JP2020173463A - Biaxially stretched polyethylene terephthalate film for optical film inspection - Google Patents

Biaxially stretched polyethylene terephthalate film for optical film inspection Download PDF

Info

Publication number
JP2020173463A
JP2020173463A JP2020109791A JP2020109791A JP2020173463A JP 2020173463 A JP2020173463 A JP 2020173463A JP 2020109791 A JP2020109791 A JP 2020109791A JP 2020109791 A JP2020109791 A JP 2020109791A JP 2020173463 A JP2020173463 A JP 2020173463A
Authority
JP
Japan
Prior art keywords
film
polyethylene terephthalate
inspection
biaxially stretched
stretched polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020109791A
Other languages
Japanese (ja)
Other versions
JP7239262B2 (en
Inventor
潤 稲垣
Jun Inagaki
潤 稲垣
敦史 藤田
Atsushi Fujita
敦史 藤田
薫 石畑
Kaoru Ishihata
薫 石畑
西 睦夫
Mutsuo Nishi
睦夫 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JP2020173463A publication Critical patent/JP2020173463A/en
Application granted granted Critical
Publication of JP7239262B2 publication Critical patent/JP7239262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a biaxially stretched polyethylene terephthalate film for optical film inspection which enables accurate and quick inspection of optical films for large-screen displays.SOLUTION: Provided is a biaxially stretched polyethylene terephthalate film for optical film inspection, which satisfies the following conditions (1)-(3) and (8)-(10): (1) total light transmittance is 85% or more, (2) film haze is 15% or less, (3) transmission polarization degree is 7.0% or more, (8) the film is a laminated film consisting of a central layer and surface layers abutting the central layer, (9) the surface layers contain 0.10-0.20 mass% of fine particles with an average particle diameter of 1.5-4.0 μm, (10) the central layer contains 0.00-0.10 mass% of fine particles with an average particle diameter of 1.5-4.0 μm.SELECTED DRAWING: None

Description

本発明は、光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムに関するものである。詳しくは、優れた偏光検査性、加工特性を有する光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムに関するものである。 The present invention relates to a biaxially stretched polyethylene terephthalate film for optical film inspection. More specifically, the present invention relates to a biaxially stretched polyethylene terephthalate film for optical film inspection, which has excellent polarization inspectability and processing characteristics.

液晶表示装置の構成部材である偏光板、位相差偏光板または位相差板は、液晶表示装置の透過光に明暗をつけることや、色相を変化させるために必要不可欠の部品であり,品質の安定維持が重要課題とされている。これらの光学フィルムは、その一方の面に粘着層が設けられ、その粘着層の上に、光学フィルムを保護するためのフィルム(光学フィルム検査用フィルム)を積層した積層体の状態で検査され、ロール状態に巻いて運搬或いは保管される。このような光学フィルム検査用フィルムの基材には、強度機能やコストの観点から、二軸延伸ポリエチレンテレフタレートフィルムが広く用いられている。直鎖状の高分子が配向した構造を有する二軸延伸ポリエチレンテレフタレートフィルムは、光学的に複屈折性を示す複屈折体である。よって、二軸延伸ポリエチレンテレフタレートフィルムは分子の配向方向に対して平行方向と垂直方向の直行する2本の光学軸を有する。そのため検査用フィルムの基材が有する光学軸が光学フィルムの光学軸に対して傾斜した状態で積層されると、クロスニコルの条件下におかれた際に透過光や干渉色を呈し、欠点検査を阻害する要因となってしまう。従って、光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムには、優れた光学軸精度が求められる(特許文献1)。 A polarizing plate, a retardation polarizing plate, or a retardation plate, which is a component of a liquid crystal display device, is an indispensable component for adding light and darkness to the transmitted light of the liquid crystal display device and changing the hue, and is stable in quality. Maintenance is an important issue. These optical films are inspected in the state of a laminated body in which an adhesive layer is provided on one surface thereof and a film for protecting the optical film (film for optical film inspection) is laminated on the adhesive layer. It is rolled and transported or stored. A biaxially stretched polyethylene terephthalate film is widely used as a base material for such an optical film inspection film from the viewpoint of strength function and cost. A biaxially stretched polyethylene terephthalate film having a structure in which a linear polymer is oriented is a birefringent that optically exhibits birefringence. Therefore, the biaxially stretched polyethylene terephthalate film has two optical axes that are perpendicular to the direction parallel to the orientation direction of the molecule and perpendicular to the direction. Therefore, if the optical axis of the base material of the inspection film is laminated in a state of being tilted with respect to the optical axis of the optical film, it exhibits transmitted light or interference color when placed under the conditions of cross Nicol, and defects are inspected. It becomes a factor that hinders. Therefore, an excellent optical axis accuracy is required for a biaxially stretched polyethylene terephthalate film for optical film inspection (Patent Document 1).

かかる光学フィルム検査用二軸延伸ポリエチレンテレフタレート系樹脂フィルムは、回転速度に差を設けたロール間で長手方向に延伸された後に、テンター内でフィルムの端部を把持された状態で幅方向に延伸され、熱固定されることによって製造される。この場合、ボーイング現象によりフィルム中央部よりも端部の方が光学軸の歪み、すなわち配向主軸の歪みが大きくなるため、中央部の極限られた製品しかこの用途に用いることができなかった。 The biaxially stretched polyethylene terephthalate resin film for optical film inspection is stretched in the longitudinal direction between rolls having different rotation speeds, and then stretched in the width direction while the end portion of the film is gripped in the tenter. Manufactured by being heat-fixed. In this case, due to the Boeing phenomenon, the distortion of the optic axis, that is, the distortion of the orientation spindle is larger at the edge than at the center of the film, so that only a very limited product at the center can be used for this purpose.

フィルムのボーイングを低減させる方法としては、幅方向延伸後に一旦ポリエチレンテレフタレートのガラス転移温度以下に冷却した後熱処理する方法、幅方向延伸後にニップロールを設ける方法、熱処理室を複数のゾーンに分けて段階的に昇温する方法、幅方向に温度分布を設けて熱処理ゾーンに導く方法、幅方向の延伸倍率を大きくする方法などが提案されている。(特許文献2〜5) As a method of reducing the boeing of the film, a method of temporarily cooling the polyethylene terephthalate below the glass transition temperature after stretching in the width direction and then heat-treating, a method of providing a nip roll after stretching in the width direction, and a method of dividing the heat treatment chamber into a plurality of zones in stages A method of raising the temperature in the width direction, a method of providing a temperature distribution in the width direction to lead to a heat treatment zone, a method of increasing the stretching ratio in the width direction, and the like have been proposed. (Patent Documents 2 to 5)

光学フィルム検査工程においては、上記のような方法により光学軸の歪みを低減させたフィルムに粘着加工などを施して光学フィルム検査用離型フィルム、プロテクトフィルムを作製し、これを光学フィルムに積層し、クロスニコルの条件下において光学フィルムの品質を目視チェックする。 In the optical film inspection process, a release film for optical film inspection and a protective film are produced by applying adhesive processing to a film whose distortion of the optical axis is reduced by the above method, and the film is laminated on the optical film. , Visually check the quality of the optical film under the conditions of Cross Nicol.

特開2002−40249号公報JP-A-2002-40249 特開2008−246685号公報Japanese Unexamined Patent Publication No. 2008-2466885 特開2008−163263号公報JP-A-2008-163263 特開2005−14545号公報Japanese Unexamined Patent Publication No. 2005-14545 特開2004−18588号公報Japanese Unexamined Patent Publication No. 2004-18588 特許4531117号公報Japanese Patent No. 4531117

現在、上記特許文献に提案のフィルムが光学フィルム検査用に用いられている。ところが、ディスプレイの大画面化は飛躍的に進展しており、42インチ以上の大画面ディスプレイが市場に浸透してきている。このような、大画面ディスプレイの進展と検査精度向上の要求を満足するためには、より長幅にわたって光学軸の歪みを低減することが必要となってきた。さらに、高精細化の要求により、従来問題とされなかったレベルの異物、欠点でも確実に認知する必要が生じてきており、従来から提案されているフィルムでは対応が難しくなってきている。 Currently, the film proposed in the above patent document is used for optical film inspection. However, the increase in the screen size of displays has been dramatically advanced, and large screen displays of 42 inches or more have penetrated the market. In order to satisfy the demands for the progress of large-screen displays and the improvement of inspection accuracy, it has become necessary to reduce the distortion of the optical axis over a longer width. Furthermore, due to the demand for higher definition, it has become necessary to reliably recognize foreign substances and defects at a level that has not been a problem in the past, and it has become difficult to deal with the films that have been proposed conventionally.

本発明の課題は、このような大画面ディスプレイ用光学フィルムの検査を精度よく高速で行うことのできる光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムを提供することである。すなわち、大画面ディスプレイ用光学フィルムに対して、高い偏光検査性を有し、クロスニコル下でのコントラスト性に優れた光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムを提供することを課題とする。 An object of the present invention is to provide a biaxially stretched polyethylene terephthalate film for optical film inspection capable of inspecting such an optical film for a large screen display with high accuracy and high speed. That is, it is an object of the present invention to provide a biaxially stretched polyethylene terephthalate film for optical film inspection which has high polarization inspection property and excellent contrast under cross Nicol with respect to an optical film for large screen display.

