided with a starting load reducing mechanism.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と,発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本発明の技術的範囲の解釈に制限的に用いられるものではない。 The means for solving the problem are described below together with the reference numerals used in the embodiment of the invention. This reference numeral is for clarifying the correspondence between the description of the claims and the description of the form for carrying out the invention, and needless to say, it is used in a restrictive manner in the interpretation of the technical scope of the present invention. It is not something that can be done.

上記目的を達成するために,本発明のエンジン駆動圧縮機1の容量制御装置5は,
エンジンと,該エンジンによって駆動される圧縮機本体2を備え,前記圧縮機本体2が吐出した圧縮気体を消費側に供給する供給流路3を備えたエンジン駆動圧縮機1において,
前記圧縮機本体2の吸気口21を開閉制御する受圧閉弁型の吸気制御弁50と,受圧室61内の圧力上昇に応じて前記エンジンの回転速度を低下させるスピードレギュレータ60と,前記供給流路3(図示の例では,供給流路3を構成するレシーバタンク32)に接続された一次側の圧力が所定の作動開始圧力以上になると開弁して前記供給流路3内の圧縮気体を二次側に導入する圧力レギュレータ70を設け,
前記圧力レギュレータ70の前記二次側と前記スピードレギュレータ60の前記受圧室61を連通する第1流路81と,前記スピードレギュレータ60の前記受圧室61を,前記吸気制御弁50の閉弁受圧室51に絞り91を介して連通する第2流路82を設けて,前記圧力レギュレータ70の二次側に前記スピードレギュレータ60の前記受圧室61と前記吸気制御弁50の前記閉弁受圧室51を直列に連通したことを特徴とする(請求項1;図1参照)。
In order to achieve the above object, the capacity control device 5 of the engine drive compressor 1 of the present invention is
In an engine-driven compressor 1 having an engine and a compressor main body 2 driven by the engine, and having a supply flow path 3 for supplying the compressed gas discharged by the compressor main body 2 to the consumption side.
A pressure-receiving valve-type intake control valve 50 that controls the opening and closing of the intake port 21 of the compressor body 2, a speed regulator 60 that reduces the rotation speed of the engine in response to a pressure increase in the pressure receiving chamber 61, and the supply flow. When the pressure on the primary side connected to the passage 3 (the receiver tank 32 constituting the supply flow path 3 in the illustrated example) becomes equal to or higher than a predetermined operation start pressure, the valve is opened to release the compressed gas in the supply flow path 3. A pressure regulator 70 to be introduced on the secondary side is provided.
The first flow path 81 that communicates the secondary side of the pressure regulator 70 with the pressure receiving chamber 61 of the speed regulator 60 and the pressure receiving chamber 61 of the speed regulator 60 are connected to the closed pressure receiving chamber of the intake control valve 50. A second flow path 82 communicating with the throttle 91 via a throttle 91 is provided in 51, and the pressure receiving chamber 61 of the speed regulator 60 and the valve closing pressure receiving chamber 51 of the intake control valve 50 are provided on the secondary side of the pressure regulator 70. It is characterized in that it communicates in series (claim 1; see FIG. 1).

上記構成の容量制御装置5には,更に,前記圧力レギュレータ70をバイパスして一端84aが前記供給流路3(図示の例では,供給流路3を構成するレシーバタンク32)に連通されると共に,他端84bが前記スピードレギュレータ60の前記受圧室61と前記吸気制御弁50の前記閉弁受圧室51に連通された流路(82,85,86)を介して前記スピードレギュレータ60の前記受圧室61と,前記吸気制御弁50の前記閉弁受圧室51にそれぞれ並列に連通されるバイパス流路84と,該バイパス流路84を開閉する開閉弁41から成る始動負荷軽減機構4を設けることができる(請求項2;図5及び図6参照)。 In the capacitance control device 5 having the above configuration, one end 84a is further communicated to the supply flow path 3 (in the illustrated example, the receiver tank 32 constituting the supply flow path 3) by bypassing the pressure regulator 70. The other end 84b of the speed regulator 60 receives pressure from the speed regulator 60 via a flow path (82, 85, 86) communicated with the pressure receiving chamber 61 of the speed regulator 60 and the closed valve pressure receiving chamber 51 of the intake control valve 50. A starting load reducing mechanism 4 including a bypass flow path 84 that is communicated in parallel with the chamber 61 and the valve closing pressure receiving chamber 51 of the intake control valve 50, and an on-off valve 41 that opens and closes the bypass flow path 84 is provided. (Claim 2; see FIGS. 5 and 6).

上記構成の始動負荷軽減機構4は,前記バイパス流路84の前記他端84bを,前記絞り91の二次側において前記第2流路82に連通して,前記第2流路82を介して前記バイパス流路84の前記他端84bを,前記スピードレギュレータ60の前記受圧室61と,前記吸気制御弁50の前記閉弁受圧室51にそれぞれ並列に連通するものとしても良い(請求項3;図5参照)。 The starting load reducing mechanism 4 having the above configuration communicates the other end 84b of the bypass flow path 84 with the second flow path 82 on the secondary side of the throttle 91, and passes through the second flow path 82. The other end 84b of the bypass flow path 84 may be communicated in parallel with the pressure receiving chamber 61 of the speed regulator 60 and the closed valve pressure receiving chamber 51 of the intake control valve 50, respectively (claim 3; (See FIG. 5).

また,本発明の容量制御装置5には,前記スピードレギュレータ60の前記受圧室61と前記吸気制御弁50の前記閉弁受圧室51を連通する前記第2流路82より前記絞り91の二次側において分岐した分岐流路83を設け,該分岐流路83に絞り92を設けると共に該分岐流路83を大気開放するものとしても良い(請求項4;図1,4〜6参照)。 Further, in the capacitance control device 5 of the present invention, the secondary of the throttle 91 is connected to the second flow path 82 that communicates the pressure receiving chamber 61 of the speed regulator 60 and the closed valve pressure receiving chamber 51 of the intake control valve 50. A branch flow path 83 branched on the side may be provided, a throttle 92 may be provided in the branch flow path 83, and the branch flow path 83 may be opened to the atmosphere (see claim 4; FIGS. 1, 4 to 6).

このように,スピードレギュレータ60の受圧室61と吸気制御弁50の閉弁受圧室51を連通する第2流路82より前記絞り91の二次側において分岐した分岐流路83を設け,該分岐流路83に絞り92を設けると共に該分岐流路83を大気開放した構成では,前記バイパス流路84の前記他端84bより例えばマニホールド95を介して分岐した2つの流路85,86を設け,分岐した一方の流路85を介して前記バイパス流路84の前記他端84bを前記スピードレギュレータ60の前記受圧室61に連通すると共に,分岐した他方の流路86を介して前記バイパス流路84の前記他端84bを前記吸気制御弁50の前記閉弁受圧室51に連通し,
前記一方の流路85に,前記スピードレギュレータ60の前記受圧室61に向かう圧縮気体の流れを許容する逆止弁97を設けると共に,前記他方の流路86に,前記吸気制御弁50の前記閉弁受圧室51に向かう圧縮気体の流れを許容する逆止弁98を設けるものとしても良い(請求項5;図6参照)。
In this way, a branch flow path 83 branched from the second flow path 82 communicating the pressure receiving chamber 61 of the speed regulator 60 and the closed valve pressure receiving chamber 51 of the intake control valve 50 on the secondary side of the throttle 91 is provided, and the branch is provided. In the configuration in which the flow path 83 is provided with the throttle 92 and the branch flow path 83 is open to the atmosphere, two flow paths 85 and 86 branched from the other end 84b of the bypass flow path 84 via, for example, a manifold 95 are provided. The other end 84b of the bypass flow path 84 is communicated with the pressure receiving chamber 61 of the speed regulator 60 via one of the branched flow paths 85, and the bypass flow path 84 is communicated through the other branched flow path 86. The other end 84b of the above is communicated with the closed valve pressure receiving chamber 51 of the intake control valve 50.
A check valve 97 that allows the flow of compressed gas toward the pressure receiving chamber 61 of the speed regulator 60 is provided in one of the flow paths 85, and the intake control valve 50 is closed in the other flow path 86. A check valve 98 that allows the flow of compressed gas toward the valve pressure receiving chamber 51 may be provided (claim 5; see FIG. 6).

以上で説明した本発明の構成により,本発明のエンジン駆動圧縮機1の容量制御装置5では,以下の顕著な効果を得ることができた。 With the configuration of the present invention described above, the capacity control device 5 of the engine drive compressor 1 of the present invention was able to obtain the following remarkable effects.

