JP2020180394A - Extra-fine short fiber, composite body, and method for producing extra-fine short fiber - Google Patents

Extra-fine short fiber, composite body, and method for producing extra-fine short fiber Download PDF

Info

Publication number
JP2020180394A
JP2020180394A JP2019084087A JP2019084087A JP2020180394A JP 2020180394 A JP2020180394 A JP 2020180394A JP 2019084087 A JP2019084087 A JP 2019084087A JP 2019084087 A JP2019084087 A JP 2019084087A JP 2020180394 A JP2020180394 A JP 2020180394A
Authority
JP
Japan
Prior art keywords
resin
ultrafine short
short fibers
cation exchange
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019084087A
Other languages
Japanese (ja)
Other versions
JP7296771B2 (en
Inventor
政宏 倉持
Masahiro Kuramochi
政宏 倉持
洋介 角前
Yosuke Kadosaki
洋介 角前
智弘 平野
Tomohiro Hirano
智弘 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2019084087A priority Critical patent/JP7296771B2/en
Publication of JP2020180394A publication Critical patent/JP2020180394A/en
Application granted granted Critical
Publication of JP7296771B2 publication Critical patent/JP7296771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

To provide extra-short fiber having cation exchangeability, a composite body obtained by compounding the extra-fine short fiber, and a method for producing the extra-fine short fiber.SOLUTION: The extra-fine short fiber comprises a resin including a functional group having cation exchangeability in the repeating unit of the resin, thus has cation exchangeability. Further, the extra-fine short fiber has a small average fiber size of 3 μm or lower and a small aspect ratio of 200 or lower, and has excellent dispersibility, thus is suitable for being added to a resin composition and preparing a composite body. The extra-fine short fiber can be produced by dissolving a resin including a functional group having a cation exchangeability in the repeating unit of the resin into a solvent to prepare a spinning solution, collecting the fiber spun using the spinning solution to form a fiber sheet, and pulverizing the fiber sheet.SELECTED DRAWING: None

Description

本発明は、カチオン交換能を有する極細短繊維、前記極細短繊維を樹脂組成物と複合した複合体、及び前記極細短繊維の製造方法に関する。 The present invention relates to ultrafine short fibers having a cation exchange ability, a composite obtained by combining the ultrafine short fibers with a resin composition, and a method for producing the ultrafine short fibers.

フィルムなどを構成する樹脂組成物に、極細短繊維を混合しフィラーとして用いることにより、機械的強度が向上することが知られている。 It is known that mechanical strength is improved by mixing ultrafine short fibers with a resin composition constituting a film or the like and using it as a filler.

このような用途に使用できる極細短繊維として、例えば、特開2009−114560号公報(特許文献1)に平均繊維径が1000nm以下、かつ、平均繊維長が20μm以下であり、フィラーとして好適に使用できる樹脂製極細短繊維が開示されている。 As an ultrafine short fiber that can be used for such an application, for example, Japanese Patent Application Laid-Open No. 2009-114560 (Patent Document 1) has an average fiber diameter of 1000 nm or less and an average fiber length of 20 μm or less, and is preferably used as a filler. The resin-made ultrafine short fibers that can be produced are disclosed.

特開2009−114560号公報JP-A-2009-114560

しかし、前記樹脂製極細短繊維を、例えば高いプロトン伝導性が必要な燃料電池の電解質膜といった、カチオン交換能を必要とする樹脂組成物に添加するフィラーとして使用すると、前記樹脂製極細短繊維はカチオン交換能を有しないことから、前記樹脂製極細短繊維と樹脂組成物を複合した複合体のカチオン交換能が低下する問題があり、燃料電池の電解質膜のフィラーに前記樹脂製極細短繊維を使用すると、前記樹脂製極細短繊維によってカチオンの1種であるプロトンの伝導性が低下することから、燃料電池の電解質膜のプロトン伝導性が低下する問題があった。 However, when the resin ultrafine short fibers are used as a filler to be added to a resin composition that requires cation exchange ability, for example, an electrolyte membrane of a fuel cell that requires high proton conductivity, the resin ultrafine short fibers are used. Since it does not have a cation exchange ability, there is a problem that the cation exchange ability of the composite obtained by combining the resin ultrafine short fibers and the resin composition is lowered, and the resin ultrafine short fibers are used as a filler of the electrolyte membrane of the fuel cell. When used, the resin ultrafine short fibers reduce the conductivity of protons, which are one of the cations, so that there is a problem that the proton conductivity of the electrolyte membrane of the fuel cell is lowered.

本発明は、上記のような状況に鑑みてなされたものであり、カチオン交換能を有する極細短繊維、前記極細短繊維を複合した複合体、及び前記極細短繊維の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides an ultrafine short fiber having a cation exchange ability, a composite obtained by combining the ultrafine short fibers, and a method for producing the ultrafine short fibers. The purpose.

本発明の請求項1にかかる発明は、「平均繊維径が3μm以下、かつ、アスペクト比が200以下であり、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂を含有する、極細短繊維。」である。 The invention according to claim 1 of the present invention is "ultra-fine short, which contains a resin having an average fiber diameter of 3 μm or less, an aspect ratio of 200 or less, and a functional group having a cation exchange ability in the repeating unit of the resin. Fiber. "

本発明の請求項2にかかる発明は、「樹脂の繰り返し単位にスルホ基を含むポリスルホン系樹脂を含有する、請求項1に記載の極細短繊維。」である。 The invention according to claim 2 of the present invention is "the ultrafine short fiber according to claim 1, which contains a polysulfone-based resin containing a sulfo group in the repeating unit of the resin."

本発明の請求項3にかかる発明は、「イオン交換容量が0.1meq/g以上であり、ガラス転移温度が180℃以上である、請求項2に記載の極細短繊維。」である。 The invention according to claim 3 of the present invention is "the ultrafine short fiber according to claim 2, wherein the ion exchange capacity is 0.1 meq / g or more and the glass transition temperature is 180 ° C. or more."

本発明の請求項4にかかる発明は、「請求項1〜3のいずれか1項に記載の極細短繊維が樹脂組成物中に分散してなる、複合体。」である。 The invention according to claim 4 of the present invention is "a composite in which the ultrafine short fibers according to any one of claims 1 to 3 are dispersed in a resin composition."

本発明の請求項5にかかる発明は、「(1)樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂を溶媒に溶解させて、紡糸液を調製する工程、
(2)前記紡糸液を用いて紡糸し、得られた繊維を捕集して繊維シートを形成する工程、
(3)前記繊維シートを粉砕し、極細短繊維を製造する工程、
を含む、平均繊維径が3μm以下、かつ、アスペクト比が200以下である、極細短繊維の製造方法。」である。
The invention according to claim 5 of the present invention describes the step of preparing a spinning solution by dissolving a resin containing a functional group having a cation exchange ability in a repeating unit of the resin in a solvent.
(2) A step of spinning using the spinning solution and collecting the obtained fibers to form a fiber sheet.
(3) A process of crushing the fiber sheet to produce ultrafine short fibers.
A method for producing ultrafine short fibers, which comprises, and has an average fiber diameter of 3 μm or less and an aspect ratio of 200 or less. ".

本発明の請求項1にかかる極細短繊維は、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂を含有することから、カチオン交換能を有する。また、本発明に係る極細短繊維は平均繊維径が3μm以下、かつ、アスペクト比が200以下と平均繊維径、アスペクト比がともに小さく、極細短繊維の分散性が優れるため、樹脂組成物に添加して複合体を調製するのに適したものである。このため、燃料電池の電解質膜などのカチオン交換能を必要とする樹脂組成物に添加するフィラーとして好適に使用できる。 The ultrafine short fiber according to claim 1 of the present invention has a cation exchange ability because the repeating unit of the resin contains a resin containing a functional group having a cation exchange ability. Further, the ultrafine short fibers according to the present invention have an average fiber diameter of 3 μm or less and an aspect ratio of 200 or less, both of which are small in average fiber diameter and aspect ratio, and are excellent in dispersibility of the ultrafine short fibers. Therefore, they are added to the resin composition. It is suitable for preparing a complex. Therefore, it can be suitably used as a filler added to a resin composition that requires a cation exchange ability such as an electrolyte membrane of a fuel cell.

本発明の請求項2にかかる極細短繊維は、樹脂の繰り返し単位にスルホ基を含むポリスルホン系樹脂を含有し、ポリスルホン系樹脂のガラス転移温度が高いことから、カチオン交換能を有する上に、耐熱性に優れる。このため、本発明に係る極細短繊維を高温環境下で使用しても極細短繊維の形状が崩れにくいことから、カチオン交換能を必要とし、高温環境下で使用する樹脂組成物に添加するフィラーとして好適に使用できる。 The ultrafine short fiber according to claim 2 of the present invention contains a polysulfone-based resin containing a sulfo group as a repeating unit of the resin, and since the glass transition temperature of the polysulfone-based resin is high, it has cation exchange ability and heat resistance. Excellent in sex. Therefore, even if the ultrafine short fibers according to the present invention are used in a high temperature environment, the shape of the ultrafine short fibers does not easily collapse. Therefore, a filler to be added to a resin composition used in a high temperature environment, which requires cation exchange ability. Can be suitably used as.