代表的な本発明は以下のとおりである。
項1.
下記要件(1)〜(3)、(8)〜(10)を満たす光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルム。
(1)全光線透過率が85%以上
(2)フィルムヘーズが15%以下
(3)透過偏光度が7.0%以上
(8)中心層とこれに接する両表層から構成される積層フィルム
(9)両表層は平均粒径1.5〜4.0μmの微粒子を0.10〜0.20質量%含有する
(10)中心層は平均粒径1.5〜4.0μmの微粒子を0.00〜0.10質量%含有する
項2.
さらに下記要件(4)〜(6)を満たす項1に記載の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルム。
(4)150℃、30分間加熱したときの熱収縮率が長手方向および幅方向とも2.0%以下
(5)150℃、30分間加熱したときの全方位熱収縮率の最大と最小の差が0.5%以下
(6)150℃、30分間加熱したときの5°当りの全方位熱収縮率の最大変化量が500ppm以下
項3.
さらに下記要件(7)を満たす項1又は2に記載の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルム。
(7)最大配向角が18°以
Typical inventions are as follows.
Item 1.
A biaxially stretched polyethylene terephthalate film for optical film inspection that satisfies the following requirements (1) to (3) and (8) to (10) .
(1) Total light transmittance is 85% or more (2) Film haze is 15% or less (3) Transmission polarization degree is 7.0% or more
(8) A laminated film composed of a central layer and both surface layers in contact with the central layer.
(9) Both surface layers contain 0.10 to 0.20% by mass of fine particles having an average particle size of 1.5 to 4.0 μm.
(10) Item 2. The central layer contains 0.00 to 0.10% by mass of fine particles having an average particle size of 1.5 to 4.0 μm .
Item 2. The biaxially stretched polyethylene terephthalate film for optical film inspection according to Item 1, which further satisfies the following requirements (4) to (6).
(4) The heat shrinkage rate when heated at 150 ° C. for 30 minutes is 2.0% or less in both the longitudinal direction and the width direction. (5) The difference between the maximum and minimum omnidirectional heat shrinkage rates when heated at 150 ° C. for 30 minutes. Is 0.5% or less (6) The maximum amount of change in the omnidirectional heat shrinkage rate per 5 ° when heated at 150 ° C. for 30 minutes is 500 ppm or less.
Item 2. The biaxially stretched polyethylene terephthalate film for optical film inspection according to Item 1 or 2, which further satisfies the following requirement (7 ) .
(7) The maximum orientation angle of 18 ° or less under

本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムは、優れた偏光検査性を有するので、大画面用途の光学フィルムの高精度の検査に好適である。また、さらに好ましい実施態様によれば、高温での後加工処理に優れた光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムを提供することができる。 The biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention has excellent polarization inspection properties, and is therefore suitable for high-precision inspection of optical films for large screen applications. Further, according to a more preferable embodiment, it is possible to provide a biaxially stretched polyethylene terephthalate film for optical film inspection, which is excellent in post-processing at a high temperature.

本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムは、ポリエ
チレンテレフタレート系樹脂よりなる。ここで、ポリエチレンテレフタレート系樹脂は、エチレングリコールおよびテレフタル酸を主な構成成分として含有する。本発明の目的を阻害しない範囲であれば、他のジカルボン酸成分およびグリコール成分を共重合させても良い。上記の他のジカルボン酸成分としては、イソフタル酸、p−β−オキシエトキシ安息香酸、2,6−ナフタレンジカルボン酸、4,4’−ジカルボキシベンゾフェノン、ビス−(4−カルボキシフェニルエタン)、アジピン酸、セバシン酸、5−ナトリウムスルホイソフタル酸、シクロヘキサン−1、4−ジカルボン酸等が挙げられる。上記の他のグリコール成分としては、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、ビスフェノールA等のエチレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が挙げられる。この他、p−オキシ安息香酸等のオキシカルボン酸成分も利用され得る。
The biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention is made of a polyethylene terephthalate resin. Here, the polyethylene terephthalate resin contains ethylene glycol and terephthalic acid as main constituents. Other dicarboxylic acid components and glycol components may be copolymerized as long as the object of the present invention is not impaired. Other dicarboxylic acid components mentioned above include isophthalic acid, p-β-oxyethoxybenzoic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-dicarboxybenzophenone, bis- (4-carboxyphenyl ethane), and adipic acid. Acids, sebacic acid, 5-sodium sulfoisophthalic acid, cyclohexane-1,4-dicarboxylic acid and the like can be mentioned. Examples of the above-mentioned other glycol components include ethylene oxide adducts such as propylene glycol, butanediol, neopentyl glycol, diethylene glycol and bisphenol A, polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like. In addition, an oxycarboxylic acid component such as p-oxybenzoic acid can also be used.

このようなポリエチレンテレフタレート系樹脂(以下、単にPETという)の重合法としては、テレフタル酸とエチレングリコール、および必要に応じて他のジカルボン酸成分およびジオール成分を直接反応させる直接重合法、およびテレフタル酸のジメチルエステル(必要に応じて他のジカルボン酸のメチルエステルを含む)とエチレングリコール(必要に応じて他のジオール成分を含む)とをエステル交換反応させるエステル交換法等の任意の製造方法が利用され得る。 Examples of the polymerization method for such a polyethylene terephthalate resin (hereinafter, simply referred to as PET) include a direct polymerization method in which terephthalic acid and ethylene glycol, and if necessary, other dicarboxylic acid components and diol components are directly reacted, and terephthalic acid. Any production method such as a transesterification method in which dimethyl ester (including a methyl ester of another dicarboxylic acid if necessary) and ethylene glycol (including another diol component if necessary) are subjected to a transesterification reaction is used. Can be done.

また、前記ポリエチレンテレフタレート系樹脂の固有粘度は、0.45dl/g〜0.70dl/gの範囲が好ましい。固有粘度が0.45dl/gよりも低いと、フィルムが裂けやすくなり、0.70dl/gより高いと濾圧上昇が大きくなって高精度濾過が困難となる。 The intrinsic viscosity of the polyethylene terephthalate resin is preferably in the range of 0.45 dl / g to 0.70 dl / g. If the intrinsic viscosity is lower than 0.45 dl / g, the film is likely to tear, and if it is higher than 0.70 dl / g, the increase in filtration pressure becomes large and high-precision filtration becomes difficult.

本発明におけるポリエチレンテレフタレート系樹脂には、微粒子を添加してフィルムの作業性(滑り性)を良好なものとすることが好ましい。微粒子としては任意のものが選べるが、たとえば、シリカ、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、アルミナ、カオリナイト、タルクなどの無機粒子やその他の有機粒子が挙げられる。特に透明性の観点から、樹脂成分と屈折率が比較的近い、シリカ粒子が好ましく、特に不定形シリカが好適である。 It is preferable to add fine particles to the polyethylene terephthalate resin in the present invention to improve the workability (slipperiness) of the film. Any fine particles can be selected, and examples thereof include inorganic particles such as silica, calcium carbonate, barium sulfate, calcium sulfate, alumina, kaolinite, and talc, and other organic particles. In particular, from the viewpoint of transparency, silica particles having a refractive index relatively close to those of the resin component are preferable, and amorphous silica is particularly preferable.

本発明の好ましい実施態様として、良好な透明性と安定な作業性(特に表面摩擦特性)を得るためには、多層構成を有するフィルムであって表層にのみ微粒子を含有するポリエチレンテレフタレート層を用いることもできる。このような基材フィルムとしては、中心層(b層)の両面に微粒子を含有する表層(a層)が共押出法により積層されてなる多層構成(a/b/a)を有するポリエチレンテレフタレートフィルムを用いることが好ましい。表裏の表層を構成する層は、同種であっても、異種であっても良いが、基材フィルムの平面性を保持する為には、表裏の表層のポリエチレンテレフタレート系樹脂は同構成とすることが望ましい。 As a preferred embodiment of the present invention, in order to obtain good transparency and stable workability (particularly surface friction characteristics), a polyethylene terephthalate layer which is a film having a multilayer structure and contains fine particles only on the surface layer is used. You can also. As such a base film, a polyethylene terephthalate film having a multilayer structure (a / b / a) in which a surface layer (a layer) containing fine particles is laminated on both sides of a central layer (b layer) by a coextrusion method. It is preferable to use. The layers constituting the front and back surface layers may be of the same type or different types, but in order to maintain the flatness of the base film, the polyethylene terephthalate resin on the front and back surface layers should have the same structure. Is desirable.

表層中に含まれる微粒子の平均粒径は1.0〜5.0μmが好ましく、より好ましくは1.5〜4.0μmの範囲であり、更に好ましくは2.0〜3.0μmの範囲である。微粒子の平均粒径が1.0μm以上であれば、表面に易滑性付与に好適な凹凸構造を付与することができ好ましい。一方、微粒子の平均粒径が5.0μm以下であれば、高い透明性が維持されるので好ましい。また、表層中の微粒子の含有量は、0.10〜0.20質量%であることが望ましく、好ましくは0.10〜0.15質量%である。表層中の微粒子の含有量が0.10質量%以上であれば、表層表面に易滑性付与に好適な凹凸構造を付与することができ好ましい。一方、表層中の微粒子の含有量が0.20質量%以下であれば、高い透明性が維持されるので好ましい。 The average particle size of the fine particles contained in the surface layer is preferably 1.0 to 5.0 μm, more preferably 1.5 to 4.0 μm, and further preferably 2.0 to 3.0 μm. .. When the average particle size of the fine particles is 1.0 μm or more, it is preferable that the surface can be provided with an uneven structure suitable for imparting slipperiness. On the other hand, when the average particle size of the fine particles is 5.0 μm or less, high transparency is maintained, which is preferable. The content of the fine particles in the surface layer is preferably 0.10 to 0.20% by mass, preferably 0.10 to 0.15% by mass. When the content of the fine particles in the surface layer is 0.10% by mass or more, it is possible to impart an uneven structure suitable for imparting slipperiness to the surface layer surface, which is preferable. On the other hand, when the content of the fine particles in the surface layer is 0.20% by mass or less, high transparency is maintained, which is preferable.

