JP2020176280A - Film deposition method - Google Patents

Film deposition method Download PDF

Info

Publication number
JP2020176280A
JP2020176280A JP2019077430A JP2019077430A JP2020176280A JP 2020176280 A JP2020176280 A JP 2020176280A JP 2019077430 A JP2019077430 A JP 2019077430A JP 2019077430 A JP2019077430 A JP 2019077430A JP 2020176280 A JP2020176280 A JP 2020176280A
Authority
JP
Japan
Prior art keywords
film
particles
vacuum chamber
target
conductive oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019077430A
Other languages
Japanese (ja)
Other versions
JP7312006B2 (en
Inventor
幸亮 大野
Kosuke Ono
幸亮 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2019077430A priority Critical patent/JP7312006B2/en
Publication of JP2020176280A publication Critical patent/JP2020176280A/en
Application granted granted Critical
Publication of JP7312006B2 publication Critical patent/JP7312006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a film deposition method capable of keeping an exchange frequency of various components in a vacuum chamber as low as possible.SOLUTION: A film deposition method releases particles from a particle release source by a physical vapor deposition process based on a specified cosine rule in a vacuum chamber 1 to deposit a transparent conductive oxide film on the surface of a target substrate Sw. The method includes a step for forming a first wraparound film Wf1 of a specified film thickness made of the transparent conductive oxide by adhesion and deposition of rebounding particles Rs onto a region of a surface of a deposition preventing plate 5 arranged in the vacuum chamber, the region where particles are not directly deposited based on the specified cosine rule viewed from the particle release source, and then for further adhering and depositing at least part of the rebound particles in a different angle on the region to laminate a second wraparound film Wf2 made of the transparent conductive oxide.SELECTED DRAWING: Figure 3

Description

本発明は、真空チャンバ内で物理蒸着法により粒子放出源から所定の余弦則に従って粒子を放出させて被処理基板表面に透明導電性酸化物膜を成膜する成膜方法に関し、より詳しくは、真空チャンバ内に存する部品の表面に所謂回り込み膜が形成されたときに、当該膜がパーティクルの発生源とならないようにしたものに関する。 The present invention relates to a film forming method for forming a transparent conductive oxide film on the surface of a substrate to be treated by discharging particles from a particle emission source according to a predetermined cosine rule by a physical vapor deposition method in a vacuum chamber. The present invention relates to a film in which a so-called wraparound film is formed on the surface of a component existing in a vacuum chamber so that the film does not become a source of particles.

フラットパネルディスプレイ装置の製造工程には、透明導電膜を成膜する工程があり、透明電極膜としては、酸化インジウム系酸化物膜(例えば、ITO膜)を含む透明導電性酸化物(Transparent Conductive Oxide)膜が用いられ、このような透明導電性酸化物膜の成膜には、一般に、真空蒸着法やスパッタリング法などの物理蒸着法が利用されている。スパッタリング法によりITO膜を成膜する場合を例に説明すると、スパッタリング装置の真空チャンバ内に、被処理基板と、粒子放出源としてのITOターゲットとを対向配置し、真空雰囲気中の真空チャンバ内に希ガス(または希ガス及び酸素ガス)を導入し、ITOターゲットに負の電位を持った所定電力を投入する。すると、真空チャンバ内にプラズマ雰囲気が形成されて、プラズマ雰囲気中の希ガスのイオンによりITOターゲットがスパッタリングされ、ITOターゲットから所定の余弦則に従って飛散したスパッタ粒子が被処理基板に付着、堆積して被処理基板表面にITO膜が成膜される(例えば、特許文献1参照)。 The manufacturing process of the flat panel display device includes a step of forming a transparent conductive film, and the transparent electrode film is a transparent conductive oxide (Transparent Conductive Oxide) including an indium oxide-based oxide film (for example, ITO film). ) A film is used, and a physical vapor deposition method such as a vacuum vapor deposition method or a sputtering method is generally used for forming such a transparent conductive oxide film. Explaining the case where the ITO film is formed by the sputtering method as an example, the substrate to be processed and the ITO target as a particle emission source are arranged to face each other in the vacuum chamber of the sputtering apparatus, and are placed in the vacuum chamber in a vacuum atmosphere. A rare gas (or a rare gas and an oxygen gas) is introduced, and a predetermined power having a negative potential is applied to the ITO target. Then, a plasma atmosphere is formed in the vacuum chamber, the ITO target is sputtered by the ions of the rare gas in the plasma atmosphere, and the sputtered particles scattered from the ITO target according to a predetermined cosine rule adhere to and accumulate on the substrate to be processed. An ITO film is formed on the surface of the substrate to be treated (see, for example, Patent Document 1).

上記のようにして被処理基板表面にITO膜を成膜するとき、例えば真空チャンバの内壁への着膜を防止する防着板のような真空チャンバ内に存する各種の部品(即ち、成膜対象ではないもの)の表面にもスパッタ粒子が付着、堆積してITO膜が形成されることとなる。そして、複数枚の被処理基板に対してITO膜を継続して成膜していくと、被処理基板にパーティクルが付着して、製品歩留まりを低下させることが判明した。そこで、本発明者は、鋭意研究を重ね、次のことを知見するのに至った。 When an ITO film is formed on the surface of a substrate to be processed as described above, various parts existing in the vacuum chamber (that is, a film forming target) such as a protective plate for preventing the film from being applied to the inner wall of the vacuum chamber. Sputtered particles adhere to and accumulate on the surface of the (not) surface to form an ITO film. Then, it was found that when the ITO film was continuously formed on a plurality of substrates to be processed, particles adhered to the substrates to be processed and the product yield was lowered. Therefore, the present inventor has made extensive studies and has come to find out the following.