本発明の請求項3にかかる極細短繊維は、イオン交換容量が0.1meq/g以上であり、ガラス転移温度が180℃以上であることから、カチオン交換能を有する上に、より耐熱性に優れる。このため、本発明に係る極細短繊維を高温環境下で使用してもより極細短繊維の形状が崩れにくいことから、カチオン交換能を必要とし、高温環境下で使用する樹脂組成物に添加するフィラーとして好適に使用できる。 Since the ultrafine short fiber according to claim 3 of the present invention has an ion exchange capacity of 0.1 meq / g or more and a glass transition temperature of 180 ° C. or more, it has a cation exchange capacity and is more heat resistant. Excellent. Therefore, even if the ultrafine short fibers according to the present invention are used in a high temperature environment, the shape of the ultrafine short fibers is less likely to collapse. Therefore, a cation exchange ability is required and the ultrafine short fibers are added to the resin composition used in a high temperature environment. It can be suitably used as a filler.

本発明の請求項4にかかる複合体は、本発明に係る極細短繊維が樹脂組成物中に分散してなるため、カチオン交換能に優れ、機械的強度に優れる複合体である。 The composite according to claim 4 of the present invention is a composite having excellent cation exchange ability and excellent mechanical strength because the ultrafine short fibers according to the present invention are dispersed in the resin composition.

本発明の請求項5にかかる極細短繊維の製造方法は、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂を溶媒に溶解させて紡糸液を調製し、前記紡糸液を用いて紡糸した繊維を捕集して繊維シートを形成し、前記繊維シートを粉砕することで、カチオン交換能を有し、樹脂組成物に添加して複合体を調製するのに適した極細短繊維を製造することができる。 In the method for producing ultrafine short fibers according to claim 5 of the present invention, a spinning solution is prepared by dissolving a resin containing a functional group having a cation exchange ability in a repeating unit of the resin in a solvent, and spinning using the spinning solution. By collecting the resulting fibers to form a fiber sheet and crushing the fiber sheet, ultrafine short fibers having a cation exchange ability and suitable for adding to a resin composition to prepare a composite are produced. can do.

本発明の極細短繊維は、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂を含有することを特徴とする。ここで、「カチオン交換能を有する官能基」とは、水溶液中で電離してプロトンを放出し、カチオンを交換する能力を有する官能基のことをいい、例えば、スルホ基、カルボキシル基、リン酸基やカルボン酸無水物などが挙げられる。これらの中でも、前記カチオン交換能を有する官能基がスルホ基であると、スルホ基は酸解離定数(pKa)が小さく、高いカチオン交換能を有することから好ましい。 The ultrafine short fibers of the present invention are characterized by containing a resin containing a functional group having a cation exchange ability in the repeating unit of the resin. Here, the "functional group having a cation exchange ability" means a functional group having an ability to exchange cations by ionizing in an aqueous solution to release protons, for example, a sulfo group, a carboxyl group, or a phosphoric acid. Examples include groups and carboxylic acid anhydrides. Among these, when the functional group having a cation exchange ability is a sulfo group, the sulfo group has a small acid dissociation constant (pKa) and has a high cation exchange ability, which is preferable.

本発明の極細短繊維は、フィルムなどを構成する樹脂組成物に前記極細短繊維を添加して補強するフィラーとして使用する際に、極細短繊維同士が凝集しにくいように、平均繊維径が3μm以下、かつ、アスペクト比が200以下である。 The ultrafine short fibers of the present invention have an average fiber diameter of 3 μm so that when the ultrafine short fibers are used as a filler to reinforce the resin composition constituting a film or the like, the ultrafine short fibers do not easily aggregate with each other. The aspect ratio is 200 or less.

上記極細短繊維の平均繊維径は3μm以下であればよいが、平均繊維径が小さければ小さいほど、樹脂組成物中での分散性に優れるため、2μm以下がより好ましく、1μm以下が更に好ましい。平均繊維径の下限は適宜選択できるが、極細短繊維の強度に優れるように、0.05μm以上が適当である。 The average fiber diameter of the ultrafine short fibers may be 3 μm or less, but the smaller the average fiber diameter, the better the dispersibility in the resin composition. Therefore, 2 μm or less is more preferable, and 1 μm or less is further preferable. The lower limit of the average fiber diameter can be appropriately selected, but 0.05 μm or more is suitable so that the strength of the ultrafine short fibers is excellent.

なお、本発明における「平均繊維径」は、50本の極細短繊維における各繊維径の算術平均値をいい、「繊維径」は、極細短繊維を撮影した5000倍の電子顕微鏡写真をもとに測定した、極細短繊維が伸びる方向に対して直交する方向の断面における円の直径をいう。極細短繊維の断面が円形でない異形断面の場合は、異形断面の断面積を計測し、その断面積を有する円の直径を繊維径とみなす。 The "average fiber diameter" in the present invention refers to the arithmetic average value of each fiber diameter in 50 ultrafine short fibers, and the "fiber diameter" is based on a 5000 times electron micrograph of the ultrafine short fibers. The diameter of the circle in the cross section in the direction orthogonal to the direction in which the ultrafine short fibers are stretched. When the cross section of the ultrafine short fiber is not circular, the cross-sectional area of the deformed cross section is measured, and the diameter of the circle having the cross section is regarded as the fiber diameter.

上記極細短繊維のアスペクト比は、極細短繊維が樹脂組成物中で凝集しにくく、分散性に優れるように200以下である。極細短繊維のアスペクト比が小さくなるほど、より極細短繊維が樹脂組成物中で凝集しにくく分散性に優れることから、アスペクト比は150以下がより好ましく、120以下が更に好ましい。アスペクト比の下限については、極細短繊維が樹脂組成物中に分散してなる複合体の機械的強度が優れるように、5以上が適当である。
なお、本発明における「アスペクト比」は、極細短繊維の平均繊維長(μm)を平均繊維径(μm)で除した値である。
The aspect ratio of the ultrafine short fibers is 200 or less so that the ultrafine short fibers are less likely to aggregate in the resin composition and have excellent dispersibility. The smaller the aspect ratio of the ultrafine short fibers, the more difficult the ultrafine short fibers to aggregate in the resin composition and the more excellent the dispersibility. Therefore, the aspect ratio is more preferably 150 or less, further preferably 120 or less. As for the lower limit of the aspect ratio, 5 or more is suitable so that the mechanical strength of the composite in which the ultrafine short fibers are dispersed in the resin composition is excellent.
The "aspect ratio" in the present invention is a value obtained by dividing the average fiber length (μm) of the ultrafine short fibers by the average fiber diameter (μm).

上記極細短繊維の平均繊維長は、前記アスペクト比を満たす限り、特に限定するものではない。本発明における「平均繊維長」は、50本の極細短繊維における各繊維長の算術平均値をいい、「繊維長」は、極細短繊維を撮影した50〜5000倍の電子顕微鏡写真をもとに測定した、極細短繊維が伸びる方向の長さをいう。 The average fiber length of the ultrafine short fibers is not particularly limited as long as the aspect ratio is satisfied. The "average fiber length" in the present invention refers to the arithmetic average value of each fiber length in 50 ultrafine short fibers, and the "fiber length" is based on an electron micrograph of 50 to 5000 times the ultrafine short fibers. Refers to the length in the direction in which the ultrafine short fibers are stretched.