中心層に含まれる微粒子の平均粒径は1.0〜5.0μmが好ましく、より好ましくは1.5〜4.0μmの範囲であり、更に好ましくは2.0〜3.0μmの範囲である。微粒子の平均粒径が1.0μm以上であれば、フィルムヘーズの調整を容易に行うことができ好ましい。一方、微粒子の平均粒径が5.0μm以下であれば、高い透明性が維持されるので好ましい。また、中心層に含まれる微粒子の含有量は、0.10質量%以下であることが好ましく、0.08質量%以下がより好ましく、0.05質量%以下が更に好ましい。なお、下限は0.00質量%である。 The average particle size of the fine particles contained in the central layer is preferably 1.0 to 5.0 μm, more preferably 1.5 to 4.0 μm, and even more preferably 2.0 to 3.0 μm. .. When the average particle size of the fine particles is 1.0 μm or more, the film haze can be easily adjusted, which is preferable. On the other hand, when the average particle size of the fine particles is 5.0 μm or less, high transparency is maintained, which is preferable. The content of the fine particles contained in the central layer is preferably 0.10% by mass or less, more preferably 0.08% by mass or less, and further preferably 0.05% by mass or less. The lower limit is 0.00% by mass.

なお、上記の微粒子の平均粒径の測定は下記方法により行う。微粒子を走査型電子顕微鏡(SEM)で写真を撮り、最も小さい微粒子1個の大きさが2〜5mmとなるような倍率で、300〜500個の微粒子の最大径(最も離れた2点間の距離)を測定し、その平均値を平均粒径とする。 The average particle size of the fine particles is measured by the following method. The fine particles are photographed with a scanning electron microscope (SEM), and the maximum diameter of 300 to 500 fine particles (between the two most distant points) is magnified so that the size of one of the smallest fine particles is 2 to 5 mm. Distance) is measured, and the average value is taken as the average particle size.

本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムは、全光線透過率が85%以上であることが好ましい。高精細化に対応して光学フィルムの検査精度が向上している。異物の検出を向上させるためには、光学フィルム検査用フィルムとしては透明性が高いことが望ましい。そのため、本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムの全光線透過率は85%以上が好ましく、87%以上がより好ましく、89%以上が更に好ましい。光学フィルム検査工程での視認性向上のためには、全光線透過率は高ければ高いほど良いが、易滑り性のために粒子を含有したポリエチレンテレフタレートフィルムにおいては100%の全光線透過率は技術的に達成困難であり、実質的な上限は91%である。 The biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention preferably has a total light transmittance of 85% or more. The inspection accuracy of the optical film is improved in response to higher definition. In order to improve the detection of foreign matter, it is desirable that the film for optical film inspection has high transparency. Therefore, the total light transmittance of the biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention is preferably 85% or more, more preferably 87% or more, still more preferably 89% or more. In order to improve visibility in the optical film inspection process, the higher the total light transmittance, the better, but for polyethylene terephthalate film containing particles for slipperiness, 100% total light transmittance is a technique. It is difficult to achieve, and the practical upper limit is 91%.

また、本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムは、ヘーズが15%以下であることが好ましい。異物の存在を際立たせ、より高い検査精度を得るためには、高いコントラストを得ることが望ましい。そのため、本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムにおけるヘーズは15%以下であることが好ましく、7%以下であることがより好ましく、3%以下であることがさらに好ましく、2.8%以下が特に好ましい。高いコントラストを得るためには、ヘーズは低い方が好ましいが、易滑り性のために粒子を含有したポリエチレンテレフタレートフィルムにおいては1%が下限であると思われる。なお、上記ヘーズおよび全光線透過率は、JIS−K7105に準じ、濁度計を使用して、測定することができる。 Further, the biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention preferably has a haze of 15% or less. It is desirable to obtain high contrast in order to emphasize the presence of foreign matter and obtain higher inspection accuracy. Therefore, the haze in the biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention is preferably 15% or less, more preferably 7% or less, further preferably 3% or less, and 2.8. % Or less is particularly preferable. In order to obtain high contrast, it is preferable that the haze is low, but it seems that 1% is the lower limit in the polyethylene terephthalate film containing particles due to the slipperiness. The haze and total light transmittance can be measured by using a turbidity meter according to JIS-K7105.

本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムは、透過偏光度が7.0%以上であることが望ましい。これにより高い検査精度を実現することが可能となる。8.0%以上であることがより好ましい。高い検査精度を得るためには、透過偏光度はより高いほど好ましいが、実質的な上限は10%である。10%以上の偏光度を達成するためには、偏光性を有する添加物、または結晶核剤の添加をする必要があり、これによりヘーズが上昇し、全光線透過率が低下するおそれがあるためである。 The biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention preferably has a transmitted polarization degree of 7.0% or more. This makes it possible to realize high inspection accuracy. More preferably, it is 8.0% or more. In order to obtain high inspection accuracy, a higher transmission polarization degree is preferable, but a practical upper limit is 10%. In order to achieve a degree of polarization of 10% or more, it is necessary to add a polarizing additive or a crystal nucleating agent, which may increase the haze and decrease the total light transmittance. Is.

光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムの偏光選択性を示す指標の一つの例が透過偏光度である。フィルムの透過偏光度とは、偏光Vと、偏光Vに直交する偏光Pのいずれかを、選択的に透過する性質を示す指標である。本発明の場合には、二軸延伸ポリエチレンテレフタレートフィルムの配向主軸方向に対して平行な偏光Pを配向主軸に対して垂直な偏光Vよりも選択的に透過する性質を有する。この透過偏光度が高いことにより検査時のコントラストが向上し、高精度な検査が可能となる。 One example of an index showing the polarization selectivity of a biaxially stretched polyethylene terephthalate film for optical film inspection is the transmission polarization degree. The transmitted polarization degree of a film is an index showing a property of selectively transmitting either polarized light V or polarized light P orthogonal to the polarized light V. In the case of the present invention, the biaxially stretched polyethylene terephthalate film has a property of selectively transmitting polarized light P parallel to the orientation spindle direction rather than polarized light V perpendicular to the alignment spindle direction. The high degree of transmitted polarization improves the contrast during inspection and enables highly accurate inspection.

透過偏光度は、下記式で示される。下記式において、「Tv」は配向主軸に対して垂直な偏光Vに対する、フィルムの全光線透過率(%)を示す。一方、「Tp」は前記配向主軸に対して平行な偏光Pに対する、フィルムの全光線透過率(%)を示す。 The transmitted polarization degree is represented by the following formula. In the following formula, "Tv" indicates the total light transmittance (%) of the film with respect to the polarized light V perpendicular to the main axis of orientation. On the other hand, "Tp" indicates the total light transmittance (%) of the film with respect to the polarized light P parallel to the orientation principal axis.

本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムは、150℃で30分間加熱したときの熱収縮率が長手方向および幅方向とも2.0%以下であることが好ましい。熱収縮率は、1.5%以下であることがより好ましい。前記熱収縮率が2.0%以下であると、150℃以上の高温熱処理加工であっても高い寸法安定性が得られるので、生産性の向上に著しく寄与しえる。上記熱収縮率は低いことが好ましいが、製造上の点から0.5%程度が下限と考える。 The biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention preferably has a heat shrinkage rate of 2.0% or less in both the longitudinal direction and the width direction when heated at 150 ° C. for 30 minutes. The heat shrinkage rate is more preferably 1.5% or less. When the heat shrinkage rate is 2.0% or less, high dimensional stability can be obtained even in a high-temperature heat treatment process at 150 ° C. or higher, which can significantly contribute to the improvement of productivity. The heat shrinkage rate is preferably low, but the lower limit is considered to be about 0.5% from the viewpoint of manufacturing.

また、粘着加工などの後加工における熱処理温度の高温化に対応するためには、高温での熱寸法安定性の優れることのみならず、フィルム面内の全方位において熱収縮率の差が小さいことが望ましい。そのため、本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムにおける150℃、30分間加熱したときの全方位熱収縮率の最大と最小の差は0.5%以下であることが好ましく、0.3%以下であることがより好ましく、0.1%以下であることがさらに好ましい。本発明のフィルムは上記のように熱寸法安定性に優れる上、長手方向および幅方向でほぼ同等でバランスのとれた熱収縮率を有することが好ましく、加熱処理によってもシワや厚み斑が生じにくく、大画面の偏光を用いた大画面の欠点検査に極めて適している。なお、全方位熱収縮率の最大と最小の差は小さければ小さいほどよく、好ましい下限は0%である。 Further, in order to cope with the increase in heat treatment temperature in post-processing such as adhesive processing, not only the thermal dimensional stability at high temperature is excellent, but also the difference in heat shrinkage rate is small in all directions in the film surface. Is desirable. Therefore, the difference between the maximum and minimum omnidirectional heat shrinkage when heated at 150 ° C. for 30 minutes in the biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention is preferably 0.5% or less. It is more preferably 3% or less, and further preferably 0.1% or less. As described above, the film of the present invention is excellent in thermal dimensional stability, and preferably has a well-balanced heat shrinkage ratio that is substantially the same in the longitudinal direction and the width direction, and wrinkles and thickness unevenness are less likely to occur even by heat treatment. , Very suitable for defect inspection of large screens using polarized light on large screens. The smaller the difference between the maximum and minimum omnidirectional heat shrinkage, the better, and the preferable lower limit is 0%.