本発明の容量制御装置5では,前述した第1流路81と,絞り91を備えた第2流路82によって,圧力レギュレータ70の二次側に,スピードレギュレータ60の受圧室61と吸気制御弁50の閉弁受圧室51を直列に連通した構成を採用したことで,通常運転時に供給流路3(レシーバタンク32)内の圧力が上昇して圧力レギュレータ70が開くと,圧力レギュレータ70を通過した圧縮気体は,先ず,スピードレギュレータ60の受圧室61内に導入されて,スピードレギュレータ60の受圧室61内の圧力を上昇させた後,吸気制御弁50の閉弁受圧室51内に導入されて吸気制御弁50の閉弁受圧室51内の圧力を上昇させる。 In the capacitance control device 5 of the present invention, the pressure receiving chamber 61 of the speed regulator 60 and the intake control valve are placed on the secondary side of the pressure regulator 70 by the above-mentioned first flow path 81 and the second flow path 82 provided with the throttle 91. By adopting a configuration in which the valve closing pressure receiving chambers 51 of 50 are communicated in series, when the pressure in the supply flow path 3 (receiver tank 32) rises during normal operation and the pressure regulator 70 opens, the pressure regulator 70 passes through. The compressed gas is first introduced into the pressure receiving chamber 61 of the speed regulator 60 to increase the pressure in the pressure receiving chamber 61 of the speed regulator 60, and then introduced into the closed pressure receiving chamber 51 of the intake control valve 50. The pressure in the closed valve pressure receiving chamber 51 of the intake control valve 50 is increased.

その結果,全負荷運転から無負荷運転へ移行する際,先ず,スピードレギュレータ60によるエンジンの回転速度の低下が行われ,その後に吸気制御弁50が圧縮機本体2の吸気口21を閉じることで,エンジン駆動圧縮機1の燃費を向上させることができた。 As a result, when shifting from full-load operation to no-load operation, the speed regulator 60 first reduces the engine rotation speed, and then the intake control valve 50 closes the intake port 21 of the compressor body 2. , The fuel efficiency of the engine drive compressor 1 could be improved.

前記圧力レギュレータ70をバイパスして一端84aが供給流路3(実施形態においてレシーバタンク32)に連通されると共に,他端84bが前記スピードレギュレータ60の前記受圧室61と前記吸気制御弁50の前記閉弁受圧室51に連通された流路(82,85,86)を介して前記スピードレギュレータ60の受圧室61と,前記吸気制御弁50の閉弁受圧室51にそれぞれ並列に連通されるバイパス流路84と,該バイパス流路84を開閉する開閉弁41から成る始動負荷軽減機構4を備えた容量制御装置5では,エンジン駆動圧縮機1の始動時には開閉弁41を操作してバイパス流路84を開いておくことで,スピードレギュレータ60の受圧室61と吸気制御弁50の閉弁受圧室51に対し同時に圧縮気体を導入することができ,通常運転時に全負荷運転から無負荷運転に移行する際には吸気制御弁50の閉弁動作に先立ってエンジンの速度低下を行うことができる構成でありながら,始動時には,エンジンの速度低下と同時,又はエンジンの速度低下に先立ち吸気制御弁50に閉弁動作を行わせるという,相反する動作を行わせることができ,これによりエンジン駆動圧縮機1の始動性についても向上させることができた。 Bypassing the pressure regulator 70, one end 84a is communicated with the supply flow path 3 (receiver tank 32 in the embodiment), and the other end 84b is the pressure receiving chamber 61 of the speed regulator 60 and the intake control valve 50. Bypasses that are communicated in parallel with the pressure receiving chamber 61 of the speed regulator 60 and the valve closing pressure receiving chamber 51 of the intake control valve 50 via the flow paths (82, 85, 86) communicated with the valve closing pressure receiving chamber 51. In the capacity control device 5 provided with the start load reducing mechanism 4 including the flow path 84 and the on-off valve 41 for opening and closing the bypass flow path 84, the on-off valve 41 is operated to operate the bypass flow path when the engine drive compressor 1 is started. By opening 84, compressed gas can be introduced into the pressure receiving chamber 61 of the speed regulator 60 and the closed valve pressure receiving chamber 51 of the intake control valve 50 at the same time, and the operation shifts from full load operation to no load operation during normal operation. When the engine speed is reduced, the engine speed can be reduced prior to the closing operation of the intake control valve 50. However, at the time of starting, the intake control valve 50 can be started at the same time as the engine speed is reduced or prior to the engine speed reduction. It was possible to perform the contradictory operations of causing the engine to perform the valve closing operation, and thereby the startability of the engine drive compressor 1 could be improved.

前記バイパス流路84の前記他端84bを,前記絞り91の二次側において前記第2流路82に連通して,前記バイパス流路84を前記スピードレギュレータ60の受圧室61と,前記吸気制御弁50の閉弁受圧室51にそれぞれ並列に連通した構成では,配管の共用によって回路構成を簡略化することができるだけでなく,始動時,スピードレギュレータ60の受圧室61には,絞り91を介して圧縮気体が導入されることとなることから,吸気制御弁50の閉弁受圧室51の圧力上昇に対し,スピードレギュレータ60の受圧室61の圧力上昇を遅らせることができた。 The other end 84b of the bypass flow path 84 is communicated with the second flow path 82 on the secondary side of the throttle 91, and the bypass flow path 84 is connected to the pressure receiving chamber 61 of the speed regulator 60 and the intake control. In the configuration in which the valve 50 communicates with the closed valve pressure receiving chamber 51 in parallel, not only the circuit configuration can be simplified by sharing the piping, but also the pressure receiving chamber 61 of the speed regulator 60 is connected to the pressure receiving chamber 61 of the speed regulator 60 via the throttle 91 at the time of starting. Since the compressed gas is introduced, the pressure increase in the pressure receiving chamber 61 of the speed regulator 60 can be delayed with respect to the pressure increase in the closed pressure receiving chamber 51 of the intake control valve 50.

その結果,始動時,吸気制御弁50によって圧縮機本体2の吸気口21を閉じて負荷が軽減された後,エンジンを低速に移行させることとなり,エンジン駆動圧縮機1の始動性をより向上させることができた。 As a result, at the time of starting, the intake control valve 50 closes the intake port 21 of the compressor main body 2 to reduce the load, and then the engine is shifted to a low speed, which further improves the startability of the engine-driven compressor 1. I was able to.

前記スピードレギュレータ60の受圧室61と前記吸気制御弁50の閉弁受圧室51を連通する前記第2流路82を前記絞り91の二次側において分岐した分岐流路83を設け,該分岐流路83を,絞り92を介して大気開放した構成では,エンジン駆動圧縮機1の停止時,バイパス流路84に設けた開閉弁41を開くことで,前述の始動負荷軽減機構4に,エンジン駆動圧縮機1の停止時にレシーバタンク32内の圧縮気体を放気するパージ機構としての機能を持たせることができた。 A branch flow path 83 is provided in which the second flow path 82 communicating the pressure receiving chamber 61 of the speed regulator 60 and the closed valve pressure receiving chamber 51 of the intake control valve 50 is branched on the secondary side of the throttle 91, and the branch flow is provided. In the configuration in which the road 83 is opened to the atmosphere via the throttle 92, when the engine drive compressor 1 is stopped, the on-off valve 41 provided in the bypass flow path 84 is opened to drive the engine to the above-mentioned starting load reduction mechanism 4. It was possible to provide a function as a purge mechanism for releasing the compressed gas in the receiver tank 32 when the compressor 1 is stopped.

なお,レシーバタンク32内に充填されている圧縮気体を短時間で放出してレシーバタンク32内を急激に減圧すると,レシーバタンク32内の潤滑油が泡立つ,所謂「フォーミング」が生じるが,前述した分岐流路83を設けると共に,前記バイパス流路84の前記他端84bより分岐した2つの流路85,86を設けると共に,それぞれの流路85,86に逆止弁97,98を設け,分岐した一方の流路85を介して前記バイパス流路84の前記他端84bを前記スピードレギュレータ60の前記受圧室61に連通すると共に,分岐した他方の流路86を介して前記バイパス流路84の前記他端84bを前記吸気制御弁50の閉弁受圧室51に連通した構成では,始動負荷軽減機構4を使用して前述したパージを行うと,レシーバタンク32内の圧縮気体は,第2流路82に設けた絞り91と,分岐流路83に設けた絞り92を通過した後に,大気放出される構成となることで,レシーバタンク32内の圧縮気体がゆっくりと大気放出され,前述したフォーミングの発生を防止することができた。 When the compressed gas filled in the receiver tank 32 is released in a short time and the inside of the receiver tank 32 is rapidly depressurized, the lubricating oil in the receiver tank 32 foams, so-called "forming" occurs. A branch flow path 83 is provided, two flow paths 85 and 86 branched from the other end 84b of the bypass flow path 84 are provided, and check valves 97 and 98 are provided in the respective flow paths 85 and 86 to branch. The other end 84b of the bypass flow path 84 communicates with the pressure receiving chamber 61 of the speed regulator 60 through one of the flow paths 85, and the bypass flow path 84 passes through the other branched flow path 86. In the configuration in which the other end 84b is communicated with the valve closing pressure receiving chamber 51 of the intake control valve 50, when the above-mentioned purging is performed using the starting load reducing mechanism 4, the compressed gas in the receiver tank 32 becomes a second flow. After passing through the throttle 91 provided in the road 82 and the throttle 92 provided in the branch flow path 83, the compressed gas in the receiver tank 32 is slowly released to the atmosphere, and the forming described above is performed. Was able to be prevented.