本発明の極細短繊維に含まれる樹脂の種類は、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂が少なくとも含まれていればよく、例えば、マレイン酸系共重合体樹脂(スチレン‐無水マレイン酸共重合体、メチルビニルエーテル‐無水マレイン酸共重合体)、ポリアクリル酸系樹脂や、ポリビニルアルコール系樹脂、アクリル系樹脂、ポリベンゾイミダゾール樹脂、ポリエーテル系樹脂(ポリエーテルエーテルケトン、ポリアセタール、変性ポリフェニレンエーテル、芳香族ポリエーテルケトンなど)、ポリスルホン系樹脂(ポリスルホン、ポリフェニルスルホン、ポリエーテルスルホンなど)、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート、ポリ乳酸、全芳香族ポリエステル樹脂など)、ニトリル基を有する樹脂(例えば、ポリアクリロニトリルなど)、フッ素系樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシアルカンなど)、セルロース系樹脂、熱可塑性ポリイミド系樹脂、ウレタン系樹脂、熱硬化性ポリイミド系樹脂など、これら樹脂の繰り返し単位に含まれる水素原子を、カチオン交換能を有する官能基に置換した、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂、異なる樹脂が縮合反応した樹脂(例えば、ポリビニルアルコール系樹脂とマレイン酸系共重合体樹脂が縮合反応した樹脂、ポリビニルアルコール系樹脂とポリアクリル酸樹脂が縮合反応した樹脂)などが挙げられる。これらの中でも、ガラス転移温度が高く耐熱性に優れ、また耐薬品性に優れることから、極細短繊維に樹脂の繰り返し単位にカチオン交換能を有する官能基を含むポリスルホン系樹脂が含まれているのが好ましく、樹脂の繰り返し単位にカチオン交換能を有する官能基を含むポリスルホン系樹脂の中でも特に耐熱性及び耐薬品性が優れることから、極細短繊維に樹脂の繰り返し単位にカチオン交換能を有する官能基を含むポリエーテルスルホン樹脂が含まれているのがより好ましい。また、前述のように樹脂の繰り返し単位にカチオン交換能を有する官能基はスルホ基が好ましいことから、本発明の極細短繊維は樹脂の繰り返し単位にスルホ基を有するポリスルホン系樹脂を含んでいるのが好ましく、樹脂の繰り返し単位にスルホ基を有するポリエーテルスルホン樹脂を含んでいるのがより好ましい。なお、本発明の極細短繊維は、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂のほかに、樹脂の繰り返し単位にカチオン交換能を有する官能基を含まない樹脂を含有していてもよい。 The type of resin contained in the ultrafine short fibers of the present invention may include at least a resin containing a functional group having a cation exchange ability in the repeating unit of the resin, for example, a maleic acid-based copolymer resin (styrene-). Maleic anhydride copolymer, methyl vinyl ether-maleic anhydride copolymer), polyacrylic acid resin, polyvinyl alcohol resin, acrylic resin, polybenzoimidazole resin, polyether resin (polyether ether ketone, polyacetal) , Modified polyphenylene ether, aromatic polyether ketone, etc.), Polysulfone resin (polysulfone, polyphenylsulfone, polyethersulfone, etc.), Polyester resin (polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly) Butylene naphthalate, polycarbonate, polylactic acid, total aromatic polyester resin, etc.), resins with nitrile groups (eg, polyacrylonitrile, etc.), fluororesins (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxyalkane, etc.) Etc.), cellulose-based resin, thermoplastic polyimide-based resin, urethane-based resin, thermosetting polyimide-based resin, etc., the hydrogen atom contained in the repeating unit of these resins is replaced with a functional group having cation exchange ability. A resin containing a functional group having a cation exchange ability in a repeating unit, a resin obtained by a condensation reaction of different resins (for example, a resin obtained by a condensation reaction of a polyvinyl alcohol resin and a maleic acid copolymer resin, a polyvinyl alcohol resin and a polyacrylic acid). A resin obtained by a condensation reaction of a resin) and the like. Among these, since the glass transition temperature is high, the heat resistance is excellent, and the chemical resistance is excellent, the ultrafine short fibers contain a polysulfone resin containing a functional group having a cation exchange ability in the repeating unit of the resin. Is preferable, and among polysulfone-based resins containing a functional group having a cation exchange ability in the repeating unit of the resin, since heat resistance and chemical resistance are particularly excellent, a functional group having a cation exchange ability in the repeating unit of the resin in ultrafine short fibers. More preferably, it contains a polyethersulfone resin containing. Further, as described above, the functional group having a cation exchange ability in the repeating unit of the resin is preferably a sulfo group. Therefore, the ultrafine short fiber of the present invention contains a polysulfone resin having a sulfo group in the repeating unit of the resin. Is preferable, and it is more preferable that the repeating unit of the resin contains a polyethersulfone resin having a sulfo group. The ultrafine short fibers of the present invention contain, in addition to the resin containing a functional group having a cation exchange ability in the repeating unit of the resin, a resin containing no functional group having a cation exchange ability in the repeating unit of the resin. May be good.

前記極細短繊維に含まれる樹脂の分子構造は、直鎖状または分岐を有する構造のいずれからなるものでも構わず、また樹脂の分子構造がブロック共重合体やランダム共重合体でも構わず、また樹脂の立体構造や結晶性の有無がいかなるものでも、特に限定されるものではない。そして、これらの極細短繊維は例示以外の樹脂を含んでいてもよい。前記極細短繊維を構成する樹脂の分子量は、使用する樹脂によって適切な分子量が異なるため、特に限定するものではなく、適宜選択できる。
なお、極細短繊維を構成する樹脂は1種類である必要はなく、2種類以上含有して構成していてもよい。
The molecular structure of the resin contained in the ultrafine short fibers may be either linear or branched, and the molecular structure of the resin may be a block copolymer or a random copolymer. The three-dimensional structure of the resin and the presence or absence of crystallinity are not particularly limited. Then, these ultrafine short fibers may contain a resin other than the examples. The molecular weight of the resin constituting the ultrafine short fiber is not particularly limited because an appropriate molecular weight differs depending on the resin used, and can be appropriately selected.
The resin constituting the ultrafine short fibers does not have to be one type, and may be contained in two or more types.

本発明の極細短繊維に含まれる、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂の割合は、大きければ大きいほどよりカチオン交換能に優れる極細短繊維であることから、1mass%以上が好ましく、10mass%以上がより好ましく、30mass%以上が更に好ましく、50mass%以上が更に好ましい。 The proportion of the resin containing a functional group having a cation exchange ability in the repeating unit of the resin contained in the ultrafine short fibers of the present invention is 1 mass% or more because the larger the ratio is, the more excellent the cation exchange ability is. Is preferable, 10 mass% or more is more preferable, 30 mass% or more is further preferable, and 50 mass% or more is further preferable.

本発明の極細短繊維のイオン交換容量は、高ければ高いほどよりカチオン交換能に優れる極細短繊維であることから、0.1meq/g以上が好ましく、0.3meq/g以上がより好ましく、0.5meq/g以上が更に好ましい。イオン交換容量の上限は特に限定するものではないが、10meq/g以下が現実的である。 The ion exchange capacity of the ultrafine short fibers of the present invention is preferably 0.1 meq / g or more, more preferably 0.3 meq / g or more, and 0, because the higher the ion exchange capacity is, the more excellent the cation exchange capacity is. More preferably, it is 5.5 meq / g or more. The upper limit of the ion exchange capacity is not particularly limited, but 10 meq / g or less is realistic.

極細短繊維のイオン交換容量は下記の<イオン交換容量の測定方法1>又は<イオン交換容量の測定方法2>で測定することができる。極細短繊維がスルホ基を含む樹脂を含有する場合は<イオン交換容量の測定方法1>で、極細短繊維がスルホ基を含む樹脂を含有しない場合は<イオン交換容量の測定方法2>で測定を行う。極細短繊維がスルホ基を含む樹脂を含有するかどうかは、赤外分光法など公知の方法で極細短繊維を分析し判断する。 The ion exchange capacity of the ultrafine short fibers can be measured by the following <method 1 for measuring the ion exchange capacity> or <method 2 for measuring the ion exchange capacity>. When the ultrafine short fibers contain a resin containing a sulfo group, measure with <measurement method 1 of ion exchange capacity>, and when the ultrafine short fibers do not contain a resin containing a sulfo group, measure with <measurement method 2 of ion exchange capacity>. I do. Whether or not the ultrafine short fibers contain a resin containing a sulfo group is determined by analyzing the ultrafine short fibers by a known method such as infrared spectroscopy.

