JP2020180374A - Soft magnetic alloy powder, dust core, magnetic component and electronic apparatus - Google Patents

Soft magnetic alloy powder, dust core, magnetic component and electronic apparatus Download PDF

Info

Publication number
JP2020180374A
JP2020180374A JP2020075690A JP2020075690A JP2020180374A JP 2020180374 A JP2020180374 A JP 2020180374A JP 2020075690 A JP2020075690 A JP 2020075690A JP 2020075690 A JP2020075690 A JP 2020075690A JP 2020180374 A JP2020180374 A JP 2020180374A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic alloy
alloy powder
particle size
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020075690A
Other languages
Japanese (ja)
Other versions
JP7424183B2 (en
Inventor
和宏 吉留
Kazuhiro Yoshitome
和宏 吉留
裕之 松元
Hiroyuki Matsumoto
裕之 松元
暁斗 長谷川
Akito Hasegawa
暁斗 長谷川
広修 熊岡
Hironobu Kumaoka
広修 熊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to US17/602,157 priority Critical patent/US20220208423A1/en
Priority to CN202080027609.1A priority patent/CN113710391B/en
Priority to PCT/JP2020/017329 priority patent/WO2020218332A1/en
Priority to KR1020217032239A priority patent/KR102557249B1/en
Priority to TW109113790A priority patent/TWI744874B/en
Publication of JP2020180374A publication Critical patent/JP2020180374A/en
Application granted granted Critical
Publication of JP7424183B2 publication Critical patent/JP7424183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a soft magnetic alloy powder having a low coercive force capable of obtaining a dust core having a high magnetic permeability.SOLUTION: There is provided a soft magnetic alloy powder composed of a composition formula (Fe(1-(α+β))X1αX2β)(1-(a+b+c+d+e+f))MaBbPcSidCeSf, wherein X1 is one or more selected from the group consisting of Co and Ni, X2 is one or more selected from the group consisting of Al, Mn, Ag, Zn, Sn, As, Sb, Cu, Cr, Bi, N, O and rare earth elements and M is one or more selected from the group consisting of Nb, Hf, Zr, Ta, Mo, W, Ti and V. The content of each component is within a specific range. The rate of the amorphization X (%) is 85% or more.SELECTED DRAWING: Figure 1

Description

本発明は、軟磁性合金粉末、圧粉磁心、磁性部品および電子機器に関する。 The present invention relates to soft magnetic alloy powders, powder magnetic cores, magnetic parts and electronic devices.

特許文献1には、鉄系の結晶質合金磁性粉と鉄系の非晶質合金磁性粉とを混合してなる混合磁性粉に絶縁性結着材をさらに混合した複合磁性材料が記載されている。 Patent Document 1 describes a composite magnetic material in which an insulating binder is further mixed with a mixed magnetic powder obtained by mixing an iron-based crystalline alloy magnetic powder and an iron-based amorphous alloy magnetic powder. There is.

特許文献2には、硬質な非晶質合金磁粉にFe−Ni系合金磁粉を混合して得られる混合磁性粉に含まれるそれぞれの粒子を熱硬化性樹脂で被覆した複合磁性材料が記載されている。 Patent Document 2 describes a composite magnetic material in which each particle contained in a mixed magnetic powder obtained by mixing a hard amorphous alloy magnetic powder with a Fe—Ni alloy magnetic powder is coated with a thermosetting resin. There is.

特開2004−197218号公報Japanese Unexamined Patent Publication No. 2004-197218 特開2004−363466号公報Japanese Unexamined Patent Publication No. 2004-363466

本発明は、保磁力が低い軟磁性合金粉末であり、かつ、高透磁率な圧粉磁心を得ることができる軟磁性合金粉末を提供することを目的とする。 An object of the present invention is to provide a soft magnetic alloy powder having a low coercive force and capable of obtaining a powder magnetic core having a high magnetic permeability.

上記の目的を達成するために、本発明の軟磁性合金粉末は、
組成式(Fe(1−(α+β))X1αX2β(1−(a+b+c+d+e+f))Siからなる軟磁性合金粉末であって、
X1はCoおよびNiからなる群から選択される1つ以上、
X2はAl,Mn,Ag,Zn,Sn,As,Sb,Cu,Cr,Bi,N,Oおよび希土類元素からなる群より選択される1つ以上、
MはNb,Hf,Zr,Ta,Mo,W,TiおよびVからなる群から選択される1つ以上であり、
0≦a≦0.150
0≦b≦0.200
0≦c≦0.200
0≦d≦0.200
0<e≦0.200
0<f≦0.0200
0.100≦a+b+c+d+e≦0.300
0.0001≦e+f≦0.220
α≧0
β≧0
0≦α+β≦0.50
であり、
下記式(1)に示す非晶質化率X(%)が85%以上である。
X=100−(Ic/(Ic+Ia))×100 ・・・(1)
Ic:結晶性散乱積分強度
Ia:非晶質性散乱積分強度
In order to achieve the above object, the soft magnetic alloy powder of the present invention is used.
Composition formula (Fe (1- (α + β)) X1 α X2 β ) (1- (a + b + c + d + e + f)) A soft magnetic alloy powder composed of M a B b P c S d C e S f .
X1 is one or more selected from the group consisting of Co and Ni,
X2 is one or more selected from the group consisting of Al, Mn, Ag, Zn, Sn, As, Sb, Cu, Cr, Bi, N, O and rare earth elements.
M is one or more selected from the group consisting of Nb, Hf, Zr, Ta, Mo, W, Ti and V.
0 ≤ a ≤ 0.150
0 ≦ b ≦ 0.200
0 ≤ c ≤ 0.200
0 ≦ d ≦ 0.200
0 <e ≤ 0.200
0 <f ≤ 0.0200
0.100 ≤ a + b + c + d + e ≤ 0.300
0.0001 ≤ e + f ≤ 0.220
α ≧ 0
β ≧ 0
0 ≤ α + β ≤ 0.50
And
The amorphization rate X (%) represented by the following formula (1) is 85% or more.
X = 100- (Ic / (Ic + Ia)) x 100 ... (1)
Ic: Crystalline scattering integral strength Ia: Amorphous scattering integral strength

本発明の軟磁性合金粉末は、上記の特徴を有することにより、保磁力HcJが十分に低くなる。さらに、本発明の軟磁性合金粉末を用いて透磁率が高い圧粉磁心等を得ることができる。 The soft magnetic alloy powder of the present invention has the above-mentioned characteristics, so that the coercive force HcJ is sufficiently low. Further, a powder magnetic core having a high magnetic permeability can be obtained by using the soft magnetic alloy powder of the present invention.

本発明の軟磁性合金粉末は、体積基準での粒度分布におけるD50をrとして、粒子径がr以上2r以下である軟磁性合金粒子の平均円形度が0.70以上であってもよい。 In the soft magnetic alloy powder of the present invention, the average circularity of the soft magnetic alloy particles having a particle diameter of r or more and 2r or less may be 0.70 or more, where D50 in the particle size distribution on a volume basis is r.

本発明の軟磁性合金粉末は、体積基準での粒度分布におけるD50をrとして、粒子径がr以上2r以下である軟磁性合金粉末の平均円形度が0.90以上であってもよい。 In the soft magnetic alloy powder of the present invention, the average circularity of the soft magnetic alloy powder having a particle size of r or more and 2r or less may be 0.90 or more, where D50 in the particle size distribution on a volume basis is r.

本発明の軟磁性合金粉末は、粒子径が25μm以上30μm以下である軟磁性合金粉末の平均円形度が0.70以上であってもよい。 The soft magnetic alloy powder of the present invention may have an average circularity of 0.70 or more of the soft magnetic alloy powder having a particle size of 25 μm or more and 30 μm or less.

本発明の軟磁性合金粉末は、粒子径が25μm以上30μm以下である軟磁性合金粉末の平均円形度が0.90以上であってもよい。 The soft magnetic alloy powder of the present invention may have an average circularity of 0.90 or more of the soft magnetic alloy powder having a particle size of 25 μm or more and 30 μm or less.

本発明の軟磁性合金粉末は、粒子径が5μm以上10μm以下である軟磁性合金粉末の平均円形度が0.70以上であってもよい。 The soft magnetic alloy powder of the present invention may have an average circularity of 0.70 or more of the soft magnetic alloy powder having a particle size of 5 μm or more and 10 μm or less.

本発明の軟磁性合金粉末は、粒子径が5μm以上10μm以下である軟磁性合金粉末の平均円形度が0.90以上であってもよい。 The soft magnetic alloy powder of the present invention may have an average circularity of 0.90 or more of the soft magnetic alloy powder having a particle size of 5 μm or more and 10 μm or less.

0.0001≦e+f≦0.051であってもよい。 0.0001 ≦ e + f ≦ 0.051 may be set.

0.080<d<0.100であってもよい。 It may be 0.080 <d <0.100.

0.030<e≦0.050であってもよい。 It may be 0.030 <e ≦ 0.050.

0≦a<0.020であってもよい。 0 ≦ a <0.020 may be satisfied.

本発明の軟磁性合金粉末は、ナノ結晶粒子を含有してもよい。 The soft magnetic alloy powder of the present invention may contain nanocrystal particles.

本発明の圧粉磁心は上記の軟磁性合金粉末を含む。 The dust core of the present invention includes the above-mentioned soft magnetic alloy powder.

本発明の磁性部品は上記の軟磁性合金粉末を含む。 The magnetic component of the present invention includes the above-mentioned soft magnetic alloy powder.

本発明の電子機器は上記の軟磁性合金粉末を含む。 The electronic device of the present invention contains the above-mentioned soft magnetic alloy powder.

図1はX線結晶構造解析により得られるチャートの一例である。FIG. 1 is an example of a chart obtained by X-ray crystal structure analysis. 図2は図1のチャートをプロファイルフィッティングすることにより得られるパターンの一例である。FIG. 2 is an example of a pattern obtained by profile fitting the chart of FIG. 図3は粒度分布を示すグラフである。FIG. 3 is a graph showing the particle size distribution. 図4は粒度分布を示すグラフである。FIG. 4 is a graph showing the particle size distribution. 図5はモフォロギG3による観察結果である。FIG. 5 shows the observation results by the mophorogi G3. 図6Aはアトマイズ装置の模式図である。FIG. 6A is a schematic view of the atomizing device. 図6Bは図6Aの要部拡大模式図である。FIG. 6B is an enlarged schematic view of a main part of FIG. 6A.

以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.

上記の目的を達成するために、本実施形態に係る軟磁性合金粉末は、
組成式(Fe(1−(α+β))X1αX2β(1−(a+b+c+d+e+f))Siからなる軟磁性合金粉末であって、
X1はCoおよびNiからなる群から選択される1つ以上、
X2はAl,Mn,Ag,Zn,Sn,As,Sb,Cu,Cr,Bi,N,Oおよび希土類元素からなる群より選択される1つ以上、
MはNb,Hf,Zr,Ta,Mo,W,TiおよびVからなる群から選択される1つ以上であり、
0≦a≦0.150
0≦b≦0.200
0≦c≦0.200
0≦d≦0.200
0<e≦0.200
0<f≦0.0200
0.100≦a+b+c+d+e≦0.300
0.0001≦e+f≦0.220
α≧0
β≧0
0≦α+β≦0.50
であり、
下記式(1)に示す非晶質化率X(%)が85%以上であることを特徴とする。
X=100−(Ic/(Ic+Ia))×100 ・・・(1)
Ic:結晶性散乱積分強度
Ia:非晶質性散乱積分強度
In order to achieve the above object, the soft magnetic alloy powder according to this embodiment is
Composition formula (Fe (1- (α + β)) X1 α X2 β ) (1- (a + b + c + d + e + f)) A soft magnetic alloy powder composed of M a B b P c S d C e S f .
X1 is one or more selected from the group consisting of Co and Ni,
X2 is one or more selected from the group consisting of Al, Mn, Ag, Zn, Sn, As, Sb, Cu, Cr, Bi, N, O and rare earth elements.
M is one or more selected from the group consisting of Nb, Hf, Zr, Ta, Mo, W, Ti and V.
0 ≤ a ≤ 0.150
0 ≦ b ≦ 0.200
0 ≤ c ≤ 0.200
0 ≦ d ≦ 0.200
0 <e ≤ 0.200
0 <f ≤ 0.0200
0.100 ≤ a + b + c + d + e ≤ 0.300
0.0001 ≤ e + f ≤ 0.220
α ≧ 0
β ≧ 0
0 ≤ α + β ≤ 0.50
And
The amorphization rate X (%) represented by the following formula (1) is 85% or more.
X = 100- (Ic / (Ic + Ia)) x 100 ... (1)
Ic: Crystalline scattering integral strength Ia: Amorphous scattering integral strength

本実施形態に係る軟磁性合金粉末は、上記の特徴を有することにより、保磁力HcJが十分に低くなる。さらに、ブロードな粒度分布となりやすくなる。その結果、本実施形態の軟磁性合金粉末を用いて透磁率μが高い圧粉磁心等を得ることができる。さらに、粒子径が特定の範囲内である軟磁性合金粉末の平均円形度が高くなる。その結果、さらに良好なHcJを有する軟磁性合金粉末を得ることができる。そして、さらに透磁率μが高い圧粉磁心等を得ることができる。 The soft magnetic alloy powder according to the present embodiment has the above-mentioned characteristics, so that the coercive force HcJ is sufficiently low. Furthermore, it tends to have a broad particle size distribution. As a result, a powder magnetic core having a high magnetic permeability μ can be obtained by using the soft magnetic alloy powder of the present embodiment. Further, the average circularity of the soft magnetic alloy powder having a particle size within a specific range is increased. As a result, a soft magnetic alloy powder having even better HcJ can be obtained. Then, a powder magnetic core or the like having a higher magnetic permeability μ can be obtained.

以下、本実施形態に係る軟磁性合金粉末の各成分について詳細に説明する。 Hereinafter, each component of the soft magnetic alloy powder according to the present embodiment will be described in detail.

MはNb,Hf,Zr,Ta,Mo,W,TiおよびVからなる群から選択される1つ以上である。 M is one or more selected from the group consisting of Nb, Hf, Zr, Ta, Mo, W, Ti and V.

Mの含有量(a)は0≦a≦0.150を満たす。すなわち、本実施形態に係る軟磁性合金粉末はMを含まなくてもよい。HcJを低下させる観点からは、0≦a≦0.070を満たすことが好ましい。aが増えるにつれて、飽和磁化が低下しやすくなる。 The content (a) of M satisfies 0 ≦ a ≦ 0.150. That is, the soft magnetic alloy powder according to this embodiment does not have to contain M. From the viewpoint of lowering HcJ, it is preferable to satisfy 0 ≦ a ≦ 0.070. As a increases, the saturation magnetization tends to decrease.