本発明のエンジン駆動圧縮機の容量制御装置の説明図。Explanatory drawing of the capacity control device of the engine drive compressor of this invention. スピードレギュレータの断面図。Sectional view of the speed regulator. 吸気制御弁の断面図であり,(A)は閉弁受圧室51に対する圧縮気体の導入がされていない状態の吸気制御弁の断面図,(B)は閉弁受圧室51に対し圧縮気体が導入された状態の吸気制御弁の断面図。It is a cross-sectional view of an intake control valve, (A) is a cross-sectional view of an intake control valve in a state where the compressed gas is not introduced into the closed valve pressure receiving chamber 51, and (B) is a cross-sectional view of the compressed gas in the closed valve pressure receiving chamber 51. Sectional view of the intake control valve in the introduced state. 本発明のエンジン駆動圧縮機の容量制御装置(図1)に,特許文献1の始動負荷軽減機構(図7)を単純に適用した場合に得られる構成,及び該構成において新たに生じる問題点の説明図。A configuration obtained when the starting load reduction mechanism (FIG. 7) of Patent Document 1 is simply applied to the capacity control device (FIG. 1) of the engine drive compressor of the present invention, and problems newly occurring in the configuration. Explanatory drawing. 始動負荷軽減機構を備えた本発明のエンジン駆動圧縮機の容量制御装置の(A)は始動時,(B)は通常運転時,(C)は停止(パージ)時における圧縮気体の流れを示した説明図。(A) of the capacity control device of the engine drive compressor of the present invention provided with a starting load reduction mechanism shows the flow of compressed gas at the time of starting, (B) at the time of normal operation, and (C) at the time of stopping (purge). Explanatory drawing. 別の始動負荷軽減機構を備えた本発明のエンジン駆動圧縮機の容量制御装置の(A)は始動時,(B)は通常運転時,(C)は停止(パージ)時における圧縮気体の流れを示した説明図。The flow of compressed gas in the capacity control device of the engine drive compressor of the present invention provided with another starting load reducing mechanism (A) at the time of starting, (B) at the time of normal operation, and (C) at the time of stopping (purge). Explanatory drawing which showed. 始動負荷軽減機構を備えた従来のエンジン駆動圧縮機の容量制御装置の説明図。Explanatory drawing of the capacity control device of the conventional engine drive compressor equipped with a start load reduction mechanism.

以下に,添付図面を参照しながら本発明のエンジン駆動圧縮機の容量制御装置について説明する。 The capacity control device for the engine-driven compressor of the present invention will be described below with reference to the accompanying drawings.

〔エンジン駆動圧縮機の全体構成〕
図1中の符号1は本発明の容量制御装置5を備えたエンジン駆動型圧縮機であり,このエンジン駆動型圧縮機1は,圧縮機本体2,該圧縮機本体2を駆動するエンジン(図示せず),前記圧縮機本体2より吐出された圧縮気体を吐出配管31を介して導入するレシーバタンク32,前記レシーバタンク内の圧縮気体を図示せざる空気作業機等が接続された消費側に供給するサービス配管33を備え,圧縮機本体2が吐出した圧縮気体を,吐出配管31,レシーバタンク32,及びサービス配管33から成る供給流路3を介して消費側に導入することができるように構成されている。
[Overall configuration of engine-driven compressor]
Reference numeral 1 in FIG. 1 is an engine-driven compressor provided with the capacitance control device 5 of the present invention, and the engine-driven compressor 1 is an engine for driving the compressor main body 2 and the compressor main body 2 (FIG. 1). (Not shown), the receiver tank 32 that introduces the compressed gas discharged from the compressor body 2 via the discharge pipe 31, the air work machine that does not show the compressed gas in the receiver tank, etc. are connected to the consumption side. The service pipe 33 for supplying is provided so that the compressed gas discharged by the compressor main body 2 can be introduced to the consumption side via the supply flow path 3 including the discharge pipe 31, the receiver tank 32, and the service pipe 33. It is configured.

なお,図1に示した実施形態は,圧縮機本体2として圧縮作用空間の潤滑,冷却及び密封のために潤滑油と共に被圧縮気体を圧縮する油冷式の圧縮機本体2を採用した構成例を示したもので,そのため,圧縮機本体2の吐出側には,潤滑油との気液混合流体として吐出された圧縮気体から潤滑油を分離するために前述のレシーバタンク32を設けているが,圧縮機本体2として,潤滑,冷却,及び密封のために圧縮作用空間に潤滑油を噴射する必要のない,オイルフリー型の圧縮機本体を採用した場合,供給流路3にレシーバタンク32を設けない構成とすることもできる。 In the embodiment shown in FIG. 1, an oil-cooled compressor body 2 that compresses the compressed gas together with the lubricating oil for lubrication, cooling, and sealing of the compression working space is adopted as the compressor body 2. Therefore, the above-mentioned receiver tank 32 is provided on the discharge side of the compressor main body 2 in order to separate the lubricating oil from the compressed gas discharged as a gas-liquid mixed fluid with the lubricating oil. , When an oil-free compressor body that does not need to inject lubricating oil into the compression action space for lubrication, cooling, and sealing is adopted as the compressor body 2, the receiver tank 32 is installed in the supply flow path 3. It may be configured not to be provided.

前述したように圧縮機本体2として油冷式のスクリュ圧縮機を採用する本実施形態では,レシーバタンク32内には,レシーバタンク32内に回収された潤滑油を,図示せざるオイルクーラやオイルフィルタを介して圧縮機本体2に再度供給することができるように構成されている。 As described above, in the present embodiment in which the oil-cooled screw compressor is adopted as the compressor main body 2, the lubricating oil recovered in the receiver tank 32 is contained in the receiver tank 32, such as an oil cooler or oil (not shown). It is configured so that it can be supplied to the compressor main body 2 again via a filter.

〔容量制御装置〕
以上のように構成されたエンジン駆動圧縮機1に設けた本発明の容量制御装置5は,圧縮機本体2の吸気口21を開閉制御する受圧閉弁型の吸気制御弁50と,エンジン(図示せず)のガバナレバー(図示せず)に連結されたスピードレギュレータ60と,圧縮機本体が吐出した圧縮気体を消費側に供給する供給流路3(図示の例では,供給流路3を構成するレシーバタンク32)に連通された圧力レギュレータ70を備えている。
[Capacity control device]
The capacity control device 5 of the present invention provided in the engine drive compressor 1 configured as described above includes a pressure-receiving closed valve type intake control valve 50 that controls the opening and closing of the intake port 21 of the compressor body 2 and an engine (FIG. A speed regulator 60 connected to a governor lever (not shown) (not shown) and a supply flow path 3 (in the illustrated example, the supply flow path 3) for supplying the compressed gas discharged by the compressor body to the consumption side are configured. A pressure regulator 70 communicated with the receiver tank 32) is provided.

この容量制御装置5は,供給流路3(図示の例ではレシーバタンク32)内の圧力が,圧力レギュレータ70の作動開始圧力以上に上昇すると,スピードレギュレータ60がエンジンの減速を開始すると共に,吸気制御弁50が圧縮機本体2の吸気口21を絞り,供給流路3(レシーバタンク32)内の圧力が無負荷運転開始圧力以上に上昇して圧力レギュレータ70が全開になると,スピードレギュレータ60がエンジンの回転速度を低速とし,かつ,吸気制御弁50が圧縮機本体2の吸気口21を閉塞して無負荷運転に移行する容量制御を行うものである点は,図7を参照して説明した従来の容量制御装置105と共通する。 In this capacity control device 5, when the pressure in the supply flow path 3 (receiver tank 32 in the illustrated example) rises above the operation start pressure of the pressure regulator 70, the speed regulator 60 starts decelerating the engine and takes in air. When the control valve 50 throttles the intake port 21 of the compressor main body 2, the pressure in the supply flow path 3 (receiver tank 32) rises above the no-load operation start pressure, and the pressure regulator 70 is fully opened, the speed regulator 60 is activated. It will be described with reference to FIG. 7 that the rotation speed of the engine is set to a low speed and the intake control valve 50 closes the intake port 21 of the compressor main body 2 to perform capacity control for shifting to no-load operation. It is common with the conventional capacity control device 105.

しかし,図7を参照して説明した容量制御装置105では,圧力レギュレータ170の二次側に連通した制御流路181を分岐して,スピードレギュレータ160の受圧室とアンローダレギュレータ152の受圧室に並列に連通する構成を採用していたのに対し,本発明の容量制御装置5では,供給流路3(レシーバタンク32)に連通した圧力レギュレータ70の二次側にスピードレギュレータ60の受圧室61を連通すると共に,スピードレギュレータ60の受圧室61を,絞り91を介して吸気制御弁50の閉弁受圧室51に連通することで,圧力レギュレータ70の二次側に前記スピードレギュレータ60の受圧室61と前記吸気制御弁50の閉弁受圧室51を直列に連通した構成とした点で相違する。 However, in the capacitance control device 105 described with reference to FIG. 7, the control flow path 181 communicating with the secondary side of the pressure regulator 170 is branched and parallel to the pressure receiving chamber of the speed regulator 160 and the pressure receiving chamber of the unloader regulator 152. In contrast to the capacity control device 5 of the present invention, the pressure receiving chamber 61 of the speed regulator 60 is provided on the secondary side of the pressure regulator 70 communicating with the supply flow path 3 (receiver tank 32). By communicating with the pressure receiving chamber 61 of the speed regulator 60 and communicating with the closed valve pressure receiving chamber 51 of the intake control valve 50 via the throttle 91, the pressure receiving chamber 61 of the speed regulator 60 is connected to the secondary side of the pressure regulator 70. The difference is that the closed valve pressure receiving chamber 51 of the intake control valve 50 is communicated in series.