<イオン交換容量の測定方法1>
(1)極細短繊維1gを95℃の0.1M硫酸に1時間浸漬する。
(2)(1)の硫酸を30℃に冷却後、極細短繊維を取り出し、極細短繊維を純水で十分に洗浄し、洗浄に使用した純水のpHが7になるまで行う。
(3)(2)の極細短繊維を95℃の熱水中に1時間浸漬する。
(4)(3)の熱水を30℃に冷却後、極細短繊維を取り出し、温度100℃に設定したオーブン中で2時間以上乾燥させる。
(5)(4)の乾燥させた極細短繊維の質量を測定する。
(6)(5)の極細短繊維を100mlの0.1M塩化ナトリウム水溶液に48時間浸漬してイオン交換処理を行い、極細短繊維に含まれるカチオン交換能を有する官能基をナトリウム塩に置換させる。
(7)(6)の水溶液を20ml採取して水溶液のpHをpHメーター(株式会社堀場製作所製、型番:D−51)で測定しながら、0.01M炭酸ナトリウム水溶液で滴定する。水溶液のpHが4.0となった地点の0.01M炭酸ナトリウムの滴下量を求める。滴定は5回行い、滴定温度は(6)の水溶液、0.01M炭酸ナトリウム水溶液ともに25℃で行う。
(8)(7)の炭酸ナトリウム水溶液の滴下量から、イオン交換容量を算出する。
滴下した炭酸ナトリウム水溶液中に含まれる水酸化物イオンの量は、炭酸ナトリウムは電離で炭酸ナトリウムの2倍量の水酸化物イオンを放出するため、下式で求められる。
OH=(2×0.01×NaCO)/1000
OH:滴下した炭酸ナトリウム水溶液中の水酸化イオンの量[mol]
NaCO:炭酸ナトリウム水溶液の滴下量[ml]
例えばカチオン交換能を有する官能基がスルホ基のみである場合、極細短繊維を浸漬した塩化ナトリウム水溶液は、20ml毎に取り分けて滴定しているため、全水溶液(100ml)中に含まれるスルホ基の量は下式で求められる。
SO =5×H=5×OH
SO :極細短繊維に含まれるスルホ基の量[mol]
:(6)の水溶液20mlに含まれる水素イオンの量[mol]
よって、極細短繊維のイオン交換容量Xは下式となる。
X=(SO /M)×1000[meq/g]
M:(5)で測定した極細短繊維の質量[g]
<Measurement method of ion exchange capacity 1>
(1) Immerse 1 g of ultrafine short fibers in 0.1 M sulfuric acid at 95 ° C. for 1 hour.
(2) After cooling the sulfuric acid of (1) to 30 ° C., the ultrafine short fibers are taken out, and the ultrafine short fibers are sufficiently washed with pure water until the pH of the pure water used for washing reaches 7.
(3) The ultrafine short fibers of (2) are immersed in hot water at 95 ° C. for 1 hour.
(4) After cooling the hot water of (3) to 30 ° C., the ultrafine short fibers are taken out and dried in an oven set at a temperature of 100 ° C. for 2 hours or more.
(5) The mass of the dried ultrafine short fibers of (4) is measured.
(6) The ultrafine short fibers of (5) are immersed in 100 ml of a 0.1 M sodium chloride aqueous solution for 48 hours to perform an ion exchange treatment, and the functional group having a cation exchange ability contained in the ultrafine short fibers is replaced with a sodium salt. ..
(7) 20 ml of the aqueous solution of (6) is sampled, and the pH of the aqueous solution is measured with a pH meter (manufactured by HORIBA, Ltd., model number: D-51) and titrated with a 0.01 M aqueous sodium carbonate solution. The amount of 0.01 M sodium carbonate added dropwise at the point where the pH of the aqueous solution reached 4.0 is determined. Titration is performed 5 times, and the titration temperature is 25 ° C. for both the aqueous solution (6) and the 0.01 M sodium carbonate aqueous solution.
(8) The ion exchange capacity is calculated from the dropping amount of the sodium carbonate aqueous solution of (7).
The amount of hydroxide ions contained in the dropped sodium carbonate aqueous solution is calculated by the following formula because sodium carbonate releases twice as much hydroxide ions as sodium carbonate by ionization.
OH = (2 × 0.01 × Na 2 CO 3 ) / 1000
OH : Amount of hydroxide ions in the dropped sodium carbonate aqueous solution [mol]
Na 2 CO 3 : Drop rate of aqueous sodium carbonate solution [ml]
For example, when the functional group having a cation exchange ability is only a sulfo group, the sodium chloride aqueous solution in which the ultrafine short fibers are immersed is titrated separately every 20 ml, so that the sulfo group contained in the total aqueous solution (100 ml) The amount is calculated by the following formula.
SO 3 = 5 × H + = 5 × OH
SO 3 : Amount of sulfo groups contained in ultrafine short fibers [mol]
H + : Amount of hydrogen ions contained in 20 ml of the aqueous solution of (6) [mol]
Therefore, the ion exchange capacity X of the ultrafine short fibers is given by the following equation.
X = (SO 3 - / M ) × 1000 [meq / g]
M: Mass of ultrafine short fibers measured in (5) [g]

<イオン交換容量の測定方法2>
(1)極細短繊維1gを25℃の1M硝酸に1時間浸漬する。
(2)極細短繊維を硝酸から取り出し、極細短繊維を純水で十分に洗浄し、洗浄に使用した純水のpHが7になるまで行う。
(3)極細短繊維を純水から取り出し、温度100℃に設定したオーブン中で2時間以上乾燥させる。
(4)(3)の乾燥させた極細短繊維の質量を測定する。
(5)(4)の極細短繊維を100mlの0.01M水酸化ナトリウム水溶液に2時間浸漬してイオン交換処理を行い、極細短繊維に含まれるカチオン交換能を有する官能基をナトリウム塩に置換させる。
(6)(5)の水溶液に0.1mlのフェノールフタレイン液を加える。
(7)(6)の水溶液を0.1M塩酸で滴定し、水溶液の色が無色になった地点の0.1M塩酸の滴下量a[ml]を求める。滴定温度は(6)の水溶液、0.1M塩酸ともに25℃で行う。
(8)100mlの0.01M水酸化ナトリウム水溶液に0.1mlのフェノールフタレイン液を加えた水溶液を0.1M塩酸で滴定し、水溶液の色が無色になった地点の0.1M塩酸の滴定量b[ml]を求める。滴定温度は上述の水溶液、0.1M塩酸ともに25℃で行う。
(9)上述の滴定量aおよびbから、イオン交換容量を算出する。
極細短繊維に含まれるカチオン交換能を有する官能基がナトリウム塩に置換された際に消費した、水酸化物イオンの量は、塩酸は電離で塩酸と同量のプロトンを放出するため、下式で求められる。
OH={(b−a)×0.1}/1000
OH:極細短繊維に含まれるカチオン交換能を有する官能基が消費した、水酸化物イオンの量[mol]
例えばカチオン交換能を有する官能基がカルボキシル基のみである場合、極細短繊維に含まれるカルボキシル基の量は下式で求められる。
COO=OH
COO:極細短繊維に含まれるカルボキシル基の量(mol)
よって、極細短繊維のイオン交換容量Xは下式となる。
X=(COO/M)×1000[meq/g]
M:(4)で測定した極細短繊維の質量[g]
<Measurement method of ion exchange capacity 2>
(1) Immerse 1 g of ultrafine short fibers in 1 M nitric acid at 25 ° C. for 1 hour.
(2) The ultrafine short fibers are taken out from nitric acid, and the ultrafine short fibers are sufficiently washed with pure water until the pH of the pure water used for washing reaches 7.
(3) The ultrafine short fibers are taken out from pure water and dried in an oven set at a temperature of 100 ° C. for 2 hours or more.
(4) The mass of the dried ultrafine short fibers of (3) is measured.
(5) The ultrafine short fibers of (4) are immersed in 100 ml of a 0.01 M sodium hydroxide aqueous solution for 2 hours for ion exchange treatment, and the functional group having a cation exchange ability contained in the ultrafine short fibers is replaced with a sodium salt. Let me.
(6) Add 0.1 ml of phenolphthalein solution to the aqueous solution of (5).
(7) The aqueous solution of (6) is titrated with 0.1 M hydrochloric acid to determine the dropping amount a [ml] of 0.1 M hydrochloric acid at the point where the color of the aqueous solution becomes colorless. The titration temperature is 25 ° C. for both the aqueous solution (6) and 0.1 M hydrochloric acid.
(8) An aqueous solution obtained by adding 0.1 ml of phenolphthalein solution to 100 ml of 0.01 M sodium hydroxide aqueous solution is titrated with 0.1 M hydrochloric acid, and titration of 0.1 M hydrochloric acid at the point where the color of the aqueous solution becomes colorless. Determine the amount b [ml]. The titration temperature is 25 ° C. for both the above-mentioned aqueous solution and 0.1 M hydrochloric acid.
(9) The ion exchange capacity is calculated from the above-mentioned titrations a and b.
The amount of hydroxide ion consumed when the functional group having cation exchange ability contained in the ultrafine short fibers was replaced with the sodium salt is as follows because hydrochloric acid releases the same amount of protons as hydrochloric acid by ionization. Is required by.
OH = {(ba) × 0.1} / 1000
OH : Amount of hydroxide ion consumed by a functional group having a cation exchange ability contained in ultrafine short fibers [mol]
For example, when the functional group having a cation exchange ability is only a carboxyl group, the amount of the carboxyl group contained in the ultrafine short fibers can be calculated by the following formula.
COO = OH
COO : Amount of carboxyl groups (mol) contained in ultrafine short fibers
Therefore, the ion exchange capacity X of the ultrafine short fibers is given by the following equation.
X = (COO / M) × 1000 [meq / g]
M: Mass of ultrafine short fibers measured in (4) [g]

本発明の極細短繊維が、樹脂の繰り返し単位にスルホ基を含むポリスルホン系樹脂を含有する場合、極細短繊維がカチオン交換能を有するようにイオン交換容量は0.1meq/g以上であるのが好ましい。イオン交換容量が高ければ高いほどよりカチオン交換能に優れる極細短繊維であることから、0.3meq/g以上がより好ましく、0.5meq/g以上が更に好ましい。イオン交換容量の上限は特に限定するものではないが、10meq/g以下が現実的である。 When the ultrafine short fibers of the present invention contain a polysulfone-based resin containing a sulfo group in the repeating unit of the resin, the ion exchange capacity is 0.1 meq / g or more so that the ultrafine short fibers have a cation exchange capacity. preferable. The higher the ion exchange capacity, the more excellent the cation exchange capacity of the ultrafine short fibers. Therefore, 0.3 meq / g or more is more preferable, and 0.5 meq / g or more is further preferable. The upper limit of the ion exchange capacity is not particularly limited, but 10 meq / g or less is realistic.