即ち、各種の部品の表面のうち、例えば防着板の裏面側(真空チャンバの壁面に面する側)に形成されるITOの所謂回り込み膜(ITOターゲット表面からみて所定の余弦則による直接のスパッタ粒子の付着(入射)を受けない領域であって、反跳したスパッタ粒子が付着、堆積して形成されたもの)は、結晶粒界の隙間が大きい単結晶のような膜質(一般に黄色の膜)となり、且つ、針状構造で内部に空間を多く持つ(具体的には、柱状の幹部から針状の枝部の複数が張り出したような構造となる)ことを知見するのに至った。そして、このような回り込み膜は、各種の部品の表面のうち、ITOターゲットから所定の余弦則に従って飛散したスパッタ粒子が直接付着する領域(ターゲット表面を直視できるような領域)に形成されたもの(一般に黒色の膜)とは異なり、外力からの影響に弱くて脆いため、これが、何らかの原因で黄色の粉状体(イエローパウダー)となって真空チャンバ内に飛散し、この飛散したものがパーティクルとなって被処理基板表面に付着するものと考えられる。このような場合、被処理基板へのパーティクルの付着を可及的に抑制して製品歩留まりを高く保持するには、所謂回り込み膜が形成される部品の交換頻度を高めればよいが(即ち、メンテナンスサイクルを短くする)、これでは、量産性が損なわれる。 That is, among the surfaces of various parts, for example, the so-called wraparound film of ITO formed on the back surface side of the protective plate (the side facing the wall surface of the vacuum chamber) (direct sputtering according to a predetermined cosine rule when viewed from the surface of the ITO target). The region that is not subject to particle adhesion (incident) and is formed by the adhesion and deposition of rebounded sputter particles) is a single crystal-like film (generally a yellow film) with large intergranular gaps. ), And it has been found that it has a needle-like structure and has a lot of space inside (specifically, it has a structure in which a plurality of needle-shaped branches protrude from a columnar trunk). Then, such a wraparound film is formed on the surface of various parts in a region (a region where the target surface can be directly viewed) to which sputter particles scattered from the ITO target according to a predetermined cosine rule directly adhere. Unlike (generally a black film), it is vulnerable to the influence of external forces and is fragile, so for some reason it becomes a yellow powder (yellow powder) that scatters into the vacuum chamber, and this scattered material becomes particles. It is considered that the particles adhere to the surface of the substrate to be treated. In such a case, in order to suppress the adhesion of particles to the substrate to be processed as much as possible and maintain a high product yield, it is sufficient to increase the frequency of replacement of parts on which a so-called wraparound film is formed (that is, maintenance). Shorten the cycle), which impairs mass productivity.

特開2015−994号公報Japanese Unexamined Patent Publication No. 2015-994

本発明は、上記知見に基づきなされたものであり、真空チャンバ内に存する各種の部品の交換頻度が高くなることを可及的に抑制できる成膜方法を提供することをその課題とするものである。 The present invention has been made based on the above findings, and an object of the present invention is to provide a film forming method capable of suppressing an increase in the frequency of replacement of various parts existing in a vacuum chamber as much as possible. is there.

上記課題を解決するために、真空チャンバ内で物理蒸着法により粒子放出源から所定の余弦則に従って粒子を放出させて被処理基板表面に透明導電性酸化物膜を成膜する本発明の成膜方法は、真空チャンバ内に存する部品の表面のうち、粒子放出源からみて所定の余弦則による直接の粒子の付着を受けない領域に、反跳した粒子が付着、堆積して透明導電性酸化物からなる第1回り込み膜が所定膜厚で形成されると、反跳した粒子の少なくとも一部が当該領域に付着するときの角度を変えて当該粒子を更に付着、堆積させて透明導電性酸化物からなる第2回り込み膜を積層させる工程を含むことを特徴とする。 In order to solve the above problems, the film formation of the present invention forms a transparent conductive oxide film on the surface of the substrate to be treated by discharging particles from a particle emission source according to a predetermined cosine rule by a physical vapor deposition method in a vacuum chamber. The method is a transparent conductive oxide in which rebounded particles are attached and deposited on the surface of the parts existing in the vacuum chamber, which are not directly attached by the particles according to the predetermined cosine law when viewed from the particle emission source. When the first wraparound film made of the above is formed with a predetermined thickness, at least a part of the rebounded particles is changed at an angle when they are attached to the region, and the particles are further attached and deposited to be a transparent conductive oxide. It is characterized by including a step of laminating a second wraparound film made of the above.