さらに、粘着加工などの後加工における熱処理温度の高温化に対応するためには、フィルム面内の全方位において熱収縮率の変化量が小さいことが望ましい。そのため、本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムにおける150℃、30分間加熱したときの全方位熱収縮率の5°当りの最大変化量は、500ppm以下であることが好ましく、400ppm以下であることがより好ましく、300ppm以下であることがさらに好ましい。全方位熱収縮率の5°当りの最大変化量が500ppmを越えると、後加工において熱負荷加工時に局所的に変形が起こり、粘着加工などの塗工工程での不具合や、シワなどが発生することにより、光学フィルム検査用時に高精度の検査を行うことが困難となる場合がある。全方位熱収縮率の最大変化量は小さければ小さいほどよく、好ましい下限は0ppmである。 Further, in order to cope with the increase in heat treatment temperature in post-processing such as adhesive processing, it is desirable that the amount of change in the heat shrinkage rate is small in all directions in the film surface. Therefore, the maximum amount of change in the omnidirectional heat shrinkage rate per 5 ° when heated at 150 ° C. for 30 minutes in the biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention is preferably 500 ppm or less, preferably 400 ppm or less. Is more preferable, and 300 ppm or less is further preferable. If the maximum amount of change in the omnidirectional heat shrinkage rate per 5 ° exceeds 500 ppm, local deformation occurs during heat load processing in post-processing, causing defects in the coating process such as adhesive processing and wrinkles. As a result, it may be difficult to perform a high-precision inspection when inspecting an optical film. The smaller the maximum amount of change in the omnidirectional heat shrinkage is, the better, and the preferable lower limit is 0 ppm.

本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムは、最大配向角が18°以下であることが好ましい。これにより、さらにより高いコントラスト得ることができる。最大配向角は、15°以下であることがより好ましく、11°以下であることが更に好ましい。最大配向角が18°より大きくなると、クロスニコル下での透過度を上げるために高い透過偏光度を有していても、光の漏れが大きくなり目視検査性を阻害するため高精度の目視検査に使用できない場合がある。 The biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention preferably has a maximum orientation angle of 18 ° or less. This makes it possible to obtain even higher contrast. The maximum orientation angle is more preferably 15 ° or less, and even more preferably 11 ° or less. If the maximum orientation angle is larger than 18 °, even if it has a high transmittance to increase the transmittance under cross Nicol, light leakage will increase and the visual inspection will be hindered, so high-precision visual inspection will be performed. May not be available for.

本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムは、フィルム幅方向における配向角の変化量が100mm当り0.2°〜0.8°の範囲であることが好ましい。前述のようにフィルムは製膜加工でのボーイング現象により、中央部から端にかけて配向に歪みが生じる。そのため、フィルム幅方向にそって光学軸の傾きが生じている。配向角の変化量は低い方が好ましいが、大画面用途の光学フィルムの高精度の検査に好適な高い熱安定性を求めると実質的に100mm当り0.2°が下限である。0.8
以上になると一様な光学軸精度が得られないため、高精度の検査が困難になる場合がある。
In the biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention, the amount of change in the orientation angle in the film width direction is preferably in the range of 0.2 ° to 0.8 ° per 100 mm. As described above, the film is distorted in orientation from the center to the edges due to the Boeing phenomenon in the film forming process. Therefore, the optical axis is tilted along the film width direction. The amount of change in the orientation angle is preferably small, but when high thermal stability suitable for high-precision inspection of optical films for large screens is required, the lower limit is substantially 0.2 ° per 100 mm. 0.8
If the above is the case, uniform optical axis accuracy cannot be obtained, which may make high-precision inspection difficult.

また、本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムの厚みは特に制限されるものではなく任意であるが、9〜300μmであることが好ましく、12〜100μmの範囲であることがより好ましく、14〜50μmがよりさらに好ましい。厚さが300μmを超えるとコスト面で問題があり、またリターデーションが大きくなり、クロスニコル化での視認性が低下しやすくなる。また、厚さが9μmに満たない場合は、機械的特性が低下し、保護フィルムとしての機能が果たせないおそれがある。 The thickness of the biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention is not particularly limited and is arbitrary, but is preferably 9 to 300 μm, more preferably 12 to 100 μm. , 14-50 μm is even more preferred. If the thickness exceeds 300 μm, there is a problem in terms of cost, the retardation becomes large, and the visibility in cross-nicolation tends to decrease. If the thickness is less than 9 μm, the mechanical properties may deteriorate and the function as a protective film may not be fulfilled.

また、中心層(b層)の両面に微粒子を含有する表層(a層)が共押出法により積層されてなる多層構成(a/b/a)の2種3層構成の場合は、片面における表層の厚さは、0.5〜10μmが好ましく、1〜5μmがより好ましい。表層の厚みが上記範囲を超える場合は、フィルムのヘーズが低下する場合がある。 Further, in the case of a two-kind three-layer structure (a / b / a) in which a surface layer (a layer) containing fine particles is laminated on both sides of the central layer (b layer) by a coextrusion method, one side thereof is used. The thickness of the surface layer is preferably 0.5 to 10 μm, more preferably 1 to 5 μm. If the thickness of the surface layer exceeds the above range, the haze of the film may decrease.

本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムにおける3次元中心面平均表面粗さ(SRa)は0.020μm以上、0.035μm以下であることが好ましい。上記SRaが0.020μm未満であると、フィルムの表面凹凸が低いことにより、滑り性が悪く、製膜工程中および加工工程中で、フィルムハンドリング時に微小キズが発生し、光学フィルム検査用途として使用すると検査性が低下する場合がある。また、上記SRaが0.035μmを超えると、滑り性は良好であるが、表面凹凸によりフィルム表面で光が拡散し、光学フィルム検査工程において、十分なコントラストが得られないおそれがある。 The three-dimensional center plane average surface roughness (SRa) of the biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention is preferably 0.020 μm or more and 0.035 μm or less. When the SRa is less than 0.020 μm, the surface unevenness of the film is low, so that the slipperiness is poor, and minute scratches are generated during film handling during the film forming process and the processing process, and the film is used for optical film inspection. Then, the inspectability may decrease. Further, when the SRa exceeds 0.035 μm, the slipperiness is good, but light is diffused on the film surface due to the surface unevenness, and there is a possibility that sufficient contrast cannot be obtained in the optical film inspection step.

本発明の「光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルム」における「光学フィルム」には、例えば、偏光板、位相差偏光板または位相差板等が含まれる。これらの光学フィルム(偏光板、位相差偏光板または位相差板等)の少なくとも一方の面に、本発明の二軸延伸ポリエチレンテレフタレートフィルムが積層され、積層体の状態で検査(クロスニコルの条件下における光学フィルムの欠点検査等)がされる。なお、光学フィルムは、既にフィルム形状を有する光学フィルムを、二軸延伸ポリエチレンテレフタレートフィルム上に積層させる態様で用いるものであってもよいし、又は、二軸延伸ポリエチレンテレフタレートフィルムの少なくとも一方の面に、高分子溶液を塗布・乾燥させて層を形成し、この層を光学フィルムとして用いる態様であってもよい。 The "optical film" in the "biaxially stretched polyethylene terephthalate film for optical film inspection" of the present invention includes, for example, a polarizing plate, a retardation polarizing plate, a retardation plate, and the like. The biaxially stretched polyethylene terephthalate film of the present invention is laminated on at least one surface of these optical films (polarizing plate, retardation polarizing plate, retardation plate, etc.) and inspected in a laminated state (under the conditions of cross Nicol). (Inspection of defects of optical film, etc.) The optical film may be used in such a manner that an optical film having a film shape is laminated on the biaxially stretched polyethylene terephthalate film, or on at least one surface of the biaxially stretched polyethylene terephthalate film. , The polymer solution may be applied and dried to form a layer, and this layer may be used as an optical film.

本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムの製造方法について説明する。ポリエチレンテレフタレートのペレットを用いた代表例について詳しく説明するが、当然これに限定されるものではない。 The method for producing the biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention will be described. A typical example using polyethylene terephthalate pellets will be described in detail, but of course, the present invention is not limited to this.

まず、フィルム原料を水分率が100ppm未満となるように、乾燥あるいは熱風乾燥する。次いで、各原料を計量、混合して押し出し機に供給し、シート状に溶融押出を行う。さらに、溶融状態のシートを、静電印加法を用いて回転金属ロール(キャスティングロール)に密着させて冷却固化し、未延伸PETシートを得る。 First, the film raw material is dried or hot air dried so that the moisture content is less than 100 ppm. Next, each raw material is weighed, mixed, supplied to an extruder, and melt-extruded into a sheet. Further, the molten sheet is brought into close contact with a rotating metal roll (casting roll) by an electrostatic application method and cooled and solidified to obtain an unstretched PET sheet.

また、溶融樹脂が280℃に保たれた任意の場所で、樹脂中に含まれる異物を除去するために高精度濾過を行う。溶融樹脂の高精度濾過に用いられる濾材は、特に限定はされないが、ステンレス焼結体の濾材の場合、Si、Ti、Sb、Ge、Cuを主成分とする凝集物及び高融点有機物の除去性能に優れ好適である。 Further, high-precision filtration is performed in order to remove foreign substances contained in the resin at an arbitrary place where the molten resin is maintained at 280 ° C. The filter medium used for high-precision filtration of molten resin is not particularly limited, but in the case of a stainless sintered filter medium, the ability to remove aggregates and refractory organic substances containing Si, Ti, Sb, Ge, and Cu as main components. Excellent and suitable.