また、前記極細短繊維のガラス転移温度が180℃以上であると、より耐熱性に優れることから好ましい。極細短繊維のガラス転移温度が高ければ高いほど、より耐熱性に優れることから、前記極細短繊維のガラス転移温度は190℃以上がより好ましく、200℃以上が更に好ましい。一方、樹脂の繰り返し単位にカチオン交換能を有する官能基を含まないポリスルホン系樹脂のガラス転移温度は高くても230℃程度であることから、前記極細短繊維のガラス転移温度の上限は、230℃が現実的である。 Further, it is preferable that the glass transition temperature of the ultrafine short fibers is 180 ° C. or higher because the heat resistance is more excellent. The higher the glass transition temperature of the ultrafine short fibers, the more excellent the heat resistance. Therefore, the glass transition temperature of the ultrafine short fibers is more preferably 190 ° C. or higher, further preferably 200 ° C. or higher. On the other hand, since the glass transition temperature of a polysulfone-based resin that does not contain a functional group having a cation exchange ability in the repeating unit of the resin is at most about 230 ° C. Is realistic.

本発明の極細短繊維が樹脂の繰り返し単位にスルホ基を含むポリスルホン系樹脂を含有する極細短繊維である場合、より極細短繊維のガラス転移温度が高く、耐熱性に優れるように、極細短繊維が樹脂の繰り返し単位にスルホ基を含むポリスルホン系樹脂のほかに樹脂の繰り返し単位にカチオン交換能を有する官能基を含まないポリスルホン系樹脂を含有するのが好ましく、極細短繊維が樹脂の繰り返し単位にスルホ基を含むポリスルホン系樹脂と樹脂の繰り返し単位にカチオン交換能を有する官能基を含まないポリスルホン系樹脂のみで構成されているのがより好ましい。 When the ultrafine short fibers of the present invention are ultrafine short fibers containing a polysulfone-based resin containing a sulfone as a repeating unit of the resin, the ultrafine short fibers have a higher glass transition temperature and excellent heat resistance. However, in addition to the polysulfone-based resin containing a sulfo group in the repeating unit of the resin, it is preferable that the repeating unit of the resin contains a polysulfone-based resin having a cation exchange ability and does not contain a functional group. It is more preferable that the resin is composed only of a polysulfone-based resin containing a sulfo group and a polysulfone-based resin containing no functional group having a cation exchange ability in the repeating unit of the resin.

本発明の極細短繊維が樹脂の繰り返し単位にスルホ基を含むポリスルホン系樹脂と樹脂の繰り返し単位にカチオン交換能を有する官能基を含まないポリスルホン系樹脂を含有する場合、樹脂の繰り返し単位にスルホ基を含むポリスルホン系樹脂と樹脂の繰り返し単位にカチオン交換能を有する官能基を含まないポリスルホン系樹脂の質量比率は、99:1〜1:99が好ましく、90:10〜30:70がより好ましく、80:20〜40:60が更に好ましく、70:30〜50:50が更に好ましい。 When the ultrafine short fibers of the present invention contain a polysulfone-based resin containing a sulfo group in the repeating unit of the resin and a polysulfone-based resin containing no functional group having a cation exchange ability in the repeating unit of the resin, the repeating unit of the resin contains a sulfo group. The mass ratio of the polysulfone-based resin containing the above and the polysulfone-based resin having no functional group having a cation exchange ability in the repeating unit of the resin is preferably 99: 1 to 1:99, more preferably 90: 10 to 30:70. 80:20 to 40:60 is even more preferred, and 70:30 to 50:50 is even more preferred.

本発明の極細短繊維は、上述の樹脂のみから構成されていても良いが、極細短繊維のカチオン交換能に影響しない範囲で、各種特性の付与を目的として、従来公知の添加物を有してもよい。添加物の具体例としては、例えば、酸化防止剤、安定剤、無機粒子、顔料、染料などが挙げられる。 The ultrafine short fibers of the present invention may be composed of only the above-mentioned resin, but have conventionally known additives for the purpose of imparting various properties within a range that does not affect the cation exchange ability of the ultrafine short fibers. You may. Specific examples of the additive include antioxidants, stabilizers, inorganic particles, pigments, dyes and the like.

本発明の極細短繊維は、例えば、次のようにして製造することができる。 The ultrafine short fibers of the present invention can be produced, for example, as follows.

まず、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂と、前記樹脂を溶解することのできる溶媒を用意する。この溶媒は特に限定するものではないが、例えば、ジメチルアセトアミド、ジメチルホルムアミド、メチルピロリドン及びジメチルスルホキシドからなる群より選ばれる少なくとも1種の有機溶媒を使用することが好ましい。
次いで、溶媒に樹脂を溶解させることで紡糸液を調製する。なお、この紡糸液の調製方法は特に限定するものではない。
First, a resin containing a functional group having a cation exchange ability in a repeating unit of the resin and a solvent capable of dissolving the resin are prepared. The solvent is not particularly limited, but for example, it is preferable to use at least one organic solvent selected from the group consisting of dimethylacetamide, dimethylformamide, methylpyrrolidone and dimethyl sulfoxide.
Then, the spinning solution is prepared by dissolving the resin in a solvent. The method for preparing the spinning solution is not particularly limited.

紡糸液の樹脂濃度が1質量%未満であると、紡糸液に含まれる樹脂が希薄すぎるため繊維形成が困難となるおそれがある。一方、50質量%を超えると、得られる繊維の繊維径が大きくなる傾向にあり、平均繊維径が3μmを超えるおそれがある。そのため、紡糸液の樹脂濃度は、1〜50質量%が好ましく、5〜45質量%がより好ましく、10〜40質量%が更に好ましい。 If the resin concentration of the spinning liquid is less than 1% by mass, the resin contained in the spinning liquid is too dilute, which may make fiber formation difficult. On the other hand, if it exceeds 50% by mass, the fiber diameter of the obtained fiber tends to be large, and the average fiber diameter may exceed 3 μm. Therefore, the resin concentration of the spinning solution is preferably 1 to 50% by mass, more preferably 5 to 45% by mass, and even more preferably 10 to 40% by mass.

次いで、前記紡糸液を紡糸して繊維を形成し、この繊維を集積することで繊維シートを形成することが出来る。この紡糸方法として、従来公知の紡糸方法を採用することができる。例えば、湿式紡糸法、乾式紡糸法、フラッシュ紡糸法、遠心紡糸法、静電紡糸法、特開2009−287138号公報に開示されているような、ガスの剪断作用により紡糸する方法、あるいは特開2011−32593号公報に開示されているような、電界の作用に加えてガスの剪断力を作用させて紡糸する方法などによって紡糸し、紡糸した繊維を直接ドラムやネット上に集積して、繊維シートを形成することが出来る。これらの中でも静電紡糸法によれば、平均繊維径が1μm以下の特に平均繊維径が細い繊維シートを実現でき、また繊維径が揃った連続繊維を紡糸できるため好適である。 Next, the spinning liquid is spun to form fibers, and the fibers can be accumulated to form a fiber sheet. As this spinning method, a conventionally known spinning method can be adopted. For example, a wet spinning method, a dry spinning method, a flash spinning method, a centrifugal spinning method, an electrostatic spinning method, a method of spinning by a gas shearing action as disclosed in Japanese Patent Application Laid-Open No. 2009-287138, or a Japanese Patent Application Laid-Open No. Spinning is performed by a method of spinning by applying a shearing force of gas in addition to the action of an electric field as disclosed in Japanese Patent Application Laid-Open No. 2011-32593, and the spun fibers are directly accumulated on a drum or a net to form fibers. A sheet can be formed. Among these, the electrostatic spinning method is suitable because it can realize a fiber sheet having an average fiber diameter of 1 μm or less and a particularly small average fiber diameter, and can spin continuous fibers having the same fiber diameter.