ここで、物理蒸着法、特にプラズマを利用したものにより粒子放出源から所定の余弦則に従って粒子を放出させて被処理基板表面に透明導電性酸化物膜を成膜する間、真空チャンバ内に存する各種の部品のうち、所定の余弦則による直接の粒子の付着を受けない領域にも、反跳した粒子により単結晶のような膜質を持つ(第1)回り込み膜が形成される。このときの回り込み膜を解析すると、結晶粒が一方向に揃うように成長していることが見出された。そこで、本発明では、所定以上の膜厚で第1回り込み膜が形成された後は、当該領域に付着する反跳した粒子の入射角を、第1回り込み膜が形成されたときのものから変わるようにして、第1回り込み膜に連続して第2回り込み膜を積層させるようにした。これにより、反跳した粒子の少なくとも一部が第1回り込み膜における針状構造の内部空間にも侵入して付着、堆積しながら成長して第1回り込み膜をキャップするように第2回り込み膜が形成される。このとき、第2回り込み膜は、その結晶粒界の隙間が可及的に小さくなってより強固な膜質へと改善される。その結果、外力からの影響に強くでき、黄色の粉状体(イエローパウダー)となって真空チャンバ内に飛散するものを可及的に減少させることができる。このため、製品歩留まりを高く維持するのに必要な真空チャンバ内に存する各種の部品の交換頻度を低くできる。 Here, the particles are present in the vacuum chamber while the transparent conductive oxide film is formed on the surface of the substrate to be treated by emitting particles from the particle emission source according to a predetermined cosine rule by a physical vapor deposition method, particularly a method using plasma. Among various parts, a (first) wraparound film having a film quality like a single crystal is formed by the rebounded particles even in a region where the particles are not directly attached according to a predetermined cosine rule. When the wraparound film at this time was analyzed, it was found that the crystal grains grew so as to be aligned in one direction. Therefore, in the present invention, after the first wraparound film is formed with a film thickness equal to or greater than a predetermined value, the incident angle of the recoil particles adhering to the region is changed from that when the first wraparound film is formed. In this way, the second wraparound film was continuously laminated on the first wraparound film. As a result, at least a part of the recoil particles penetrates into the internal space of the needle-like structure in the first wraparound film and grows while adhering and accumulating, so that the second wraparound film caps the first wraparound film. It is formed. At this time, the gap between the crystal grain boundaries of the second wraparound film is reduced as much as possible, and the film quality is improved to be stronger. As a result, the influence from the external force can be strengthened, and the amount of yellow powder (yellow powder) scattered in the vacuum chamber can be reduced as much as possible. Therefore, it is possible to reduce the frequency of replacement of various parts existing in the vacuum chamber, which is necessary for maintaining a high product yield.

本発明において、粒子放出源を透明導電性酸化物で構成されるスパッタリング用のターゲットとし、真空チャンバ内に被処理基板とターゲットとを対向配置し、真空雰囲気中の真空チャンバ内にスパッタガスを導入し、ターゲットに負の電位を持つ所定電力を投入してプラズマ雰囲気を形成し、プラズマ雰囲気中の希ガスのイオンでターゲットをスパッタリングすることで被処理基板表面に透明導電性酸化物膜を成膜する場合、前記工程は、前記ターゲットのスパッタリング中に、前記部品に、ターゲットに印加される電位より高い電位を印加することで実施されることが好ましい。ここで、上記領域に付着する反跳した(スパッタ)粒子の中には、プラズマ雰囲気中で電離したものも(ITOターゲットの場合、例えば、InOxやSnOx)も含まれる。このため、回り込み膜が形成される部品にターゲットに印加される電位より高い電位を印加しておけば、電位差により反跳した粒子のイオンが部品表面に対して略直交する方向から引き込まれることで、被処理基板表面に透明導電性酸化物膜を成膜するときの真空チャンバ内の雰囲気を変えることなく、簡単な構成で上記領域に付着する反跳した粒子の入射角を変えることができる。 In the present invention, the particle emission source is a target for sputtering composed of a transparent conductive oxide, the substrate to be processed and the target are arranged to face each other in a vacuum chamber, and a sputtering gas is introduced into the vacuum chamber in a vacuum atmosphere. Then, a predetermined power having a negative potential is applied to the target to form a plasma atmosphere, and the target is sputtered with rare gas ions in the plasma atmosphere to form a transparent conductive oxide film on the surface of the substrate to be treated. If so, it is preferable that the step is carried out by applying a potential higher than the potential applied to the target to the component during the sputtering of the target. Here, the recoil (sputtered) particles adhering to the region include those ionized in a plasma atmosphere (in the case of an ITO target, for example, InOx or SnOx ). Therefore, if a potential higher than the potential applied to the target is applied to the component on which the wraparound film is formed, the ions of the particles that bounce back due to the potential difference are drawn in from a direction substantially orthogonal to the surface of the component. The incident angle of the rebounded particles adhering to the above region can be changed with a simple configuration without changing the atmosphere in the vacuum chamber when the transparent conductive oxide film is formed on the surface of the substrate to be treated.

本発明の実施形態のスパッタリング装置を示す模式的断面図。The schematic cross-sectional view which shows the sputtering apparatus of embodiment of this invention. 第1回り込み膜が形成された状態を説明する模式図。The schematic diagram explaining the state in which the 1st wraparound film was formed. 第1回り込み膜に第2回り込み膜を積層した状態を説明する模式図。The schematic diagram explaining the state which laminated the 2nd wraparound film on the 1st wraparound film. (a)及び(b)は、本発明の効果を示す実験で成膜された防着板のSEM画像。(A) and (b) are SEM images of the adhesive plate formed in the experiment showing the effect of the present invention.

以下、図面を参照して、物理蒸着法をスパッタリング法、粒子放出源をITOターゲットとし、また、真空チャンバ内に存してその表面にも回り込み膜が成膜される部品を真空チャンバ内に配置される防着板とし、本発明の成膜方法の実施形態を説明する。 Hereinafter, referring to the drawings, the physical vapor deposition method is a sputtering method, the particle emission source is an ITO target, and a component that exists in the vacuum chamber and has a wraparound film formed on the surface thereof is arranged in the vacuum chamber. An embodiment of the film forming method of the present invention will be described as a protective plate.