表層(a層)と中間層(b層)とを共押出し積層する場合は、2台以上の押出し機を用いて、各層の原料を押出し、多層フィードブロック(例えば角型合流部を有する合流ブロ
ック)を用いて両層を合流させ、スリット状のダイからシート状に押出し、キャスティングロール上で冷却固化せしめて未延伸フィルムを作る。あるいは多層フィードブロックを用いる代わりにマルチマニホールドダイを用いても良い。
When the surface layer (a layer) and the intermediate layer (b layer) are co-extruded and laminated, the raw materials of each layer are extruded using two or more extruders, and a multi-layer feed block (for example, a merging block having a square merging portion) is used. ) Are used to join the two layers, extrude them into a sheet from a slit-shaped die, and cool and solidify them on a casting roll to form an unstretched film. Alternatively, a multi-manifold die may be used instead of the multi-layer feed block.

次に、前記の方法で得られた未延伸フィルムを逐次二軸延伸し、次いで熱処理を行う。 Next, the unstretched film obtained by the above method is sequentially biaxially stretched, and then heat-treated.

延伸工程においては、本発明のポリエチレンテレフタレートフィルムは、公知の方法を用いて、ポリエチレンテレフタレートのガラス転移温度以上結晶化温度未満で、少なくとも一軸方向に1.1〜7.0倍に延伸することにより得ることができる。 In the stretching step, the polyethylene terephthalate film of the present invention is stretched at least 1.1 to 7.0 times in the uniaxial direction at a temperature equal to or higher than the glass transition temperature of polyethylene terephthalate and lower than the crystallization temperature by using a known method. Obtainable.

例えば、二軸配向ポリエチレンテレフタレートフィルムを製造する場合、長手方向(縦方向)または幅方向(横方向)に一軸延伸を行い、次いで直交方向に延伸する逐次二軸延伸方法、長手方向(縦方向)及び幅方向(横方向)に同時に延伸する同時二軸延伸する方法、さらに同時二軸延伸する際の駆動方法としてリニアモーターを用いる方法を採用することができる。 For example, in the case of producing a biaxially oriented polyethylene terephthalate film, a sequential biaxial stretching method in which uniaxial stretching is performed in the longitudinal direction (longitudinal direction) or width direction (horizontal direction) and then stretching in the orthogonal direction, longitudinal direction (longitudinal direction). A method of simultaneously biaxially stretching in the width direction (lateral direction) and a method of using a linear motor as a driving method for simultaneous biaxial stretching can be adopted.

特許文献6には、結晶性樹脂からなる非晶シートを加熱結晶化させた後に一軸延伸を行い、透過偏光度の高い偏光性拡散フィルムの製造方法が開示されている。しかしながら、上記開示の方法では、高い透過偏光度を達成できるものの、光学ヘーズが高く拡散機能を有するため、光学フィルム検査用として用いることは難しい。そこで、本願発明者は鋭意検討を行なった結果、以下のような延伸方法(1)、(2)を行なうことにより、二律背反する特性を高度に両立させるに至った。 Patent Document 6 discloses a method for producing a polarizing diffusion film having a high degree of transmission polarization by heat-crystallizing an amorphous sheet made of a crystalline resin and then performing uniaxial stretching. However, although the method disclosed above can achieve a high degree of transmitted polarization, it is difficult to use it for optical film inspection because of its high optical haze and diffusing function. Therefore, as a result of diligent studies, the inventor of the present application has achieved a high degree of compatibility between the antinomy characteristics by performing the following stretching methods (1) and (2).

(1)フィルム幅方向の延伸倍率の制御
本発明における光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムを得るためには4.8〜7.0倍の範囲で幅方向に延伸を行うことが望ましい。幅方向の延伸倍率が4.8倍以上では、透過偏光度が高くなり好ましい。7.0倍以下であると破断の頻度が少なくなり好ましい。
(1) Control of stretch ratio in the film width direction In order to obtain the biaxially stretched polyethylene terephthalate film for optical film inspection in the present invention, it is desirable to stretch in the width direction in the range of 4.8 to 7.0 times. When the stretching ratio in the width direction is 4.8 times or more, the degree of transmitted polarization is high, which is preferable. When it is 7.0 times or less, the frequency of breakage is reduced, which is preferable.

(2)フィルム長手方向の延伸倍率の制御
本発明における光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムを得るためには3.0倍以下の範囲で長手方向に延伸を行うことが望ましい。長手方向の延伸倍率が3.0倍以下であると透過偏光度が高くなり好ましい。長手方向の延伸倍率の下限は長手方向に延伸を行うことを除いて特に限定されないが、フィルム流れ方向の厚み変動を小さく抑えることができるという観点から2.6倍以上が好ましい。
(2) Control of stretch ratio in the longitudinal direction of the film In order to obtain the biaxially stretched polyethylene terephthalate film for optical film inspection in the present invention, it is desirable to stretch the film in the longitudinal direction within a range of 3.0 times or less. When the stretching ratio in the longitudinal direction is 3.0 times or less, the transmission polarization degree is high, which is preferable. The lower limit of the draw ratio in the longitudinal direction is not particularly limited except that the film is stretched in the longitudinal direction, but 2.6 times or more is preferable from the viewpoint of suppressing the thickness fluctuation in the film flow direction to be small.

最大配向角が小さく、熱収縮特性に優れたフィルムを得るためには、上記(1)、(2)に加え、さらに以下の(3)〜(5)を行うことが好ましい。 In order to obtain a film having a small maximum orientation angle and excellent heat shrinkage characteristics, it is preferable to carry out the following (3) to (5) in addition to the above (1) and (2).

(3)熱固定温度の制御
これまで、光学的な軸精度を保持するために、比較的低温での熱固定処理が推奨されてきたが、本願発明では、熱固定処理工程の温度は220℃以上230℃以下が好ましい。熱固定処理の温度が220℃以上では、熱収縮率の絶対値が小さくなり好ましい。また、熱固定処理の温度が230℃以下であると、フィルムが不透明になり難く、また破断の頻度が少なくなり好ましい。
(3) Control of heat fixing temperature So far, heat fixing treatment at a relatively low temperature has been recommended in order to maintain optical axis accuracy, but in the present invention, the temperature of the heat fixing treatment step is 220 ° C. It is preferably 230 ° C. or higher and 230 ° C. or lower. When the temperature of the heat fixing treatment is 220 ° C. or higher, the absolute value of the heat shrinkage rate becomes small, which is preferable. Further, when the temperature of the heat fixing treatment is 230 ° C. or lower, the film is less likely to become opaque and the frequency of breakage is reduced, which is preferable.

(4)フィルム幅方向の緩和率の制御
本発明における光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムを得るためには、幅方向の緩和率を2.0〜4.5%の範囲で行うことが望ましい。これにより、全方位収縮率差を低減できるため望ましい。
(4) Control of relaxation rate in the film width direction In order to obtain the biaxially stretched polyethylene terephthalate film for optical film inspection in the present invention, the relaxation rate in the width direction must be in the range of 2.0 to 4.5%. desirable. This is desirable because the difference in omnidirectional contraction rate can be reduced.

(5)フィルム幅方向の緩和速度の制御
本発明における光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムを得るためには、0.005〜6.0%/秒以下の緩和速度で幅方向に緩和処理を行うことが望ましい。幅方向緩和速度が6.0%/秒以下であれば、局所的な平面性不良が発生しな
いため好ましい。さらに望ましくは、0.1〜5.0%/秒、特に望ましくは0.5〜4.0%/秒である。幅方向緩和速度の下限は限定されないが、0.005%/秒未満の幅方向緩和速度で全方位収縮率差を低減できる特定の幅方向緩和率を実施すると、緩和処理に要する時間が長くなりフィルム表面が白化し、透明性を阻害してしまう。
(5) Control of relaxation rate in the film width direction In order to obtain the biaxially stretched polyethylene terephthalate film for optical film inspection in the present invention, relaxation treatment in the width direction is performed at a relaxation rate of 0.005 to 6.0% / sec or less. It is desirable to do. When the relaxation speed in the width direction is 6.0% / sec or less, local flatness defects do not occur, which is preferable. More preferably, it is 0.1 to 5.0% / sec, and particularly preferably 0.5 to 4.0% / sec. The lower limit of the widthwise relaxation rate is not limited, but if a specific widthwise relaxation rate that can reduce the omnidirectional contraction rate difference at a widthwise relaxation rate of less than 0.005% / sec is implemented, the time required for the relaxation process becomes longer. The surface of the film becomes white and the transparency is impaired.

本発明のフィルムは上記方法により製造しるものであるが、上記技術思想の範囲であれば、上記具体的に開示された方法に限定されるものはない。本発明のフィルムを製造する上で重要なのは、上記技術思想に基づき、上述の製造条件について極めて狭い範囲で高精度の制御をすることである。 The film of the present invention is produced by the above method, but is not limited to the above specifically disclosed method within the scope of the above technical idea. What is important in producing the film of the present invention is to control the above-mentioned production conditions with high accuracy in an extremely narrow range based on the above technical idea.

次に、本発明の効果を実施例および比較例を用いて説明する。まず、本発明で使用した特性値の評価方法を下記に示す。 Next, the effects of the present invention will be described with reference to Examples and Comparative Examples. First, the evaluation method of the characteristic value used in the present invention is shown below.

