JP2020173928A - Deterioration estimation method of all-solid battery - Google Patents

Deterioration estimation method of all-solid battery Download PDF

Info

Publication number
JP2020173928A
JP2020173928A JP2019074307A JP2019074307A JP2020173928A JP 2020173928 A JP2020173928 A JP 2020173928A JP 2019074307 A JP2019074307 A JP 2019074307A JP 2019074307 A JP2019074307 A JP 2019074307A JP 2020173928 A JP2020173928 A JP 2020173928A
Authority
JP
Japan
Prior art keywords
solid
internal pressure
estimation method
state battery
lim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019074307A
Other languages
Japanese (ja)
Inventor
西濛 李
Ximeng Li
西濛 李
雅文 野瀬
Masafumi Nose
雅文 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019074307A priority Critical patent/JP2020173928A/en
Publication of JP2020173928A publication Critical patent/JP2020173928A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a deterioration estimation method of an all-solid battery, capable of estimating an all-solid battery crack with high accuracy.SOLUTION: A deterioration estimation method of an all-solid battery includes: a step of acquiring internal-pressures P1, P2 and voltages V1, V2 in an arbitrary period of the all-solid battery; a step of calculating an internal-pressure variation amount ΔP from the internal-pressures P1, P2; a step of obtaining charging rates SOC1, SOC2 corresponding to the voltages V1, V2; a step of calculating a charging rate variation amount ΔSOC from the charging rates SOC1, SOC2; a step of acquiring a threshold value ΔPlim corresponding to the charging rate variation amount ΔSOC; and a step of determining whether or not the absolute value of the internal-pressure variation amount ΔP exceeds the absolute value of the threshold value ΔPlim, and when a determination is made in the determination step that the absolute value of the internal-pressure variation amount ΔP exceeds the absolute value of the threshold value ΔPlim, such an estimation is made that a crack occurs in the all-solid battery.SELECTED DRAWING: Figure 1

Description

本願は、全固体電池の劣化推定方法に関する。 The present application relates to a method for estimating deterioration of an all-solid-state battery.

二次電池は充放電を繰り返すことで、劣化していく。そのため、二次電池がどれほど劣化しているかを確認することが重要である。これまで、種々の二次電池の劣化を判断する方法が開発されている。 The secondary battery deteriorates by repeating charging and discharging. Therefore, it is important to check how much the secondary battery has deteriorated. So far, methods for determining deterioration of various secondary batteries have been developed.

特許文献1は、二次電池の電圧V及び内部圧力Pの測定値、並びに、予め保有する所定の基準状態における電圧と圧力との関係図及び所定の基準状態における圧力と容量との関係図を用いて、内部圧力減少量に応じて劣化量(容量劣化)を算出する、二次電池の劣化状態の判断システムを開示している。特許文献2は、電極体外装フィルムに掛かる推定応力や所定時間前と現在の温度差とから疲労限界中の疲労割合を算出し、電極体外装フィルムの劣化を判定する、電極体外装フィルムの劣化判定方法を開示している。特許文献3は、電極体の圧力に基づいてセルの劣化を判定する二次電池システムを開示している。特許文献4は、筐体に格納した二次電池において、圧力及び温度を測定し、測定された圧力及び温度、並びにあらかじめ設定された相関関係に基づいて残存容量、満充電容量等を算出する、二次電池の状態推定方法を開示している。 Patent Document 1 describes the measured values of the voltage V and the internal pressure P of the secondary battery, the relationship diagram between the voltage and the pressure in the predetermined reference state, and the relationship diagram between the pressure and the capacity in the predetermined reference state. It discloses a system for determining the deterioration state of a secondary battery, which calculates the amount of deterioration (capacity deterioration) according to the amount of decrease in internal pressure. Patent Document 2 calculates the fatigue ratio within the fatigue limit from the estimated stress applied to the electrode body exterior film and the temperature difference between the predetermined time before and the current temperature, and determines the deterioration of the electrode body exterior film. Deterioration of the electrode body exterior film. The judgment method is disclosed. Patent Document 3 discloses a secondary battery system that determines cell deterioration based on the pressure of an electrode body. Patent Document 4 measures the pressure and temperature of a secondary battery housed in a housing, and calculates the remaining capacity, the fully charged capacity, and the like based on the measured pressure and temperature and a preset correlation. The method of estimating the state of the secondary battery is disclosed.