なお、静電紡糸法により紡糸する場合、紡糸液の導電性が不十分であると、紡糸性に劣り、繊維化するのが困難な場合があるため、このような場合には、紡糸液に塩を適量添加して、導電性を調節することもできる。 In addition, when spinning by the electrostatic spinning method, if the conductivity of the spinning solution is insufficient, the spinning property may be inferior and it may be difficult to make fibers. In such a case, the spinning solution is used. The conductivity can also be adjusted by adding an appropriate amount of salt.

次いで、繊維シートを粉砕することで、アスペクト比が200以下である極細短繊維を得ることができる。粉砕方法としては、特に限定するものではないが、例えば石臼やピンミルを使用する方法が挙げられる。 Then, by pulverizing the fiber sheet, ultrafine short fibers having an aspect ratio of 200 or less can be obtained. The crushing method is not particularly limited, and examples thereof include a method using a stone mill or a pin mill.

本発明の複合体は、極細短繊維が樹脂組成物中に分散してなるため、複合体は極細短繊維によってカチオン交換能に優れ、また機械的強度に優れる複合体である。 Since the composite of the present invention is formed by dispersing ultrafine short fibers in the resin composition, the composite is a composite having excellent cation exchange ability and mechanical strength due to the ultrafine short fibers.

本発明における樹脂組成物を構成する樹脂の種類は特に限定されるものではなく、適宜選択できる。さらに、複合体中における樹脂組成物及び極細短繊維の含有比率は用途によって異なるため、特に限定するものではなく、適宜調整できる。 The type of resin constituting the resin composition in the present invention is not particularly limited and can be appropriately selected. Further, since the content ratio of the resin composition and the ultrafine short fibers in the composite varies depending on the application, it is not particularly limited and can be adjusted as appropriate.

複合体の形態は用途によって異なり、特に限定するものではないが、例えば、シート状や、直方体、円柱、角柱、角錐などであることが出来る。 The form of the complex varies depending on the application and is not particularly limited, but may be, for example, a sheet shape, a rectangular parallelepiped, a cylinder, a prism, a pyramid, or the like.

本発明の複合体は常法により製造することができる。例えば、樹脂組成物を分散媒で溶解させた溶解液に、極細短繊維を添加し、極細短繊維分散液を調製した後、極細短繊維分散液を塗工し、乾燥して分散媒を除去し、複合体を製造することができる。 The composite of the present invention can be produced by a conventional method. For example, ultrafine short fibers are added to a solution prepared by dissolving a resin composition in a dispersion medium to prepare an ultrafine short fiber dispersion, then an ultrafine short fiber dispersion is applied and dried to remove the dispersion medium. And the complex can be produced.

以下に、本発明の実施例を記載するが、本発明は以下の実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1〜6、比較例1)
<スルホ基を含むポリエーテルスルホン樹脂の用意>
スルホ基を含むポリエーテルスルホン樹脂(PESU−A、小西化学株式会社製、イオン交換容量:1.12meq/g)を用意した。
<カチオン交換能を有する官能基を含まないポリエーテルスルホン樹脂の用意>
カチオン交換能を有する官能基を含まないポリエーテルスルホン樹脂(PESU−B、住友化学株式会社製、スミカエクセル(登録商標)、品番:PES5200P、イオン交換容量:0meq/g)を用意した。
(Examples 1 to 6, Comparative Example 1)
<Preparation of polyether sulfone resin containing sulfo group>
A polyether sulfone resin containing a sulfo group (PESU-A, manufactured by Konishi Chemical Co., Ltd., ion exchange capacity: 1.12 meq / g) was prepared.
<Preparation of a functional group-free polyether sulfone resin having cation exchange ability>
A functional group-free polyether sulfone resin having a cation exchange capacity (PESU-B, manufactured by Sumitomo Chemical Co., Ltd., Sumika Excel (registered trademark), product number: PES5200P, ion exchange capacity: 0 meq / g) was prepared.

<繊維シートの製造>
溶媒であるジメチルアセトアミド(沸点:165℃)に、PESU−Aと、PESU−Bを表1に示す質量比率で混合し、溶解させて紡糸溶液(樹脂濃度:30質量%)を調製した。
次に、前記紡糸溶液を用い、次の静電紡糸条件及び表1に示す条件(ノズルと捕集体との距離、ノズル電圧)で紡糸して、ステンレスドラム捕集体に集積させることで繊維シートをそれぞれ作製した。
[静電紡糸条件]
・電極:金属製ノズル(内径:0.33mm)
・捕集体:アースしたステンレスドラム
・ノズルからの吐出量:1g/時間
・紡糸容器内の温湿度:25℃、30%RH
<Manufacturing of fiber sheet>
PESU-A and PESU-B were mixed with dimethylacetamide (boiling point: 165 ° C.) as a solvent at the mass ratio shown in Table 1 and dissolved to prepare a spinning solution (resin concentration: 30% by mass).
Next, using the spinning solution, the fiber sheet is spun under the following electrostatic spinning conditions and the conditions shown in Table 1 (distance between the nozzle and the collector, nozzle voltage) and accumulated in the stainless drum collector to form a fiber sheet. Each was prepared.
[Electrostatic spinning conditions]
-Electrode: Metal nozzle (inner diameter: 0.33 mm)
-Collecting body: Grounded stainless steel drum-Discharge amount from nozzle: 1 g / hour-Temperature and humidity inside the spinning container: 25 ° C, 30% RH

<極細短繊維の製造>
次に、繊維シートと、繊維シートの質量に対して10倍量の水を混合して、混合液を作製した。そして、混合液を粉砕装置(マスコロイダー(登録商標)、増幸産業株式会社製)へ供し、上述の各繊維シートを次の粉砕条件で粉砕した。
[粉砕条件]
・クリアランス:−200μm
・回転数:1500rpm
・処理時間:30秒
その後、粉砕物を濾別し、110℃で30分乾燥させることで水を除去して、極細短繊維を作製した。
<Manufacturing of ultrafine short fibers>
Next, the fiber sheet and 10 times the mass of the fiber sheet were mixed with water to prepare a mixed solution. Then, the mixed solution was subjected to a crushing device (Mascoroider (registered trademark), manufactured by Masuko Sangyo Co., Ltd.), and each of the above fiber sheets was crushed under the following crushing conditions.
[Crushing conditions]
・ Clearance: -200 μm
・ Rotation speed: 1500 rpm
-Treatment time: 30 seconds After that, the pulverized product was separated by filtration and dried at 110 ° C. for 30 minutes to remove water to prepare ultrafine short fibers.

実施例1〜6、比較例1の極細短繊維を構成する樹脂の質量比率、前記極細短繊維の静電紡糸条件を以下の表1に、前記極細短繊維の平均繊維径、平均繊維長、アスペクト比を以下の表2に示す。 The mass ratio of the resins constituting the ultrafine short fibers of Examples 1 to 6 and Comparative Example 1 and the electrostatic spinning conditions of the ultrafine short fibers are shown in Table 1 below, and the average fiber diameter and average fiber length of the ultrafine short fibers are shown in Table 1 below. The aspect ratios are shown in Table 2 below.

Figure 2020180394
Figure 2020180394

Figure 2020180394
Figure 2020180394

(実施例7)
<繊維シートの製造>
溶媒である水に、ポリビニルアルコール(富士フイルム和光純薬株式会社製、品番:PVA1000C)と、無水マレイン酸コポリマー(アイエスピー・インベストメンツ・インコーポレーテツド製、品番:Gantrez AN−119)を質量比率4:1で混合し、溶解させて紡糸溶液(樹脂濃度:15質量%)を調製した。
(Example 7)
<Manufacturing of fiber sheet>
Polyvinyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product number: PVA1000C) and maleic anhydride copolymer (manufactured by AISP Investments, Inc., product number: Gastrez AN-119) are added to water as a solvent in a mass ratio of 4: A spinning solution (resin concentration: 15% by mass) was prepared by mixing and dissolving in 1.