(1)3次元中心面平均表面粗さ(SRa)
フィルムの表面を触針式三次元表面粗さ計(株式会社小坂研究所社製、SE−3AK)を用いて、針の半径2μm、荷重30mg、針のスピード0.1mm/秒の条件下で、フィルムの長手方向にカットオフ値0.25mmで、測定長1mmにわたって測定し、2μmピッチで500点に分割し、各点の高さを三次元粗さ解析装置(株式会社小坂研究所社製、TDA−21)に取り込ませた。これと同様の操作をフィルムの幅方向について2μm間隔で連続的に150回、即ちフィルムの幅方向0.3mmにわたって行い、解析装置にデータを取り込ませた。次に、前記解析装置を用いて、三次元平均表面粗さSRaを求めた。SRaの単位はμmである。なお、測定は3回行い、それらの平均値を採用した。
(1) Three-dimensional center surface average surface roughness (SRa)
Using a stylus type three-dimensional surface roughness meter (SE-3AK, manufactured by Kosaka Laboratory Co., Ltd.) on the surface of the film, the needle radius is 2 μm, the load is 30 mg, and the needle speed is 0.1 mm / sec. , Measured over a measurement length of 1 mm with a cutoff value of 0.25 mm in the longitudinal direction of the film, divided into 500 points at a pitch of 2 μm, and the height of each point was measured by a three-dimensional roughness analyzer (manufactured by Kosaka Laboratory Co., Ltd.). , TDA-21). The same operation was continuously performed 150 times in the width direction of the film at intervals of 2 μm, that is, over 0.3 mm in the width direction of the film, and the data was taken into the analyzer. Next, the three-dimensional average surface roughness SRa was determined using the analysis device. The unit of SRa is μm. The measurement was performed three times, and the average value thereof was adopted.

(2)全光線透過率、ヘーズ
JIS K 7105「プラスチックの光学的特性試験方法」ヘーズ(曇価)に準拠して測定した。測定器には、日本電色工業社製NDH−300A型濁度計を用いた。
(2) Total light transmittance, haze JIS K 7105 "Optical property test method for plastics" Haze (cloud value) was measured. An NDH-300A turbidity meter manufactured by Nippon Denshoku Kogyo Co., Ltd. was used as the measuring instrument.

(3)熱収縮率(長手方向及び幅方向の熱収縮率)
JIS C 2318−1997 5.3.4(寸法変化)に準拠して測定した。測定すべき方向に対し、フィルムを幅10mm、長さ250mmに切り取り、200mm間隔で印を付け、5gfの一定張力下で印の間隔(A)を測定した。次いで、フィルムを150℃の雰囲気中のオーブンに入れ、無荷重下で150±3℃で30分間加熱処理した後、5gfの一定張力下で印の間隔(B)を測定した。以下の式より熱収縮率を求めた。
熱収縮率(%)=(A−B)/A×100
(3) Heat shrinkage rate (heat shrinkage rate in the longitudinal direction and the width direction)
The measurement was performed in accordance with JIS C 2318-1997 5.3.4 (dimension change). The film was cut into a width of 10 mm and a length of 250 mm in the direction to be measured, marked at intervals of 200 mm, and the interval (A) of the marks was measured under a constant tension of 5 gf. Next, the film was placed in an oven at 150 ° C. and heat-treated at 150 ± 3 ° C. for 30 minutes under no load, and then the mark interval (B) was measured under a constant tension of 5 gf. The heat shrinkage rate was calculated from the following formula.
Heat shrinkage rate (%) = (AB) / A × 100

(4)全方位熱収縮率
フィルムを巾300mmに切り取り、直径250mmの円状に印を付けた。長手方向を0°、横手方向を90°とし5°ピッチでフィルム面内の収縮率を上記熱収縮率測定方法に従い熱収縮率を求めた。最大値と最小値の差を全方位熱収縮率の最大と最小の差とし、隣り合う位置の加熱収縮率差を算出し、その最大値をもって全方位熱収縮率の5°当りの最大変化量とした。
(4) Omnidirectional heat shrinkage The film was cut to a width of 300 mm and marked in a circle with a diameter of 250 mm. The heat shrinkage rate in the film surface was determined according to the above heat shrinkage rate measurement method at a pitch of 5 ° with 0 ° in the longitudinal direction and 90 ° in the lateral direction. The difference between the maximum value and the minimum value is taken as the maximum and minimum difference of the omnidirectional heat shrinkage rate, the difference in the heat shrinkage rate at adjacent positions is calculated, and the maximum value is the maximum change amount of the omnidirectional heat shrinkage rate per 5 °. And said.

(5)最大配向角
各実施例で得られた光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルム
幅において、端縁を0%とし、他の端縁を100%とする。上記フィルム幅の10%に相当する領域から90%に相当する領域について、幅方向に100mmピッチで連続してn個の100mm四方の正方形のフィルムサンプルを切り出した。該正方形のフィルムサンプルは長手方向、又は幅方向のいずれかの軸を基準に直角に切り出した。各フィルムサンプルについて、王子計測器株式会社製、MOA−6004型分子配向計を用いて、フィルム長手方向に対する分子鎖主軸の配向角(θi、−90°≦θi≦90°)、及び下記式によって定義される機械軸方向(長手方向、または幅方向のいずれか)に対する光学主軸の傾斜角(ξi)を測定した。それぞれ長手方向に3箇所サンプリングしその平均値を求めた。なお、nは、フィルム全幅に0.8を乗じ、10mmで除した数値の小数点以下を切り上げた整数である。また、iはサンプル番号を表し、i=1〜nである。このうち、光学主軸の傾斜角(ξi)の値が最大のものを、最大配向角とした。
|θ|≦45度のとき ξ=|θ|
|θ|>45度のとき ξ=|90度−|θ||
(5) Maximum Orientation Angle In the biaxially stretched polyethylene terephthalate film width for optical film inspection obtained in each example, the edge is set to 0% and the other edge is set to 100%. N 100 mm square film samples were continuously cut out at a pitch of 100 mm in the width direction from a region corresponding to 10% of the film width to a region corresponding to 90%. The square film sample was cut out at a right angle with respect to either the longitudinal direction or the width direction. For each film sample, using a MOA-6004 type molecular orientation meter manufactured by Oji Measuring Instruments Co., Ltd., the orientation angle of the molecular chain spindle with respect to the longitudinal direction of the film (θi, -90 ° ≤ θi ≤ 90 °), and the following formula The tilt angle (ξi) of the optical spindle with respect to the defined mechanical axis direction (either the longitudinal direction or the width direction) was measured. Three locations were sampled in the longitudinal direction, and the average value was calculated. Note that n is an integer obtained by multiplying the total width of the film by 0.8, dividing by 10 mm, and rounding up to the nearest whole number. Further, i represents a sample number, and i = 1 to n. Of these, the one with the largest value of the tilt angle (ξi) of the optical spindle was defined as the maximum orientation angle.
When | θ | ≤ 45 degrees ξ = | θ |
When | θ |> 45 degrees ξ = | 90 degrees − | θ ||

(6)透過偏光度
測定器には、日本電色工業社製NDH−5000型濁度計を用いた。濁度計試験片設置部の手前に偏光板をセットした。フィルムを偏光板に密着させてセットして、フィルムの主配向軸を、入射する直線偏光の偏光方向に対して平行とし測定を行った。測定値を、偏光板の全光線透過率で除し、主配向軸に平行な偏光の全光線透過率Tpを求めた。次に、フィルムを、フィルム表面を含む平面内で90度回転させて、フィルムの主配向軸を、入射する直線偏光の偏光方向に対して垂直とした。上記同様に測定を行い、測定値を偏光板の全光線透過率で除し、主配向軸と垂直な偏光の全光線透過率Tvを求めた。数1に従い透過偏光度を求めた。
(6) An NDH-5000 type turbidity meter manufactured by Nippon Denshoku Kogyo Co., Ltd. was used as the transmission polarization degree measuring device. A polarizing plate was set in front of the turbidity meter test piece installation part. The film was set in close contact with the polarizing plate, and the main orientation axis of the film was set parallel to the polarization direction of the incident linearly polarized light, and the measurement was performed. The measured value was divided by the total light transmittance of the polarizing plate to obtain the total light transmittance Tp of polarized light parallel to the main orientation axis. Next, the film was rotated 90 degrees in a plane including the film surface so that the main orientation axis of the film was perpendicular to the polarization direction of the incident linearly polarized light. The measurement was carried out in the same manner as described above, and the measured value was divided by the total light transmittance of the polarizing plate to obtain the total light transmittance Tv of polarized light perpendicular to the main orientation axis. The transmission polarization degree was determined according to Equation 1.

(7)熱しわ判定法
光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルム上に、加工張力10kg/mを印可した状態でダイコート方式でシリコーンを塗布し、120℃のオーブンで乾燥させた。上述のシリコ−ン塗布後のサンプルをロ−ルからカットして、平坦なテ−ブルの上に5mの長さを広げて、塗布面に蛍光灯の光を反射させて熱しわの有無を確認した。
○:熱しわは全く見られず良好。
×:熱しわが確認できた。
(7) Heat Wrinkle Judgment Method Silicone was applied on a biaxially stretched polyethylene terephthalate film for optical film inspection by a die coat method with a processing tension of 10 kg / m applied, and dried in an oven at 120 ° C. Cut the sample after the above-mentioned silicone application from the roll, spread the length of 5 m on a flat table, and reflect the light of the fluorescent lamp on the application surface to check for heat wrinkles. confirmed.
◯: Good with no heat wrinkles.
X: Heat wrinkles were confirmed.