図1を参照して、SMは、ガラス基板などの被処理基板(以下「基板Sw」という)表面に対して透明導電性酸化物膜としてのITO膜を成膜できるマグネトロン方式のスパッタリング装置である。スパッタリング装置SMは、真空チャンバ1を備え、真空チャンバ1の天井部には、公知の方法で製作されたITO製のターゲット2が取り付けられている。以下においては、図1に示すスパッタリング装置SMの姿勢を基準に、真空チャンバ1の天井部側を向く方向を「上」とし、その底部側を向く方向を「下」として説明する。 With reference to FIG. 1, the SM is a magnetron-type sputtering apparatus capable of forming an ITO film as a transparent conductive oxide film on the surface of a substrate to be treated (hereinafter referred to as “substrate Sw”) such as a glass substrate. .. The sputtering apparatus SM includes a vacuum chamber 1, and an ITO-made target 2 manufactured by a known method is attached to the ceiling of the vacuum chamber 1. In the following, with reference to the posture of the sputtering apparatus SM shown in FIG. 1, the direction facing the ceiling side of the vacuum chamber 1 will be referred to as “up”, and the direction facing the bottom side thereof will be described as “down”.

ターゲット2は、内部に冷媒循環通路(図示省略)が形成された銅等の熱伝導に優れた金属製のバッキングプレート21の下面にインジウム等の公知のボンディング剤(図示省略)を介して接合され、この状態でスパッタ面2aを下方にして絶縁体Iを介して真空チャンバ1の側壁上部に取り付けられている。バッキングプレート21にはスパッタ電源E1が接続され、スパッタリングによる成膜時、例えば、バッキングプレート21を介してターゲット2に負の電位を持った電力が投入できるようにしている。バッキングプレート21の上方には、ターゲット2を貫通する漏洩磁場を作用させる閉鎖磁場若しくはカスプ磁場構造の磁石ユニット3が配置されている。なお、磁石ユニット3としては、固定式、回転式、往復動式などの公知のものが利用できるため、これ以上の説明は省略する。 The target 2 is bonded to the lower surface of a metal backing plate 21 having an internal refrigerant circulation passage (not shown) and having excellent thermal conductivity, such as copper, via a known bonding agent such as indium (not shown). is attached to the upper portion of the side wall of the vacuum chamber 1 via an insulator I 1 by the sputtering surface 2a downward in this state. A sputtering power source E1 is connected to the backing plate 21 so that power having a negative potential can be applied to the target 2 through the backing plate 21, for example, during film formation by sputtering. Above the backing plate 21, a magnet unit 3 having a closed magnetic field or a cusp magnetic field structure that acts on a leakage magnetic field penetrating the target 2 is arranged. As the magnet unit 3, known ones such as a fixed type, a rotary type, and a reciprocating type can be used, so further description thereof will be omitted.

真空チャンバ1の底部中央には、ターゲット2に対向させてステージ4が絶縁体Iを介して配置されている。ステージ4は、基板Swの輪郭に対応した上面形状を有し、基板Swをその成膜面を上側にして位置決め保持できるようにしている。また、真空チャンバ1内には、真空チャンバ1の内壁への着膜を防止すると共に処理室10を画成する防着板5が配置され、本実施形態のスパッタリング装置用の部品を構成する。防着板5は、ステンレス、アルミニウム、チタン等から選択される金属又は合金製である。 At the center of the bottom of the vacuum chamber 1, a stage 4 is arranged via an insulator I 2 so as to face the target 2. The stage 4 has an upper surface shape corresponding to the contour of the substrate Sw so that the substrate Sw can be positioned and held with its film forming surface facing upward. Further, in the vacuum chamber 1, a protective plate 5 for preventing film formation on the inner wall of the vacuum chamber 1 and defining the processing chamber 10 is arranged to constitute a component for the sputtering apparatus of the present embodiment. The protective plate 5 is made of a metal or alloy selected from stainless steel, aluminum, titanium and the like.

真空チャンバ1の側壁上部には、マスフローコントローラ61が介設された、アルゴン等の希ガスからなるスパッタガス(場合によっては、希ガスと酸素を含有する反応ガス)を導入するガス導入管6の先端部が貫設されて防着板5の近傍まで達している。そして、マスフローコントローラ61によりスパッタガスを処理室10に所定の流量で導入できるようにしている。また、真空チャンバ1の側壁下部に開設された排気口11には、ターボ分子ポンプやロータリーポンプ等からなる真空ポンプユニットPuに通じる排気管12が接続され、処理室10を真空引きできるようになっている。上記スパッタリング装置SMは、特に図示しないが、マイクロコンピュータやシーケンサ等を備えた公知の制御手段を有し、制御手段により、スパッタ電源E1や後述の直流電源E2の稼働、マスフローコントローラ61の稼働、真空ポンプユニットPuの稼働等を統括制御するようになっている。 A gas introduction pipe 6 for introducing a sputter gas (in some cases, a reaction gas containing rare gas and oxygen) made of a rare gas such as argon, having a mass flow controller 61 interposed above the side wall of the vacuum chamber 1. The tip portion is penetrated and reaches the vicinity of the protective plate 5. Then, the mass flow controller 61 enables the sputter gas to be introduced into the processing chamber 10 at a predetermined flow rate. Further, an exhaust pipe 12 leading to a vacuum pump unit Pu composed of a turbo molecular pump, a rotary pump, or the like is connected to an exhaust port 11 provided at the lower side wall of the vacuum chamber 1, so that the processing chamber 10 can be evacuated. ing. Although not particularly shown, the sputtering apparatus SM has a known control means including a microcomputer, a sequencer, and the like, and the control means operates the sputtering power supply E1 and the DC power supply E2 described later, operates the mass flow controller 61, and vacuums. The operation of the pump unit Pu is controlled in an integrated manner.