0≦a<0.020を満たすことがさらに好ましい。0≦a≦0.019を満たしてもよい。aが上記の数値範囲内であることにより、飽和磁化をさらに向上させることができる。 It is more preferable to satisfy 0 ≦ a <0.020. 0 ≦ a ≦ 0.019 may be satisfied. When a is within the above numerical range, the saturation magnetization can be further improved.

Bの含有量(b)は0≦b≦0.200を満たす。すなわち、本実施形態に係る軟磁性合金粉末はBを含まなくてもよい。また、0.060≦b≦0.200であってもよい。bが大きすぎる場合には、飽和磁化が低下しやすくなる。 The content (b) of B satisfies 0 ≦ b ≦ 0.200. That is, the soft magnetic alloy powder according to this embodiment does not have to contain B. Further, 0.060 ≦ b ≦ 0.200 may be satisfied. If b is too large, the saturation magnetization tends to decrease.

Pの含有量(c)は0≦c≦0.200を満たす。すなわち、本実施形態に係る軟磁性合金粉末はPを含まなくてもよい。また、0≦c≦0.150であってもよい。cが大きすぎる場合には、bが大きすぎる場合と同様に飽和磁化が低下しやすくなる。 The content (c) of P satisfies 0 ≦ c ≦ 0.200. That is, the soft magnetic alloy powder according to this embodiment does not have to contain P. Further, 0 ≦ c ≦ 0.150 may be set. When c is too large, the saturation magnetization tends to decrease as in the case where b is too large.

Siの含有量(d)は0≦d≦0.200を満たす。すなわち、本実施形態に係る軟磁性合金粉末はSiを含まなくてもよい。0.080<d<0.100であってもよく、0.085≦d≦0.095であってもよい。dが大きすぎる場合には、軟磁性合金粉末の円形度が低下しやすくなる。 The Si content (d) satisfies 0 ≦ d ≦ 0.200. That is, the soft magnetic alloy powder according to this embodiment does not have to contain Si. It may be 0.080 <d <0.100, or 0.085 ≦ d ≦ 0.095. If d is too large, the circularity of the soft magnetic alloy powder tends to decrease.

Cの含有量(e)は0<e≦0.200を満たす。すなわち、本実施形態に係る軟磁性合金粉末はCを必ず含む。また、0.001≦e≦0.150であってもよく、0.030<e≦0.050であってもよい。本実施形態に係る軟磁性合金粉末はCを含むことにより、HcJが小さくなりやすくなる。eが大きすぎる場合には、bが大きすぎる場合、および、cが大きすぎる場合と同様に飽和磁化が低下しやすくなる。 The content (e) of C satisfies 0 <e ≦ 0.200. That is, the soft magnetic alloy powder according to this embodiment always contains C. Further, 0.001 ≦ e ≦ 0.150 may be set, and 0.030 <e ≦ 0.050 may be set. Since the soft magnetic alloy powder according to the present embodiment contains C, HcJ tends to be small. When e is too large, the saturation magnetization tends to decrease as in the case where b is too large and c is too large.

Sの含有量(f)は0<f≦0.0200を満たす。すなわち、本実施形態に係る軟磁性合金粉末はSを必ず含む。また、0.0001≦f≦0.0200であってもよい。本実施形態に係る軟磁性合金粉末はSを含むことにより、ブロードな粒度分布となりやすくなり、軟磁性合金粉末を用いて作製された圧粉磁心等の透磁率μが上昇しやすくなる。ただし、本実施形態に係る軟磁性合金粉末がCを含有せずにSを含有する場合には、HcJが大きくなりすぎてしまう。また、圧粉磁心等の透磁率μも低下しやすくなる。fが大きすぎる場合には、軟磁性合金粉末が結晶粒径100nmを超える結晶を含みやすくなる。そして、軟磁性合金粉末が結晶粒径100nmを超える結晶を含む場合には、HcJが著しく上昇し、軟磁性合金粉末を用いた圧粉磁心等の透磁率μが低下しやすくなる。 The content (f) of S satisfies 0 <f ≦ 0.0200. That is, the soft magnetic alloy powder according to this embodiment always contains S. Further, 0.0001 ≦ f ≦ 0.0200 may be satisfied. Since the soft magnetic alloy powder according to the present embodiment contains S, it tends to have a broad particle size distribution, and the magnetic permeability μ of the dust core or the like produced by using the soft magnetic alloy powder tends to increase. However, when the soft magnetic alloy powder according to the present embodiment contains S instead of C, HcJ becomes too large. In addition, the magnetic permeability μ of the dust core or the like tends to decrease. When f is too large, the soft magnetic alloy powder tends to contain crystals having a crystal grain size of more than 100 nm. When the soft magnetic alloy powder contains crystals having a crystal particle size of more than 100 nm, HcJ increases remarkably, and the magnetic permeability μ of the dust core or the like using the soft magnetic alloy powder tends to decrease.

また、本実施形態に係る軟磁性合金粉末は、0.100≦a+b+c+d+e≦0.300を満たす。また、0.240≦a+b+c+d+e≦0.300であってもよい。a+b+c+d+eが上記の範囲内であることにより、各種特性が向上しやすくなる。a+b+c+d+eが小さすぎる場合には、軟磁性合金粉末が結晶粒径100nmを超える結晶を含む結晶となりやすくなる。a+b+c+d+eが大きすぎる場合には、飽和磁化が低下しやすくなる。 Further, the soft magnetic alloy powder according to the present embodiment satisfies 0.100 ≦ a + b + c + d + e ≦ 0.300. Further, 0.240 ≦ a + b + c + d + e ≦ 0.300 may be set. When a + b + c + d + e is within the above range, various characteristics can be easily improved. If a + b + c + d + e is too small, the soft magnetic alloy powder tends to become crystals containing crystals having a crystal grain size of more than 100 nm. If a + b + c + d + e is too large, the saturation magnetization tends to decrease.

また、本実施形態に係る軟磁性合金粉末は、0.0001≦e+f≦0.220を満たす。0.0001≦e+f≦0.051であってもよい。e+fが上記の範囲内であることにより、各種特性が向上しやすくなる。 Further, the soft magnetic alloy powder according to the present embodiment satisfies 0.0001 ≦ e + f ≦ 0.220. 0.0001 ≦ e + f ≦ 0.051 may be set. When e + f is within the above range, various characteristics can be easily improved.

以上より、CとSのうち、Cのみを含有しSを含有しない場合には軟磁性合金粉末の粒度分布がシャープとなる。その結果、HcJは良好になるものの、当該軟磁性合金粉末を用いた圧粉磁心等の透磁率μは向上しない。CとSのうち、Sのみを含有しCを含有しない場合には、HcJが悪化し、当該軟磁性合金粉末を用いた圧粉磁心等の透磁率μの向上効果が小さい。また、CとSとを両方とも含むもののe+fが大きすぎる場合には、軟磁性合金粉末が結晶粒径100nmを超える結晶を含む結晶となりやすくなる。 From the above, when only C is contained and S is not contained among C and S, the particle size distribution of the soft magnetic alloy powder becomes sharp. As a result, although HcJ is improved, the magnetic permeability μ of the dust core or the like using the soft magnetic alloy powder is not improved. Of C and S, when only S is contained and C is not contained, HcJ deteriorates, and the effect of improving the magnetic permeability μ of the dust core or the like using the soft magnetic alloy powder is small. Further, when e + f is too large even though both C and S are contained, the soft magnetic alloy powder tends to be a crystal containing crystals having a crystal grain size of more than 100 nm.

Feの含有量(1−(a+b+c+d+e+f))については特に制限はないが、0.699≦1−(a+b+c+d+e+f)≦0.8999であってもよい。1−(a+b+c+d+e+f)を上記の範囲内とすることで、軟磁性合金粉末が結晶粒径100nmを超える結晶を含みにくくなる。また、Feの含有量(1−(a+b+c+d+e+f))が0.740以上であってもよい。1−(a+b+c+d+e+f)を0.740以上とすることで、飽和磁化が大きくなりやすくなる。 The Fe content (1- (a + b + c + d + e + f)) is not particularly limited, but may be 0.699 ≦ 1- (a + b + c + d + e + f) ≦ 0.8999. By setting 1- (a + b + c + d + e + f) within the above range, the soft magnetic alloy powder is less likely to contain crystals having a crystal grain size of more than 100 nm. Further, the Fe content (1- (a + b + c + d + e + f)) may be 0.740 or more. By setting 1- (a + b + c + d + e + f) to 0.740 or more, the saturation magnetization tends to increase.

また、本実施形態の軟磁性合金粉末においては、Feの一部をX1および/またはX2で置換してもよい。 Further, in the soft magnetic alloy powder of the present embodiment, a part of Fe may be replaced with X1 and / or X2.

X1はCoおよびNiからなる群から選択される1つ以上である。X1の含有量に関してはα=0でもよい。すなわち、X1は含有しなくてもよい。また、X1の原子数は組成全体の原子数を100at%として40at%以下であってもよい。すなわち、0≦α{1−(a+b+c+d+e+f)}≦0.400を満たしてもよい。 X1 is one or more selected from the group consisting of Co and Ni. The content of X1 may be α = 0. That is, X1 does not have to be contained. Further, the number of atoms of X1 may be 40 at% or less, assuming that the number of atoms in the entire composition is 100 at%. That is, 0 ≦ α {1- (a + b + c + d + e + f)} ≦ 0.400 may be satisfied.

X2はAl,Mn,Ag,Zn,Sn,As,Sb,Cu,Cr,Bi,N,Oおよび希土類元素からなる群より選択される1つ以上である。また、特にHcJを低下させる観点からは、X2はAl,Zn,Sn,Cu,Cr,Biからなる群より選択される1つ以上であってもよい。X2の含有量に関してはβ=0でもよい。すなわち、X2は含有しなくてもよい。また、X2の原子数は組成全体の原子数を100at%として3.0at%以下であってもよい。すなわち、0≦β{1−(a+b+c+d+e+f)}≦0.030を満たしてもよい。 X2 is one or more selected from the group consisting of Al, Mn, Ag, Zn, Sn, As, Sb, Cu, Cr, Bi, N, O and rare earth elements. Further, from the viewpoint of lowering HcJ in particular, X2 may be one or more selected from the group consisting of Al, Zn, Sn, Cu, Cr and Bi. Regarding the content of X2, β = 0 may be used. That is, X2 does not have to be contained. Further, the number of atoms of X2 may be 3.0 at% or less, assuming that the number of atoms in the entire composition is 100 at%. That is, 0 ≦ β {1- (a + b + c + d + e + f)} ≦ 0.030 may be satisfied.

FeをX1および/またはX2に置換する置換量の範囲としては、原子数ベースでFeの半分以下とする。すなわち、0≦α+β≦0.50とする。 The range of the substitution amount for substituting Fe with X1 and / or X2 is half or less of Fe on the basis of the number of atoms. That is, 0 ≦ α + β ≦ 0.50.

なお、本実施形態の軟磁性合金粉末は上記以外の元素を不可避的不純物として含んでいてもよい。例えば、軟磁性合金粉末100重量%に対して0.1重量%以下、含んでいてもよい。 The soft magnetic alloy powder of the present embodiment may contain elements other than the above as unavoidable impurities. For example, it may be contained in an amount of 0.1% by weight or less with respect to 100% by weight of the soft magnetic alloy powder.

また、本実施形態の軟磁性合金粉末は、非晶質からなる構造を有する。具体的には、下記式(1)に示す非晶質化率Xが85%以上である。
X=100−(Ic/(Ic+Ia)×100)…(1)
Ic:結晶性散乱積分強度
Ia:非晶質性散乱積分強度
Further, the soft magnetic alloy powder of the present embodiment has a structure made of amorphous material. Specifically, the amorphization rate X represented by the following formula (1) is 85% or more.
X = 100- (Ic / (Ic + Ia) x 100) ... (1)
Ic: Crystalline scattering integral strength Ia: Amorphous scattering integral strength

非晶質化率Xが高い軟磁性合金粉末は、結晶磁気異方性が小さくなる。したがって、非晶質化率Xが高い軟磁性合金粉末を用いた圧粉磁心は磁気損失が小さくなる。 The soft magnetic alloy powder having a high amorphization rate X has a small crystal magnetic anisotropy. Therefore, the powder magnetic core using the soft magnetic alloy powder having a high amorphization rate X has a small magnetic loss.

非晶質化率Xは、軟磁性合金粉末に対してXRDによりX線結晶構造解析を実施し、相の同定を行い、結晶化したFe又は化合物のピーク(Ic:結晶性散乱積分強度、Ia:非晶質性散乱積分強度)を読み取り、そのピーク強度から結晶化率を割り出し、上記式(1)により算出する。以下、算出方法をさらに具体的に説明する。 The amorphization rate X is determined by performing X-ray crystal structure analysis on the soft magnetic alloy powder by XRD, identifying the phase, and peaking the crystallized Fe or compound (Ic: crystalline scattering integral intensity, Ia). : Amorphous scattering integrated intensity) is read, the crystallinity is calculated from the peak intensity, and calculated by the above equation (1). Hereinafter, the calculation method will be described in more detail.

本実施形態に係る軟磁性合金粉末についてXRDによりX線結晶構造解析を行い、図1に示すようなチャートを得る。これを、下記式(2)のローレンツ関数を用いて、プロファイルフィッティングを行い、図2に示すような結晶性散乱積分強度を示す結晶成分パターンα、非晶質性散乱積分強度を示す非晶成分パターンα、およびそれらを合わせたパターンαc+aを得る。得られたパターンの結晶性散乱積分強度および非晶質性散乱積分強度から、上記式(1)により非晶質化率Xを求める。なお、測定範囲は、非晶質由来のハローが確認できる回析角2θ=30°〜60°の範囲とする。この範囲で、XRDによる実測の積分強度とローレンツ関数を用いて算出した積分強度との誤差が1%以内になるようにする。 The soft magnetic alloy powder according to the present embodiment is subjected to X-ray crystal structure analysis by XRD to obtain a chart as shown in FIG. This is profile-fitted using the Lorentz function of the following equation (2), and the crystal component pattern α c showing the crystalline scattering integral strength and the amorphous scattering integral strength as shown in FIG. 2 are shown. A component pattern α a and a combined pattern α c + a are obtained. From the crystalline scattering integral intensity and the amorphous scattering integral intensity of the obtained pattern, the amorphization rate X is obtained by the above formula (1). The measurement range is a diffraction angle of 2θ = 30 ° to 60 ° at which an amorphous halo can be confirmed. Within this range, the error between the integrated intensity actually measured by XRD and the integrated intensity calculated by using the Lorentz function should be within 1%.