特開2013−92398号公報Japanese Unexamined Patent Publication No. 2013-92398 特開2015−115100号公報JP 2015-115100 特開2015−153509号公報JP-A-2015-153509 特開2006−12761号公報Japanese Unexamined Patent Publication No. 2006-12761

全固体電池において負極に金属Li等の充放電時に膨張収縮率が大きい材料を用いると、充放電時に負極の膨張収縮に伴い電池の内圧が増減する。その際、固体電解質が内圧変動に追従できず割れる場合がある。結果、固体電解質のイオン伝導性機能が一部失われたり、金属Li等の充放電時に膨張収縮率が大きい材料が割れの中で成長して短絡を引き起こしたりすることがあり、問題となっている。特許文献1〜4の方法では、全固体電池の割れを高精度に検出することは難しい。 In an all-solid-state battery, if a material having a large expansion / contraction rate during charging / discharging, such as metal Li, is used for the negative electrode, the internal pressure of the battery increases / decreases with the expansion / contraction of the negative electrode during charging / discharging. At that time, the solid electrolyte may not be able to follow the internal pressure fluctuation and may crack. As a result, the ionic conductive function of the solid electrolyte may be partially lost, or a material having a large expansion / contraction rate during charging / discharging of metal Li or the like may grow in cracks and cause a short circuit, which causes a problem. There is. With the methods of Patent Documents 1 to 4, it is difficult to detect cracks in an all-solid-state battery with high accuracy.

そこで、本願は全固体電池の割れを高精度に推定できる全固体電池の劣化推定方法を提供することを課題とする。 Therefore, it is an object of the present application to provide a deterioration estimation method for an all-solid-state battery that can estimate the cracking of the all-solid-state battery with high accuracy.

従来技術においては、全固体電池の電圧の変動を検出して固体電解質の割れを推定していたが、割れによって起こる電圧の変動はわずかであり、ノイズとの区別が難しく、検出感度が低かった。そこで、本発明者は鋭意検討した結果、充放電の際の内部圧力の変動をモニタリングし、当該内部圧力の変動が所定の閾値を超えるか否かを検出することにより、固体電解質の割れを高精度に推定することができることを見出し、本発明を完成させた。 In the prior art, the fluctuation of the voltage of the all-solid-state battery was detected to estimate the cracking of the solid electrolyte, but the fluctuation of the voltage caused by the cracking was slight, it was difficult to distinguish it from noise, and the detection sensitivity was low. .. Therefore, as a result of diligent studies, the present inventor monitors fluctuations in the internal pressure during charging and discharging, and detects whether or not the fluctuations in the internal pressure exceed a predetermined threshold value, thereby increasing the cracking of the solid electrolyte. We have found that it can be estimated accurately, and completed the present invention.

以上、上記知見に基づいて、本願は上記課題を解決するための一つの手段として、全固体電池の劣化推定方法であって、該方法の任意の期間の始点をtとし、終点をtとしたとき、全固体電池の上記期間における内部圧力P、P及び電圧V、Vを取得するステップと、上記内部圧力P、Pから内部圧力変動量ΔPを算出するステップと、予め得た正常な状態におけるV−SOCマップに基づいて、上記電圧V、Vに対応する充電率SOC、SOCを取得するステップと、充電率SOC、SOCから充電率変動量ΔSOCを算出するステップと、予め得た正常な状態におけるΔSOC−ΔPlimマップに基づいて、充電率変動量ΔSOCに対応する閾値ΔPlimを取得するステップと、内部圧力変動量ΔPの絶対値が上記閾値ΔPlimの絶対値を超過しているか否かを判断するステップと、を備え、判断するステップにおいて内部圧力変動量ΔPの絶対値が閾値ΔPlimの絶対値を超過していると判断された場合、全固体電池に割れが発生していると推定する、全固体電池の劣化推定方法を開示する。 As described above, based on the above findings, the present application is a method for estimating deterioration of an all-solid-state battery as one means for solving the above problems, in which the start point of an arbitrary period of the method is t 1 and the end point is t 2. Then, the step of acquiring the internal pressures P 1 , P 2 and the voltages V 1 and V 2 in the above period of the all-solid-state battery, and the step of calculating the internal pressure fluctuation amount ΔP from the above internal pressures P 1 and P 2. , The step of acquiring the charge rates SOC 1 and SOC 2 corresponding to the above voltages V 1 and V 2 based on the V-SOC map in the normal state obtained in advance, and the charge rate fluctuation from the charge rates SOC 1 and SOC 2. The step of calculating the amount ΔSOC, the step of acquiring the threshold value ΔP lim corresponding to the charge rate fluctuation amount ΔSOC based on the ΔSOC−ΔP lim map in the normal state obtained in advance, and the absolute value of the internal pressure fluctuation amount ΔP are A step of determining whether or not the absolute value of the threshold value ΔP lim is exceeded is provided, and it is determined that the absolute value of the internal pressure fluctuation amount ΔP exceeds the absolute value of the threshold value ΔP lim in the determination step. In this case, the deterioration estimation method of the all-solid-state battery, which presumes that the all-solid-state battery is cracked, is disclosed.