次に、スパッタリング装置SMにより所定の成膜条件で基板Sw表面にITO膜を成膜するのに際しては、先ず、図示省略の搬送ロボットを用いて、真空チャンバ1内のステージ4に基板Swをセットする。真空ポンプユニットPuを稼働させて処理室10内を所定の真空度(例えば、1×10−5Pa)まで真空引きした後、マスフローコントローラ61を制御してスパッタガスたるアルゴンガスを所定の流量(例えば、100〜1500sccm)で導入する(このとき、処理室10の圧力は、0.1〜1Paの範囲となる)。尚、反応ガスとしての酸素ガスを導入する場合、例えば、1〜100sccmの範囲で導入される。そして、スパッタ電源E1によってターゲット2に500〜5000Wの範囲で負の電位(例えば、−100V〜−1000Vの範囲)をもった直流電力を投入して処理室10内にプラズマ雰囲気を形成する。これにより、ITOターゲット2のスパッタ面2aがプラズマ雰囲気中の希ガスのイオンでスパッタされ、所定の余弦則に従って飛散するスパッタ粒子Dsが基板Sw表面に付着、堆積してITO膜が成膜される。 Next, when forming an ITO film on the surface of the substrate Sw by the sputtering apparatus SM under predetermined film formation conditions, first, the substrate Sw is set on the stage 4 in the vacuum chamber 1 by using a transfer robot (not shown). To do. After operating the vacuum pump unit Pu to evacuate the inside of the processing chamber 10 to a predetermined degree of vacuum (for example, 1 × 10-5 Pa), the mass flow controller 61 is controlled to flow argon gas, which is a sputter gas, to a predetermined flow rate (for example, 1 × 10-5 Pa). For example, it is introduced at 100 to 1500 sccm) (at this time, the pressure in the processing chamber 10 is in the range of 0.1 to 1 Pa). When oxygen gas as a reaction gas is introduced, for example, it is introduced in the range of 1 to 100 sccm. Then, the sputtering power source E1 applies DC power having a negative potential (for example, in the range of −100V to −1000V) to the target 2 in the range of 500 to 5000W to form a plasma atmosphere in the processing chamber 10. As a result, the sputtered surface 2a of the ITO target 2 is sputtered by the ions of a rare gas in the plasma atmosphere, and the sputtered particles Ds scattered according to a predetermined cosine rule adhere to and accumulate on the surface of the substrate Sw to form an ITO film. ..

上記のようにして基板Sw表面にITO膜を成膜するとき、成膜対象ではないが、真空チャンバ1内に存する部品としての防着板5にもITO膜が形成され、このようなITO膜は、処理室10に面する防着板5の表面部分5aだけでなく、処理室10に面しない防着板5の表面の遮蔽部分5bや、真空チャンバ1の壁面側に位置する防着板5の裏面部分5cにも形成される。つまり、ターゲット2から所定の余弦則に従って飛散したスパッタ粒子Dsが直接付着する防着板5の表面部分5aには、基板Sw表面と略同等の付着膜Dfが形成される。一方、ターゲット2から所定の余弦則による直接のスパッタ粒子の付着(入射)を受けない防着板5の遮蔽部分5bや裏面部分5cにも、反跳したスパッタ粒子Rsが回り込んで回り込み膜Wfが成膜される。この場合、成膜時の真空チャンバ1内の圧力などの成膜条件にもよるが、防着板5の表面部分5aに形成される付着膜Dfと比較して1/10程度の膜厚で回り込み膜Wfが形成され、後述のようにパーティクルの発生源になり得る。 When an ITO film is formed on the surface of the substrate Sw as described above, an ITO film is also formed on the adhesive plate 5 as a component existing in the vacuum chamber 1, although it is not a film forming target, and such an ITO film is formed. Is not only the surface portion 5a of the protective plate 5 facing the processing chamber 10, but also the shielding portion 5b on the surface of the protective plate 5 not facing the processing chamber 10 and the protective plate located on the wall surface side of the vacuum chamber 1. It is also formed on the back surface portion 5c of 5. That is, an adhesion film Df substantially equivalent to the surface of the substrate Sw is formed on the surface portion 5a of the adhesion plate 5 to which the sputter particles Ds scattered from the target 2 according to a predetermined cosine rule directly adhere. On the other hand, the recoiled sputter particles Rs wrap around to the shielding portion 5b and the back surface portion 5c of the protective plate 5 that are not directly attached (incident) to the sputter particles from the target 2 according to the predetermined cosine rule, and the wraparound film Wf. Is formed. In this case, although it depends on the film forming conditions such as the pressure in the vacuum chamber 1 at the time of film formation, the film thickness is about 1/10 of that of the adhesive film Df formed on the surface portion 5a of the adhesive plate 5. A wraparound film Wf is formed and can be a source of particles as described later.

ここで、上記回り込み膜Wfを解析すると、図2に示すように、結晶粒界の隙間が大きい単結晶のような膜質(一般に黄色の膜)となり、且つ、針状構造で内部に空間を多く持ち(具体的には、柱状の幹部C1から針状の枝部C2の複数が張り出したような構造となる)、しかも、防着板5の表面に対して傾斜した一方向に結晶粒が揃うように成長していることが判明した。そこで、本実施形態では、回り込み膜Wfを第1回り込み膜Wf1とし、第1回り込み膜Wf1が所定膜厚で形成されると、反跳したスパッタ粒子Rsの少なくとも一部が防着板5の遮蔽部分5bや裏面部分5cに付着するときの角度を変えるようにして第2回り込み膜Wf2が積層されるようにした。 Here, when the wraparound film Wf is analyzed, as shown in FIG. 2, the film quality (generally a yellow film) like a single crystal having a large gap between crystal grain boundaries is obtained, and the needle-like structure has a large amount of space inside. It has a structure (specifically, it has a structure in which a plurality of needle-shaped branch portions C2 project from the columnar trunk portion C1), and crystal grains are aligned in one direction inclined with respect to the surface of the adhesion plate 5. It turned out to be growing. Therefore, in the present embodiment, when the wraparound film Wf is set as the first wraparound film Wf1 and the first wraparound film Wf1 is formed with a predetermined film thickness, at least a part of the rebounded sputter particles Rs shields the adhesive plate 5. The second wraparound film Wf2 was laminated by changing the angle at which it adheres to the portion 5b and the back surface portion 5c.