実施例1
(1)PET樹脂(A)の製造
エステル化反応缶を昇温し、200℃に到達した時点で、テレフタル酸を86.4質量部及びエチレングリコールを64.4質量部からなるスラリーを仕込み、攪拌しながら触媒として三酸化アンチモンを0.017質量部及びトリエチルアミンを0.16質量部添加した。次いで、加圧昇温を行いゲージ圧3.5kgf/cm2、240℃の条件で、加圧エステル化反応を行った。その後、エステル化反応缶内を常圧に戻し、酢酸マグネシウム4水和物0.071質量部、次いでリン酸トリメチル0.014質量部を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル0.012質量部、次いで酢酸ナトリウム0.0036質量部を添加した。15分後、得られたエステル化反応生成物を
重縮合反応缶に移送し、減圧下260℃から280℃へ徐々に昇温し、285℃で重縮合反応を行った。
Example 1
(1) Production of PET Resin (A) When the temperature of the esterification reaction can was raised and reached 200 ° C., a slurry consisting of 86.4 parts by mass of terephthalic acid and 64.4 parts by mass of ethylene glycol was charged. While stirring, 0.017 parts by mass of antimony trioxide and 0.16 parts by mass of triethylamine were added as catalysts. Next, the pressure was raised and the pressure esterification reaction was carried out under the conditions of a gauge pressure of 3.5 kgf / cm2 and 240 ° C. Then, the inside of the esterification reaction can was returned to normal pressure, and 0.071 parts by mass of magnesium acetate tetrahydrate and then 0.014 parts by mass of trimethyl phosphate were added. Further, the temperature was raised to 260 ° C. over 15 minutes, and 0.012 parts by mass of trimethyl phosphate and then 0.0036 parts by mass of sodium acetate were added. After 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can, the temperature was gradually raised from 260 ° C. to 280 ° C. under reduced pressure, and the polycondensation reaction was carried out at 285 ° C.

重縮合反応終了後、95%カット径が5μmのナスロン製フィルターで濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。得られたPET樹脂(A)は、融点が257℃、固有粘度が0.616dl/g、不活性粒子及び内部析出粒子は実質上含有していなかった。 After completion of the polycondensation reaction, filtration is performed with a Naslon filter having a 95% cut diameter of 5 μm, extruded into a strand shape from a nozzle, and cooled and solidified using cooling water that has been previously filtered (pore diameter: 1 μm or less). , Cut into pellets. The obtained PET resin (A) had a melting point of 257 ° C., an intrinsic viscosity of 0.616 dl / g, and substantially contained no inert particles and internally precipitated particles.

(2)PET樹脂(B)の製造
添加剤としてシリカ粒子(富士シリシア化学株式会社製、サイリシア310、平均粒径2.7μm)を2000ppm含有したポリエチレンテレフタレートをPET(A)樹脂と同様の製法で作成した。
(2) Production of PET resin (B) Polyethylene terephthalate containing 2000 ppm of silica particles (Fuji Silysia Chemical Ltd., Cyricia 310, average particle size 2.7 μm) as an additive is produced by the same production method as PET (A) resin. Created.

(3)光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムの製造
表層(a)の原料として、PET樹脂(A)40質量部と、PET樹脂(B)60質量部とをペレット混合し、135℃で6時間減圧乾燥(1Torr)した後、押出機1に供給した。また、中間層(b)層の原料としてPET樹脂(A)82質量部と、PET樹脂(B)18質量部とをペレット混合し、135℃で6時間減圧乾燥(1Torr)した後、押出機2に供給した。押出機2、及び押出機1に供給された各原料を、押出機の溶融部、混練り部、ポリマー管、ギアポンプ、フィルターまでの樹脂温度は280℃、その後のポリマー管では275℃とし、3層合流ブロックを用いてa/b/aとなるように積層し、口金よりシート状に溶融押し出した。なお、a層とb層との厚み比率は、a/b/a=8/84/8となるように、各層のギアポンプを用いて制御した。また、前記のフィルターには、いずれもステンレス焼結体の濾材(公称濾過精度:10μm粒子を95%カット)を用いた。また、口金の温度は、押出された樹脂温度が275℃になるように制御した。
(3) Production of Biaxially Stretched Polyethylene Terephthalate Film for Optical Film Inspection As a raw material for the surface layer (a), 40 parts by mass of PET resin (A) and 60 parts by mass of PET resin (B) are pellet-mixed and at 135 ° C. After drying under reduced pressure (1 Torr) for 6 hours, the mixture was supplied to the extruder 1. Further, 82 parts by mass of PET resin (A) and 18 parts by mass of PET resin (B) were pellet-mixed as raw materials for the intermediate layer (b), dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, and then extruded. Supplied to 2. The resin temperature of each raw material supplied to the extruder 2 and the extruder 1 to the melted portion, the kneaded portion, the polymer tube, the gear pump, and the filter of the extruder was set to 280 ° C, and then to 275 ° C for the polymer tube. It was laminated so as to be a / b / a using a layer merging block, and melted and extruded into a sheet from the base. The thickness ratio between the a layer and the b layer was controlled by using a gear pump of each layer so that a / b / a = 8/84/8. In addition, a stainless sintered filter medium (nominal filtration accuracy: 10 μm particles cut by 95%) was used for all of the above filters. The temperature of the base was controlled so that the extruded resin temperature was 275 ° C.

そして、押し出した樹脂を、表面温度30℃の冷却ドラム上にキャスティングして静電印加法を用いて冷却ドラム表面に密着させて冷却固化し、厚さ480μmの未延伸フィルムを作成した。 Then, the extruded resin was cast on a cooling drum having a surface temperature of 30 ° C. and brought into close contact with the surface of the cooling drum by an electrostatic application method to be cooled and solidified to prepare an unstretched film having a thickness of 480 μm.

得られた未延伸シートを、78℃に加熱されたロール群でフィルム温度を75℃に昇温した後、赤外線ヒータで105℃に加熱し、周速差のあるロール群で、長手方向に2.9倍に延伸した。 The obtained unstretched sheet is heated to 105 ° C. with an infrared heater after raising the film temperature to 75 ° C. in a roll group heated to 78 ° C., and then heated to 105 ° C. in a roll group heated to a peripheral speed difference of 2 in the longitudinal direction. It was stretched 9 times.

次いで、得られた一軸延伸フィルムをクリップで把持し、フィルム幅方向に延伸を行った。幅方向の延伸温度は120℃、延伸倍率は4.9倍とした。次いで、225℃で15秒間の熱処理を行い、185℃で3.8%の弛緩処理を行った。得られた二軸延伸ポリエチレンテレフタレートフィルム幅において、端縁を0%とし、他の端縁を100%とする。上記フィルム幅の50%に相当する領域から55%に相当する領域について、スリットを行い、厚さ38μmの光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムを得た。得られたフィルム物性を表2に示す。 Next, the obtained uniaxially stretched film was gripped with a clip and stretched in the film width direction. The stretching temperature in the width direction was 120 ° C., and the stretching ratio was 4.9 times. Then, a heat treatment was performed at 225 ° C. for 15 seconds, and a relaxation treatment of 3.8% was performed at 185 ° C. In the obtained biaxially stretched polyethylene terephthalate film width, the edge is 0% and the other edge is 100%. A slit was made in the region corresponding to 55% from the region corresponding to 50% of the film width to obtain a biaxially stretched polyethylene terephthalate film for optical film inspection having a thickness of 38 μm. Table 2 shows the physical properties of the obtained film.

実施例2
取り位置を上記フィルム幅の80%に相当する領域から90%に相当する領域に変更する以外は実施例1に記載と同様の方法にて作成した。得られたフィルム物性を表2に示す。
Example 2
The film was prepared in the same manner as described in Example 1 except that the taking position was changed from the region corresponding to 80% of the film width to the region corresponding to 90%. Table 2 shows the physical properties of the obtained film.

実施例3〜6
製膜条件を表1に記載の条件へ変更する以外は実施例1に記載と同様の方法にて作成し
た。得られたフィルム物性を表2に示す。
Examples 3 to 6
It was prepared in the same manner as described in Example 1 except that the film forming conditions were changed to the conditions shown in Table 1. Table 2 shows the physical properties of the obtained film.

比較例1
層構成、製膜条件を表1に記載の条件へ変更する以外は実施例1に記載と同様の方法にて作成し、フィルム幅の50%に相当する領域から55%に相当する領域について、スリットを行い、光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムを得た。得られたフィルム物性を表2に示す。
Comparative Example 1
The film was prepared in the same manner as described in Example 1 except that the layer structure and film forming conditions were changed to the conditions shown in Table 1, and the region corresponding to 50% to 55% of the film width was prepared. Slitting was performed to obtain a biaxially stretched polyethylene terephthalate film for optical film inspection. Table 2 shows the physical properties of the obtained film.

比較例2
フィルム幅の80%に相当する領域から90%に相当する領域についてスリットを行う以外は比較例1に記載と同様の方法にて作成した。得られたフィルム物性を表2に示す。
Comparative Example 2
The film was prepared in the same manner as described in Comparative Example 1 except that a slit was formed in a region corresponding to 90% from a region corresponding to 80% of the film width. Table 2 shows the physical properties of the obtained film.

比較例3
層構成、製膜条件を表1に記載の条件へ変更する以外は実施例1に記載と同様の方法にて作成した。得られたフィルム物性を表2に示す。
Comparative Example 3
It was prepared by the same method as described in Example 1 except that the layer structure and film forming conditions were changed to the conditions shown in Table 1. Table 2 shows the physical properties of the obtained film.

比較例4
製膜条件を表1に記載の条件へ変更する以外は実施例1に記載と同様の方法にて作成した。得られたフィルム物性を表2に示す。
Comparative Example 4
It was prepared in the same manner as described in Example 1 except that the film forming conditions were changed to the conditions shown in Table 1. Table 2 shows the physical properties of the obtained film.