次に、前記紡糸溶液を用い、次の静電紡糸条件で紡糸して、ステンレスドラム捕集体に集積させることで繊維シートを作製した。そして、作製した繊維シートに180℃で30分間の熱処理を行った。
[静電紡糸条件]
・電極:金属製ノズル(内径:0.33mm)
・捕集体:アースしたステンレスドラム
・ノズルと捕集体との距離:120mm
・ノズル電圧:22kV
・ノズルからの吐出量:1g/時間
・紡糸容器内の温湿度:25℃、50%RH
Next, using the spinning solution, spinning was performed under the following electrostatic spinning conditions and accumulated in a stainless drum collector to prepare a fiber sheet. Then, the produced fiber sheet was heat-treated at 180 ° C. for 30 minutes.
[Electrostatic spinning conditions]
-Electrode: Metal nozzle (inner diameter: 0.33 mm)
-Collecting body: Distance between the grounded stainless steel drum nozzle and the collecting body: 120 mm
・ Nozzle voltage: 22kV
・ Discharge rate from nozzle: 1 g / hour ・ Temperature and humidity in spinning container: 25 ° C, 50% RH

<極細短繊維の製造>
次に、熱処理を行った繊維シートと、繊維シートの質量に対して10倍量の水を混合して、混合液を作製した。そして、混合液を粉砕装置へ供し、上述の繊維シートを実施例1〜6、比較例1と同じ粉砕条件で粉砕した。
その後、粉砕物を濾別し、110℃で30分乾燥させることで水を除去して、極細短繊維(平均繊維径:0.2μm、平均繊維長:20μm、アスペクト比:100)を作製した。
<Manufacturing of ultrafine short fibers>
Next, the heat-treated fiber sheet and 10 times the mass of the fiber sheet were mixed with water to prepare a mixed solution. Then, the mixed solution was subjected to a pulverization apparatus, and the above-mentioned fiber sheet was pulverized under the same pulverization conditions as in Examples 1 to 6 and Comparative Example 1.
Then, the pulverized product was separated by filtration and dried at 110 ° C. for 30 minutes to remove water to prepare ultrafine short fibers (average fiber diameter: 0.2 μm, average fiber length: 20 μm, aspect ratio: 100). ..

(実施例8)
<繊維シートの製造>
溶媒である水に、ポリビニルアルコール(富士フイルム和光純薬株式会社製、品番:PVA1000C)と、ポリアクリル酸(富士フイルム和光純薬株式会社製)を質量比率3:1で混合し、溶解させて紡糸溶液(樹脂濃度:20質量%)を調製した。
(Example 8)
<Manufacturing of fiber sheet>
Polyvinyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product number: PVA1000C) and polyacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) are mixed and dissolved in water as a solvent at a mass ratio of 3: 1. A spinning solution (resin concentration: 20% by mass) was prepared.

次に、前記紡糸溶液を用い、次の静電紡糸条件で紡糸して、ステンレスドラム捕集体に集積させることで繊維シートを作製した。そして、作製した繊維シートに180℃で30分間の熱処理を行った。
[静電紡糸条件]
・電極:金属製ノズル(内径:0.33mm)
・捕集体:アースしたステンレスドラム
・ノズルと捕集体との距離:100mm
・ノズル電圧:22kV
・ノズルからの吐出量:1g/時間
・紡糸容器内の温湿度:25℃、50%RH
Next, using the spinning solution, spinning was performed under the following electrostatic spinning conditions and accumulated in a stainless drum collector to prepare a fiber sheet. Then, the produced fiber sheet was heat-treated at 180 ° C. for 30 minutes.
[Electrostatic spinning conditions]
-Electrode: Metal nozzle (inner diameter: 0.33 mm)
-Collecting body: Distance between the grounded stainless steel drum nozzle and the collecting body: 100 mm
・ Nozzle voltage: 22kV
・ Discharge rate from nozzle: 1 g / hour ・ Temperature and humidity in spinning container: 25 ° C, 50% RH

<極細短繊維の製造>
次に、熱処理を行った繊維シートと、繊維シートの質量に対して10倍量の水を混合して、混合液を作製した。そして、混合液を粉砕装置へ供し、上述の繊維シートを実施例1〜7、比較例1と同じ粉砕条件で粉砕した。
その後、粉砕物を濾別し、110℃で30分乾燥させることで水を除去して、極細短繊維(平均繊維径:0.3μm、平均繊維長:15μm、アスペクト比:50)を作製した。
<Manufacturing of ultrafine short fibers>
Next, the heat-treated fiber sheet and 10 times the mass of the fiber sheet were mixed with water to prepare a mixed solution. Then, the mixed solution was subjected to a pulverization apparatus, and the above-mentioned fiber sheet was pulverized under the same pulverization conditions as in Examples 1 to 7 and Comparative Example 1.
Then, the pulverized product was separated by filtration and dried at 110 ° C. for 30 minutes to remove water to prepare ultrafine short fibers (average fiber diameter: 0.3 μm, average fiber length: 15 μm, aspect ratio: 50). ..

<極細短繊維の評価方法>
極細短繊維のイオン交換容量を、実施例1〜6及び比較例1の極細短繊維は前述のイオン交換容量の測定方法1で、実施例7、8の極細短繊維は前述のイオン交換容量の測定方法2で測定した。
また、実施例1〜6及び比較例1の極細短繊維については、ガラス転移温度を以下のガラス転移温度の測定方法により測定した。
[ガラス転移温度の測定方法]
示差走査熱量計(TA Instruments社製Q1000)により、JIS K 7121(1987)に則って測定し、描いたDSC曲線から補外ガラス転移開始温度(Tig)を読み取り、ガラス転移温度とした。
<Evaluation method for ultrafine short fibers>
Regarding the ion exchange capacity of the ultrafine short fibers, the ultrafine short fibers of Examples 1 to 6 and Comparative Example 1 have the above-mentioned ion exchange capacity measurement method 1, and the ultrafine short fibers of Examples 7 and 8 have the above-mentioned ion exchange capacity. It was measured by the measuring method 2.
Further, for the ultrafine short fibers of Examples 1 to 6 and Comparative Example 1, the glass transition temperature was measured by the following method for measuring the glass transition temperature.
[Measurement method of glass transition temperature]
It was measured according to JIS K 7121 (1987) with a differential scanning calorimeter (Q1000 manufactured by TA Instruments), and the external glass transition start temperature ( Tig ) was read from the drawn DSC curve and used as the glass transition temperature.

以下の表3に、実施例1〜6及び比較例1の極細短繊維の評価結果を示す。 Table 3 below shows the evaluation results of the ultrafine short fibers of Examples 1 to 6 and Comparative Example 1.

Figure 2020180394
また、以下の表4に、実施例7、8の極細短繊維の評価結果を示す。
Figure 2020180394
In addition, Table 4 below shows the evaluation results of the ultrafine short fibers of Examples 7 and 8.

Figure 2020180394
Figure 2020180394

実施例1〜6の極細短繊維は、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂を含有することから、極細短繊維のイオン交換容量が0meq/gよりも大きく、カチオン交換能を有するものであった。また、実施例1〜5の極細短繊維は、イオン交換容量が0.1meq/g以上であり、ガラス転移温度が180℃以上であることから、カチオン交換能を有することに加えて、ガラス転移温度が高く、耐熱性に優れるものであった。 Since the ultrafine short fibers of Examples 1 to 6 contain a resin containing a functional group having a cation exchange capacity in the repeating unit of the resin, the ion exchange capacity of the ultrafine short fibers is larger than 0 meq / g and the cation exchange capacity is large. Was to have. Further, since the ultrafine short fibers of Examples 1 to 5 have an ion exchange capacity of 0.1 meq / g or more and a glass transition temperature of 180 ° C. or more, they have a cation exchange capacity and a glass transition. The temperature was high and the heat resistance was excellent.

更に、実施例7、8の極細短繊維についても、イオン交換容量が0meq/gよりも大きいことから、カチオン交換能を有するものであった。 Further, the ultrafine short fibers of Examples 7 and 8 also had a cation exchange capacity because the ion exchange capacity was larger than 0 meq / g.

更に、本発明の構成を有する、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂を溶媒に溶解させて、紡糸して繊維シートを形成し、粉砕する極細短繊維の製造方法は、カチオン交換能を有する極細短繊維を製造できる方法であった。 Further, a method for producing ultrafine short fibers, which has the constitution of the present invention and contains a functional group having a cation exchange ability in a repeating unit of the resin, is dissolved in a solvent and spun to form a fiber sheet and pulverized. It was a method capable of producing ultrafine short fibers having a cation exchange ability.

本発明の極細短繊維は燃料電池の電解質膜や水処理膜、電気化学素子用セパレータ、イオン交換膜、触媒、金属回収剤、凝集剤、脱塩剤、分離濃縮剤、脱色剤、脱水剤といった、カチオン交換能を必要とする樹脂組成物に添加するフィラーとして好適に用いることができる。
また、本発明の複合体は、カチオン交換能及び機械的強度に優れているため、燃料電池の電解質膜や水処理膜、電気化学素子用セパレータ、イオン交換膜、触媒、金属回収剤、凝集剤、脱塩剤、分離濃縮剤、脱色剤、脱水剤などに好適に用いることができる。
The ultrafine short fibers of the present invention include electrolyte membranes and water treatment membranes for fuel cells, separators for electrochemical elements, ion exchange membranes, catalysts, metal recovery agents, flocculants, desalting agents, separation concentrates, decolorizing agents, dehydrating agents, etc. , Can be suitably used as a filler to be added to a resin composition that requires a cation exchange ability.
Further, since the composite of the present invention is excellent in cation exchange ability and mechanical strength, an electrolyte membrane or a water treatment membrane of a fuel cell, a separator for an electrochemical element, an ion exchange membrane, a catalyst, a metal recovery agent, and a flocculant , Desalting agent, separation concentrating agent, decoloring agent, dehydrating agent and the like can be suitably used.