本願が開示する全固体電池の劣化推定方法によれば、高精度に固体電解質の割れを推定することができる。 According to the deterioration estimation method of the all-solid-state battery disclosed in the present application, the cracking of the solid electrolyte can be estimated with high accuracy.

全固体電池の劣化推定方法10のフローチャートである。It is a flowchart of the deterioration estimation method 10 of an all-solid-state battery. 実施例で用いた評価用電池の概略図である。It is the schematic of the evaluation battery used in an Example. 充放電試験の結果である。(a)は時間−電圧の関係を示した図であり、(b)は時間−内部圧力の関係を示した図であり、(c)は時間(s)−電圧変動ΔV/Δt(mV/s)の関係を示した図であり、(d)は時間(s)−面圧変動ΔP/Δt(kPa/s)の関係を示した図である。This is the result of the charge / discharge test. (A) is a diagram showing a time-voltage relationship, (b) is a diagram showing a time-internal pressure relationship, and (c) is a time (s) -voltage fluctuation ΔV / Δt (mV /). It is a figure which showed the relationship of s), and (d) is a figure which showed the relationship of time (s) -surface pressure fluctuation ΔP / Δt (kPa / s).

[全固体電池の劣化推定方法10]
本開示の全固体電池の劣化推定方法10(以下において「劣化推定方法10」ということがある。)について説明する。図1に劣化推定方法10のフローチャートを示した。
[Deterioration estimation method for all-solid-state battery 10]
The deterioration estimation method 10 of the all-solid-state battery of the present disclosure (hereinafter, may be referred to as “deterioration estimation method 10”) will be described. FIG. 1 shows a flowchart of the deterioration estimation method 10.

劣化推定方法10は全固体電池の劣化推定方法である。ここで、劣化推定方法10における任意の期間の始点をtとし、終点をtとする。そして、劣化推定方法10は、図1に示した通り、全固体電池の上記期間における内部圧力P、P及び電圧V、Vを取得するステップS1(以下において、「内部圧力、電圧取得ステップS1」ということがある。)と、上記内部圧力P、Pから内部圧力変動量ΔPを算出するステップS2(以下において、「内部圧力変動量算出ステップS2」ということがある。)と、予め得た正常な状態におけるV−SOCマップに基づいて、上記電圧V、Vに対応する充電率SOC、SOCを取得するステップS3(以下において、「充電率取得ステップS3」ということがある)と、充電率SOC、SOCから充電率変動量ΔSOCを算出するステップS4(以下において、「充電率変動量算出ステップS4」ということがある。)と、予め得た正常な状態におけるΔSOC−ΔPlimマップに基づいて、充電率変動量ΔSOCに対応する閾値ΔPlimを取得するステップS5(以下において、「閾値取得ステップS5」ということがある。)と、内部圧力変動量ΔPの絶対値が閾値ΔPlimの絶対値を超過しているか否かを判断するステップS6(以下において、「判断ステップS6」ということがある)と、を備える。 The deterioration estimation method 10 is a deterioration estimation method for an all-solid-state battery. Here, the start point of an arbitrary period in the deterioration estimation method 10 is t 1 , and the end point is t 2 . Then, the degradation estimation method 10, as shown in FIG. 1, the internal pressure P 1, step S1 to acquire the P 2 and the voltage V 1, V 2 (hereinafter in the period of the all-solid-state battery, "internal pressure, voltage sometimes referred obtaining step S1 "and.), in step S2 (hereinafter to calculate the internal pressure variation amount ΔP from the internal pressure P 1, P 2, is sometimes referred to as" internal pressure variation amount calculating step S2 ".) And step S3 to acquire the charge rates SOC 1 and SOC 2 corresponding to the above voltages V 1 and V 2 based on the V-SOC map in the normal state obtained in advance (hereinafter, “charge rate acquisition step S3””. In addition, step S4 (hereinafter, may be referred to as "charge rate fluctuation amount calculation step S4") for calculating the charge rate fluctuation amount ΔSOC from the charge rate SOC 1 and SOC 2 and the normal obtained in advance. Step S5 (hereinafter, may be referred to as “threshold acquisition step S5”) for acquiring the threshold value ΔP lim corresponding to the charge rate fluctuation amount ΔSOC based on the ΔSOC−ΔP lim map in the above state, and the internal pressure fluctuation amount. A step S6 (hereinafter, may be referred to as “determination step S6”) for determining whether or not the absolute value of ΔP exceeds the absolute value of the threshold value ΔP lim is provided.

さらに、劣化推定方法10は判断ステップS6の結果を通知するステップ(以下において、「通知ステップS7」ということがある。)を有していてもよい。
以下、劣化推定方法10のそれぞれの構成についてさらに説明する。
Further, the deterioration estimation method 10 may have a step of notifying the result of the determination step S6 (hereinafter, may be referred to as "notification step S7").
Hereinafter, each configuration of the deterioration estimation method 10 will be further described.