Figure 2020180374
Figure 2020180374

なお、本実施形態の軟磁性合金粉末は、非晶質化率X(%)が85%以上であればナノ結晶粒子を含んでいてもよい。ナノ結晶粒子とは、結晶粒径が50nm以下であるナノ結晶を含む粒子のことである。また、軟磁性合金粉末がナノ結晶粒子を含んでいるか否かはXRDにより確認することができる。軟磁性合金粉末がナノ結晶粒子を含む場合には、HcJをさらに低くしやすくなり、軟磁性合金粉末を用いた圧粉磁心等の透磁率μが上昇しやすくなる。 The soft magnetic alloy powder of the present embodiment may contain nanocrystal particles as long as the amorphization rate X (%) is 85% or more. The nanocrystal particles are particles containing nanocrystals having a crystal grain size of 50 nm or less. Further, it can be confirmed by XRD whether or not the soft magnetic alloy powder contains nanocrystal particles. When the soft magnetic alloy powder contains nanocrystal particles, HcJ is likely to be further lowered, and the magnetic permeability μ of the dust core or the like using the soft magnetic alloy powder is likely to increase.

なお、ナノ結晶粒子には、多数のナノ結晶が含まれることが通常である。すなわち、後述する軟磁性合金粉末の粒子径とナノ結晶の結晶粒径とは異なる。 It should be noted that the nanocrystal particles usually include a large number of nanocrystals. That is, the particle size of the soft magnetic alloy powder described later and the crystal grain size of the nanocrystals are different.

また、本実施形態の軟磁性合金粉末は、球形度が高い軟磁性合金粉末であってもよい。上記の組成を有することにより、球形に近い粒子形状の軟磁性合金粉末、すなわち、球形度の高い軟磁性合金粉末を得ることができる。 Further, the soft magnetic alloy powder of the present embodiment may be a soft magnetic alloy powder having a high sphericality. By having the above composition, it is possible to obtain a soft magnetic alloy powder having a particle shape close to a sphere, that is, a soft magnetic alloy powder having a high degree of sphericity.

一般的には、軟磁性合金粉末の非晶質化率Xが高いほど塑性変形が生じにくくなる傾向にある。そのため、圧粉磁心等の成形時に充填率が上昇しにくくなる。軟磁性合金粉末の粒子形状を球形に近くすることで、当該軟磁性合金粉末を用いた圧粉磁心等の充填率を上昇させることができ、保磁力HcJおよび透磁率μ等の各種特性を向上させることができる。 In general, the higher the amorphization rate X of the soft magnetic alloy powder, the less likely it is that plastic deformation will occur. Therefore, the filling rate is less likely to increase during molding of the dust core or the like. By making the particle shape of the soft magnetic alloy powder close to a sphere, the filling rate of the dust core or the like using the soft magnetic alloy powder can be increased, and various characteristics such as coercive force HcJ and magnetic permeability μ are improved. Can be made to.

さらに、本実施形態の軟磁性合金粉末は、粒子径が大きな粉末の球形度が高いことが好ましい。粒子径が大きな粉末の球形度が高いことにより、当該軟磁性合金粉末を用いた圧粉磁心等の充填率をさらに上昇させることが可能となり、透磁率μが上昇しやすくなる。 Further, the soft magnetic alloy powder of the present embodiment preferably has a large particle size and a high sphericality. Since the sphericity of the powder having a large particle size is high, it is possible to further increase the filling rate of the dust core or the like using the soft magnetic alloy powder, and the magnetic permeability μ is likely to increase.

以下、本実施形態の軟磁性合金粉末における粒子形状および粒子径(粒度分布)の評価方法について説明する。 Hereinafter, a method for evaluating the particle shape and particle size (particle size distribution) of the soft magnetic alloy powder of the present embodiment will be described.

上記の通り、粒子形状は球形に近いほど当該軟磁性合金粉末を用いた圧粉磁心等の充填率を向上させることができ、保磁力等の各種特性を向上させることができる。 As described above, the closer the particle shape is to a spherical shape, the more the filling rate of the dust core or the like using the soft magnetic alloy powder can be improved, and various characteristics such as coercive force can be improved.

一般的に、軟磁性合金粉末の粒度分布の基準には体積基準と個数基準とがある。体積基準の粒度分布は、横軸を粒子径、縦軸を体積基準での頻度とするグラフで表される。個数基準での粒度分布は、横軸を粒子径、縦軸を個数基準での頻度とするグラフで表される。両者を重ねると、例えば図3のようなグラフとなる。実線が体積基準での粒度分布、破線が個数基準での粒度分布である。体積基準での粒子径のD50をrとして、rおよび2rの位置を図3に記載している。 Generally, there are a volume standard and a number standard as a standard for the particle size distribution of the soft magnetic alloy powder. The volume-based particle size distribution is represented by a graph in which the horizontal axis is the particle diameter and the vertical axis is the frequency based on the volume. The particle size distribution based on the number is represented by a graph in which the horizontal axis is the particle size and the vertical axis is the frequency based on the number. When both are overlapped, a graph as shown in FIG. 3 is obtained, for example. The solid line is the particle size distribution based on the volume, and the broken line is the particle size distribution based on the number. The positions of r and 2r are shown in FIG. 3, where D50 of the particle diameter on a volume basis is r.

体積基準による粒度分布と個数基準での粒度分布の違いは、粒子1つ1つがデータに反映される度合いの違いによる。体積基準では、粒子1つ1つがデータに反映される度合いが、その体積に比例することになる。つまり、小型粒子がデータに反映される度合いが小さくなる。一方、個数基準では、粒子1つ1つがデータに反映される度合いが同等である。すなわち、小型粒子がデータに反映される度合いが大きくなる。そのため、上記の粒度分布の違いが生じる。 The difference between the volume-based particle size distribution and the number-based particle size distribution depends on the degree to which each particle is reflected in the data. On a volume basis, the degree to which each particle is reflected in the data is proportional to its volume. That is, the degree to which small particles are reflected in the data is reduced. On the other hand, in the number standard, the degree to which each particle is reflected in the data is the same. That is, the degree to which small particles are reflected in the data increases. Therefore, the above-mentioned difference in particle size distribution occurs.

上記の通り、本実施形態の軟磁性合金粉末は、粒子径が大きな粉末の球形度が高いことが好ましい。具体的には、個数基準での粒子径がr以上2r以下である粒子の平均円形度が0.70以上であってもよく、0.90以上であってもよい。また、軟磁性合金粉末全体に対する粒子径がr以上2r以下である粒子の個数基準での含有割合が1%以上25%以下であってもよい。なお、個数基準での粒度分布のうち、粒子径がr以上2r以下である部分の粒度分布のみを抜粋すると図4になる。 As described above, the soft magnetic alloy powder of the present embodiment preferably has a large particle size and a high sphericality. Specifically, the average circularity of particles having a particle diameter of r or more and 2r or less based on the number of particles may be 0.70 or more, or 0.90 or more. Further, the content ratio based on the number of particles having a particle diameter of r or more and 2r or less with respect to the entire soft magnetic alloy powder may be 1% or more and 25% or less. FIG. 4 shows an excerpt of only the particle size distribution of the portion where the particle size is r or more and 2r or less from the particle size distribution based on the number.

本実施形態の軟磁性合金粉末は、個数基準での粒子径が25μm以上30μm以下である粒子の平均円形度が0.70以上であってもよく、0.90以上であってもよい。この場合には、個数基準での粒子径のD50が0.5μm以上25μm以下であってもよい。また、軟磁性合金粉末全体に対する粒子径が25μm以上30μm以下である粒子の個数基準での含有割合が0.1%以上10%以下であってもよい。 In the soft magnetic alloy powder of the present embodiment, the average circularity of the particles having a particle diameter of 25 μm or more and 30 μm or less based on the number of particles may be 0.70 or more, or 0.90 or more. In this case, the particle size D50 based on the number may be 0.5 μm or more and 25 μm or less. Further, the content ratio based on the number of particles having a particle diameter of 25 μm or more and 30 μm or less with respect to the entire soft magnetic alloy powder may be 0.1% or more and 10% or less.

本実施形態の軟磁性合金粉末は、個数基準での粒子径が5μm以上10μm以下である粒子の平均円形度が0.70以上であってもよく、0.90以上であってもよい。この場合には、個数基準での粒子径のD50が0.5μm以上5μm以下であってもよい。また、軟磁性合金粉末全体に対する粒子径が5μm以上10μm以下である粒子の個数基準での含有割合が0.1%以上10%以下であってもよい。 In the soft magnetic alloy powder of the present embodiment, the average circularity of the particles having a particle diameter of 5 μm or more and 10 μm or less based on the number of particles may be 0.70 or more, or 0.90 or more. In this case, the particle size D50 based on the number of particles may be 0.5 μm or more and 5 μm or less. Further, the content ratio based on the number of particles having a particle diameter of 5 μm or more and 10 μm or less with respect to the entire soft magnetic alloy powder may be 0.1% or more and 10% or less.

本実施形態では、体積基準での粒度分布および粒子径のD50(r)の評価方法には特に制限はない。例えば、フランホーファーの回折理論を利用したレーザ回折式の粒度分布測定装置により評価することができる。 In the present embodiment, there is no particular limitation on the method for evaluating the particle size distribution and the particle size D50 (r) on a volume basis. For example, it can be evaluated by a laser diffraction type particle size distribution measuring device using Franhofer's diffraction theory.

本実施形態では、個数基準での粒度分布等についてモフォロギG3(マルバーン・パナティカル社)を用いて評価する。モフォロギG3はエアーにより粉末を分散させ、個々の粒子形状を投影し、評価することができる装置である。光学顕微鏡またはレーザ顕微鏡で粒子径が概ね0.5μm〜数mmの範囲内である粒子形状を評価することができる。具体的には、図5に示す粒子形状測定結果1からもわかるように多数の粒子形状を一度に投影し評価することができる。しかし、実際には図5に示す粒子形状測定結果1に記載されているよりもはるかに多数の粒子形状を一度に投影し評価することができる。 In the present embodiment, the particle size distribution based on the number of pieces is evaluated using Mophoroggi G3 (Malburn Panatic). Moforogi G3 is a device capable of dispersing powder with air, projecting individual particle shapes, and evaluating them. It is possible to evaluate the particle shape having a particle diameter in the range of about 0.5 μm to several mm with an optical microscope or a laser microscope. Specifically, as can be seen from the particle shape measurement result 1 shown in FIG. 5, a large number of particle shapes can be projected and evaluated at once. However, in reality, a much larger number of particle shapes than those shown in the particle shape measurement result 1 shown in FIG. 5 can be projected and evaluated at one time.

モフォロギG3は多数の粒子の投影図を一度に作製し評価することができるため、従来のSEM観察などでの評価方法と比べて短時間で多数の粒子の形状を評価することができる。例えば後述する実施例では20000個の粒子について投影図を作製し、個々の粒子の粒子径および円形度を自動的に算出し、粒子径が特定の範囲内である粒子の平均円形度を算出している。これに対し、従来のSEM観察では、SEM画像を用いて1個1個の粒子について円形度を計算するため、短時間で多数の粒子の形状を評価することが難しい。 Since the morphologi G3 can prepare and evaluate a projection drawing of a large number of particles at one time, it is possible to evaluate the shape of a large number of particles in a short time as compared with the evaluation method by conventional SEM observation or the like. For example, in the example described later, a projection drawing is created for 20000 particles, the particle size and circularity of each particle are automatically calculated, and the average circularity of particles whose particle size is within a specific range is calculated. ing. On the other hand, in the conventional SEM observation, since the circularity is calculated for each particle using the SEM image, it is difficult to evaluate the shape of a large number of particles in a short time.

粒子の円形度は投影図における面積をS、投影図における周囲の長さをLとして、4πS/Lで表される。円の円形度が1であり、粒子の投影図の円形度が1に近いほど、粒子の球形度が高くなる。 The circularity of a particle is represented by 4πS / L 2, where S is the area in the projection drawing and L is the peripheral length in the projection drawing. The circularity of the circle is 1, and the closer the circularity of the projection drawing of the particles is to 1, the higher the sphericity of the particles.

また、本実施形態の軟磁性合金粉末がブロードな粒度分布を有するか否かは、個数基準での粒子径の標準偏差σの大きさにより評価することができる。 Further, whether or not the soft magnetic alloy powder of the present embodiment has a broad particle size distribution can be evaluated by the size of the standard deviation σ of the particle size based on the number.

なお、圧粉磁心等に含まれる軟磁性合金粉末の各種粒度分布を評価する場合には、従来のSEM観察による方法を用いることができる。圧粉磁心等の任意の断面に含まれる粒子1個1個についてSEM画像から粒子径および円形度を算出して評価してもよい。 In addition, when evaluating various particle size distributions of the soft magnetic alloy powder contained in the dust core or the like, a conventional method by SEM observation can be used. The particle diameter and circularity may be calculated and evaluated from the SEM image for each particle contained in an arbitrary cross section such as a dust core.

本発明者らは、軟磁性合金粉末の組成を制御することにより、ブロードな粒度分布を有する軟磁性合金粉末を得ることができることを見出した。また、軟磁性合金粉末の組成を制御することにより、軟磁性合金粉末全体のHcJを制御することができる。 The present inventors have found that a soft magnetic alloy powder having a broad particle size distribution can be obtained by controlling the composition of the soft magnetic alloy powder. Further, by controlling the composition of the soft magnetic alloy powder, the HcJ of the entire soft magnetic alloy powder can be controlled.

そして、本発明者らは、軟磁性合金粉末全体のHcJが好適であり、ブロードな粒度分布を有する軟磁性合金粉末を用いた圧粉磁心等における透磁率μが良好になることを見出した。 Then, the present inventors have found that HcJ of the entire soft magnetic alloy powder is suitable, and the magnetic permeability μ in a dust core or the like using the soft magnetic alloy powder having a broad particle size distribution is good.

また、軟磁性合金粉末全体のHcJおよび軟磁性合金粉末を用いた圧粉磁心等の透磁率μおよび耐電圧特性等をさらに良好にするためには、粒子径が大きな軟磁性合金粉末の球形度を制御することが軟磁性合金粉末全体の球形度を制御するよりも重要であることを本発明者らは見出した。具体的には個数基準での粒子径がr以上2r以下である粒子の平均円形度および個数基準での粒子径が25μm以上30μm以下である粒子の平均円形度が高いほど透磁率μおよび耐電圧特性が良好になりやすい。 Further, in order to further improve the magnetic permeability μ and withstand voltage characteristics of the HcJ of the entire soft magnetic alloy powder and the powder magnetic core using the soft magnetic alloy powder, the sphericality of the soft magnetic alloy powder having a large particle size The present inventors have found that controlling the spheroidity of the soft magnetic alloy powder as a whole is more important than controlling the spheroidity. Specifically, the higher the average circularity of particles having a particle size of r or more and 2r or less based on the number of particles and the average circularity of particles having a particle size of 25 μm or more and 30 μm or less based on the number of particles, the greater the magnetic permeability μ and the withstand voltage. The characteristics tend to be good.