前述の圧力レギュレータ70は,レシーバタンク32内の圧力によって開閉して,二次側に対する圧縮気体の導入の開始及び停止を行うもので,レシーバタンク32内の圧力が該圧力レギュレータ70の作動開始圧力未満では閉じた状態にあり,二次側に対する圧縮気体の導入を停止している一方,レシーバタンク32内の圧力が圧力レギュレータ70の作動開始圧力以上になると,内部に設けた流路が開き始め,レシーバタンク32内の圧縮気体が所定の無負荷運転開始圧力以上となると全開となり,このようにして二次側に対する圧縮気体の導入を制御する。 The pressure regulator 70 described above opens and closes according to the pressure in the receiver tank 32 to start and stop the introduction of compressed gas to the secondary side, and the pressure in the receiver tank 32 is the operation start pressure of the pressure regulator 70. If it is less than, it is in a closed state and the introduction of compressed gas to the secondary side is stopped, while when the pressure in the receiver tank 32 becomes equal to or higher than the operation start pressure of the pressure regulator 70, the flow path provided inside begins to open. When the compressed gas in the receiver tank 32 exceeds a predetermined no-load operation start pressure, the pressure is fully opened, and the introduction of the compressed gas to the secondary side is controlled in this way.

この圧力レギュレータ70の二次側に連通されるスピードレギュレータ60は,本実施形態では図2に示すようにダイヤフラム式のエアシリンダであり,スピードレギュレータ60の受圧室61を画成するダイヤフラム67に取り付けられたシャフト62の先端に図示せざるエンジンのガバナレバーが連結されており,受圧室61に対する圧縮気体の導入がされていないときには,リターンスプリングSによってシャフト62がシリンダ63内に後退した状態にあり,エンジンのガバナレバーを高速の位置に移動させると共に,受圧室61内に圧縮気体の導入が開始されると,受圧室61内の圧力の上昇に伴って,シャフト62がシリンダ63外に押し出され,エンジンのガバナレバーを低速位置に移動させる。 The speed regulator 60 that communicates with the secondary side of the pressure regulator 70 is a diaphragm type air cylinder as shown in FIG. 2 in the present embodiment, and is attached to the diaphragm 67 that defines the pressure receiving chamber 61 of the speed regulator 60. When the governor lever of the engine (not shown) is connected to the tip of the shaft 62 and the compressed gas is not introduced into the pressure receiving chamber 61, the shaft 62 is retracted into the cylinder 63 by the return spring S. When the governor lever of the engine is moved to a high-speed position and the introduction of compressed gas into the pressure receiving chamber 61 is started, the shaft 62 is pushed out of the cylinder 63 as the pressure in the pressure receiving chamber 61 rises, and the engine Move the governor lever to a low speed position.

このスピードレギュレータ60のシリンダ63には,図1及び図2に示すように前述した受圧室61と連通する複数の連通孔64〜66が形成されており,このうちの1つの連通孔64を圧力レギュレータ70の二次側に連通して圧力レギュレータ70の二次側とスピードレギュレータ60の受圧室61間を連通する第1流路81が形成されている。 As shown in FIGS. 1 and 2, a plurality of communication holes 64 to 66 communicating with the pressure receiving chamber 61 described above are formed in the cylinder 63 of the speed regulator 60, and one of the communication holes 64 is pressed. A first flow path 81 is formed which communicates with the secondary side of the regulator 70 and communicates between the secondary side of the pressure regulator 70 and the pressure receiving chamber 61 of the speed regulator 60.

このスピードレギュレータ60のシリンダ63に設けた連通孔64〜66のうち,絞り(オリフィス)91が内蔵された連通孔65には,吸気制御弁50の閉弁受圧室51が連通孔59(59a)を介して連通されており,これにより,スピードレギュレータ60の受圧室61と,吸気制御弁50の閉弁受圧室51間を連通する,絞り91を備えた第2流路82が形成されている。 Of the communication holes 64 to 66 provided in the cylinder 63 of the speed regulator 60, in the communication hole 65 in which the throttle (orifice) 91 is built, the valve closing pressure receiving chamber 51 of the intake control valve 50 is provided in the communication hole 59 (59a). A second flow path 82 having a throttle 91 is formed so as to communicate between the pressure receiving chamber 61 of the speed regulator 60 and the closed valve pressure receiving chamber 51 of the intake control valve 50. ..

なお,図1に示す容量制御装置5の構成では,スピードレギュレータ60の連通孔66に対する接続は行われず,連通孔66は蓋をして閉じるか,連通孔66自体を設けない構成とする。 In the configuration of the capacitance control device 5 shown in FIG. 1, the speed regulator 60 is not connected to the communication hole 66, and the communication hole 66 is closed with a lid or the communication hole 66 itself is not provided.

また,図3に示した吸気制御弁50の構成では,閉弁受圧室51に連通する2つの連通孔59a(59),59bを設けた構成を示しているが,図1に示した容量制御装置5の構成では,連通孔59bに対する配管の接続は行わないことから,連通孔59bについても同様に蓋をして閉じるか,連通孔59b自体を設けない構成とする。 Further, the configuration of the intake control valve 50 shown in FIG. 3 shows a configuration in which two communication holes 59a (59) and 59b communicating with the closed valve pressure receiving chamber 51 are provided, but the capacity control shown in FIG. 1 is shown. In the configuration of the device 5, since the pipe is not connected to the communication hole 59b, the communication hole 59b is similarly closed with a lid, or the communication hole 59b itself is not provided.

スピードレギュレータ60の受圧室61を通過した圧縮気体が導入される吸気制御弁50は,圧縮機本体2に設けた吸気口21を開閉して,圧縮機本体2の吸気量を制御するもので,本実施形態にあってはこの吸気制御弁50を,開弁時において,一次側から二次側に対する気体の通過を許容するが,二次側から一次側への気体の逆流を阻止する逆止機能付きの常時開型の弁として構成している。 The intake control valve 50 into which the compressed gas that has passed through the pressure receiving chamber 61 of the speed regulator 60 is introduced opens and closes the intake port 21 provided in the compressor main body 2 to control the intake amount of the compressor main body 2. In the present embodiment, the intake control valve 50 allows the passage of gas from the primary side to the secondary side when the valve is opened, but is a check valve that prevents the backflow of gas from the secondary side to the primary side. It is configured as a normally open valve with a function.

前述した逆止機能を付与するために,本実施形態にあっては,図3に示すピストンバルブ式の吸気制御弁50を採用し,ボディ52内に形成された吸入流路53のうち,弁座54の一次側を,エアフィルタ(図示せず)を介して大気開放すると共に,弁座54の二次側を圧縮機本体2の吸気口21に連通している。 In order to impart the above-mentioned check function, in the present embodiment, the piston valve type intake control valve 50 shown in FIG. 3 is adopted, and among the intake flow paths 53 formed in the body 52, the valve The primary side of the seat 54 is opened to the atmosphere through an air filter (not shown), and the secondary side of the valve seat 54 is communicated with the intake port 21 of the compressor main body 2.

この吸気制御弁50の弁体55は,弁軸55aと,弁軸55aの一端に取り付けられた円板状のフランジ55bを備えたキノコ形を有し,この弁体55のフランジ55b周縁部を吸入流路53中に設けた弁座54に着座させることで,吸入流路53を閉じることができるように構成されている。 The valve body 55 of the intake control valve 50 has a mushroom shape provided with a valve shaft 55a and a disk-shaped flange 55b attached to one end of the valve shaft 55a, and the peripheral portion of the flange 55b of the valve body 55 is formed. The suction flow path 53 can be closed by being seated on the valve seat 54 provided in the suction flow path 53.

前述のボディ52内にはシリンダ56が設けられており,このシリンダ56内に有底中空のピストン57がリターンスプリングS1と共に収容されており,このピストン57の中空空間内に,前述の弁体55の弁軸55aがリターンスプリングS2と共に挿入されている。 A cylinder 56 is provided in the body 52, and a bottomed hollow piston 57 is housed in the cylinder 56 together with a return spring S1. In the hollow space of the piston 57, the valve body 55 is described. Valve shaft 55a is inserted together with the return spring S2.