<全固体電池>
劣化推定方法10で用いることができる全固体電池は特に限定されない。すなわち、発電素子として、正極、固体電解質層、負極等を含む全固体電池であれば特に限定されない。負極には金属Li等の充放電時に膨張収縮率が大きい材料を用いてもよいが、これに限定されず、公知の材料から目的に応じて、適宜選択することができる。正極、固体電解質層を構成する材料は特に限定されず、公知の材料から目的に応じて、適宜選択することができる。また、全固体電池はラミネート金属等の外装部材で封止されていてもよい。
全固体電池は充放電時に膨張収縮するため、全固体電池の内部圧力が増減する。そのため、全固体電池(主に固体電解質層)に割れが生じる虞がある。劣化推定方法10ではこのような割れを高精度に推定するものである。
<All-solid-state battery>
The all-solid-state battery that can be used in the deterioration estimation method 10 is not particularly limited. That is, the power generation element is not particularly limited as long as it is an all-solid-state battery including a positive electrode, a solid electrolyte layer, a negative electrode, and the like. A material having a large expansion / contraction rate during charging / discharging, such as metal Li, may be used for the negative electrode, but the present invention is not limited to this, and a known material can be appropriately selected depending on the intended purpose. The material constituting the positive electrode and the solid electrolyte layer is not particularly limited, and a known material can be appropriately selected depending on the intended purpose. Further, the all-solid-state battery may be sealed with an exterior member such as laminated metal.
Since the all-solid-state battery expands and contracts during charging and discharging, the internal pressure of the all-solid-state battery increases or decreases. Therefore, the all-solid-state battery (mainly the solid electrolyte layer) may be cracked. In the deterioration estimation method 10, such cracks are estimated with high accuracy.

<内部圧力、電圧取得ステップS1>
内部圧力、電圧取得ステップS1は、劣化推定方法10の任意の期間(t、t)における全固体電池の内部圧力P、P及び電圧V、Vを取得するステップである。
ここで任意の期間とは、後述する内部圧力変動量ΔP等を算出するための期間である。そのため、全固体電池の劣化を高精度に推定するために、任意の期間の長さは単位時間であることが好ましい。ただし、単位時間よりも広い期間を用いてもよい。また、任意の期間は、劣化推定方法10の開始時点を始点tとしてもよい。
なお、tに対応する内部圧力、電圧はそれぞれP、Vであり、tに対応する内部圧力、電圧はそれぞれP、Vである。
<Internal pressure and voltage acquisition step S1>
The internal pressure and voltage acquisition step S1 is a step of acquiring the internal pressures P 1 , P 2 and the voltages V 1 and V 2 of the all-solid-state battery in an arbitrary period (t 1 , t 2 ) of the deterioration estimation method 10.
Here, the arbitrary period is a period for calculating the internal pressure fluctuation amount ΔP and the like, which will be described later. Therefore, in order to estimate the deterioration of the all-solid-state battery with high accuracy, the length of the arbitrary period is preferably a unit time. However, a period wider than the unit time may be used. Also, any period, the beginning of the degradation estimation method 10 may start point t 1.
The internal pressure and voltage corresponding to t 1 are P 1 and V 1 , respectively, and the internal pressure and voltage corresponding to t 2 are P 2 and V 2 , respectively.

<内部圧力変動量算出ステップS2>
内部圧力変動量算出ステップS2は、上記内部圧力P、Pから内部圧力変動量ΔPを算出するステップである。内部圧力変動量ΔPは内部圧力P、Pの差である。
<Internal pressure fluctuation amount calculation step S2>
Internal pressure variation amount calculating step S2 is a step of calculating the internal pressure variation amount ΔP from the internal pressure P 1, P 2. The internal pressure variation amount ΔP is the difference between the internal pressure P 1, P 2.

<充電率取得ステップS3>
充電率取得ステップS3は、予め得た正常な状態におけるV−SOCマップに基づいて、上記電圧V、Vに対応する充電率SOC、SOCを取得するステップである。
<Charging rate acquisition step S3>
The charge rate acquisition step S3 is a step of acquiring the charge rates SOC 1 and SOC 2 corresponding to the voltages V 1 and V 2 based on the V-SOC map in the normal state obtained in advance.

ここで、「正常な状態」とは、割れなどの劣化していない全固体電池の状態を言う。よって、「正常な状態におけるV−SOCマップ」とは、正常な状態の全固体電池を用いて得たV−SOCマップのことを言う。劣化推定方法10を行う場合は、劣化推定方法10において用いる全固体電池と同様の構成からなる正常な状態の全固体電池を用いて、予めV−SOCマップを得ておくことがよい。 Here, the "normal state" refers to the state of an all-solid-state battery that has not deteriorated such as cracks. Therefore, the "V-SOC map in a normal state" refers to a V-SOC map obtained by using an all-solid-state battery in a normal state. When the deterioration estimation method 10 is performed, it is preferable to obtain a V-SOC map in advance by using an all-solid-state battery in a normal state having the same configuration as the all-solid-state battery used in the deterioration estimation method 10.