なお、軟磁性合金粉末全体の球形度は、製造方法を制御することによっても変化させることができる。しかし、製造方法のみを制御しても、粒子径が大きな軟磁性合金粉末は粒子径が小さな軟磁性合金粉末よりも球形度を変化させにくい。つまり、粒子径が大きな軟磁性合金粉末の球形度を制御するためには、軟磁性合金粉末の組成を制御し、製造方法により軟磁性粉末全体の粒子形状を変化させやすくすることが重要であることを見出した。 The sphericality of the soft magnetic alloy powder as a whole can also be changed by controlling the manufacturing method. However, even if only the manufacturing method is controlled, the soft magnetic alloy powder having a large particle size is less likely to change the sphericity than the soft magnetic alloy powder having a small particle size. That is, in order to control the sphericity of the soft magnetic alloy powder having a large particle size, it is important to control the composition of the soft magnetic alloy powder and make it easy to change the particle shape of the entire soft magnetic powder by the manufacturing method. I found that.

ここで、軟磁性合金粉末全体の体積分布に対し、互いに同じ合計体積割合である粒子径が小さな軟磁性合金粉末および粒子径が大きな軟磁性合金粉末について考える。互いに同じ合計体積割合であれば、粒子径が小さな軟磁性合金粉末は粒子径が大きな軟磁性合金粉末に対して、粒子数が非常に多くなる。例えば、互いに同じ合計体積割合であれば、粒子径が10μmの軟磁性合金粉末における粒子数は、粒子径が1μmの軟磁性合金粉末粒子における粒子数の約1/1000になる。 Here, consider a soft magnetic alloy powder having a small particle size and a soft magnetic alloy powder having a large particle size, which are the same total volume ratio with respect to the volume distribution of the entire soft magnetic alloy powder. If the total volume ratio is the same as each other, the soft magnetic alloy powder having a small particle size has a much larger number of particles than the soft magnetic alloy powder having a large particle size. For example, if the total volume ratio is the same as each other, the number of particles in the soft magnetic alloy powder having a particle diameter of 10 μm is about 1/1000 of the number of particles in the soft magnetic alloy powder particles having a particle diameter of 1 μm.

すなわち、軟磁性合金粉末全体の球形度が、粒子径が大きく粒子数が少ない軟磁性合金粉末の球形度に与える影響は小さい。そして、粒子径が大きな軟磁性合金粉末の球形度に関わらず、軟磁性合金粉末全体の球形度が変化し得る。 That is, the influence of the sphericity of the entire soft magnetic alloy powder on the sphericity of the soft magnetic alloy powder having a large particle size and a small number of particles is small. Then, regardless of the sphericity of the soft magnetic alloy powder having a large particle size, the sphericity of the entire soft magnetic alloy powder can change.

以下、本実施形態の軟磁性合金粉末の製造方法について説明する Hereinafter, a method for producing the soft magnetic alloy powder of the present embodiment will be described.

本実施形態の軟磁性合金粉末の製造方法には特に限定はない。例えばアトマイズ法が挙げられる。アトマイズ法の種類も任意であり、水アトマイズ法、ガスアトマイズ法などが挙げられる。 The method for producing the soft magnetic alloy powder of the present embodiment is not particularly limited. For example, the atomization method can be mentioned. The type of atomization method is also arbitrary, and examples thereof include a water atomization method and a gas atomization method.

以下、水アトマイズ法による軟磁性合金粉末の製造方法について記載する。まず、原料を準備する。準備する原料は金属等の単体でもよく、合金でもよい。原料の形態にも特に制限はない。例えば、インゴット、チャンク(塊)、またはショット(粒子)が挙げられる。 Hereinafter, a method for producing a soft magnetic alloy powder by the water atomizing method will be described. First, prepare the raw materials. The raw material to be prepared may be a simple substance such as metal or an alloy. There are no particular restrictions on the form of the raw material. For example, ingots, chunks, or shots (particles).

次に準備した原料を秤量して混合する。この際、最終的に目的とする組成の軟磁性合金粉末が得られるように秤量する。そして、混合した原料を溶融、混合して溶融金属を得る。溶融、混合に用いる器具に特に制限はない。例えばルツボ等が用いられる。溶融金属の温度は、各金属元素の融点を考慮して決定すればよいが、たとえば1200〜1600℃とすることができる。 Next, the prepared raw materials are weighed and mixed. At this time, weigh the powder so that the soft magnetic alloy powder having the desired composition is finally obtained. Then, the mixed raw materials are melted and mixed to obtain a molten metal. There are no particular restrictions on the equipment used for melting and mixing. For example, a crucible or the like is used. The temperature of the molten metal may be determined in consideration of the melting point of each metal element, and can be, for example, 1200 to 1600 ° C.

そして、溶融金属から水アトマイズ法にて軟磁性合金粉末を作製する。具体的には、溶融金属をノズル等で噴出させ、噴出した溶融金属に高圧水流を衝突させて急冷することにより、軟磁性合金粉末を作製することができる。なお、溶融金属と軟磁性合金粉末との組成は実質的に一致する。 Then, a soft magnetic alloy powder is produced from the molten metal by a water atomization method. Specifically, a soft magnetic alloy powder can be produced by ejecting molten metal with a nozzle or the like and causing a high-pressure water stream to collide with the ejected molten metal to quench it. The compositions of the molten metal and the soft magnetic alloy powder are substantially the same.

ここで、目的とする軟磁性合金粉末の粒子径を得るためには、高圧水流の圧力や溶融金属の噴出量などを制御することで、粒子径を制御することが可能である。そして、目的とする粒度分布を有する軟磁性合金粉末が得られる。 Here, in order to obtain the target particle size of the soft magnetic alloy powder, it is possible to control the particle size by controlling the pressure of the high-pressure water flow, the amount of molten metal ejected, and the like. Then, a soft magnetic alloy powder having a desired particle size distribution can be obtained.

高圧水流の圧力は、例えば50MPa以上100MPa以下であってもよい。溶融金属の噴出量については、例えば1kg/min以上20kg/min以下であってもよい。 The pressure of the high-pressure water stream may be, for example, 50 MPa or more and 100 MPa or less. The amount of molten metal ejected may be, for example, 1 kg / min or more and 20 kg / min or less.

また、得られた非晶質である軟磁性合金粉末に対して熱処理を行って、軟磁性合金粉末にナノ結晶粒子を析出させてもよい。熱処理の条件は例えば350℃以上800℃以下で0.1分以上120分以下である。 Further, the obtained amorphous soft magnetic alloy powder may be heat-treated to precipitate nanocrystal particles on the soft magnetic alloy powder. The conditions of the heat treatment are, for example, 350 ° C. or higher and 800 ° C. or lower for 0.1 minute or longer and 120 minutes or shorter.

以下、ガスアトマイズ法による軟磁性合金粉末の製造方法について記載する。 Hereinafter, a method for producing a soft magnetic alloy powder by the gas atomizing method will be described.

本発明者らは、アトマイズ装置として、図6Aおよび図6Bに示すアトマイズ装置を用いる場合には、粒子径が大きな軟磁性合金粉末を作製しやすく、さらに非晶質である軟磁性金属粉末を得やすくなる。 When the atomizing apparatus shown in FIGS. 6A and 6B is used as the atomizing apparatus, the present inventors can easily produce a soft magnetic alloy powder having a large particle size, and further obtain an amorphous soft magnetic metal powder. It will be easier.

図6Aに示すように、アトマイズ装置10は、溶融金属供給部20と、金属供給部20の鉛直方向の下方に配置してある冷却部30とを有する。図面において、鉛直方向は、Z軸に沿う方向である。 As shown in FIG. 6A, the atomizing device 10 has a molten metal supply unit 20 and a cooling unit 30 arranged below the metal supply unit 20 in the vertical direction. In the drawings, the vertical direction is the direction along the Z axis.

溶融金属供給部20は、溶融金属21を収容する耐熱性容器22を有する。耐熱性容器22において、最終的に得られる軟磁性合金粉末の組成となるように秤量された各金属元素の原料が、加熱用コイル24により溶解され、溶融金属21となる。溶解時の温度、すなわち溶融金属21の温度は、各金属元素の原料の融点を考慮して決定すればよいが、たとえば1200〜1600℃とすることができる。 The molten metal supply unit 20 has a heat-resistant container 22 that houses the molten metal 21. In the heat-resistant container 22, the raw materials of each metal element weighed so as to have the composition of the finally obtained soft magnetic alloy powder are melted by the heating coil 24 to become the molten metal 21. The temperature at the time of melting, that is, the temperature of the molten metal 21, may be determined in consideration of the melting point of the raw material of each metal element, and may be, for example, 1200 to 1600 ° C.

溶融金属21は、吐出口23から冷却部30に向けて、滴下溶融金属21aとして吐出される。吐出された滴下溶融金属21aに向けて、ガス噴射ノズル26から高圧ガスが噴射され、滴下溶融金属21aは、多数の溶滴となり、ガスの流れに沿って筒体32の内面に向けて運ばれる。 The molten metal 21 is discharged as the dropped molten metal 21a from the discharge port 23 toward the cooling unit 30. High-pressure gas is injected from the gas injection nozzle 26 toward the discharged molten metal 21a, and the molten metal 21a becomes a large number of droplets and is carried toward the inner surface of the cylinder 32 along the gas flow. ..

ガス噴射ノズル26から噴射されるガスとしては、不活性ガスまたは還元性ガスが好ましい。不活性ガスとしては、例えば、窒素ガス、アルゴンガス、ヘリウムガスなどを用いることができる。還元性ガスとしては、例えば、アンモニア分解ガスなどを用いることができる。しかし、溶融金属21が酸化しにくい金属である場合には、ガス噴射ノズル26から噴射されるガスが空気であってもよい。 The gas injected from the gas injection nozzle 26 is preferably an inert gas or a reducing gas. As the inert gas, for example, nitrogen gas, argon gas, helium gas and the like can be used. As the reducing gas, for example, an ammonia decomposition gas or the like can be used. However, when the molten metal 21 is a metal that is difficult to oxidize, the gas injected from the gas injection nozzle 26 may be air.

筒体32の内面に向けて運ばれた滴下溶融金属21aは、筒体32の内部で逆円錐状に形成してある冷却液流れ50に衝突し、さらに分断され微細化されるとともに冷却固化され、固体状の合金粉末となる。筒体32の軸心Oは、鉛直線Zに対して所定角度θ1で傾斜してある。所定角度θ1としては、特に限定されないが、好ましくは、0〜45度である。このような角度範囲とすることで、吐出口23からの滴下溶融金属21aを、筒体32の内部で逆円錐状に形成してある冷却液流れ50に向けて吐出させ易くなる。 The dripping molten metal 21a carried toward the inner surface of the tubular body 32 collides with the coolant flow 50 formed in an inverted conical shape inside the tubular body 32, and is further divided into fine particles and cooled and solidified. , Becomes a solid alloy powder. The axial center O of the tubular body 32 is inclined at a predetermined angle θ1 with respect to the vertical straight line Z. The predetermined angle θ1 is not particularly limited, but is preferably 0 to 45 degrees. With such an angle range, the dropped molten metal 21a from the discharge port 23 can be easily discharged toward the coolant flow 50 formed in an inverted conical shape inside the tubular body 32.

筒体32の軸心Oに沿って下方には、排出部34が設けられ、冷却液流れ50に含まれる合金粉末を冷却液と共に、外部に排出可能になっている。冷却液と共に排出された合金粉末は、外部の貯留槽などで、冷却液と分離されて取り出される。なお、冷却液としては、特に限定されないが、冷却水が用いられる。 A discharge portion 34 is provided below the axial center O of the tubular body 32 so that the alloy powder contained in the coolant flow 50 can be discharged to the outside together with the coolant. The alloy powder discharged together with the coolant is separated from the coolant and taken out in an external storage tank or the like. The cooling liquid is not particularly limited, but cooling water is used.

本実施形態では、滴下溶融金属21aが逆円錐状に形成してある冷却液流れ50に衝突するので、冷却液流れが筒体32の内面33に沿っている場合に比べて、滴下溶融金属21aの溶滴の飛行時間が短縮される。飛行時間が短縮されると、急冷効果が促進され、得られる軟磁性合金粉末の非晶質化率Xが向上する。さらに、粒子径が大きな軟磁性合金粉末の球形度が大きくなりやすくなる。また、飛行時間が短縮されると、滴下溶融金属21aの溶滴が酸化されにくいので、得られる軟磁性合金粉末の微細化も促進されると共に軟磁性合金粉末の品質も向上する。 In the present embodiment, since the dropped molten metal 21a collides with the coolant flow 50 formed in an inverted conical shape, the dropped molten metal 21a is compared with the case where the coolant flow is along the inner surface 33 of the cylinder 32. The flight time of the droplets is shortened. When the flight time is shortened, the quenching effect is promoted, and the amorphization rate X of the obtained soft magnetic alloy powder is improved. Further, the sphericality of the soft magnetic alloy powder having a large particle size tends to increase. Further, when the flight time is shortened, the droplets of the dropped molten metal 21a are less likely to be oxidized, so that the obtained soft magnetic alloy powder is miniaturized and the quality of the soft magnetic alloy powder is improved.

本実施形態では、筒体32の内部で、冷却液流れを逆円錐状に形成するために、冷却液を筒体32の内部に導入するための冷却液導入部(冷却液導出部)36における冷却液の流れを制御している。図6Bに、冷却液導入部36の構成を示す。 In the present embodiment, in the coolant introduction section (coolant lead-out section) 36 for introducing the coolant into the cylinder 32 in order to form the coolant flow in an inverted conical shape inside the cylinder 32. It controls the flow of coolant. FIG. 6B shows the configuration of the coolant introduction unit 36.

図6Bに示すように、枠体38により、筒体32の径方向の外側に位置する外側部(外側空間部)44と、筒体32の径方向の内側に位置する内側部(内側空間部)46とが規定される。外側部44と内側部46とは、仕切部40で仕切られ、仕切部40の軸芯O方向の上部に形成してある通路部42で、外側部44と内側部46とは、連絡しており、冷却液が流通可能になっている。 As shown in FIG. 6B, the frame body 38 has an outer portion (outer space portion) 44 located on the outer side in the radial direction of the tubular body 32 and an inner portion (inner space portion) located on the inner side in the radial direction of the tubular body 32. ) 46 is specified. The outer portion 44 and the inner portion 46 are partitioned by a partition portion 40, and a passage portion 42 is formed in the upper portion of the partition portion 40 in the axial direction O direction. The outer portion 44 and the inner portion 46 are in contact with each other. The coolant can be distributed.