即ち、本実施形態では、防着板5に直流電源E2からの出力を接続し、第1回り込み膜Wf1が所定膜厚で形成された後は、防着板5にターゲット2のスパッタリング時、ターゲット2に印加される電位より高い電位(例えば、+200の範囲)を印加することとした。この場合、反跳したスパッタ粒子Rsの中には、プラズマ雰囲気中で電離したもの(InOx、SnOx、InOxやSnOx等)も含まれるため、防着板5に所定電位を印加することで、電位差により反跳したスパッタ粒子Rsのイオンが防着板5の表面に対して略直交する方向から引き込まれるようになる。この場合、プラズマ雰囲気中で電離した、反跳したスパッタ粒子Rsを効率よく取り込むために、防着板5に印加する電位を、その極性が変化する所定範囲内で連続してまたは段階的に変化させるようにしてもよい。また、防着板5への電位の印加を開始するときの第1回り込み膜Wf1の膜厚は、防着板5の交換頻度等を考慮して適宜設定される。 That is, in the present embodiment, after the output from the DC power supply E2 is connected to the protective plate 5 and the first wraparound film Wf1 is formed with a predetermined film thickness, the target 2 is sputtered to the protective plate 5 during sputtering. It was decided to apply a potential higher than the potential applied to 2 (for example, in the range of +200). In this case, since the rebounded sputtered particles Rs include those ionized in a plasma atmosphere (InOx + , SnOx + , InOx , SnOx −, etc.), a predetermined potential is applied to the adhesive plate 5. As a result, the ions of the sputtered particles Rs rebounded due to the potential difference are drawn in from a direction substantially orthogonal to the surface of the adhesive plate 5. In this case, in order to efficiently take in the recoiled sputtered particles Rs ionized in the plasma atmosphere, the potential applied to the adhesive plate 5 is continuously or stepwise changed within a predetermined range in which the polarity changes. You may let it. Further, the film thickness of the first wraparound film Wf1 when the application of the potential to the adhesive plate 5 is started is appropriately set in consideration of the replacement frequency of the adhesive plate 5 and the like.

以上によれば、図3に示すように、反跳したスパッタ粒子Rsの少なくとも一部が第1回り込み膜Wf1における針状構造の内部空間にも侵入して付着、堆積しながら成長して第1回り込み膜Wf1をキャップするように第2回り込み膜Wf2が形成される。このとき、第2回り込み膜Wf2は、その結晶粒界の隙間が可及的に小さくなってより強固な膜質へと改善される。その結果、外力からの影響に強くでき、黄色の粉状体(イエローパウダー)となって真空チャンバ1内に飛散するものを可及的に減少させることができる。このため、製品歩留まりを高く維持するのに必要な真空チャンバ1内に存する防着板5の交換頻度を低くできる。この場合、防着板5に所定電位を印加するだけであるため、真空チャンバ1内の雰囲気を変えることなく(即ち、基板Swへの成膜を停止することなく)、簡単な構成で反跳したスパッタ粒子Rsの入射角を変えることができ、有利である。 According to the above, as shown in FIG. 3, at least a part of the rebounded sputtered particles Rs penetrates into the internal space of the needle-like structure in the first wraparound film Wf1 and grows while adhering and accumulating. The second wraparound film Wf2 is formed so as to cap the wraparound film Wf1. At this time, the gap between the crystal grain boundaries of the second wraparound film Wf2 is reduced as much as possible, and the film quality is improved to be stronger. As a result, the influence from the external force can be made strong, and the amount of yellow powder (yellow powder) scattered in the vacuum chamber 1 can be reduced as much as possible. Therefore, it is possible to reduce the frequency of replacement of the adhesive plate 5 existing in the vacuum chamber 1 required to maintain a high product yield. In this case, since a predetermined potential is only applied to the adhesion plate 5, the recoil can be achieved with a simple configuration without changing the atmosphere in the vacuum chamber 1 (that is, without stopping the film formation on the substrate Sw). It is advantageous because the incident angle of the sputtered particles Rs can be changed.

次に、上記効果を確認するために、上記スパッタリング装置SMを用いて次の実験を行った。即ち、本実験では、ターゲット2をITO(SnOが10wt%)ターゲット、基板Swをガラス基板とした。成膜条件として、基板Swを真空チャンバ1内のステージ4にセットした後、真空排気後に真空チャンバ1内にアルゴンガスを1000sccm、酸素ガスを20sccmの流量で導入し(このときの処理室10内の圧力は0.7Pa)、ターゲット2に投入する直流電力を2500Wに設定し、処理室10内にプラズマ雰囲気を形成して30時間連続放電させた。図4(a)は、防着板5の裏面部分5cに成膜された第1回り込み膜Wf1のSEM画像である。これによれば、上記成膜条件での成膜により裏面部分5cに約16μmの膜厚で第1回り込み膜Wf1が形成され、これは、針状構造で内部に空間を多く持ち、また、裏面部分5c表面に対して傾斜した一方向に結晶粒が揃うように成長していることが判る。この場合、第1回り込み膜Wf1の表面を指先で触るだけで、微細なパーティクルが多量に発生することが確認された。 Next, in order to confirm the above effect, the following experiment was carried out using the above sputtering apparatus SM. That is, in this experiment, the target 2 was an ITO (SnO 2 is 10 wt%) target, and the substrate Sw was a glass substrate. As the film forming conditions, the substrate Sw is set on the stage 4 in the vacuum chamber 1, and after vacuum exhaust, argon gas is introduced into the vacuum chamber 1 at a flow rate of 1000 sccm and oxygen gas is introduced into the vacuum chamber 1 at a flow rate of 20 sccm (in the processing chamber 10 at this time). The pressure was 0.7 Pa), the DC power applied to the target 2 was set to 2500 W, a plasma atmosphere was formed in the processing chamber 10, and continuous discharge was performed for 30 hours. FIG. 4A is an SEM image of the first wraparound film Wf1 formed on the back surface portion 5c of the adhesive plate 5. According to this, the first wraparound film Wf1 is formed on the back surface portion 5c with a film thickness of about 16 μm by the film formation under the above-mentioned film formation conditions, which has a needle-like structure and has a lot of space inside, and also has a back surface. It can be seen that the crystal grains are grown so as to be aligned in one direction inclined with respect to the surface of the portion 5c. In this case, it was confirmed that a large amount of fine particles were generated just by touching the surface of the first wraparound film Wf1 with a fingertip.