前述のピストン57の底部下方には,閉弁受圧室51が形成されており,閉弁受圧室51に対する圧縮気体の導入がされていないときには,図3(A)に示すようにピストン57がリターンスプリングS1によってシリンダ56内の下端位置に付勢されていると共に,弁体55の弁軸55aが,ピストン57の中空空間内に収容されたリターンスプリングS2によって押し上げられて,フランジ55bが弁座54に緩やかに接触しており,吸入流路53内を弁座54の二次側から一次側に向かう流体の移動は規制されるが,圧縮機本体20の吸気によって弁座54の二次側における吸入流路53内の圧力が負圧になると,弁体55のフランジ55bが弁座54から離れて吸気を通過させることができるように構成されている。 A valve closing pressure receiving chamber 51 is formed below the bottom of the piston 57, and when the compressed gas is not introduced into the valve closing pressure receiving chamber 51, the piston 57 returns as shown in FIG. 3 (A). The valve shaft 55a of the valve body 55 is pushed up by the return spring S2 housed in the hollow space of the piston 57 while being urged to the lower end position in the cylinder 56 by the spring S1, and the flange 55b is pushed up by the valve seat 54. The movement of the fluid from the secondary side to the primary side of the valve seat 54 in the suction flow path 53 is restricted, but the intake of the compressor body 20 regulates the movement of the fluid on the secondary side of the valve seat 54. When the pressure in the suction flow path 53 becomes negative, the flange 55b of the valve body 55 is configured to be separated from the valve seat 54 to allow the intake air to pass therethrough.

一方,閉弁受圧室51に対し圧縮気体が導入されると,シリンダ56内をピストン57が上昇し,ピストン57の上端が弁体55のフランジ55b裏面を押し上げて,図3(B)に示すように弁体55のフランジ55bが弁座54に圧接されて吸入流路53を塞ぐことで,圧縮機本体2の吸入口21を閉塞することができるように構成されている。 On the other hand, when the compressed gas is introduced into the valve closing pressure receiving chamber 51, the piston 57 rises in the cylinder 56, and the upper end of the piston 57 pushes up the back surface of the flange 55b of the valve body 55, as shown in FIG. 3 (B). As described above, the flange 55b of the valve body 55 is pressed against the valve seat 54 to close the suction flow path 53, so that the suction port 21 of the compressor main body 2 can be closed.

なお,本実施形態では,吸気制御弁50を前述した逆止機能付きの構造として説明したが,本発明の容量制御装置5に使用する吸気制御弁50は,このような逆止機能付きのものに限定されず,図7を参照して説明した従来の容量制御装置の吸気制御弁150同様,バタフライバルブ151とアンローダレギュレータ152の組み合わせから成る吸気制御弁150等,既知の各種構成の吸気制御弁を採用可能であり,図7に示す構成では,アンローダレギュレータ152の受圧室が,前述した吸気制御弁の閉弁受圧室51となる。 In the present embodiment, the intake control valve 50 has been described as having the above-mentioned structure with a check function, but the intake control valve 50 used in the capacitance control device 5 of the present invention has such a check function. Similar to the intake control valve 150 of the conventional capacitance control device described with reference to FIG. 7, the intake control valve of various known configurations such as the intake control valve 150 composed of a combination of the butterfly valve 151 and the unloader regulator 152 is not limited to the above. In the configuration shown in FIG. 7, the pressure receiving chamber of the unloader regulator 152 becomes the closed valve pressure receiving chamber 51 of the intake control valve described above.

スピードレギュレータ60の受圧室61と吸気制御弁50の閉弁受圧室51間を連通する第2流路82は,前述の絞り91の二次側においてこれを分岐して分岐流路83を設け,この分岐流路83に絞り92を設けると共に,これを大気開放するものとしても良い。 The second flow path 82 that communicates between the pressure receiving chamber 61 of the speed regulator 60 and the closed valve pressure receiving chamber 51 of the intake control valve 50 is branched on the secondary side of the throttle 91 to provide a branch flow path 83. A throttle 92 may be provided in the branch flow path 83 and may be opened to the atmosphere.

図示の実施形態では,この分岐流路83を,絞り92が内蔵された連通孔59’を介して吸気制御弁50の弁座54の一次側における吸入流路53に連通することで,該分岐流路83を介して放気される圧縮気体を,吸気制御弁50の一次側に設けたエアフィルタ(図示せず)を介して大気放出することで,放気音の低減を図っている。 In the illustrated embodiment, the branch flow path 83 is communicated with the suction flow path 53 on the primary side of the valve seat 54 of the intake control valve 50 via the communication hole 59'in which the throttle 92 is built. The compressed gas released through the flow path 83 is released to the atmosphere through an air filter (not shown) provided on the primary side of the intake control valve 50 to reduce the air release noise.

このように,第2流路82より分岐した分岐流路83を大気開放した構成では,レシーバタンク32内の圧力が圧力レギュレータ70の作動開始圧力未満に低下して圧力レギュレータ70が閉じると,スピードレギュレータ60の受圧室61に導入されていた圧縮気体が大気放出され,スピードレギュレータ60を,エンジンのガバナレバーを高速位置とする原位置に復帰させることができる。 In this way, in the configuration in which the branch flow path 83 branched from the second flow path 82 is open to the atmosphere, when the pressure in the receiver tank 32 drops below the operation start pressure of the pressure regulator 70 and the pressure regulator 70 closes, the speed is increased. The compressed gas introduced into the pressure receiving chamber 61 of the regulator 60 is released to the atmosphere, and the speed regulator 60 can be returned to the original position where the governor lever of the engine is in the high speed position.

一方,吸気制御弁50の閉弁受圧室51には絞り93を内蔵した放気口58を設け,この放気口58を介して閉弁受圧室51内の圧縮気体を絞りながら放気することで,吸気制御弁50の閉弁受圧室51内に導入された圧縮気体を放気できるようにし,レシーバタンク32からの圧縮気体の導入が停止すると,閉弁受圧室51内の圧力が低下して,吸気制御弁50が開位置に復帰できるようにしている。 On the other hand, the valve closing pressure receiving chamber 51 of the intake control valve 50 is provided with an air outlet 58 having a built-in throttle 93, and the compressed gas in the valve closing pressure receiving chamber 51 is throttled and released through the air vent 58. Then, the compressed gas introduced into the valve closing pressure receiving chamber 51 of the intake control valve 50 can be released, and when the introduction of the compressed gas from the receiver tank 32 is stopped, the pressure in the valve closing pressure receiving chamber 51 decreases. Therefore, the intake control valve 50 can be returned to the open position.

この構成では,前述の分岐流路83との分岐点の二次側における第2流路82中に逆止弁96を設けるものとしても良い。 In this configuration, the check valve 96 may be provided in the second flow path 82 on the secondary side of the branch point with the branch flow path 83 described above.

以上のように構成された本発明の容量制御装置5を備えたエンジン駆動圧縮機1では,レシーバタンク32内の圧力が上昇して,圧力レギュレータ70が開くと,圧力レギュレータ70を通過したレシーバタンク32内の圧縮気体が,第1流路81を介してスピードレギュレータ60の受圧室61に導入される。 In the engine drive compressor 1 provided with the capacity control device 5 of the present invention configured as described above, when the pressure in the receiver tank 32 rises and the pressure regulator 70 opens, the receiver tank passes through the pressure regulator 70. The compressed gas in 32 is introduced into the pressure receiving chamber 61 of the speed regulator 60 via the first flow path 81.

スピードレギュレータ60の受圧室61に導入された圧縮気体は,第2流路82を介して吸気制御弁50の閉弁受圧室51内にも導入されるが,第2流路82には絞り91が設けられていることから,吸気制御弁50の閉弁受圧室51内の圧力上昇に先行して,スピードレギュレータ60の受圧室61内の圧力が上昇する。 The compressed gas introduced into the pressure receiving chamber 61 of the speed regulator 60 is also introduced into the closed pressure receiving chamber 51 of the intake control valve 50 via the second flow path 82, but the throttle 91 is introduced into the second flow path 82. The pressure in the pressure receiving chamber 61 of the speed regulator 60 rises prior to the pressure rise in the closed valve pressure receiving chamber 51 of the intake control valve 50.

その結果,本発明の容量制御装置5では,レシーバタンク32内の圧力上昇によって無負荷運転に移行する際,吸気制御弁50による圧縮機本体2の吸気口21の閉塞に先立って,エンジンの回転速度が低速に移行されることから,エンジン駆動圧縮機1の燃費を向上させることができるものとなっている。 As a result, in the capacity control device 5 of the present invention, when shifting to the no-load operation due to the pressure increase in the receiver tank 32, the engine rotates prior to the blockage of the intake port 21 of the compressor main body 2 by the intake control valve 50. Since the speed is shifted to a low speed, the fuel efficiency of the engine-driven compressor 1 can be improved.

〔始動負荷例軽減機構〕
図4は,図1を参照して説明した本発明の容量制御装置5の構成に,図7を参照して説明した従来の容量制御装置105に設けられている始動負荷軽減機構104をそのまま転用した場合に想定される構成である。
[Starting load example reduction mechanism]
FIG. 4 shows that the starting load reducing mechanism 104 provided in the conventional capacitance control device 105 described with reference to FIG. 7 is used as it is for the configuration of the capacitance control device 5 of the present invention described with reference to FIG. This is the configuration that is expected when

この構成では,エンジン駆動圧縮機1の始動時に開閉弁141を操作してバイパス流路184を開くと,レシーバタンク32内の圧縮気体が圧力レギュレータ70をバイパスしてスピードレギュレータ60と吸気制御弁50に導入されることで,エンジン駆動圧縮機1の始動を,無負荷運転の状態で行うことができる。 In this configuration, when the on-off valve 141 is operated to open the bypass flow path 184 when the engine drive compressor 1 is started, the compressed gas in the receiver tank 32 bypasses the pressure regulator 70 and the speed regulator 60 and the intake control valve 50. By introducing the engine drive compressor 1, the engine drive compressor 1 can be started in a state of no-load operation.