外側部44には、単一または複数のノズル37が接続してあり、ノズル37から冷却液が外側部44に入り込むようになっている。また、内側部46の軸芯O方向の下方には、冷却液吐出部52が形成してあり、そこから内側部46内の冷却液が筒体32の内部に吐出(導出)されるようになっている。 A single or a plurality of nozzles 37 are connected to the outer portion 44 so that the coolant enters the outer portion 44 from the nozzles 37. Further, a coolant discharging portion 52 is formed below the inner portion 46 in the axial core O direction so that the cooling liquid in the inner portion 46 is discharged (derived out) into the cylinder 32. It has become.

枠体38の外周面は、内側部46内の冷却液の流れを案内する流路内周面38bとなっており、枠体38の下端38aには、枠体38の流路内周面38bから連続し、半径方向の外側に突出している外方凸部38a1が形成してある。したがって、外方凸部38a1の先端と筒体32の内面33との間のリング状の隙間が冷却液吐出部52となる。外方凸部38a1の流路側上面には、流路偏向面62が形成してある。 The outer peripheral surface of the frame body 38 is a flow path inner peripheral surface 38b that guides the flow of the coolant in the inner portion 46, and the lower end surface 38a of the frame body 38 is a flow path inner peripheral surface 38b of the frame body 38. An outward convex portion 38a1 is formed which is continuous from the above and projects outward in the radial direction. Therefore, the ring-shaped gap between the tip of the outward convex portion 38a1 and the inner surface 33 of the tubular body 32 becomes the coolant discharge portion 52. A flow path deflection surface 62 is formed on the flow path side upper surface of the outward convex portion 38a1.

図6Bに示すように、外方凸部38a1により、冷却液吐出部52の径方向幅D1は、内側部46の主要部における径方向幅D2よりも狭くなっている。D1がD2よりも狭いことにより、内側部46の内部を流路内周面38bに沿って軸芯Oの下方に下る冷却液は、次に、枠体38の流路偏向面62に沿って流れて筒体32の内面33に衝突して反射する。その結果、図6Aに示すように、冷却液は、冷却液吐出部52から筒体32の内部に逆円錐状に吐出され、冷却液流れ50を形成する。なお、D1=D2である場合には、冷却液吐出部52から吐出される冷却液は、筒体32の内面33に沿って冷却液流れを形成する。 As shown in FIG. 6B, the radial width D1 of the coolant discharging portion 52 is narrower than the radial width D2 in the main portion of the inner portion 46 due to the outward convex portion 38a1. Since D1 is narrower than D2, the coolant that descends inside the inner portion 46 along the inner peripheral surface 38b of the flow path below the axis O then flows along the flow path deflection surface 62 of the frame body 38. It flows and collides with the inner surface 33 of the cylinder 32 and is reflected. As a result, as shown in FIG. 6A, the coolant is discharged from the coolant discharge portion 52 into the inside of the cylinder 32 in an inverted conical shape to form the coolant flow 50. When D1 = D2, the coolant discharged from the coolant discharge unit 52 forms a coolant flow along the inner surface 33 of the cylinder 32.

D1/D2は、好ましくは2/3以下であり、さらに好ましくは1/2以下であり、最も好ましくは1/10以上である。 D1 / D2 is preferably 2/3 or less, more preferably 1/2 or less, and most preferably 1/10 or more.

なお、冷却液吐出部52から流出する冷却液流れ50は、冷却液吐出部52から軸芯Oに向けて直進する逆円錐流れであるが、渦巻き状の逆円錐流れであってもよい。 The coolant flow 50 flowing out from the coolant discharge unit 52 is a reverse conical flow that travels straight from the coolant discharge unit 52 toward the shaft core O, but may be a spiral reverse conical flow.

また、溶融金属の噴出量ガス噴射圧、筒体32内の圧力、冷却液吐出圧、D1/D2等は、目的とする軟磁性合金粉末の粒子径により適宜設定すればよい。溶融金属の噴出量は、例えば1kg/min以上20kg/min以下であってもよい。ガス噴射圧は、例えば0.5MPa以上19MPa以下であってもよい。筒体32内の圧力は、例えば0.5MPa以上19MPa以下であってもよい。冷却液吐出圧は、例えば0.5MPa以上19MPa以下であってもよい。 Further, the ejection amount of the molten metal, the gas injection pressure, the pressure in the cylinder 32, the coolant discharge pressure, D1 / D2 and the like may be appropriately set according to the particle size of the target soft magnetic alloy powder. The amount of molten metal ejected may be, for example, 1 kg / min or more and 20 kg / min or less. The gas injection pressure may be, for example, 0.5 MPa or more and 19 MPa or less. The pressure in the cylinder 32 may be, for example, 0.5 MPa or more and 19 MPa or less. The coolant discharge pressure may be, for example, 0.5 MPa or more and 19 MPa or less.

溶融金属の噴出量が少ないほど粒子径が小さくなり、非晶質である軟磁性合金粉末を作製しやすい傾向がある。 The smaller the amount of molten metal ejected, the smaller the particle size, and there is a tendency that amorphous soft magnetic alloy powder can be easily produced.

ガス噴射圧、筒体32内の圧力、および、冷却液吐出圧が高いほど粒子径が小さくなり粒子の円形度も小さくなる傾向にある。 The higher the gas injection pressure, the pressure inside the cylinder 32, and the coolant discharge pressure, the smaller the particle diameter and the circularity of the particles tend to be.

なお、粒子径については、例えば篩分級や気流分級等により粒度調整が可能である。以下、篩分級により粒度調整を行う方法について説明する。 The particle size can be adjusted by, for example, sieve classification, air flow classification, or the like. Hereinafter, a method of adjusting the particle size by sieving classification will be described.

篩分級では、例えば1回あたりの粉末仕込み量、分級時間および/またはメッシュサイズを変化させることで粒度調整が可能である。そして、1回あたりの粉末仕込み量、分級時間および/またはメッシュサイズを適切に制御することで所望の粒度を有する軟磁性合金粉末が得られる。 In the sieve classification, the particle size can be adjusted by changing, for example, the amount of powder charged at one time, the classification time and / or the mesh size. Then, a soft magnetic alloy powder having a desired particle size can be obtained by appropriately controlling the powder charging amount, the classification time and / or the mesh size at one time.

1回あたりの粉末仕込み量が多いほど粒子の平均円形度が低下しやすくなる。分級時間が短いほど粒子の平均円形度が低下しやすくなる。メッシュサイズが大きいほど粒子の平均円形度が低下しやすくなる。 The larger the amount of powder charged at one time, the easier it is for the average circularity of the particles to decrease. The shorter the classification time, the easier it is for the average circularity of the particles to decrease. The larger the mesh size, the easier it is for the average circularity of the particles to decrease.

その他の粒度調整の方法としては、粉末をメッシュに通過させる回数を変化させる方法がある。メッシュサイズが同一であっても、粉末をメッシュに通過させる回数を多くすることで異形状粒子をより多く抽出することが可能である。異形状粒子をより多く抽出することで粉末の平均円形度を向上させることも可能である。 Another method for adjusting the particle size is to change the number of times the powder is passed through the mesh. Even if the mesh size is the same, it is possible to extract more irregularly shaped particles by increasing the number of times the powder is passed through the mesh. It is also possible to improve the average circularity of the powder by extracting more irregularly shaped particles.

複数の種類の軟磁性合金粉末を配合することで粒度調整を行ってもよい。 The particle size may be adjusted by blending a plurality of types of soft magnetic alloy powders.

本実施形態に係る軟磁性合金粉末の用途には特に制限はない。例えば、圧粉磁心が挙げられる。本実施形態に係る軟磁性合金粉末を用いる場合には、圧粉磁心作製時の圧力を比較的低くしても好適な透磁率μが得られやすくなる。粒度分布がブロードになることで、圧粉磁心作製時の圧力を比較的低くしても得られる圧粉磁心が緻密化しやすくなるためである。具体的には、圧粉磁心作製時の圧力を、例えば98MPa以上1500MPa以下とすることができる。 The use of the soft magnetic alloy powder according to this embodiment is not particularly limited. For example, a dust core can be mentioned. When the soft magnetic alloy powder according to the present embodiment is used, a suitable magnetic permeability μ can be easily obtained even if the pressure at the time of producing the dust core is relatively low. This is because the broad particle size distribution makes it easier for the powder magnetic core to be obtained to become dense even if the pressure at the time of producing the powder magnetic core is relatively low. Specifically, the pressure at the time of producing the dust core can be, for example, 98 MPa or more and 1500 MPa or less.

また、本実施形態に係る圧粉磁心は、インダクタ用、特にパワーインダクタ用の圧粉磁心として好適に用いることができる。さらに、圧粉磁心とコイル部とを一体成形したインダクタにも好適に用いることができる。 Further, the dust core according to the present embodiment can be suitably used as a dust core for an inductor, particularly a power inductor. Further, it can be suitably used for an inductor in which a dust core and a coil portion are integrally molded.

また、軟磁性合金粉末を用いた磁性部品、例えば薄膜インダクタ、磁気ヘッドにも好適に用いることができる。さらに、当該軟磁性合金粉末を用いた圧粉磁心や磁性部品は電子機器に好適に用いることができる。 Further, it can be suitably used for magnetic parts using soft magnetic alloy powder, for example, thin film inductors and magnetic heads. Further, a dust core or a magnetic component using the soft magnetic alloy powder can be suitably used for an electronic device.

以下、実施例に基づき本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described based on Examples.

(実験例1)
以下に示す表1に記載の組成の母合金が得られるように各種材料のインゴットを準備し、秤量した。そして、水アトマイズ装置内に配置されたルツボに収容した。次いで、不活性雰囲気中、ルツボ外部に設けたワークコイルを用いて、ルツボを高周波誘導により1500℃まで加熱し、ルツボ中のインゴットを溶融、混合して溶融金属(溶湯)を得た。
(Experimental Example 1)
Ingots of various materials were prepared and weighed so that a mother alloy having the composition shown in Table 1 shown below could be obtained. Then, it was housed in a crucible arranged in a water atomizing device. Next, in an inert atmosphere, the crucible was heated to 1500 ° C. by high-frequency induction using a work coil provided outside the crucible, and the ingot in the crucible was melted and mixed to obtain a molten metal (molten metal).

次いで、ルツボに設けられたノズルから、ルツボ内の溶湯を噴出すると同時に、噴出した溶湯に100MPaの高圧水流を衝突させて急冷することにより、表1に示す各実施例および比較例の軟磁性合金粉末を作製した。また、母合金の組成と軟磁性合金粉末の組成とが概ね一致していることをICP分析により確認した。 Next, the molten metal in the crucible is ejected from the nozzle provided in the crucible, and at the same time, a high-pressure water stream of 100 MPa is made to collide with the ejected molten metal to quench the mixture. A powder was prepared. Further, it was confirmed by ICP analysis that the composition of the mother alloy and the composition of the soft magnetic alloy powder were almost the same.

得られた各軟磁性合金粉末について、篩分級を行った。篩分級の条件は、1回あたりの仕込み量0.5kg、分級時間1分とした。さらに、メッシュサイズは目開き38μmとした。 Each of the obtained soft magnetic alloy powders was sieve-classified. The conditions for sieving classification were 0.5 kg for each preparation and 1 minute for the classification time. Further, the mesh size was set to 38 μm.

得られた各軟磁性合金粉末が非晶質からなるのか結晶からなるのかを確認した。XRDを用いて各薄帯の非晶質化率Xを測定し、Xが85%以上である場合に非晶質からなるとした。Xが85%未満である場合に結晶からなるとした。結果を表1に示す。 It was confirmed whether each of the obtained soft magnetic alloy powders consisted of amorphous or crystalline. The amorphization rate X of each thin band was measured using XRD, and when X was 85% or more, it was determined to be amorphous. It was considered to consist of crystals when X was less than 85%. The results are shown in Table 1.

得られた各軟磁性合金粉末に対してHcJおよびBsを測定した。HcJはHcメーターを用いて測定した。結果を表1に示す。実験例1では、HcJは2.4Oe以下を良好とし、1.0Oe以下をさらに良好とした。Bsは0.70T以上を良好とし、1.40T以上をさらに良好とした。 HcJ and Bs were measured for each of the obtained soft magnetic alloy powders. HcJ was measured using an Hc meter. The results are shown in Table 1. In Experimental Example 1, HcJ was defined as good at 2.4 Oe or less, and further improved at 1.0 Oe or less. Bs was defined as good at 0.70 T or higher, and further defined as 1.40 T or higher.

得られた各軟磁性合金粉末における粉末粒子の形状を評価した。具体的には、体積基準でのD50(r)、個数基準でのD50、個数基準でのσ、および、個数基準での粒子径r以上2r以下での平均円形度を評価した。結果を表1に示す。 The shape of the powder particles in each of the obtained soft magnetic alloy powders was evaluated. Specifically, the volume-based D50 (r), the number-based D50, the number-based σ, and the number-based particle diameter r or more and 2r or less were evaluated. The results are shown in Table 1.

実験例1では、体積基準でのD50(r)が10〜11μmとなり、個数基準でのD50が4〜5μmとなった。 In Experimental Example 1, D50 (r) on a volume basis was 10 to 11 μm, and D50 on a number basis was 4 to 5 μm.

体積基準でのD50(r)は、レーザ回折式の粒度分布測定装置(HELOS&RODOS、Sympatec社)を用いて測定した。 The volume-based D50 (r) was measured using a laser diffraction type particle size distribution measuring device (HELOS & RODOS, Symboltec).

個数基準でのD50およびσは、モフォロギG3(マルバーン・パナリティカル社)を用いて倍率10倍で20000個の粉末粒子の形状を観察することで測定した。具体的には、体積3cc分の軟磁性合金粉末を1〜3barの空気圧で分散させてレーザ顕微鏡による投影像を撮影した。各粉末粒子の粒子径より、個数基準でのD50およびσを算出した。なお、各粉末粒子の粒子径は円相当径とした。 The number-based D50 and σ were measured by observing the shape of 20000 powder particles at a magnification of 10 times using a moforoggi G3 (Malvern PANalytical). Specifically, a soft magnetic alloy powder having a volume of 3 cc was dispersed at an air pressure of 1 to 3 bar, and a projected image was taken with a laser microscope. From the particle size of each powder particle, D50 and σ on a number basis were calculated. The particle size of each powder particle was a circle-equivalent diameter.