<充電率変動量算出S4>
充電率変動量算出S4は、上記充電率SOC、SOCから充電率変動量ΔSOCを算出するステップである。充電率変動量ΔSOCは充電率SOC、SOCの差である。
<Calculation of charge rate fluctuation amount S4>
The charge rate fluctuation amount calculation S4 is a step of calculating the charge rate fluctuation amount ΔSOC from the charge rates SOC 1 and SOC 2 . The charge rate fluctuation amount ΔSOC is the difference between the charge rates SOC 1 and SOC 2 .

<閾値取得ステップS5>
閾値取得ステップS5は、予め得た正常な状態におけるΔSOC−ΔPlimマップに基づいて、充電率変動量ΔSOCに対応する閾値ΔPlimを取得するステップである。
「正常な状態におけるΔSOC−ΔPlimマップ」とは、正常な状態の全固体電池を用いて得たΔSOC−ΔPlimマップのことを言う。閾値ΔPlimは、正常な状態の全固体電池を用いて充放電を行った際の充電率変動量に対応する内部圧力変動量の上限値である。よって、閾値ΔPlimは、劣化推定方法10を行う際において、内部圧力変動量ΔPが全固体電池の割れによるものであるのか、単なるノイズ信号であるのかを判断するために用いる値であり、後述する判断ステップS6において、内部圧力変動量ΔPの絶対値が閾値ΔPlimの絶対値を超えるか否かによって、全固体電池の割れを推定する。
このように、劣化推定方法10を行う場合は、劣化推定方法10において用いる全固体電池と同様の構成からなる正常な状態の全固体電池を用いて、予めΔSOC−ΔPlimマップを得ておくことがよい。
<Threshold acquisition step S5>
The threshold value acquisition step S5 is a step of acquiring the threshold value ΔP lim corresponding to the charge rate fluctuation amount ΔSOC based on the ΔSOC−ΔP lim map obtained in advance in the normal state.
The "ΔSOC-ΔP lim map in a normal state" refers to a ΔSOC-ΔP lim map obtained by using an all-solid-state battery in a normal state. The threshold value ΔP lim is an upper limit value of the internal pressure fluctuation amount corresponding to the charge rate fluctuation amount when charging / discharging is performed using an all-solid-state battery in a normal state. Therefore, the threshold value ΔP lim is a value used to determine whether the internal pressure fluctuation amount ΔP is due to cracking of the all-solid-state battery or a mere noise signal when the deterioration estimation method 10 is performed, which will be described later. In the determination step S6, the cracking of the all-solid-state battery is estimated depending on whether or not the absolute value of the internal pressure fluctuation amount ΔP exceeds the absolute value of the threshold value ΔP lim .
In this way, when the deterioration estimation method 10 is performed, a ΔSOC−ΔP lim map must be obtained in advance using an all-solid-state battery in a normal state having the same configuration as the all-solid-state battery used in the deterioration estimation method 10. Is good.

<判断ステップS6>
判断ステップS6は、内部圧力変動量ΔPの絶対値(|ΔP|)が閾値ΔPlimの絶対値(|ΔPlim|)を超過しているか否かを判断するステップである。
判断ステップS6において、|ΔP|が|ΔPlim|を超過していると判断された場合は、全固体電池に割れが発生していると推定する。これにより、劣化推定方法10は高精度に全固体電池の割れを推定することができる。
<Judgment step S6>
Decision step S6 the absolute value of the internal pressure variation amount [Delta] P is a step of determining whether or not exceeded (| ΔP |) is the absolute value of the threshold ΔP lim (| | ΔP lim) .
If it is determined in the determination step S6 that | ΔP | exceeds | ΔP lim |, it is presumed that the all-solid-state battery is cracked. As a result, the deterioration estimation method 10 can estimate the cracking of the all-solid-state battery with high accuracy.

また、判断ステップS6において、|ΔP|が|ΔPlim|を超過していない判断された場合は、上記の任意の期間に連続する次の期間において、同様にステップS1〜S6を行うことがよい。そして、これを劣化推定方法10が終了するまで続けることがよい。より具体的には、劣化推定方法10は、全固体電池の内部圧力及び電圧をモニタリングしながら、|ΔP|が|ΔPlim|を超過しているか否かを検出する態様がよいと言える。この際、全固体電池を使用しながら劣化推定方法10を行っていてもよい。 Further, when it is determined in the determination step S6 that | ΔP | does not exceed | ΔP lim |, it is preferable to perform steps S1 to S6 in the same manner in the next period continuous with the above arbitrary period. .. Then, this may be continued until the deterioration estimation method 10 is completed. More specifically, it can be said that the deterioration estimation method 10 preferably detects whether or not | ΔP | exceeds | ΔP lim | while monitoring the internal pressure and voltage of the all-solid-state battery. At this time, the deterioration estimation method 10 may be performed while using an all-solid-state battery.