しかし,本発明の容量制御装置5の構成では,前述したように通常運転時における無負荷運転への移行の際,スピードレギュレータ60の動作に遅れて吸気制御弁50が動作するように,圧力レギュレータ70の二次側に,スピードレギュレータ60の受圧室61を連通すると共に,このスピードレギュレータ60の受圧室61に,絞り91を介して吸気制御弁50の閉弁受圧室51を直列に連通していることから,図4に示した始動負荷軽減機構104の構成では,始動時においてもエンジンが先に低速運転に移行し,その後,吸気制御弁50が圧縮機本体2の吸気口21を閉じることとなるため,始動直後の不安定な運転状態にあるエンジンは,吸気口21の閉塞による負荷の低減が行われる前に,回転速度を低下することとなるため,エンジンがストールし易いという新たな問題が生じる。 However, in the configuration of the capacitance control device 5 of the present invention, as described above, the pressure regulator operates the intake control valve 50 later than the operation of the speed regulator 60 when shifting to the no-load operation during the normal operation. The pressure receiving chamber 61 of the speed regulator 60 is communicated with the secondary side of the 70, and the closed pressure receiving chamber 51 of the intake control valve 50 is communicated in series with the pressure receiving chamber 61 of the speed regulator 60 via the throttle 91. Therefore, in the configuration of the starting load reducing mechanism 104 shown in FIG. 4, the engine first shifts to low-speed operation even at the time of starting, and then the intake control valve 50 closes the intake port 21 of the compressor main body 2. Therefore, an engine in an unstable operating state immediately after starting will reduce the rotation speed before the load is reduced due to the blockage of the intake port 21, so that the engine is likely to stall. Problems arise.

そこで,本願の容量制御装置5では,通常運転時に無負荷運転へ移行する際には,先ず,エンジンの回転速度を低下させ,これに遅れて吸気制御弁50による圧縮機本体2の吸気口21を閉塞して無負荷運転を行うようにして燃費の向上を図る一方,始動時には,エンジンの回転速度の低下と圧縮機本体2の吸気口21の閉塞を同時に,又は,圧縮機本体2の吸気口21を閉塞して負荷を低減した後に,エンジンの回転速度を低下させることができる始動負荷軽減機構4を設けることで,エンジン駆動圧縮機の始動性を向上させている。 Therefore, in the capacity control device 5 of the present application, when shifting to the no-load operation during the normal operation, the rotation speed of the engine is first reduced, and the intake port 21 of the compressor main body 2 by the intake control valve 50 is delayed. At the time of starting, the engine speed is reduced and the intake port 21 of the compressor main body 2 is closed at the same time, or the intake air of the compressor main body 2 is taken in, while the engine is closed to perform no-load operation. The startability of the engine-driven compressor is improved by providing a starting load reducing mechanism 4 capable of reducing the rotation speed of the engine after closing the mouth 21 to reduce the load.

このような始動負荷軽減機構4の構成として,本発明のエンジン駆動圧縮機1の容量制御装置5は,図5及び図6に示すように,圧力レギュレータ70をバイパスして一端84aをレシーバタンク32に連通するバイパス流路84と,該バイパス流路84を開閉する開閉弁41を設けると共に,このバイパス流路84の他端84bを,スピードレギュレータ60の受圧室61と,吸気制御弁60の閉弁受圧室61に,それぞれ並列に連通させて,始動負荷軽減機構4を形成している。 As a configuration of such a starting load reducing mechanism 4, the capacity control device 5 of the engine drive compressor 1 of the present invention bypasses the pressure regulator 70 and has one end 84a of the receiver tank 32 as shown in FIGS. 5 and 6. A bypass flow path 84 communicating with the bypass flow path 84 and an on-off valve 41 for opening and closing the bypass flow path 84 are provided, and the other end 84b of the bypass flow path 84 is closed with the pressure receiving chamber 61 of the speed regulator 60 and the intake control valve 60. The valve pressure receiving chamber 61 is communicated in parallel to form the starting load reducing mechanism 4.

図5に示す実施形態では,バイパス流路84の他端84bを,絞り91の二次側において前述の第2流路82に連通して,スピードレギュレータ60の受圧室61と吸気制御弁50の閉弁受圧室51の双方に対し並列にバイパス流路84の他端84bを連通する構成としている。 In the embodiment shown in FIG. 5, the other end 84b of the bypass flow path 84 is communicated with the above-mentioned second flow path 82 on the secondary side of the throttle 91 to form a pressure receiving chamber 61 of the speed regulator 60 and an intake control valve 50. The other end 84b of the bypass flow path 84 is communicated in parallel with both of the valve closing pressure receiving chambers 51.

このように構成することで,図5に示した回路構成では,開閉弁41を操作してバイパス流路84を開いた状態でエンジン駆動圧縮機1を始動すると,図5(A)に示すように,レシーバタンク32内の圧縮気体を,圧力レギュレータ70をバイパスしてスピードレギュレータ60の受圧室61と吸気制御弁50の閉弁受圧室51に対し,同時に導入することができる。 With this configuration, in the circuit configuration shown in FIG. 5, when the engine drive compressor 1 is started with the bypass flow path 84 opened by operating the on-off valve 41, as shown in FIG. 5 (A). In addition, the compressed gas in the receiver tank 32 can be introduced into the pressure receiving chamber 61 of the speed regulator 60 and the closed valve pressure receiving chamber 51 of the intake control valve 50 at the same time by bypassing the pressure regulator 70.

図5に示す構成では,バイパス流路84を介したスピードレギュレータ60の受圧室61に対する圧縮気体の導入は,第2流路82に設けた絞り91を介して行われることから,このような絞りを介することなく圧縮気体の導入が行われる吸気制御弁50の閉弁受圧室51に対し,圧力上昇に遅れが生じる。 In the configuration shown in FIG. 5, the compressed gas is introduced into the pressure receiving chamber 61 of the speed regulator 60 via the bypass flow path 84 through the throttle 91 provided in the second flow path 82, and thus such a throttle. There is a delay in the pressure rise with respect to the valve closing pressure receiving chamber 51 of the intake control valve 50 in which the compressed gas is introduced without passing through the valve.

その結果,始動時,スピードレギュレータ60よりも先に,吸気制御弁50が作動し,吸気制御弁50が圧縮機本体2の吸気口21を閉じてエンジンの負荷を軽減した後に,スピードレギュレータ60がエンジンの回転速度を低下させる制御が行われることで,エンジン駆動圧縮機1の始動性を向上させることができるものとなっている。 As a result, at the time of starting, the intake control valve 50 operates before the speed regulator 60, and after the intake control valve 50 closes the intake port 21 of the compressor main body 2 to reduce the load on the engine, the speed regulator 60 operates. By controlling the rotation speed of the engine to be reduced, the startability of the engine-driven compressor 1 can be improved.

このようにして,エンジン駆動圧縮機1を始動し,所定時間の暖機運転を行った後,開閉弁41を操作してバイパス流路84を閉じることで,圧力レギュレータ70による容量制御を行う通常運転に移行する。 In this way, the engine drive compressor 1 is started, the warm-up operation is performed for a predetermined time, and then the on-off valve 41 is operated to close the bypass flow path 84, so that the capacity is controlled by the pressure regulator 70. Move to operation.

なお,図示の例では,バイパス流路84を開閉する開閉弁41を,電磁弁により構成する例を示したが,この開閉弁41は,電磁弁に限定されず手動で開閉する開閉弁により構成するものとしても良い。 In the illustrated example, the on-off valve 41 that opens and closes the bypass flow path 84 is configured by a solenoid valve, but the on-off valve 41 is not limited to the solenoid valve and is configured by an on-off valve that opens and closes manually. It may be something to do.

また,第2流路を分岐して設けた分岐流路83を大気開放した図示の容量制御装置5の構成では,図5(C)に示すようにバイパス流路84に設けた開閉弁41は,始動時のみならず,これをエンジン駆動圧縮機1の停止時にも開放して,始動負荷軽減機構4を,エンジン駆動圧縮機1の停止時にレシーバタンク32内の圧縮気体を放気する,パージ機構として使用するものとしても良い。 Further, in the configuration of the illustrated capacity control device 5 in which the branch flow path 83 provided by branching the second flow path is open to the atmosphere, the on-off valve 41 provided in the bypass flow path 84 is as shown in FIG. 5 (C). , This is opened not only at the time of starting but also when the engine drive compressor 1 is stopped, and the starting load reducing mechanism 4 is released from the compressed gas in the receiver tank 32 when the engine drive compressor 1 is stopped. It may be used as a mechanism.