実験例1では、σが2.5μm以上である場合を良好とした。 In Experimental Example 1, the case where σ was 2.5 μm or more was considered good.

個数基準での粒子径r以上2r以下での平均円形度は、20000個の粉末粒子のうち粒子径がr以上2r以下である粉末粒子の円形度をそれぞれ測定し、平均することで算出した。 The average circularity of the particle diameter r or more and 2r or less based on the number of particles was calculated by measuring and averaging the circularity of the powder particles having a particle diameter of r or more and 2r or less among 20000 powder particles.

次に、各軟磁性合金粉末からトロイダルコアを作製した。具体的には、各軟磁性合金粉末に対して絶縁バインダとなるフェノール樹脂量が全体の3質量%になるよう混合し、攪拌機として一般的なプラネタリーミキサーを用いて500μm程度の造粒粉となるように造粒した。次に、得られた造粒粉を面圧4ton/cm(392MPa)で成形し、外形13mmφ、内径8mmφ、高さ6mmのトロイダル形状の成形体を作製した。得られた成形体を150℃で硬化させ、トロイダルコアを作製した。 Next, a toroidal core was prepared from each soft magnetic alloy powder. Specifically, each soft magnetic alloy powder is mixed so that the amount of phenol resin serving as an insulating binder is 3% by mass of the whole, and a general planetary mixer as a stirrer is used to mix the granulated powder with a size of about 500 μm. It was granulated so as to be. Next, the obtained granulated powder was molded at a surface pressure of 4 ton / cm 2 (392 MPa) to prepare a toroidal molded product having an outer diameter of 13 mmφ, an inner diameter of 8 mmφ, and a height of 6 mm. The obtained molded product was cured at 150 ° C. to prepare a toroidal core.

そして、トロイダルコアにUEW線を巻き線し、4284A PRECISION LCR METER(ヒューレットパッカード)を用いて100kHzでμ(透磁率)を測定した。実験例1ではμが25以上である場合を良好とした。 Then, a UEW wire was wound around the toroidal core, and μ (permeability) was measured at 100 kHz using a 4284A PRECISION LCR METER (Hewlett-Packard). In Experimental Example 1, the case where μ was 25 or more was considered good.

Figure 2020180374
Figure 2020180374

表1より、全ての実施例および比較例において、個数基準での粒子径r以上2r以下での平均円形度が0.70以上となった。 From Table 1, in all the examples and comparative examples, the average circularity at the particle diameter r or more and 2r or less on the basis of the number was 0.70 or more.

表1より、CおよびSを含まない比較例である試料番号1の軟磁性合金粉末は、HcJが高く、σが低かった。そして、トロイダルコアのμも低かった。 From Table 1, the soft magnetic alloy powder of Sample No. 1, which is a comparative example containing no C and S, had a high HcJ and a low σ. And the μ of the toroidal core was also low.

試料番号1の軟磁性合金粉末にSのみを添加した組成である試料番号5〜7の軟磁性合金粉末は、試料番号1の軟磁性合金粉末と比較して、Sの添加によりHcJがさらに高くなった。そして、試料番号1と同様にトロイダルコアのμも低かった。 The soft magnetic alloy powders of sample numbers 5 to 7, which are composed by adding only S to the soft magnetic alloy powder of sample number 1, have a higher HcJ due to the addition of S as compared with the soft magnetic alloy powder of sample number 1. became. And, as with sample number 1, μ of the toroidal core was also low.

試料番号1の軟磁性合金粉末にCのみを添加した組成である試料番号2〜4の軟磁性合金粉末は、試料番号1の軟磁性合金粉末と比較して、HcJは低下したがσも低下した。そして、試料番号1と比較してトロイダルコアのμも低下した。 The soft magnetic alloy powders of sample numbers 2 to 4, which are composed by adding only C to the soft magnetic alloy powder of sample number 1, have lower HcJ but also lower σ than the soft magnetic alloy powder of sample number 1. did. Then, the μ of the toroidal core was also reduced as compared with the sample number 1.

試料番号2の軟磁性合金粉末にSを特定の範囲内で添加した組成である試料番号8〜12の実施例の軟磁性合金粉末は、HcJおよびσが良好であった。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。なお、Sの含有量(f)が多すぎた試料番号13は、軟磁性合金粉末が結晶粒径100nm以上の結晶を含み、非晶質化率Xが85%未満であった。そして、Hcjが著しく上昇した。また、トロイダルコアのμも低かった。 The soft magnetic alloy powders of the examples of Sample Nos. 8 to 12, which had a composition in which S was added to the soft magnetic alloy powder of Sample No. 2 within a specific range, had good HcJ and σ. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good. In Sample No. 13, in which the S content (f) was too large, the soft magnetic alloy powder contained crystals having a crystal grain size of 100 nm or more, and the amorphization rate X was less than 85%. Then, Hcj increased remarkably. The μ of the toroidal core was also low.

試料番号14〜17は、M、SiおよびSを含有させずにPの含有量(c)およびCの含有量(e)を変化させた比較例の軟磁性合金粉末である。試料番号14〜17はσが低く、トロイダルコアのμも低かった。また、Cの含有量が大きい試料番号17はHcJも上昇した。 Sample numbers 14 to 17 are soft magnetic alloy powders of Comparative Examples in which the P content (c) and the C content (e) were changed without containing M, Si and S. Sample numbers 14 to 17 had a low σ and a low μ of the toroidal core. In addition, HcJ also increased in sample number 17 having a large C content.

試料番号18〜21は、試料番号14〜17に対してSの含有量(f)を0から0.0010に変化させた組成を有する実施例の軟磁性合金粉末であり、HcJおよびσが良好であった。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。 Sample numbers 18 to 21 are soft magnetic alloy powders of Examples having a composition in which the content (f) of S is changed from 0 to 0.0010 with respect to sample numbers 14 to 17, and HcJ and σ are good. Met. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good.

試料番号22〜24は、M、PおよびSを含有させずにBの含有量(b)、Siの含有量(d)およびCの含有量(e)を変化させた組成を有する比較例の軟磁性合金粉末である。試料番号22〜24はσが低く、トロイダルコアのμも低かった。 Sample numbers 22 to 24 are comparative examples having a composition in which the content of B (b), the content of Si (d) and the content of C (e) are changed without containing M, P and S. It is a soft magnetic alloy powder. Sample numbers 22 to 24 had a low σ and a low μ of the toroidal core.

試料番号25〜27は、試料番号22〜24に対してSの含有量(f)を0から0.0010に変化させた組成を有する実施例の軟磁性合金粉末であり、HcJおよびσが良好であった。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。 Sample numbers 25 to 27 are soft magnetic alloy powders of Examples having a composition in which the content (f) of S is changed from 0 to 0.0010 with respect to sample numbers 22 to 24, and HcJ and σ are good. Met. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good.

試料番号25〜27の各実施例は試料番号8〜12、18〜21の各実施例と比較してBsが小さかった。Feの含有量が小さいためである。 Each of the examples of sample numbers 25 to 27 had a smaller Bs than each of the examples of sample numbers 8 to 12 and 18 to 21. This is because the Fe content is small.

試料番号28〜30、28a〜28dは、上記の実施例とは異なりMとしてNbを含む実施例の軟磁性合金粉末である。Mを含まない実施例と同様にHcJおよびσが良好であった。また、0≦a<0.020を満たす実施例のBsがa≧0.020を満たす実施例のBsと比較して良好であった。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。 Sample numbers 28 to 30 and 28a to 28d are soft magnetic alloy powders of Examples containing Nb as M, unlike the above Examples. HcJ and σ were good as in the examples not containing M. Further, the Bs of the example satisfying 0 ≦ a <0.020 was better than the Bs of the example satisfying a ≧ 0.020. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good.

なお、実験例1の各実施例について、個数基準での粒子径25μm以上30μm以下での平均円形度、および、個数基準での粒子径5μm以上10μm以下での平均円形度も同様にして算出した。その結果、全ての実施例で個数基準での粒子径25μm以上30μm以下での平均円形度が0.70以上であり、個数基準での粒子径5μm以上10μm以下での平均円形度が0.90以上であった。 For each example of Experimental Example 1, the average circularity when the particle diameter was 25 μm or more and 30 μm or less based on the number, and the average circularity when the particle diameter was 5 μm or more and 10 μm or less based on the number were calculated in the same manner. .. As a result, in all the examples, the average circularity based on the number of particles having a particle diameter of 25 μm or more and 30 μm or less was 0.70 or more, and the average circularity based on the number of particles having a particle diameter of 5 μm or more and 10 μm or less was 0.90. That was all.

(実験例2)
実験例2では、アトマイズ方法を水アトマイズ法からガスアトマイズ法に変更した点、および、篩分級の条件以外は実験例1と同様に実施した。図6Aおよび図6Bに示すアトマイズ装置を用いた。
(Experimental Example 2)
In Experimental Example 2, the same procedure as in Experimental Example 1 was carried out except that the atomizing method was changed from the water atomizing method to the gas atomizing method and the conditions for sieving classification. The atomizing apparatus shown in FIGS. 6A and 6B was used.

以下に示す表2に記載の組成の母合金が得られるように各種材料のインゴット、を準備し、秤量した。 Ingots of various materials were prepared and weighed so that a mother alloy having the composition shown in Table 2 shown below could be obtained.

次に、アトマイズ装置10内に配置された耐熱性容器22に母合金を収容した。続いて、筒体32内を真空引きした後、耐熱性容器22外部に設けた加熱用コイル24を用いて、耐熱性容器22を高周波誘導により加熱し、耐熱性容器22中の原料金属を溶融、混合して1500℃の溶融金属(溶湯)を得た。 Next, the mother alloy was housed in a heat-resistant container 22 arranged in the atomizing device 10. Subsequently, after vacuuming the inside of the cylinder 32, the heat-resistant container 22 is heated by high-frequency induction using a heating coil 24 provided outside the heat-resistant container 22, and the raw metal in the heat-resistant container 22 is melted. , And mixed to obtain a molten metal (molten metal) at 1500 ° C.

得られた溶湯を冷却部30の筒体32内に1500℃で噴射して、アルゴンガスを7MPaの噴射ガス圧で噴射することにより、多数の溶滴とした。溶滴は、ポンプ圧(冷却液吐出圧)10MPaで供給された冷却水により形成された逆円錐状の冷却水流れに衝突して、微細な粉末となり、その後回収された。なお、筒体32内の圧力は0.5MPaとした。 The obtained molten metal was injected into the cylinder 32 of the cooling unit 30 at 1500 ° C., and argon gas was injected at an injection gas pressure of 7 MPa to obtain a large number of droplets. The droplets collided with the inverted conical cooling water flow formed by the cooling water supplied at a pump pressure (cooling liquid discharge pressure) of 10 MPa to form a fine powder, which was then recovered. The pressure inside the cylinder 32 was 0.5 MPa.

なお、図6に示すアトマイズ装置10において、筒体32の内面の内径は300mm、D1/D2は1/2、角度θ1は20度であった。 In the atomizing device 10 shown in FIG. 6, the inner diameter of the inner surface of the tubular body 32 was 300 mm, D1 / D2 was 1/2, and the angle θ1 was 20 degrees.

得られた各軟磁性合金粉末について、篩分級を行った。篩分級の条件は、1回あたりの仕込み量0.05kg、分級時間5分とした。さらに、メッシュサイズは目開き63μmとした。 Each of the obtained soft magnetic alloy powders was sieve-classified. The conditions for sieving were such that the amount charged at one time was 0.05 kg and the classification time was 5 minutes. Further, the mesh size was set to 63 μm.

実験例2では、実験例1とは異なり、体積基準でのD50(r)が22〜27μmとなり、個数基準でのD50が8〜9μmとなった。また、実験例2では、全ての実施例および比較例で個数基準での粒子径r以上2r以下での平均円形度が0.90以上となった。また、実験例2では、σは7.0μm以上を良好とした。また、トロイダルコアの透磁率μは33以上を良好とした。結果を表2に示す。 In Experimental Example 2, unlike Experimental Example 1, D50 (r) on a volume basis was 22 to 27 μm, and D50 on a number basis was 8 to 9 μm. Further, in Experimental Example 2, the average circularity of the particle diameter r or more and 2r or less based on the number of particles was 0.90 or more in all Examples and Comparative Examples. Further, in Experimental Example 2, σ was set to be good at 7.0 μm or more. Further, the magnetic permeability μ of the toroidal core was set to 33 or more. The results are shown in Table 2.

Figure 2020180374
Figure 2020180374

表2より、全ての実施例および比較例において、個数基準での粒子径r以上2r以下での平均円形度が0.90以上となった。 From Table 2, in all the examples and comparative examples, the average circularity at the particle diameter r or more and 2r or less on the basis of the number was 0.90 or more.

表2より、CおよびSを含まない比較例である試料番号31の軟磁性合金粉末は、HcJが高く、σが低かった。そして、トロイダルコアのμも低かった。 From Table 2, the soft magnetic alloy powder of sample number 31, which is a comparative example not containing C and S, had a high HcJ and a low σ. And the μ of the toroidal core was also low.

試料番号31の軟磁性合金粉末にSのみを添加した組成である試料番号35〜37の軟磁性合金粉末は、試料番号31の軟磁性合金粉末と比較して、Sの添加によりHcJがさらに高くなった。そして、試料番号31と同様にトロイダルコアのμも低かった。 The soft magnetic alloy powder of sample numbers 35 to 37, which has a composition obtained by adding only S to the soft magnetic alloy powder of sample number 31, has a higher HcJ due to the addition of S than the soft magnetic alloy powder of sample number 31. became. And, as with sample number 31, μ of the toroidal core was also low.

試料番号31の軟磁性合金粉末にCのみを添加した組成である試料番号32〜34の軟磁性合金粉末は、試料番号31の軟磁性合金粉末と比較して、HcJは低下したがσも低下した。そして、試料番号31と比較してトロイダルコアのμも低下した。 The soft magnetic alloy powders of sample numbers 32 to 34, which are composed by adding only C to the soft magnetic alloy powder of sample number 31, have a lower HcJ but a lower σ as compared with the soft magnetic alloy powder of sample number 31. did. Then, the μ of the toroidal core was also reduced as compared with the sample number 31.

試料番号32の軟磁性合金粉末にSを特定の範囲内で添加した組成である試料番号38〜42の実施例の軟磁性合金粉末は、HcJおよびσが良好であった。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。なお、Sの含有量(f)が多すぎた試料番号43は、軟磁性合金粉末が結晶粒径100nm以上の結晶からなり、Hcjが著しく上昇した。また、トロイダルコアのμも低かった。 The soft magnetic alloy powders of the examples of Sample Nos. 38 to 42, which had a composition in which S was added to the soft magnetic alloy powder of Sample No. 32 within a specific range, had good HcJ and σ. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good. In Sample No. 43 in which the S content (f) was too large, the soft magnetic alloy powder was composed of crystals having a crystal grain size of 100 nm or more, and Hcj was significantly increased. The μ of the toroidal core was also low.