次に、上記と同条件で30時間連続放電させた後、防着板5に対して+200Vの電位を印加して更に20時間連続放電させた。図4(b)は、防着板5の裏面部分5cに成膜された第1回り込み膜Wf1及び第2回り込み膜Wf2のSEM画像である。これによれば、裏面部分5cに約10μmの膜厚で第2回り込み膜Wf2が積層され、このとき、第1回り込み膜Wf1をキャップするように第2回り込み膜Wf2が形成され、その結晶粒界の隙間が小さくなっていることが判る。この場合、第2回り込み膜Wf2の表面を指先で触っても、微細なパーティクルの発生はみられず、強固な膜質のものになっていることが確認された。 Next, after continuous discharge for 30 hours under the same conditions as above, a potential of + 200 V was applied to the adhesive plate 5 to continuously discharge for another 20 hours. FIG. 4B is an SEM image of the first wraparound film Wf1 and the second wraparound film Wf2 formed on the back surface portion 5c of the adhesive plate 5. According to this, the second wraparound film Wf2 is laminated on the back surface portion 5c with a film thickness of about 10 μm, and at this time, the second wraparound film Wf2 is formed so as to cap the first wraparound film Wf1, and its crystal grain boundary. It can be seen that the gap between the two is getting smaller. In this case, even if the surface of the second wraparound film Wf2 was touched with a fingertip, no fine particles were observed, and it was confirmed that the film had a strong film quality.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態においては、物理蒸着法を実施する装置としてスパッタリング装置SMを例に説明したが、これに限定されるものではなく、真空蒸着法やイオンプレーティング法によりITO膜を成膜する場合にも本発明は適用できる。この場合、真空蒸着法やイオンプレーティング法によるものは、スパッタリング法によるものより防着板への回り込みが多い(つまり、スパッタリング法より広面積に回り込み膜が成膜される)ため、有効である。また、上記実施形態では、部品として防着板5を例に説明したが、真空チャンバ1内に存してITO膜が着膜される部品であれば、本発明を適用することができ、更に、透明導電性酸化物としてITOを例に説明したが、これに限定されるものではなく、他の透明導電性酸化物膜を成膜する際にも本発明は広く適用することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above. In the above embodiment, the sputtering apparatus SM has been described as an example of the apparatus for carrying out the physical vapor deposition method, but the present invention is not limited to this, and when the ITO film is formed by the vacuum vapor deposition method or the ion plating method. The present invention is also applicable. In this case, the vacuum deposition method and the ion plating method are effective because the wraparound to the protective plate is larger than that of the sputtering method (that is, the wraparound film is formed in a wider area than the sputtering method). .. Further, in the above embodiment, the adhesive plate 5 has been described as an example of the component, but the present invention can be applied as long as the component exists in the vacuum chamber 1 and the ITO film is coated. Although ITO has been described as an example of the transparent conductive oxide, the present invention is not limited to this, and the present invention can be widely applied to the formation of other transparent conductive oxide films.

また、上記実施形態では、防着板5に所定電位を印加して反跳したスパッタ粒子Rsの入射角を変えるものを例に説明したが、これに限定されるものではなく、例えば、防着板5の遮蔽部分5bや裏面部分5cの近傍に電磁石を配置して磁場を適宜作用させ、反跳したスパッタ粒子Rsの入射角を変えるようにしてもよい。 Further, in the above embodiment, the case where a predetermined potential is applied to the adhesion plate 5 to change the incident angle of the sputtered particles Rs rebounded has been described as an example, but the present invention is not limited to this, and for example, adhesion is provided. An electromagnet may be arranged in the vicinity of the shielding portion 5b or the back surface portion 5c of the plate 5 to appropriately apply a magnetic field to change the incident angle of the rebounded sputtered particles Rs.

SM…スパッタリング装置(物理蒸着法を実施する装置)、Sw…基板(被処理基板)、Wf1…第1回り込み膜、Wf2…第2回り込み膜、1…真空チャンバ、2…ターゲット(粒子放出源)、5…防着板(真空チャンバ内に存する部品)、Rs…反跳したスパッタ粒子(粒子)。 SM ... Sputtering device (device that carries out physical vapor deposition), Sw ... Substrate (Substrate to be processed), Wf1 ... First wraparound film, Wf2 ... Second wraparound film, 1 ... Vacuum chamber, 2 ... Target (particle emission source) 5, ... Adhesive plate (part existing in the vacuum chamber), Rs ... Sputtered particles (particles) that bounced back.