以上,図5を参照して説明した容量制御装置5では,バイパス流路84の他端84bを絞り91の二次側で第2流路82に連通した構成例について説明したが,この構成に代えて,図6では,バイパス流路84の他端84bを,マニホールド95を介して二方向に分岐し,分岐した一方の流路85をスピードレギュレータ60の受圧室61に逆止弁97を介して連通すると共に,分岐した他方の流路86を吸気制御弁50の閉弁受圧室51に逆止弁98を介して連通している。 In the capacitance control device 5 described with reference to FIG. 5, a configuration example in which the other end 84b of the bypass flow path 84 is communicated with the second flow path 82 on the secondary side of the throttle 91 has been described. Instead, in FIG. 6, the other end 84b of the bypass flow path 84 is branched in two directions via the manifold 95, and one of the branched flow paths 85 is connected to the pressure receiving chamber 61 of the speed regulator 60 via a check valve 97. The other branched flow path 86 is communicated with the closed valve pressure receiving chamber 51 of the intake control valve 50 via the check valve 98.

なお,図6に示す実施形態では,第2流路82を接続した連通孔59aとは別に,他方の流路86を吸気制御弁50の閉弁受圧室51に連通する連通孔59bを設け,この連通孔59bに他方の流路86を連通するものとしているが,この構成に代えて,例えば前記他方の流路86を,逆止弁96の二次側において第2流路82に連通することで,吸気制御弁50の閉弁受圧室51に連通するものとしても良い。 In the embodiment shown in FIG. 6, in addition to the communication hole 59a to which the second flow path 82 is connected, a communication hole 59b for communicating the other flow path 86 with the closed valve pressure receiving chamber 51 of the intake control valve 50 is provided. The other flow path 86 is communicated with the communication hole 59b. Instead of this configuration, for example, the other flow path 86 is communicated with the second flow path 82 on the secondary side of the check valve 96. As a result, the intake control valve 50 may be communicated with the closed valve pressure receiving chamber 51.

図6に示した始動負荷軽減機構4の構成においても,開閉弁41の操作によってバイパス流路84を開いた状態でエンジン駆動圧縮機1を始動することで,圧力レギュレータ70をバイパスしてスピードレギュレータ60の受圧室61と吸気制御弁50の閉弁受圧室51に同時に圧縮気体の導入を開始することができる。 Also in the configuration of the starting load reducing mechanism 4 shown in FIG. 6, the pressure regulator 70 is bypassed and the speed regulator is started by starting the engine drive compressor 1 with the bypass flow path 84 opened by operating the on-off valve 41. The introduction of the compressed gas can be started at the same time in the pressure receiving chamber 61 of the 60 and the closed pressure receiving chamber 51 of the intake control valve 50.

その結果,エンジン駆動圧縮機1の始動時,吸気制御弁50によって圧縮機本体2の吸気口21を閉じるタイミングを,エンジンを低回転速度に移行するタイミングと同時とすることができ,また,例えばバイパス流路84を分岐して形成した一方の流路85に絞り(図示せず)を設ける等して,スピードレギュレータ60がエンジンを低速運転に移行するタイミングを,吸気制御弁50が圧縮機本体2の吸気口21を閉じた後に行わせるものとしても良い。 As a result, when the engine drive compressor 1 is started, the timing at which the intake control valve 50 closes the intake port 21 of the compressor main body 2 can be made simultaneous with the timing at which the engine shifts to a low rotation speed, for example. The intake control valve 50 determines the timing at which the speed regulator 60 shifts the engine to low-speed operation by providing a throttle (not shown) in one of the flow paths 85 formed by branching the bypass flow path 84. It may be performed after closing the intake port 21 of 2.

このように,図6を参照して説明した始動負荷軽減機構4を備えた容量制御装置5では,エンジン駆動圧縮機1の停止時に開閉弁41を開いてレシーバタンク32内の圧縮気体をパージすると,レシーバタンク32内の圧縮気体は,図6(C)中に矢印で示すように,第2流路82に設けた絞り91と分岐流路83に設けた絞り92の2つの絞り(前述したように,バイパス流路84の他端84bを分岐して形成した一方の流路85に図示せざる絞りを設けた場合には,3つの絞り)を介して放気されることとなるため,レシーバタンク32内の圧縮気体は,分岐流路83に設けた絞り92のみを介して放気される図5(C)を参照して説明した容量制御装置5の構成に比較して,ゆっくりと放気される。 As described above, in the capacity control device 5 provided with the starting load reducing mechanism 4 described with reference to FIG. 6, when the on-off valve 41 is opened when the engine drive compressor 1 is stopped, the compressed gas in the receiver tank 32 is purged. As shown by an arrow in FIG. 6C, the compressed gas in the receiver tank 32 has two throttles, a throttle 91 provided in the second flow path 82 and a throttle 92 provided in the branch flow path 83 (described above). As described above, when one of the flow paths 85 formed by branching the other end 84b of the bypass flow path 84 is provided with a throttle (not shown), the air is released through the three throttles). The compressed gas in the receiver tank 32 is released through only the throttle 92 provided in the branch flow path 83, which is slower than the configuration of the capacitance control device 5 described with reference to FIG. 5 (C). Be degassed.

ここで,レシーバタンク32の急激な減圧は,レシーバタンク32内に貯留されている潤滑油を泡立たせる,フォーミングの発生原因となるが,図6を参照して説明したエンジン駆動圧縮機1の容量制御装置5の構成では,前述したように図5を参照して説明した容量制御装置5の構成に比較して,レシーバタンク32内の減圧が緩やかに行われる結果,より一層,フォーミングが発生し難い構成となっている。 Here, the sudden depressurization of the receiver tank 32 causes foaming of the lubricating oil stored in the receiver tank 32, which causes forming. The capacity of the engine drive compressor 1 described with reference to FIG. 6 In the configuration of the control device 5, as compared with the configuration of the capacitance control device 5 described with reference to FIG. 5 as described above, the decompression in the receiver tank 32 is performed more slowly, and as a result, more forming occurs. It has a difficult structure.

1 エンジン駆動圧縮機
2 圧縮機本体
21 吸気口(圧縮機本体の)
3 供給流路
31 吐出配管
32 レシーバタンク
33 サービス配管
4 始動負荷軽減機構
41 開閉弁(電磁弁)
5 容量制御装置
50 吸気制御弁
51 閉弁受圧室
52 ボディ
53 吸入流路
54 弁座
55 弁体
55a 弁軸
55b フランジ
56 シリンダ
57 ピストン
58 放気口
59,59’,59a,59b 連通孔
60 スピードレギュレータ
61 受圧室
62 シャフト
63 シリンダ
64,65,66 連通孔
67 ダイヤフラム
70 圧力レギュレータ
81 第1流路
82 第2流路
83 分岐流路
84 バイパス流路
84a 一端(バイパス流路の)
84b 他端(バイパス流路の)
85 一方の流路
86 他方の流路
91〜93 絞り
95 マニホールド
96〜98 逆止弁
100 エンジン駆動圧縮機
104 始動負荷軽減機構
105 容量制御装置
120 圧縮機本体
121 吸気口
130 エンジン
132 レシーバタンク
135 ガバナレバー
141 開閉弁
150 吸気制御弁
151 バタフライバルブ
152 アンローダレギュレータ
160 スピードレギュレータ
170 圧力レギュレータ
181 制御流路
181a 一方の流路
181b 他方の流路
184 バイパス流路
S,S1,S2 リターンスプリング


1 Engine drive compressor 2 Compressor body 21 Intake port (of compressor body)
3 Supply flow path 31 Discharge piping 32 Receiver tank 33 Service piping 4 Starting load reduction mechanism 41 On / off valve (solenoid valve)
5 Capacity control device 50 Intake control valve 51 Closed valve pressure receiving chamber 52 Body 53 Intake flow path 54 Valve seat 55 Valve body 55a Valve shaft 55b Flange 56 Cylinder 57 Piston 58 Air outlet 59, 59', 59a, 59b Communication hole 60 Speed Regulator 61 Pressure receiving chamber 62 Shaft 63 Cylinder 64, 65, 66 Communication hole 67 Diaphragm 70 Pressure regulator 81 1st flow path 82 2nd flow path 83 Branch flow path 84 Bypass flow path 84a One end (of bypass flow path)
84b The other end (of the bypass flow path)
85 One flow path 86 The other flow path 91-93 Squeezing 95 Manifold 96-98 Check valve 100 Engine drive compressor 104 Starting load reduction mechanism 105 Capacity control device 120 Compressor body 121 Intake port 130 Engine 132 Receiver tank 135 Governor lever 141 On-off valve 150 Intake control valve 151 Butterfly valve 152 Unloader regulator 160 Speed regulator 170 Pressure regulator 181 Control flow path 181a One flow path 181b The other flow path 184 Bypass flow path S, S1, S2 Return spring


Claims (5)