Claims (5)

平均繊維径が3μm以下、かつ、アスペクト比が200以下であり、樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂を含有する、極細短繊維。 An ultrafine short fiber containing a resin having an average fiber diameter of 3 μm or less, an aspect ratio of 200 or less, and a functional group having a cation exchange ability in the repeating unit of the resin. 樹脂の繰り返し単位にスルホ基を含むポリスルホン系樹脂を含有する、請求項1に記載の極細短繊維。 The ultrafine short fiber according to claim 1, wherein the repeating unit of the resin contains a polysulfone-based resin containing a sulfo group. イオン交換容量が0.1meq/g以上であり、ガラス転移温度が180℃以上である、請求項2に記載の極細短繊維。 The ultrafine short fiber according to claim 2, wherein the ion exchange capacity is 0.1 meq / g or more and the glass transition temperature is 180 ° C. or more. 請求項1〜3のいずれか1項に記載の極細短繊維が樹脂組成物中に分散してなる、複合体。 A composite in which the ultrafine short fibers according to any one of claims 1 to 3 are dispersed in a resin composition. (1)樹脂の繰り返し単位にカチオン交換能を有する官能基を含む樹脂を溶媒に溶解させて、紡糸液を調製する工程、
(2)前記紡糸液を用いて紡糸し、得られた繊維を捕集して繊維シートを形成する工程、
(3)前記繊維シートを粉砕し、極細短繊維を製造する工程、
を含む、平均繊維径が3μm以下、かつ、アスペクト比が200以下である、極細短繊維の製造方法。
(1) A step of preparing a spinning solution by dissolving a resin containing a functional group having a cation exchange ability in a repeating unit of the resin in a solvent.
(2) A step of spinning using the spinning solution and collecting the obtained fibers to form a fiber sheet.
(3) A process of crushing the fiber sheet to produce ultrafine short fibers.
A method for producing ultrafine short fibers, which comprises, and has an average fiber diameter of 3 μm or less and an aspect ratio of 200 or less.
JP2019084087A 2019-04-25 2019-04-25 Ultrafine staple fiber, composite and method for producing ultrafine staple fiber Active JP7296771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019084087A JP7296771B2 (en) 2019-04-25 2019-04-25 Ultrafine staple fiber, composite and method for producing ultrafine staple fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019084087A JP7296771B2 (en) 2019-04-25 2019-04-25 Ultrafine staple fiber, composite and method for producing ultrafine staple fiber

Publications (2)

Publication Number Publication Date
JP2020180394A true JP2020180394A (en) 2020-11-05
JP7296771B2 JP7296771B2 (en) 2023-06-23

Family

ID=73023383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019084087A Active JP7296771B2 (en) 2019-04-25 2019-04-25 Ultrafine staple fiber, composite and method for producing ultrafine staple fiber

Country Status (1)

Country Link
JP (1) JP7296771B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527309A (en) * 1978-08-16 1980-02-27 Nichibi:Kk Production of extremely fine ion-exchanging fiber
JP2006225795A (en) * 2005-02-17 2006-08-31 Nitivy Co Ltd Method for producing ultrafine ion exchange fiber
JP2008308810A (en) * 2007-05-17 2008-12-25 Sumitomo Chemical Co Ltd Polyethersulfone fiber, method for producing the same, and filter for filtration
JP2009114560A (en) * 2007-11-02 2009-05-28 Nisshinbo Ind Inc Ultra-fine staple fiber made of resin and method for producing the same
JP2010158606A (en) * 2009-01-06 2010-07-22 Kurita Water Ind Ltd Filter, method of manufacturing the same, and method of treating fluid
JP2011184816A (en) * 2010-03-05 2011-09-22 Olympus Corp Cellulose nanofiber and method for producing the same, composite resin composition, and molded article
JP2014208918A (en) * 2013-03-28 2014-11-06 日本バイリーン株式会社 Nonwoven fabric
JP2018162549A (en) * 2017-02-08 2018-10-18 日本製紙株式会社 H type carboxylated cellulose nanofibers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527309A (en) * 1978-08-16 1980-02-27 Nichibi:Kk Production of extremely fine ion-exchanging fiber
JP2006225795A (en) * 2005-02-17 2006-08-31 Nitivy Co Ltd Method for producing ultrafine ion exchange fiber
JP2008308810A (en) * 2007-05-17 2008-12-25 Sumitomo Chemical Co Ltd Polyethersulfone fiber, method for producing the same, and filter for filtration
JP2009114560A (en) * 2007-11-02 2009-05-28 Nisshinbo Ind Inc Ultra-fine staple fiber made of resin and method for producing the same
JP2010158606A (en) * 2009-01-06 2010-07-22 Kurita Water Ind Ltd Filter, method of manufacturing the same, and method of treating fluid
JP2011184816A (en) * 2010-03-05 2011-09-22 Olympus Corp Cellulose nanofiber and method for producing the same, composite resin composition, and molded article
JP2014208918A (en) * 2013-03-28 2014-11-06 日本バイリーン株式会社 Nonwoven fabric
JP2018162549A (en) * 2017-02-08 2018-10-18 日本製紙株式会社 H type carboxylated cellulose nanofibers

Also Published As

Publication number Publication date
JP7296771B2 (en) 2023-06-23

Similar Documents

Publication Publication Date Title
Cui et al. Flexible and transparent composite nanofibre membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture
Ion-Ebrasu et al. Graphene inclusion effect on anion-exchange membranes properties for alkaline water electrolyzers
Chen et al. Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways
Gong et al. Electrospun imidazolium functionalized multiwalled carbon nanotube/polysulfone inorganic-organic nanofibers for reinforced anion exchange membranes
Pan et al. Layered zirconium phosphate sulfophenylphosphonates reinforced sulfonated poly (fluorenyl ether ketone) hybrid membranes with high proton conductivity and low vanadium ion permeability
Sonpingkam et al. Mechanical properties of sulfonated poly (ether ether ketone) nanocomposite membranes
Subramanian et al. Electrospinning and characterization of highly sulfonated polystyrene fibers
Wang et al. Solution blown biofunctionalized poly (vinylidene fluoride) nanofibers for application in proton exchange membrane fuel cells
Zhao et al. Modification of cation exchange membranes with conductive polyaniline for electrodialysis applications
Yuan et al. Coaxial electrospun sulfonated poly (ether ether ketone) proton exchange membrane for conductivity-strength balance
Song et al. Carbon nanotube enhanced membrane distillation for salty and dyeing wastewater treatment by electrospinning technology
Yuan et al. Novel quaternized carbon dots modified polysulfone-based anion exchange membranes with improved performance
Rathod et al. New class of composite anion exchange membranes based on Quaternized poly (phenylene oxide) and functionalized boron nitride
Gouda et al. Novel nanocomposite membranes based on cross-linked eco-friendly polymers doped with sulfated titania nanotubes for direct methanol fuel cell application
Chen et al. Hybrid-capacitors with polyaniline/carbon electrodes fabricated via simultaneous electrospinning/electrospraying
Eskitoros-Togay et al. Fabrication of PVP/sulfonated PES electrospun membranes decorated by sulfonated halloysite nanotubes via electrospinning method and enhanced performance of proton exchange membrane fuel cells
Khan et al. Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method
JP2016173979A (en) Method for manufacturing ion-exchange membrane having electric field-induced and preferentially-oriented texture
Watanabe et al. Anion conductive polymer nanofiber composite membrane: effects of nanofibers on polymer electrolyte characteristics
Rathod et al. Highly cross-linked butene grafted poly (vinyl alcohol)–co-vinyl pyridine based anion exchange membrane for improved acid recovery and desalination efficiency
Wang et al. Conductive 3D networks in a 2D layer for high performance ultrafiltration membrane with high flux-retention and robust cyclic stability
JP2020180394A (en) Extra-fine short fiber, composite body, and method for producing extra-fine short fiber
DE102013210302A1 (en) Sulfonated PPS fuel cell electrode
Lim et al. Dual electrospray-assisted forced blending of thermodynamically immiscible polyelectrolyte mixtures
Chamakh et al. Production and investigation of flexible nanofibers of sPEEK/PVP loaded with RuO2 nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230613

R150 Certificate of patent or registration of utility model

Ref document number: 7296771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150