<通知ステップS7>
劣化推定方法10は、さらに判断ステップS6の結果を通知するステップを有していてもよい。判断ステップS6の結果とは、|ΔP|が|ΔPlim|を超過しているか否かの判断の結果である。通知ステップS7では、|ΔP|が|ΔPlim|を超過している場合のみを通知してもよく、|ΔP|が|ΔPlim|を超過している場合といない場合との両方の結果を通知してもよい。
<Notification step S7>
The deterioration estimation method 10 may further include a step of notifying the result of the determination step S6. The result of the determination step S6 is the result of determination as to whether or not | ΔP | exceeds | ΔP lim |. In the notification step S7, only the case where | ΔP | exceeds | ΔP lim | may be notified, and the results of both the case where | ΔP | exceeds | ΔP lim | and the case where | ΔP | exceeds | You may notify.

以上、全固体電池の劣化推定方法10について説明した。上記の説明のとおり、本開示の全固体電池の劣化推定方法は、全固体電池の割れを高精度に推定することができるため、電池の劣化判定及び安全性向上に不可欠な手法であると言える。 The deterioration estimation method 10 for the all-solid-state battery has been described above. As described above, the all-solid-state battery deterioration estimation method of the present disclosure can be said to be an indispensable method for determining battery deterioration and improving safety because cracks in the all-solid-state battery can be estimated with high accuracy. ..

なお、全固体電池の劣化推定方法10は、例えば全固体電池を使用しながら行うができる。全固体電池の内部圧力、電圧の検出は、公知のセンサーを用いて取得することができる。例えば、全固体電池の内部圧力は正極側又は負極側にセンサーを設置して取得することができる。後述する実施例のように、全固体電池の正極側にセンサーを取り付けてもよい。ただし、センサーの場所はこれに限定されない。また、ステップS2〜S6において行う解析は、コンピュータ等の演算装置を含む電子計算機を用いて行うことがよい。さらに、内部圧力、電圧、内部圧力変動量等のパラメータや、判断の結果は、外部のディスプレイに表示させることがよい。 The deterioration estimation method 10 for the all-solid-state battery can be performed while using, for example, the all-solid-state battery. The detection of the internal pressure and voltage of the all-solid-state battery can be obtained by using a known sensor. For example, the internal pressure of an all-solid-state battery can be obtained by installing a sensor on the positive electrode side or the negative electrode side. A sensor may be attached to the positive electrode side of the all-solid-state battery as in the embodiment described later. However, the location of the sensor is not limited to this. Further, the analysis performed in steps S2 to S6 may be performed using an electronic computer including an arithmetic unit such as a computer. Further, parameters such as internal pressure, voltage, internal pressure fluctuation amount, and the result of determination may be displayed on an external display.

以下、実施例を用いて本開示の全固体電池の劣化推定方法についてさらに説明する。 Hereinafter, the deterioration estimation method for the all-solid-state battery of the present disclosure will be further described with reference to Examples.

負極(金属Li)、固体電解質層、正極(銅箔)を積層してなる全固体リチウム二次電池を用いて、さらに銅箔の表面に内部圧力計測部を設置して、評価用電池を作製した。評価用電池の概略図を図2に表した。 An evaluation battery is manufactured by using an all-solid lithium secondary battery in which a negative electrode (metal Li), a solid electrolyte layer, and a positive electrode (copper foil) are laminated, and further installing an internal pressure measuring unit on the surface of the copper foil. did. A schematic diagram of the evaluation battery is shown in FIG.

上記全固体リチウム二次電池の作製方法は次のとおりである。硫化物系固体電解質(LiBrおよびLiIを含むLiS−P系材料)101.7mgを用いて、6ton/cmの圧力でプレスし、固体電解質層を作製した。そして、金属Li箔を固体電解質層の一方側の面に配置し、銅箔を固体電解質層の他方側の面に配置し、1ton/cmの圧力でプレス成形した。これにより、全固体リチウム二次電池を作製した。 The method for producing the all-solid-state lithium secondary battery is as follows. A solid electrolyte layer was prepared by pressing at a pressure of 6 ton / cm 2 using 101.7 mg of a sulfide-based solid electrolyte (Li 2 SP 2 S 5- based material containing LiBr and LiI). Then, the metal Li foil was arranged on one surface of the solid electrolyte layer, the copper foil was arranged on the other surface of the solid electrolyte layer, and press molding was performed at a pressure of 1 ton / cm 2 . As a result, an all-solid-state lithium secondary battery was produced.