エンジンと,該エンジンによって駆動される圧縮機本体を備え,前記圧縮機本体が吐出した圧縮気体を消費側に供給する供給流路を備えたエンジン駆動圧縮機において,
前記圧縮機本体の吸気口を開閉制御する受圧閉弁型の吸気制御弁と,受圧室内の圧力上昇に応じて前記エンジンの回転速度を低下させるスピードレギュレータと,前記供給流路に接続された一次側の圧力が所定の作動開始圧力以上になると開弁して前記供給流路内の圧縮気体を二次側に導入する圧力レギュレータを設け,
前記圧力レギュレータの前記二次側と前記スピードレギュレータの前記受圧室を連通する第1流路と,前記スピードレギュレータの前記受圧室を,前記吸気制御弁の閉弁受圧室に絞りを介して連通する第2流路を設けて,前記圧力レギュレータの二次側に前記スピードレギュレータの前記受圧室と前記吸気制御弁の前記閉弁受圧室を直列に連通したことを特徴とする,エンジン駆動圧縮機の容量制御装置。
In an engine-driven compressor having an engine and a compressor body driven by the engine, and having a supply flow path for supplying the compressed gas discharged by the compressor body to the consumption side.
A pressure-receiving valve-type intake control valve that controls the opening and closing of the intake port of the compressor body, a speed regulator that reduces the rotation speed of the engine in response to a rise in pressure in the pressure receiving chamber, and a primary connected to the supply flow path. A pressure regulator is provided to open the valve when the pressure on the side exceeds the predetermined operation start pressure and introduce the compressed gas in the supply flow path to the secondary side.
The first flow path that communicates the secondary side of the pressure regulator with the pressure receiving chamber of the speed regulator and the pressure receiving chamber of the speed regulator communicate with the closed pressure receiving chamber of the intake control valve via a throttle. An engine-driven compressor, characterized in that a second flow path is provided and the pressure receiving chamber of the speed regulator and the closed valve pressure receiving chamber of the intake control valve are communicated in series on the secondary side of the pressure regulator. Capacity control device.
前記圧力レギュレータをバイパスして一端が前記供給流路に連通されると共に,他端が前記スピードレギュレータの前記受圧室と前記吸気制御弁の前記閉弁受圧室に連通された流路を介して前記スピードレギュレータの前記受圧室と,前記吸気制御弁の前記閉弁受圧室にそれぞれ並列に連通されるバイパス流路と,該バイパス流路を開閉する開閉弁から成る始動負荷軽減機構を設けたことを特徴とする請求項1記載のエンジン駆動圧縮機の容量制御装置。 Bypassing the pressure regulator, one end communicates with the supply flow path, and the other end communicates with the pressure receiving chamber of the speed regulator and the closed valve pressure receiving chamber of the intake control valve. A starting load reducing mechanism including a bypass flow path that communicates in parallel with the pressure receiving chamber of the speed regulator, the closed valve pressure receiving chamber of the intake control valve, and an on-off valve that opens and closes the bypass flow path is provided. The capacity control device for an engine-driven compressor according to claim 1. 前記バイパス流路の前記他端を,前記絞りの二次側において前記第2流路に連通して,前記第2流路を介して前記バイパス流路の前記他端を,前記スピードレギュレータの前記受圧室と,前記吸気制御弁の前記閉弁受圧室にそれぞれ並列に連通したことを特徴とする請求項2記載のエンジン駆動圧縮機の容量制御装置。 The other end of the bypass flow path is communicated with the second flow path on the secondary side of the throttle, and the other end of the bypass flow path is connected to the speed regulator via the second flow path. The capacity control device for an engine-driven compressor according to claim 2, wherein the pressure receiving chamber and the closed valve pressure receiving chamber of the intake control valve are communicated in parallel with each other. 前記スピードレギュレータの前記受圧室と前記吸気制御弁の前記閉弁受圧室を連通する前記第2流路より前記絞りの二次側において分岐した分岐流路を設け,該分岐流路に絞りを設けると共に該分岐流路を大気開放したことを特徴とする請求項1〜3いずれか1項記載のエンジン駆動圧縮機の容量制御装置。 A branch flow path branched from the second flow path communicating the pressure receiving chamber of the speed regulator and the closed valve pressure receiving chamber of the intake control valve on the secondary side of the throttle is provided, and the throttle is provided in the branch flow path. The capacity control device for an engine drive compressor according to any one of claims 1 to 3, wherein the branch flow path is opened to the atmosphere. 前記スピードレギュレータの前記受圧室と前記吸気制御弁の前記閉弁受圧室を連通する前記第2流路より前記絞りの二次側において分岐した分岐流路を設け,該分岐流路に絞りを設けると共に該分岐流路を大気開放し,
前記バイパス流路の前記他端より分岐した2つの流路を設け,分岐した一方の流路を介して前記バイパス流路の前記他端を前記スピードレギュレータの前記受圧室に連通すると共に,分岐した他方の流路を介して前記バイパス流路の前記他端を前記吸気制御弁の前記閉弁受圧室に連通し,
前記一方の流路に,前記スピードレギュレータの前記受圧室に向かう圧縮気体の流れを許容する逆止弁を設けると共に,前記他方の流路に,前記吸気制御弁の前記閉弁受圧室に向かう圧縮気体の流れを許容する逆止弁を設けたことを特徴とする請求項2記載のエンジン駆動圧縮機の容量制御装置。
A branch flow path branched from the second flow path communicating the pressure receiving chamber of the speed regulator and the closed valve pressure receiving chamber of the intake control valve on the secondary side of the throttle is provided, and the throttle is provided in the branch flow path. At the same time, open the branch flow path to the atmosphere.
Two flow paths branched from the other end of the bypass flow path are provided, and the other end of the bypass flow path is communicated with and branched to the pressure receiving chamber of the speed regulator via one of the branched flow paths. The other end of the bypass flow path is communicated with the closed valve pressure receiving chamber of the intake control valve via the other flow path.
A check valve that allows the flow of compressed gas toward the pressure receiving chamber of the speed regulator is provided in one of the flow paths, and compression toward the closing pressure receiving chamber of the intake control valve is provided in the other flow path. The capacity control device for an engine-driven compressor according to claim 2, further comprising a check valve that allows the flow of gas.
JP2019082280A 2019-04-23 2019-04-23 Capacity control device for engine-driven compressor Active JP7284627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019082280A JP7284627B2 (en) 2019-04-23 2019-04-23 Capacity control device for engine-driven compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019082280A JP7284627B2 (en) 2019-04-23 2019-04-23 Capacity control device for engine-driven compressor

Publications (2)

Publication Number Publication Date
JP2020180557A true JP2020180557A (en) 2020-11-05
JP7284627B2 JP7284627B2 (en) 2023-05-31

Family

ID=73023813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019082280A Active JP7284627B2 (en) 2019-04-23 2019-04-23 Capacity control device for engine-driven compressor

Country Status (1)

Country Link
JP (1) JP7284627B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623755Y2 (en) * 1985-05-21 1994-06-22 北越工業株式会社 Compressor capacity control device
JP2552026Y2 (en) * 1988-07-06 1997-10-27 デンヨー株式会社 Control device for engine driven compressor
JP2002168177A (en) * 2000-12-04 2002-06-14 Hokuetsu Kogyo Co Ltd Capacity control method and device for engine driven compressor
JP2003222081A (en) * 2002-01-30 2003-08-08 Hokuetsu Kogyo Co Ltd Apparatus of reducing start load of compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623755Y2 (en) * 1985-05-21 1994-06-22 北越工業株式会社 Compressor capacity control device
JP2552026Y2 (en) * 1988-07-06 1997-10-27 デンヨー株式会社 Control device for engine driven compressor
JP2002168177A (en) * 2000-12-04 2002-06-14 Hokuetsu Kogyo Co Ltd Capacity control method and device for engine driven compressor
JP2003222081A (en) * 2002-01-30 2003-08-08 Hokuetsu Kogyo Co Ltd Apparatus of reducing start load of compressor

Also Published As

Publication number Publication date
JP7284627B2 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
JP4878922B2 (en) Mixer drum drive device
JP4858409B2 (en) Variable capacity compressor
JP4138444B2 (en) Fuel injection device used for internal combustion engine
US8287255B2 (en) Variable displacement rotary pump
JP6827334B2 (en) Control method of engine-driven compressor and engine-driven compressor
JP2007320478A (en) Mixer drum driving device
JP5380711B2 (en) Hydraulic system
KR20100038294A (en) Cavitation-deterring energy-efficient fluid pump system and method of operation
JPH1054215A (en) Hydraulic pressure controller in lubrication circuit of internal combustion engine
JP6649746B2 (en) Oil-cooled screw compressor control method and oil-cooled screw compressor
JP4973066B2 (en) Compressor and operating method of compressor
JP2020180557A (en) Capacity control device of engine driving compressor
US6004111A (en) Oil pump apparatus
JP7436513B2 (en) hydraulic supply device
JP6618347B2 (en) Engine-driven compressor start control method and engine-driven compressor
US5211544A (en) Hydraulic pump
JP4174199B2 (en) Fuel injection device
CN114901972B (en) Hydraulic pressure supply device
JP2006348794A (en) Flow control valve
US20240093703A1 (en) Hydraulic supply device
JP2023131273A (en) oil circulation device
CN213870242U (en) Oil pump device
JPH10318158A (en) Oil pump device
JP3546740B2 (en) Oil pump device
JP2591226Y2 (en) Internal gear pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230519

R150 Certificate of patent or registration of utility model

Ref document number: 7284627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150