試料番号44〜47は、M、SiおよびSを含有させずにPの含有量(c)およびCの含有量(e)を変化させた比較例の軟磁性合金粉末である。試料番号44〜47はσが低く、トロイダルコアのμも低かった。また、Cの含有量が大きい試料番号47はHcJも上昇した。 Sample numbers 44 to 47 are soft magnetic alloy powders of Comparative Examples in which the P content (c) and the C content (e) were changed without containing M, Si and S. Sample numbers 44 to 47 had a low σ and a low μ of the toroidal core. In addition, HcJ also increased in sample number 47 having a large C content.

試料番号48〜51は、試料番号44〜47に対してSの含有量(f)を0から0.0010に変化させた組成を有する実施例の軟磁性合金粉末であり、HcJおよびσが良好であった。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。 Sample numbers 48 to 51 are soft magnetic alloy powders of Examples having a composition in which the content (f) of S is changed from 0 to 0.0010 with respect to sample numbers 44 to 47, and HcJ and σ are good. Met. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good.

試料番号52〜54は、M、PおよびSを含有させずにBの含有量(b)、Siの含有量(d)およびCの含有量(e)を変化させた組成を有する比較例の軟磁性合金粉末である。試料番号52〜54はσが低く、トロイダルコアのμも低かった。 Sample numbers 52 to 54 are comparative examples having a composition in which the content of B (b), the content of Si (d) and the content of C (e) are changed without containing M, P and S. It is a soft magnetic alloy powder. Sample numbers 52 to 54 had a low σ and a low μ of the toroidal core.

試料番号55〜57は、試料番号52〜54に対してSの含有量(f)を0から0.0010に変化させた組成を有する実施例の軟磁性合金粉末であり、HcJおよびσが良好であった。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。 Sample numbers 55 to 57 are soft magnetic alloy powders of Examples having a composition in which the content (f) of S is changed from 0 to 0.0010 with respect to sample numbers 52 to 54, and HcJ and σ are good. Met. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good.

試料番号55〜57の各実施例は試料番号38〜42、48〜51の各実施例と比較してBsが小さかった。Feの含有量が小さいためである。 Each of the examples of sample numbers 55 to 57 had a smaller Bs than each of the examples of sample numbers 38 to 42 and 48 to 51. This is because the Fe content is small.

試料番号58〜60、58a〜58dは、上記の実施例とは異なりMとしてNbを含む実施例の軟磁性合金粉末である。Mを含まない実施例と同様にHcJおよびσが良好であった。また、0≦a<0.020を満たす実施例のBsがa≧0.020を満たす実施例のBsと比較して良好であった。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。 Sample numbers 58 to 60 and 58a to 58d are soft magnetic alloy powders of Examples containing Nb as M, unlike the above Examples. HcJ and σ were good as in the examples not containing M. Further, the Bs of the example satisfying 0 ≦ a <0.020 was better than the Bs of the example satisfying a ≧ 0.020. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good.

試料番号60aおよび60bは、Feの含有量が試料番号31〜60よりも高い組成を有する実施例の軟磁性合金粉末である。Feの含有量を高くしても、HcJおよびσが良好であった。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。 Sample numbers 60a and 60b are soft magnetic alloy powders of Examples having a composition in which the Fe content is higher than that of Sample Nos. 31-60. Even if the Fe content was increased, HcJ and σ were good. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good.

また、Mの種類を変化させた点以外は試料番号58と同条件で試料番号61〜70の各種軟磁性合金粉末を作製した。また、Mの種類を変化させた点以外は試料番号58bと同条件で試料番号61b〜70bの各種軟磁性合金粉末を作製した。結果を表3に示す。 Further, various soft magnetic alloy powders of sample numbers 61 to 70 were prepared under the same conditions as sample number 58 except that the type of M was changed. Further, various soft magnetic alloy powders of sample numbers 61b to 70b were prepared under the same conditions as sample number 58b except that the type of M was changed. The results are shown in Table 3.

Figure 2020180374
Figure 2020180374

表3より、Mの種類を変化させた試料番号61〜70は試料番号58と同等程度に良好な試験結果となった。また、試料番号61b〜70bは試料番号58bと同等程度に良好な試験結果となった。 From Table 3, sample numbers 61 to 70 in which the type of M was changed gave good test results as good as sample number 58. In addition, sample numbers 61b to 70b gave good test results as good as sample numbers 58b.

(実験例3)
実験例3では、a=0.000、b=0.120、c=0.090、d=0.030、e=0.010、f=0.0010、α=β=0を満たす試料番号71の軟磁性合金粉末を作製した。さらに、X1および/またはX2の種類および含有量を試料番号71から適宜変化させた試料番号72〜125を実施した。実験例3における軟磁性合金粉末の製造条件は、軟磁性合金粉末の組成以外、実験例2と同条件とした。結果を表4に示す。
(Experimental Example 3)
In Experimental Example 3, a sample number satisfying a = 0.000, b = 0.120, c = 0.090, d = 0.030, e = 0.010, f = 0.0010, α = β = 0. 71 soft magnetic alloy powders were prepared. Further, sample numbers 72 to 125 in which the type and content of X1 and / or X2 were appropriately changed from sample number 71 were carried out. The production conditions of the soft magnetic alloy powder in Experimental Example 3 were the same as those in Experimental Example 2 except for the composition of the soft magnetic alloy powder. The results are shown in Table 4.

Figure 2020180374
Figure 2020180374

表4より、本願発明の範囲内の組成を有する試料番号71〜125の軟磁性合金粉末は、好適なHcJ、Bsおよびσを有していた。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。 From Table 4, the soft magnetic alloy powders of sample numbers 71 to 125 having a composition within the range of the present invention had suitable HcJ, Bs and σ. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good.

(実験例4)
実験例4では、試料番号71について篩分級における1回あたりの粉末仕込み量を変化させることで軟磁性合金粉末の個数基準の平均円形度を変化させた点以外は実験例3と同条件で試料番号126〜128の軟磁性合金粉末を作製した。結果を表5に示す。なお、表5には、個数基準での粒子径25μm以上30μm以下での平均円形度の具体的な数値も示す。
(Experimental Example 4)
In Experimental Example 4, the sample was sampled under the same conditions as in Experimental Example 3 except that the average circularity based on the number of soft magnetic alloy powders was changed by changing the amount of powder charged at one time in the sieve classification for sample No. 71. Soft magnetic alloy powders of Nos. 126 to 128 were prepared. The results are shown in Table 5. Table 5 also shows specific numerical values of the average circularity when the particle size is 25 μm or more and 30 μm or less based on the number of particles.

また、実験例4では、トロイダルコアの透磁率とともに耐電圧特性を測定した。耐電圧特性の測定では、まず、トロイダルコアの厚み方向に垂直な二面にIn−Ga電極を形成した。次に、ソースメーターを用いて電圧を印加し、1mAの電流が流れたときの電圧を測定した。そして、当該電圧をトロイダルコアの厚みで割ることにより耐電圧特性を測定した。 Further, in Experimental Example 4, the withstand voltage characteristics were measured together with the magnetic permeability of the toroidal core. In the measurement of withstand voltage characteristics, first, In-Ga electrodes were formed on two surfaces perpendicular to the thickness direction of the toroidal core. Next, a voltage was applied using a source meter, and the voltage when a current of 1 mA flowed was measured. Then, the withstand voltage characteristic was measured by dividing the voltage by the thickness of the toroidal core.

Figure 2020180374
Figure 2020180374

表5より、軟磁性合金粉末の平均円形度を変化させた試料番号126〜128の軟磁性合金粉末は、試料番号71と同様に好適なHcJおよびσを有していた。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。 From Table 5, the soft magnetic alloy powders of sample numbers 126 to 128 in which the average circularity of the soft magnetic alloy powder was changed had suitable HcJ and σ as in sample number 71. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good.

また、トロイダルコアの耐電圧特性はr以上2r以下での平均円形度および25μm以上30μm以下での平均円形度が高いほど良好になりやすい傾向にあった。 Further, the withstand voltage characteristics of the toroidal core tended to be improved as the average circularity at r or more and 2r or less and the average circularity at 25 μm or more and 30 μm or less were higher.

(実験例5)
実験例5では、試料番号8について、篩分級における1回あたりの粉末仕込み量および分級時間を変化させることで軟磁性合金粉末の平均円形度を変化させた点以外は実験例1と同条件で試料番号130〜136の軟磁性合金粉末を作製した。また、実験例4と同様に各試料の軟磁性合金粉末を用いたトロイダルコアの透磁率および耐電圧特性を測定した。結果を表6に示す。なお、表6には、個数基準での粒子径25μm以上30μm以下での平均円形度、および、個数基準での粒子径5μm以上10μm以下での平均円形度の具体的な数値も示す。
(Experimental Example 5)
In Experimental Example 5, the same conditions as in Experimental Example 1 were used for Sample No. 8 except that the average circularity of the soft magnetic alloy powder was changed by changing the amount of powder charged and the classification time at one time in the sieve classification. Soft magnetic alloy powders of sample numbers 130 to 136 were prepared. Further, the magnetic permeability and withstand voltage characteristics of the toroidal core using the soft magnetic alloy powder of each sample were measured in the same manner as in Experimental Example 4. The results are shown in Table 6. Table 6 also shows specific numerical values of the average circularity when the particle diameter is 25 μm or more and 30 μm or less based on the number, and the average circularity when the particle diameter is 5 μm or more and 10 μm or less based on the number.

Figure 2020180374
Figure 2020180374

表6より、軟磁性合金粉末の平均円形度を変化させた試料番号8、130〜136の軟磁性合金粉末は、実験例1の各実施例と同様に好適なHcJおよびσを有していた。さらに、当該軟磁性合金粉末を用いたトロイダルコアのμも良好であった。 From Table 6, the soft magnetic alloy powders of sample numbers 8, 130 to 136 in which the average circularity of the soft magnetic alloy powder was changed had suitable HcJ and σ as in each of the examples of Experimental Example 1. .. Further, the μ of the toroidal core using the soft magnetic alloy powder was also good.

また、トロイダルコアの耐電圧特性はr以上2r以下での平均円形度および25μm以上30μm以下での平均円形度が高いほど良好になりやすい傾向にあった。 Further, the withstand voltage characteristics of the toroidal core tended to be improved as the average circularity at r or more and 2r or less and the average circularity at 25 μm or more and 30 μm or less were higher.

(実験例6)
実験例6では、ガスアトマイズの噴射ガス圧を2MPa以上15MPa以下の範囲で変化させ、粒度および形状が互いに異なる6種類の試料A〜Fを作成した。試料A〜Fを配合することで試料番号71、137、138を作製した。試料137、138は、個数基準での粒子径r以上2r以下での平均円形度と、個数基準での粒子径25μm以上30μm以下での平均円形度と、を試料71に近い値とし、軟磁性合金粉末に含まれる全粒子の平均円形度を変化させた試料である。試料A〜Fの噴射ガス圧、個数基準でのD50および全粒子の平均円形度を表7Bに示す。また、試料A〜Fの配合比(質量比)を表7Cに示す。なお、試料Cは試料番号71と同一であり、試料A〜Fのガスアトマイズの噴射ガス圧以外の作製条件は試料番号71と同一である。そして、各試料の軟磁性合金粉末を用いたトロイダルコアの透磁率および耐電圧特性を測定した。結果を表7Aに示す。
(Experimental Example 6)
In Experimental Example 6, the injection gas pressure of gas atomizing was changed in the range of 2 MPa or more and 15 MPa or less to prepare six kinds of samples A to F having different particle sizes and shapes. Sample numbers 71, 137, and 138 were prepared by blending samples A to F. Samples 137 and 138 have a soft magnetic structure in which the average circularity when the particle diameter is r or more and 2r or less based on the number and the average circularity when the particle diameter is 25 μm or more and 30 μm or less based on the number are close to the sample 71. This is a sample in which the average circularity of all particles contained in the alloy powder is changed. Table 7B shows the injection gas pressures of samples A to F, D50 on a number basis, and the average circularity of all particles. The compounding ratios (mass ratios) of the samples A to F are shown in Table 7C. The sample C is the same as the sample number 71, and the preparation conditions other than the injection gas pressure of the gas atomizing of the samples A to F are the same as the sample number 71. Then, the magnetic permeability and withstand voltage characteristics of the toroidal core using the soft magnetic alloy powder of each sample were measured. The results are shown in Table 7A.

Figure 2020180374
Figure 2020180374

Figure 2020180374
Figure 2020180374

Figure 2020180374
Figure 2020180374

表7Aより、全粒子の平均円形度が変化しても、組成と、個数基準での粒子径r以上2r以下での平均円形度と、個数基準での粒子径25μm以上30μm以下での平均円形度と、が変化前と同様に高い値を示していれば、変化前と同様に良好な結果が得られることが確認できた。 From Table 7A, even if the average circularity of all particles changes, the composition, the average circularity when the particle diameter is r or more and 2r or less based on the number, and the average circle when the particle diameter is 25 μm or more and 30 μm or less based on the number. It was confirmed that if the degree and the value were as high as before the change, good results were obtained as before the change.

(実験例7)
実験例7では、試料番号71からPの含有量(c)およびSiの含有量(d)を適宜変化させた点以外は同条件で試料番号139、139a、140、140aの軟磁性合金粉末を作製した。結果を表8に示す。
(Experimental Example 7)
In Experimental Example 7, the soft magnetic alloy powders of sample numbers 139, 139a, 140, and 140a were used under the same conditions except that the content (c) of P and the content (d) of Si were appropriately changed from sample number 71. Made. The results are shown in Table 8.

Figure 2020180374
Figure 2020180374

表8より、0.080<d<0.100を満たす試料番号71、139a、140aは、0.080<d<0.100を満たさない試料番号139、140と比較して、HcJが低下し、良好なHcJを有する結果となった。 From Table 8, the sample numbers 71, 139a and 140a satisfying 0.080 <d <0.100 have lower HcJ than the sample numbers 139 and 140 not satisfying 0.080 <d <0.100. The result was that it had good HcJ.

(実験例8)
実験例8では、試料番号71からBの含有量(b)およびCの含有量(c)を適宜変化させた点以外は同条件で試料番号141a、141〜143の軟磁性合金粉末を作製した。結果を表9に示す。
(Experimental Example 8)
In Experimental Example 8, soft magnetic alloy powders of Sample Nos. 141a and 141 to 143 were prepared under the same conditions except that the contents (b) of B and the contents (c) of C were appropriately changed from Sample Nos. 71. .. The results are shown in Table 9.