上記の評価用電池を用いて充放電試験を行った。閾値ΔPlimの絶対値(|ΔPlim|)は0.5kPa/sであった。
まず、25℃の恒温槽に評価用電池を1時間静置し、セル温度を均一化した。次に、評価用電池に電流密度435μA/cmの一定電流を流して充電(Li析出)し、充電容量4.35mAh/cm到達時点で充電を休止した。10分後に、同じく電流密度435μA/cmの一定電流で放電(Li溶解)し、1.0V到着時点で終了する予定であったが、1.0V到達前に、劣化モード(割れ)が発生したため、試験を終了した。
A charge / discharge test was performed using the above evaluation battery. The absolute value of the threshold value ΔP lim (| ΔP lim |) was 0.5 kPa / s.
First, the evaluation battery was allowed to stand in a constant temperature bath at 25 ° C. for 1 hour to make the cell temperature uniform. Next, a constant current having a current density of 435 μA / cm 2 was passed through the evaluation battery to charge the battery (Li precipitation), and charging was stopped when the charging capacity reached 4.35 mAh / cm 2 . After 10 minutes, it was also planned to discharge (Li dissolve) at a constant current with a current density of 435 μA / cm 2 and finish when 1.0 V arrives, but a deterioration mode (crack) occurs before reaching 1.0 V. Therefore, the test was completed.

試験の結果を図3に示した。図3の(a)は時間(s)−電圧(V)の関係を示した図であり、(b)は時間(s)−面圧(MPa)の関係を示した図であり、(c)は時間(s)−電圧変動ΔV/Δt(mV/s)の関係を示した図であり、(d)は時間(s)−面圧変動ΔP/Δt(kPa/s)の関係を示した図である。なお、面圧は内部圧力に読み替えることができる。 The results of the test are shown in FIG. FIG. 3A is a diagram showing the relationship of time (s) -voltage (V), and FIG. 3B is a diagram showing the relationship of time (s) -surface pressure (MPa), and (c). ) Is a diagram showing the relationship of time (s) -voltage fluctuation ΔV / Δt (mV / s), and (d) shows the relationship of time (s) -surface pressure fluctuation ΔP / Δt (kPa / s). It is a figure. The surface pressure can be read as the internal pressure.

上記試験における電池の割れ(固体電解質層の割れ)は、金属Liの溶解に伴い急激に電極厚みが減少し、固体電解質層がスプリングバック現象を引き起こしたことによるものであった。これについて、図3(a)〜(d)に基づいて、固体電解質層の割れを推定できたか否かを検討する。
まず、全固体電池の電圧に着目した場合、固体電解質層が割れたことにより、電池抵抗が増加して電圧が微増していたが(図3(a))、電圧変動量に換算してプロットすると(図3(c))ノイズ信号として判別されてしまうことが分かった。そのため、電圧に着目した推定方法は有効な手段ではないことが分かった。
一方で、全固体電池の内部圧力に着目した場合、固体電解質に割れが生じた時点において、内部圧力は大きく変動していた(図3(b))。そして、これを内部圧力変動量に換算してプロットすると(図3(d))、感度良く固体電解質層の割れを検出できることが分かった。
以上の結果から、内部圧力の変動に着目することにより、全固体電池の割れを高精度に推定できることが分かった。
The cracking of the battery (cracking of the solid electrolyte layer) in the above test was caused by the sudden decrease in the electrode thickness as the metal Li was dissolved, and the solid electrolyte layer caused the springback phenomenon. Regarding this, it is examined whether or not the cracking of the solid electrolyte layer could be estimated based on FIGS. 3A to 3D.
First, when focusing on the voltage of the all-solid-state battery, the battery resistance increased and the voltage increased slightly due to the cracking of the solid electrolyte layer (Fig. 3 (a)), but it was converted into the voltage fluctuation amount and plotted. Then (FIG. 3 (c)), it was found that the signal was discriminated as a noise signal. Therefore, it was found that the estimation method focusing on voltage is not an effective means.
On the other hand, when focusing on the internal pressure of the all-solid-state battery, the internal pressure fluctuated greatly at the time when the solid electrolyte cracked (FIG. 3 (b)). Then, when this was converted into the amount of internal pressure fluctuation and plotted (FIG. 3 (d)), it was found that cracks in the solid electrolyte layer could be detected with high sensitivity.
From the above results, it was found that the cracking of the all-solid-state battery can be estimated with high accuracy by paying attention to the fluctuation of the internal pressure.