Claims (2)

真空チャンバ内で物理蒸着法により粒子放出源から所定の余弦則に従って粒子を放出させて被処理基板表面に透明導電性酸化物膜を成膜する成膜方法において、
真空チャンバ内に存する部品の表面のうち、粒子放出源からみて所定の余弦則による直接の粒子の付着を受けない領域に、反跳した粒子が付着、堆積して透明導電性酸化物からなる第1回り込み膜が所定膜厚で形成されると、反跳した粒子の少なくとも一部が当該領域に付着するときの角度を変えて当該粒子を更に付着、堆積させて透明導電性酸化物からなる第2回り込み膜を積層させる工程を含むことを特徴とする成膜方法。
In a film forming method in which particles are discharged from a particle emission source by a physical vapor deposition method in a vacuum chamber according to a predetermined cosine rule to form a transparent conductive oxide film on the surface of a substrate to be treated.
Rebounding particles adhere to and accumulate on the surface of the parts existing in the vacuum chamber, which are not directly adhered by the predetermined cosine law when viewed from the particle emission source, and are composed of transparent conductive oxide. 1 When the wraparound film is formed with a predetermined film thickness, at least a part of the rebounded particles is made of a transparent conductive oxide by changing the angle at which the particles adhere to the region and further adhering and depositing the particles. 2. A film forming method comprising a step of laminating two wraparound films.
請求項1記載の成膜方法であって、粒子放出源を透明導電性酸化物で構成されるスパッタリング用のターゲットとし、真空チャンバ内に被処理基板とターゲットとを対向配置し、真空雰囲気中の真空チャンバ内にスパッタガスを導入し、ターゲットに負の電位を持つ所定電力を投入してプラズマ雰囲気を形成し、プラズマ雰囲気中の希ガスのイオンでターゲットをスパッタリングすることで被処理基板表面に透明導電性酸化物膜を成膜するものにおいて、
前記工程は、前記ターゲットのスパッタリング中に、前記部品に、ターゲットに印加される電位より高い電位を印加することで実施されることを特徴とする成膜方法。
The film forming method according to claim 1, wherein the particle emission source is a target for sputtering composed of a transparent conductive oxide, and the substrate to be processed and the target are arranged to face each other in a vacuum chamber in a vacuum atmosphere. A sputtered gas is introduced into the vacuum chamber, a predetermined power having a negative potential is applied to the target to form a plasma atmosphere, and the target is sputtered with rare gas ions in the plasma atmosphere to make the surface of the substrate to be processed transparent. In those that form a conductive oxide film,
The film forming method is characterized in that the step is carried out by applying a potential higher than the potential applied to the target to the component during sputtering of the target.
JP2019077430A 2019-04-15 2019-04-15 Deposition method Active JP7312006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019077430A JP7312006B2 (en) 2019-04-15 2019-04-15 Deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019077430A JP7312006B2 (en) 2019-04-15 2019-04-15 Deposition method

Publications (2)

Publication Number Publication Date
JP2020176280A true JP2020176280A (en) 2020-10-29
JP7312006B2 JP7312006B2 (en) 2023-07-20

Family

ID=72937310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019077430A Active JP7312006B2 (en) 2019-04-15 2019-04-15 Deposition method

Country Status (1)

Country Link
JP (1) JP7312006B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102234A (en) * 1996-09-26 1998-04-21 Canon Inc Sputtering device and formation of coating using this device
JP2002038262A (en) * 2000-07-24 2002-02-06 Toshiba Corp Method for forming transparent electro-conductive film, array substrate and liquid crystal display
JP2003073801A (en) * 2001-08-27 2003-03-12 Toshiba Corp Sputtering apparatus and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102234A (en) * 1996-09-26 1998-04-21 Canon Inc Sputtering device and formation of coating using this device
JP2002038262A (en) * 2000-07-24 2002-02-06 Toshiba Corp Method for forming transparent electro-conductive film, array substrate and liquid crystal display
JP2003073801A (en) * 2001-08-27 2003-03-12 Toshiba Corp Sputtering apparatus and manufacturing method therefor

Also Published As

Publication number Publication date
JP7312006B2 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
TWI427170B (en) Film forming method and thin film forming apparatus
TWI427168B (en) Spattering apparatus, manufacturing method for transparent conductive film
KR101364764B1 (en) Apparatus and method for depositing electrically conductive pasting material
EP1746181A3 (en) Improved magnetron sputtering system for large-area substrates
US20030155235A1 (en) Sputtering target producing few particles
US20130098757A1 (en) Sputtering deposition apparatus and adhesion preventing member
US8168049B2 (en) Sputtering apparatus and method of manufacturing solar battery and image display device by using the same
TWI502091B (en) Sputtering device
KR20090122383A (en) Sputtering apparatus and sputtering method
KR20130129859A (en) Sputtering method
JP6588351B2 (en) Deposition method
JP2020176280A (en) Film deposition method
US20070240980A1 (en) Sputtering target and sputtering equipment
JP2004315931A (en) Sputtering target
JP2001073115A (en) Carbon sputtering device
TWI632246B (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
US5271817A (en) Design for sputter targets to reduce defects in refractory metal films
JP4902051B2 (en) Bias sputtering equipment
JP6509553B2 (en) Sputtering device
KR102597417B1 (en) Sputtering device and sputtering method
JP2020117772A (en) Sputtering apparatus and film deposition method
JPH11350123A (en) Thin film production apparatus and production of liquid crystal display substrate
JP2008007837A (en) Sputtering film deposition system and sputtering film deposition method
CN108588642A (en) Prevent plate and Pvd equipment
JP2008144214A (en) Film deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230707

R150 Certificate of patent or registration of utility model

Ref document number: 7312006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150