Figure 2020180374
Figure 2020180374

表9より、0.0001≦e+f≦0.051を満たす試料番号71、141a、141、142は、0.0001≦e+f≦0.051を満たさない試料番号143と比較してσが大きくなり、トロイダルコアの透磁率μも大きくなった。 From Table 9, sample numbers 71, 141a, 141, and 142 satisfying 0.0001 ≦ e + f ≦ 0.051 have a larger σ than sample numbers 143 not satisfying 0.0001 ≦ e + f ≦ 0.051. The magnetic permeability μ of the toroidal core also increased.

表9より、0.030<e≦0.050を満たす試料番号141a、142は、0.030<e≦0.050を満たさない試料番号71、141、143と比較してトロイダルコアの透磁率μが大きくなった。 From Table 9, the sample numbers 141a and 142 satisfying 0.030 <e ≦ 0.050 have the magnetic permeability of the toroidal core as compared with the sample numbers 71, 141 and 143 not satisfying 0.030 <e ≦ 0.050. μ has increased.

(実験例9)
実験例9では、試料番号59の軟磁性合金粉末に熱処理を行い、軟磁性合金にナノ結晶を析出させた試料番号142の軟磁性合金粉末を作製した。熱処理条件は520℃で60分とした。また、試料番号151の軟磁性合金粉末には結晶粒径が30nm以下であり結晶構造がbccであるナノ結晶粒子が析出していること、および、試料番号151の軟磁性合金粉末の非晶質化率X(%)が85%以上であることをXRDにより確認した。結果を表10に示す。
(Experimental Example 9)
In Experimental Example 9, the soft magnetic alloy powder of sample number 59 was heat-treated to prepare the soft magnetic alloy powder of sample number 142 in which nanocrystals were precipitated on the soft magnetic alloy. The heat treatment conditions were 520 ° C. for 60 minutes. Further, nanocrystal particles having a crystal grain size of 30 nm or less and a crystal structure of bcc are precipitated in the soft magnetic alloy powder of sample number 151, and the soft magnetic alloy powder of sample number 151 is amorphous. It was confirmed by XRD that the conversion rate X (%) was 85% or more. The results are shown in Table 10.

Figure 2020180374
Figure 2020180374

表10より、熱処理によりナノ結晶粒子を析出させた試料番号151は、熱処理前の試料番号59と比較して、HcJが低下し、トロイダルコアの透磁率μが大きくなった。 From Table 10, in Sample No. 151 in which nanocrystal particles were precipitated by heat treatment, HcJ decreased and the magnetic permeability μ of the toroidal core increased as compared with Sample No. 59 before heat treatment.

1…粒子形状測定結果
10…アトマイズ装置
20…溶融金属供給部
21…溶融金属
21a…滴下溶融金属
30…冷却部
36…冷却液導入部
38a1…外方凸部
50…冷却液流れ
1 ... Particle shape measurement result 10 ... Atomizing device 20 ... Molten metal supply unit 21 ... Molten metal 21a ... Dripping molten metal 30 ... Cooling unit 36 ... Coolant introduction unit 38a 1 ... Outer convex part 50 ... Coolant flow

Claims (15)

組成式(Fe(1−(α+β))X1αX2β(1−(a+b+c+d+e+f))Siからなる軟磁性合金粉末であって、
X1はCoおよびNiからなる群から選択される1つ以上、
X2はAl,Mn,Ag,Zn,Sn,As,Sb,Cu,Cr,Bi,N,Oおよび希土類元素からなる群より選択される1つ以上、
MはNb,Hf,Zr,Ta,Mo,W,TiおよびVからなる群から選択される1つ以上であり、
0≦a≦0.150
0≦b≦0.200
0≦c≦0.200
0≦d≦0.200
0<e≦0.200
0<f≦0.0200
0.100≦a+b+c+d+e≦0.300
0.0001≦e+f≦0.220
α≧0
β≧0
0≦α+β≦0.50
であり、
下記式(1)に示す非晶質化率X(%)が85%以上である軟磁性合金粉末。
X=100−(Ic/(Ic+Ia))×100 ・・・(1)
Ic:結晶性散乱積分強度
Ia:非晶質性散乱積分強度
Composition formula (Fe (1- (α + β)) X1 α X2 β ) (1- (a + b + c + d + e + f)) A soft magnetic alloy powder composed of M a B b P c S d C e S f .
X1 is one or more selected from the group consisting of Co and Ni,
X2 is one or more selected from the group consisting of Al, Mn, Ag, Zn, Sn, As, Sb, Cu, Cr, Bi, N, O and rare earth elements.
M is one or more selected from the group consisting of Nb, Hf, Zr, Ta, Mo, W, Ti and V.
0 ≤ a ≤ 0.150
0 ≦ b ≦ 0.200
0 ≤ c ≤ 0.200
0 ≦ d ≦ 0.200
0 <e ≤ 0.200
0 <f ≤ 0.0200
0.100 ≤ a + b + c + d + e ≤ 0.300
0.0001 ≤ e + f ≤ 0.220
α ≧ 0
β ≧ 0
0 ≤ α + β ≤ 0.50
And
A soft magnetic alloy powder having an amorphization rate X (%) represented by the following formula (1) of 85% or more.
X = 100- (Ic / (Ic + Ia)) x 100 ... (1)
Ic: Crystalline scattering integral strength Ia: Amorphous scattering integral strength
体積基準での粒度分布におけるD50をrとして、粒子径がr以上2r以下である軟磁性合金粒子の平均円形度が0.70以上である請求項1に記載の軟磁性合金粉末。 The soft magnetic alloy powder according to claim 1, wherein D50 in the particle size distribution on a volume basis is r, and the average circularity of the soft magnetic alloy particles having a particle diameter of r or more and 2r or less is 0.70 or more. 体積基準での粒度分布におけるD50をrとして、粒子径がr以上2r以下である軟磁性合金粉末の平均円形度が0.90以上である請求項1に記載の軟磁性合金粉末。 The soft magnetic alloy powder according to claim 1, wherein the average circularity of the soft magnetic alloy powder having a particle diameter of r or more and 2r or less is 0.90 or more, where D50 in the particle size distribution on a volume basis is r. 粒子径が25μm以上30μm以下である軟磁性合金粉末の平均円形度が0.70以上である請求項1に記載の軟磁性合金粉末。 The soft magnetic alloy powder according to claim 1, wherein the soft magnetic alloy powder having a particle size of 25 μm or more and 30 μm or less has an average circularity of 0.70 or more. 粒子径が25μm以上30μm以下である軟磁性合金粉末の平均円形度が0.90以上である請求項1に記載の軟磁性合金粉末。 The soft magnetic alloy powder according to claim 1, wherein the soft magnetic alloy powder having a particle size of 25 μm or more and 30 μm or less has an average circularity of 0.90 or more. 粒子径が5μm以上10μm以下である軟磁性合金粉末の平均円形度が0.70以上である請求項1に記載の軟磁性合金粉末。 The soft magnetic alloy powder according to claim 1, wherein the soft magnetic alloy powder having a particle size of 5 μm or more and 10 μm or less has an average circularity of 0.70 or more. 粒子径が5μm以上10μm以下である軟磁性合金粉末の平均円形度が0.90以上である請求項1に記載の軟磁性合金粉末。 The soft magnetic alloy powder according to claim 1, wherein the soft magnetic alloy powder having a particle size of 5 μm or more and 10 μm or less has an average circularity of 0.90 or more. 0.0001≦e+f≦0.051である請求項1〜7のいずれかに記載の軟磁性合金粉末。 The soft magnetic alloy powder according to any one of claims 1 to 7, wherein 0.0001 ≦ e + f ≦ 0.051. 0.080<d<0.100である請求項1〜8のいずれかに記載の軟磁性合金粉末。 The soft magnetic alloy powder according to any one of claims 1 to 8, wherein 0.080 <d <0.100. 0.030<e≦0.050である請求項1〜9のいずれかに記載の軟磁性合金粉末。 The soft magnetic alloy powder according to any one of claims 1 to 9, wherein 0.030 <e ≦ 0.050. 0≦a<0.020である請求項1〜10のいずれかに記載の軟磁性合金粉末。 The soft magnetic alloy powder according to any one of claims 1 to 10, wherein 0 ≦ a <0.020. 前記軟磁性合金粉末がナノ結晶粒子を含有する請求項1〜11のいずれかに記載の軟磁性合金粉末。 The soft magnetic alloy powder according to any one of claims 1 to 11, wherein the soft magnetic alloy powder contains nanocrystal particles. 請求項1〜12のいずれかに記載の軟磁性合金粉末を含む圧粉磁心。 A powder magnetic core containing the soft magnetic alloy powder according to any one of claims 1 to 12. 請求項1〜12のいずれかに記載の軟磁性合金粉末を含む磁性部品。 A magnetic component containing the soft magnetic alloy powder according to any one of claims 1 to 12. 請求項1〜12のいずれかに記載の軟磁性合金粉末を含む電子機器。 An electronic device containing the soft magnetic alloy powder according to any one of claims 1 to 12.
JP2020075690A 2019-04-25 2020-04-21 Soft magnetic alloy powder, powder magnetic core, magnetic parts and electronic equipment Active JP7424183B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/602,157 US20220208423A1 (en) 2019-04-25 2020-04-22 Soft magnetic alloy powder, dust core, magnetic component and electronic device
CN202080027609.1A CN113710391B (en) 2019-04-25 2020-04-22 Soft magnetic alloy powder, powder magnetic core, magnetic component, and electronic device
PCT/JP2020/017329 WO2020218332A1 (en) 2019-04-25 2020-04-22 Soft magnetic alloy powder, green compact magnetic core, magnetic component and electronic device
KR1020217032239A KR102557249B1 (en) 2019-04-25 2020-04-22 Soft magnetic alloy powder, dust core, magnetic parts and electronic devices
TW109113790A TWI744874B (en) 2019-04-25 2020-04-24 Soft magnetic alloy powder, powder magnetic core, magnetic parts and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019084663 2019-04-25
JP2019084663 2019-04-25

Publications (2)

Publication Number Publication Date
JP2020180374A true JP2020180374A (en) 2020-11-05
JP7424183B2 JP7424183B2 (en) 2024-01-30

Family

ID=73023348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020075690A Active JP7424183B2 (en) 2019-04-25 2020-04-21 Soft magnetic alloy powder, powder magnetic core, magnetic parts and electronic equipment

Country Status (3)

Country Link
JP (1) JP7424183B2 (en)
KR (1) KR102557249B1 (en)
CN (1) CN113710391B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015357A (en) * 2014-06-30 2016-01-28 セイコーエプソン株式会社 Amorphous alloy powder, powder-compact magnetic core, magnetic device, and electronic device
JP2018123361A (en) * 2017-01-30 2018-08-09 Tdk株式会社 Soft magnetic alloy and magnetic component
JP6451878B1 (en) * 2018-01-12 2019-01-16 Tdk株式会社 Soft magnetic alloys and magnetic parts

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197218A (en) 2002-11-22 2004-07-15 Toko Inc Composite magnetic material, core using the same, and magnetic element
JP2004363466A (en) 2003-06-06 2004-12-24 Toko Inc Complex magnetic material and method for manufacturing inductor using the same
JP6245391B1 (en) 2017-01-30 2017-12-13 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP2020095988A (en) * 2017-03-27 2020-06-18 Tdk株式会社 Dust core
US20190013129A1 (en) * 2017-07-06 2019-01-10 Panasonic Intellectual Property Management Co., Ltd. Dust core
JP6737318B2 (en) * 2018-10-31 2020-08-05 Tdk株式会社 Soft magnetic alloy powder, dust core, magnetic parts and electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015357A (en) * 2014-06-30 2016-01-28 セイコーエプソン株式会社 Amorphous alloy powder, powder-compact magnetic core, magnetic device, and electronic device
JP2018123361A (en) * 2017-01-30 2018-08-09 Tdk株式会社 Soft magnetic alloy and magnetic component
JP6451878B1 (en) * 2018-01-12 2019-01-16 Tdk株式会社 Soft magnetic alloys and magnetic parts

Also Published As

Publication number Publication date
KR102557249B1 (en) 2023-07-19
CN113710391A (en) 2021-11-26
CN113710391B (en) 2023-08-18
JP7424183B2 (en) 2024-01-30
KR20210135294A (en) 2021-11-12

Similar Documents

Publication Publication Date Title
JP2013055182A (en) Soft magnetic alloy powder, nanocrystal soft magnetic alloy powder, production method therefor, and powder magnetic core
KR20150123217A (en) Powder made of iron-based metallic glass
CN111128504B (en) Soft magnetic alloy powder, dust core, magnetic component, and electronic device
US11804317B2 (en) Soft magnetic metal powder and electronic component
US11993833B2 (en) Soft magnetic metal powder comprising a metal oxide covering, and electronic component
JPWO2019031463A1 (en) Fe-based alloy, crystalline Fe-based alloy atomized powder, and magnetic core
WO2020218332A1 (en) Soft magnetic alloy powder, green compact magnetic core, magnetic component and electronic device
JP7424183B2 (en) Soft magnetic alloy powder, powder magnetic core, magnetic parts and electronic equipment
JP2020158831A (en) Soft magnetic alloy and magnetic part
JP7473424B2 (en) Magnetic cores and coil parts
JP2021158340A (en) Magnetic core, magnetic component, and electronic device
JP7276668B2 (en) soft magnetic alloy powders, magnetic cores, magnetic parts and electronic devices
JP2022037533A (en) Magnetic core, magnetic component, and electronic device
CN114616638A (en) Soft magnetic alloy and magnetic component
JP2021107575A (en) Soft-magnetic alloy powder, magnetic core, magnetic component and electronic appliance
US20210230720A1 (en) Soft magnetic alloy powder, magnetic core, magnetic component and electronic device
JP7456279B2 (en) Soft magnetic metal powder and electronic components
CN113053610A (en) Soft magnetic alloy powder, magnetic core, magnetic component, and electronic device
JP7230967B2 (en) Soft magnetic alloys and magnetic parts
JP7230968B2 (en) Soft magnetic alloys and magnetic parts
CN117637280A (en) Soft magnetic alloy powder, magnetic core, magnetic component, and electronic device
JP2021027326A (en) Soft magnetic metal powder and electronic component
JP2021153175A (en) Magnetic core, magnetic component and electronic equipment
CN117120180A (en) Soft magnetic powder and magnetic core
JP2023079830A (en) Soft magnetic metal powder, magnetic core, magnetic component, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240101

R150 Certificate of patent or registration of utility model

Ref document number: 7424183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150