実施例1〜6で得られた二軸延伸ポリエチレンテレフタレートフィルムは、コントラスト性が高く、優れた光学フィルム検査性を有しており、大画面用途の光学フィルム製造工程において高精度の検査に好適に使用できるフィルムであった。また、実施例1〜5で得られた二軸延伸ポリエチレンテレフタレートフィルムは、熱寸法安定性に優れ、加工特性にも優れるものであった。一方、比較例1〜3で得られたフィルムは透過偏光度が低いた
め、コントラスト性が低いため易検査性に劣り、高精度の検査に用いることが困難であった。また、加工特性にも劣るものであった。
The biaxially stretched polyethylene terephthalate films obtained in Examples 1 to 6 have high contrast and excellent optical film inspection properties, and are suitable for high-precision inspection in the optical film manufacturing process for large screen applications. It was a usable film. Further, the biaxially stretched polyethylene terephthalate films obtained in Examples 1 to 5 were excellent in thermal dimensional stability and excellent processing characteristics. On the other hand, since the films obtained in Comparative Examples 1 to 3 have low transmission polarization, they have low contrast and are inferior in easy inspection, and it is difficult to use them for high-precision inspection. In addition, it was inferior in processing characteristics.

本発明の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムは、優れた偏光検査性を有するので、大画面用途の光学フィルムの高精度の検査に好適である。また、さらに好ましい実施態様によれば、高温での後加工処理に優れた光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルムを提供することができる。 The biaxially stretched polyethylene terephthalate film for optical film inspection of the present invention has excellent polarization inspection properties, and is therefore suitable for high-precision inspection of optical films for large screen applications. Further, according to a more preferable embodiment, it is possible to provide a biaxially stretched polyethylene terephthalate film for optical film inspection, which is excellent in post-processing at a high temperature.

Claims (3)

下記要件(1)〜(3)、(8)〜(10)を満たす光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルム。
(1)全光線透過率が85%以上
(2)フィルムヘーズが15%以下
(3)透過偏光度が7.0%以上
(8)中心層とこれに接する両表層から構成される積層フィルム
(9)両表層は平均粒径1.5〜4.0μmの微粒子を0.10〜0.20質量%含有する
(10)中心層は平均粒径1.5〜4.0μmの微粒子を0.00〜0.10質量%含有する
A biaxially stretched polyethylene terephthalate film for optical film inspection that satisfies the following requirements (1) to (3) and (8) to (10) .
(1) Total light transmittance is 85% or more (2) Film haze is 15% or less (3) Transmission polarization degree is 7.0% or more
(8) A laminated film composed of a central layer and both surface layers in contact with the central layer.
(9) Both surface layers contain 0.10 to 0.20% by mass of fine particles having an average particle size of 1.5 to 4.0 μm.
(10) The central layer contains 0.00 to 0.10% by mass of fine particles having an average particle size of 1.5 to 4.0 μm.
さらに下記要件(4)〜(6)を満たす請求項1に記載の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルム。
(4)150℃、30分間加熱したときの熱収縮率が長手方向および幅方向とも2.0%以下
(5)150℃、30分間加熱したときの全方位熱収縮率の最大と最小の差が0.5%以下
(6)150℃、30分間加熱したときの5°当りの全方位熱収縮率の最大変化量が500ppm以下
The biaxially stretched polyethylene terephthalate film for optical film inspection according to claim 1, further satisfying the following requirements (4) to (6).
(4) The heat shrinkage rate when heated at 150 ° C. for 30 minutes is 2.0% or less in both the longitudinal direction and the width direction. (5) The difference between the maximum and minimum omnidirectional heat shrinkage rates when heated at 150 ° C. for 30 minutes. Is 0.5% or less (6) The maximum amount of change in the omnidirectional heat shrinkage rate per 5 ° when heated at 150 ° C for 30 minutes is 500 ppm or less.
さらに下記要件(7)を満たす請求項1又は2に記載の光学フィルム検査用二軸延伸ポリエチレンテレフタレートフィルム。
(7)最大配向角が18°以
The biaxially stretched polyethylene terephthalate film for optical film inspection according to claim 1 or 2, which further satisfies the following requirement (7 ) .
(7) The maximum orientation angle of 18 ° or less under
JP2020109791A 2014-08-20 2020-06-25 Biaxially oriented polyethylene terephthalate film for optical film inspection Active JP7239262B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014167615 2014-08-20
JP2014167615 2014-08-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015158849A Division JP2016045492A (en) 2014-08-20 2015-08-11 Biaxially oriented polyethylene terephthalate film for inspection of optical film

Publications (2)

Publication Number Publication Date
JP2020173463A true JP2020173463A (en) 2020-10-22
JP7239262B2 JP7239262B2 (en) 2023-03-14

Family

ID=55636067

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015158849A Pending JP2016045492A (en) 2014-08-20 2015-08-11 Biaxially oriented polyethylene terephthalate film for inspection of optical film
JP2020109791A Active JP7239262B2 (en) 2014-08-20 2020-06-25 Biaxially oriented polyethylene terephthalate film for optical film inspection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015158849A Pending JP2016045492A (en) 2014-08-20 2015-08-11 Biaxially oriented polyethylene terephthalate film for inspection of optical film

Country Status (1)

Country Link
JP (2) JP2016045492A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187437A (en) * 1999-10-19 2001-07-10 Toyobo Co Ltd Laminated polyester film
JP2005014545A (en) * 2003-06-30 2005-01-20 Mitsubishi Polyester Film Copp Polyester film for mold release film
JP2005178163A (en) * 2003-12-19 2005-07-07 Mitsubishi Polyester Film Copp Polyester film for mold release film
JP2006182832A (en) * 2004-12-27 2006-07-13 Mitsubishi Polyester Film Copp Biaxially drawn polyester film
US20070254107A1 (en) * 2005-08-22 2007-11-01 Eastman Kodak Company Nanocomposite materials and an in-situ method of making such materials
JP2011255599A (en) * 2010-06-10 2011-12-22 Mitsubishi Plastics Inc Polyester film for base material-less double-sided adhesive sheet
JP2012189665A (en) * 2011-03-09 2012-10-04 Toyobo Co Ltd Biaxially oriented polyethylene terephthalate film
JP2012250498A (en) * 2011-06-06 2012-12-20 Toyobo Co Ltd Easily adhesive thermoplastic resin film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187437A (en) * 1999-10-19 2001-07-10 Toyobo Co Ltd Laminated polyester film
JP2005014545A (en) * 2003-06-30 2005-01-20 Mitsubishi Polyester Film Copp Polyester film for mold release film
JP2005178163A (en) * 2003-12-19 2005-07-07 Mitsubishi Polyester Film Copp Polyester film for mold release film
JP2006182832A (en) * 2004-12-27 2006-07-13 Mitsubishi Polyester Film Copp Biaxially drawn polyester film
US20070254107A1 (en) * 2005-08-22 2007-11-01 Eastman Kodak Company Nanocomposite materials and an in-situ method of making such materials
JP2011255599A (en) * 2010-06-10 2011-12-22 Mitsubishi Plastics Inc Polyester film for base material-less double-sided adhesive sheet
JP2012189665A (en) * 2011-03-09 2012-10-04 Toyobo Co Ltd Biaxially oriented polyethylene terephthalate film
JP2012250498A (en) * 2011-06-06 2012-12-20 Toyobo Co Ltd Easily adhesive thermoplastic resin film

Also Published As

Publication number Publication date
JP7239262B2 (en) 2023-03-14
JP2016045492A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
TWI414426B (en) A light diffusing film
JP5077143B2 (en) Biaxially oriented laminated polyester film
JP5640488B2 (en) Biaxially stretched polyethylene terephthalate film for mold release
JP5703566B2 (en) Biaxially stretched polyethylene terephthalate film for mold release
JP2011099089A (en) Biaxially oriented polyethylene terephthalate film
JP2011110718A (en) Biaxially orientated polyethylene terephthalate film
WO2009084180A1 (en) Polyester film for release film for polarizer and layered product with improved polarizing property
JP4691842B2 (en) Polyester film for polarizing film lamination
JP5651960B2 (en) Biaxially stretched polyethylene terephthalate film for mold release
JP2011197225A (en) Matted polyester film for releasing polarizing sheet
JP2007031496A (en) Optical polyester film
JP6852264B2 (en) Biaxially stretched polyethylene terephthalate film for optical film inspection
JP4927246B2 (en) Coextrusion laminated polyester film
JP5589330B2 (en) Biaxially stretched polyethylene terephthalate film for mold release
JP2004277524A (en) Biaxially oriented polyester film
JP5119469B2 (en) Polyethylene terephthalate resin film for releasing polarizing plate and method for producing the same
JP6210244B2 (en) Biaxially stretched polyethylene terephthalate film
JP6688448B2 (en) Biaxially oriented polyethylene terephthalate film for optical film inspection
JP7239262B2 (en) Biaxially oriented polyethylene terephthalate film for optical film inspection
JP2018162435A (en) Biaxially oriented polyester film and method for producing the same
JP5920641B2 (en) Biaxially stretched polyethylene terephthalate film
JP2016020290A (en) Polyethylene terephthalate for laminate glass
JP2009161569A (en) Polyester film for mold-releasing film
JP2009161574A (en) Polyester film for mold-releasing film
JP6163867B2 (en) Optical polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220224

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220304

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220308

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220603

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220607

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220920

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230110

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230131

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230228

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230301

R151 Written notification of patent or utility model registration

Ref document number: 7239262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151