Claims (1)

全固体電池の劣化推定方法であって、該方法の任意の期間の始点をtとし、終点をtとしたとき、
前記全固体電池の前記期間における内部圧力P、P及び電圧V、Vを取得するステップと、
前記内部圧力P、Pから内部圧力変動量ΔPを算出するステップと、
予め得た正常な状態におけるV−SOCマップに基づいて、前記電圧V、Vに対応する充電率SOC、SOCを取得するステップと、
前記充電率SOC、SOCから充電率変動量ΔSOCを算出するステップと、
予め得た正常な状態におけるΔSOC−ΔPlimマップに基づいて、前記充電率変動量ΔSOCに対応する閾値ΔPlimを取得するステップと、
前記内部圧力変動量ΔPの絶対値が前記閾値ΔPlimの絶対値を超過しているか否かを判断するステップと、を備え、
前記判断するステップにおいて前記内部圧力変動量ΔPの絶対値が前記閾値ΔPlimの絶対値を超過していると判断された場合、前記全固体電池に割れが発生していると推定する、
全固体電池の劣化推定方法。
In the deterioration estimation method of the all-solid-state battery, when the start point of an arbitrary period of the method is t 1 and the end point is t 2 .
The step of acquiring the internal pressures P 1 , P 2 and the voltages V 1 , V 2 in the period of the all-solid-state battery, and
Calculating the internal pressure variation amount ΔP from the internal pressure P 1, P 2,
Based on the V-SOC map in the normal state obtained in advance, the steps of acquiring the charge rates SOC 1 and SOC 2 corresponding to the voltages V 1 and V 2 and
The step of calculating the charge rate fluctuation amount ΔSOC from the charge rate SOC 1 and SOC 2 and
Based on the ΔSOC−ΔP lim map obtained in advance in the normal state, the step of acquiring the threshold value ΔP lim corresponding to the charge rate fluctuation amount ΔSOC, and
A step of determining whether or not the absolute value of the internal pressure fluctuation amount ΔP exceeds the absolute value of the threshold value ΔP lim is provided.
If it is determined in the determination step that the absolute value of the internal pressure fluctuation amount ΔP exceeds the absolute value of the threshold value ΔP lim , it is estimated that the all-solid-state battery is cracked.
Deterioration estimation method for all-solid-state batteries.
JP2019074307A 2019-04-09 2019-04-09 Deterioration estimation method of all-solid battery Pending JP2020173928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019074307A JP2020173928A (en) 2019-04-09 2019-04-09 Deterioration estimation method of all-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019074307A JP2020173928A (en) 2019-04-09 2019-04-09 Deterioration estimation method of all-solid battery

Publications (1)

Publication Number Publication Date
JP2020173928A true JP2020173928A (en) 2020-10-22

Family

ID=72831519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019074307A Pending JP2020173928A (en) 2019-04-09 2019-04-09 Deterioration estimation method of all-solid battery

Country Status (1)

Country Link
JP (1) JP2020173928A (en)

Similar Documents

Publication Publication Date Title
CN108369258B (en) State estimation device and state estimation method
US9660299B2 (en) Strain measurement based battery testing
US8004243B2 (en) Battery capacity estimating method and apparatus
KR101972521B1 (en) Apparatus and method for performance testing of a battery cell
US10845417B2 (en) Battery state estimation device, battery control device, battery system, battery state estimation method
EP3767317A1 (en) Method and apparatus for calculating soh of battery power pack, and electric vehicle
KR101996974B1 (en) Open circuit voltage estimation device, state estimation device, method of open circuit voltage estimation
US8994334B2 (en) Battery state-of-charge calculation device
KR20160144437A (en) Method for estimating the state of health of a battery
US11385293B2 (en) Battery state estimating apparatus, battery state estimating method, non-transitory computer readable medium, control circuit and power storage system
US20150241517A1 (en) Method For Calculating Remaining Capacity Of Power Battery Pack
US8823326B2 (en) Method for determining the state of charge of a battery in charging or discharging phase
KR20060116724A (en) Method of estimating soc of battery for hybrid electric vehicle
US10101399B2 (en) Apparatus for estimating residual battery capacity, system for estimating residual battery capacity, battery pack, and method for estimating residual battery capacity
KR20200049596A (en) System and method for rapid charging lithium ion battery
CN104698385A (en) Cell state calculation apparatus and cell state calculation method
JP2010139260A (en) System of estimating remaining life of secondary battery and method for estimating remaining life thereof
JPWO2017033311A1 (en) Deterioration degree estimation device and deterioration degree estimation method
CN110596610A (en) Method and device for detecting charging and discharging electric quantity states of battery module and battery
CN105247378A (en) Secondary battery state detection method and state detection device
CN111896877B (en) Battery detection method, device, electronic equipment and storage medium
JP2011151983A (en) Soc detection circuit, and battery power supply device
CN114035096B (en) SOH evaluation method for electrochemical device, electronic equipment and battery system
CN103872727B (en) Method for determining largest use current of lithium-ion battery
JP2008292272A (en) Method of predicting voltage of electric storage device