JP2020172969A - Expansion/contraction flexible joint structure and aseismatic repair valve - Google Patents

Expansion/contraction flexible joint structure and aseismatic repair valve Download PDF

Info

Publication number
JP2020172969A
JP2020172969A JP2019074761A JP2019074761A JP2020172969A JP 2020172969 A JP2020172969 A JP 2020172969A JP 2019074761 A JP2019074761 A JP 2019074761A JP 2019074761 A JP2019074761 A JP 2019074761A JP 2020172969 A JP2020172969 A JP 2020172969A
Authority
JP
Japan
Prior art keywords
ring
spacer
insertion port
peripheral surface
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019074761A
Other languages
Japanese (ja)
Other versions
JP7324034B2 (en
Inventor
賢二 呉竹
Kenji Kuretake
賢二 呉竹
由男 橋岡
Yoshio Hashioka
由男 橋岡
幸一 川▲崎▼
Koichi Kawasaki
幸一 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Alloy Mfg Co Ltd
Original Assignee
Shimizu Alloy Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Alloy Mfg Co Ltd filed Critical Shimizu Alloy Mfg Co Ltd
Priority to JP2019074761A priority Critical patent/JP7324034B2/en
Publication of JP2020172969A publication Critical patent/JP2020172969A/en
Application granted granted Critical
Publication of JP7324034B2 publication Critical patent/JP7324034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Valve Housings (AREA)
  • Joints Allowing Movement (AREA)

Abstract

To provide an expansion/contraction flexible joint structure and an aseismatic repair valve capable of blocking a flow channel in a state of securing a prescribed installation depth of a fire hydrant or an air valve by being connected between a water pipe and the fire hydrant or the air valve, while suppressing increase of a length in a tangential direction, preventing damage of the fire hydrant and the air valve by exerting expansion/contraction performance in occurrence of earthquake, and exerting superior earthquake resistance by improving strength of an expansion/contraction flexible side.SOLUTION: An expansion/contraction flexible joint structure includes a plug 41 disposed on a piping material 10, a pressing ring 21 fitted to an outer peripheral surface of the plug 41 through a flexible space S in a loosely fitting state, a socket member 22 to which the pressing ring 21 is fixed, a locking projection portion 50 formed on the outer peripheral surface of the plug 41 integrally or separately, a spacer 30 held on an inner periphery of the pressing ring 21, and a rubber ring 31 for keeping sealability between an inner peripheral surface of the socket member 22 and the outer peripheral surface of the plug 41. In an ordinary time, the locking projection portion 50 is held by the spacer 30 in a locked state, and in an expansion/contraction flexible time, the expansion/contraction flexible joint structure is expanded and contracted through the flexible space S in a state of crushing the spacer 30.SELECTED DRAWING: Figure 1

Description

本発明は、耐震性を備えた伸縮可撓継手構造とこの構造を有する耐震補修弁に関する。 The present invention relates to a telescopic flexible joint structure having seismic resistance and a seismic repair valve having this structure.

従来、例えば補修弁は、地中に埋設された水道管と消火栓や空気弁等との間に設けられ、この補修弁を閉止して水道管側からの通水を遮断することで消火栓や空気弁等の点検修理等が可能になっている。この種の補修弁として、例えば、図9(a)に示した補修弁1が知られている。同図において、地中には水道管2が水平方向に埋設され、この水道管2に到達するように地表から弁室3が設けられる。この弁室3付近には、垂直方向に分岐する分岐部4を備えたT字管5が接続され、その分岐部4の上部に補修弁1が設けられる。補修弁1は、短管6とバルブ部7とを備え、これらがボルト等により一体に接続された状態で、短管6側にT字管5、バルブ部7の上部に消火栓(又は空気弁)8が接続される。補修弁1と弁室3の室壁3aとの間には、初期隙間Gが設けられている。
この場合、地中に配管を敷設する際には耐震性が要求され、上記のように水道管2に消火栓8や空気弁等を分岐して設けるときには、これらの間に補修弁1を設ける場合にもその接合(継手)部分に耐震性が求められる。
Conventionally, for example, a repair valve is provided between a water pipe buried in the ground and a fire hydrant, an air valve, etc., and the fire hydrant or air is blocked by closing the repair valve to block water flow from the water pipe side. Inspection and repair of valves, etc. are possible. As a repair valve of this type, for example, the repair valve 1 shown in FIG. 9A is known. In the figure, a water pipe 2 is buried in the ground in the horizontal direction, and a valve chamber 3 is provided from the ground surface so as to reach the water pipe 2. A T-shaped pipe 5 having a branch portion 4 that branches in the vertical direction is connected to the vicinity of the valve chamber 3, and a repair valve 1 is provided above the branch portion 4. The repair valve 1 includes a short pipe 6 and a valve portion 7, and in a state where these are integrally connected by bolts or the like, a T-shaped pipe 5 is provided on the short pipe 6 side and a fire hydrant (or an air valve) is placed above the valve portion 7. ) 8 is connected. An initial gap G is provided between the repair valve 1 and the chamber wall 3a of the valve chamber 3.
In this case, seismic resistance is required when laying pipes in the ground, and when a fire hydrant 8 or an air valve is branched and provided in the water pipe 2 as described above, a repair valve 1 is provided between them. Also, the joints are required to have earthquake resistance.

この種の耐震機能を有する継手構造としては、例えば、特許文献1の管の継手構造が開示されている。この管の継手構造では、一方側の管の受口内周にロックリング収容溝が形成され、このロックリング収容溝よりもさらに開口側にはゴム製シール材収容用のテーパ面が離間して形成されている。また、他方側の管の挿口の外周には挿口突部が形成され、この挿口突部にロックリングが抜け止め状態で装着されている。ロックリングから離間した位置にはシール材が開口側から突出するように装着され、このシール材は、一方側の管に形成されたフランジと、このフランジの外方より装着される押輪とによりボルトを介して装着される。このような構成により、継手部分に屈曲方向の力が加わったときに、この継手部が可撓して耐震性を発揮しようとするものである。 As a joint structure having this kind of seismic function, for example, the joint structure of a pipe of Patent Document 1 is disclosed. In the joint structure of this pipe, a lock ring accommodating groove is formed on the inner circumference of the socket on one side of the pipe, and a tapered surface for accommodating the rubber sealing material is formed further on the opening side of the lock ring accommodating groove. Has been done. Further, an insertion protrusion is formed on the outer periphery of the insertion port of the pipe on the other side, and a lock ring is attached to the insertion protrusion in a state of being prevented from coming off. A sealing material is mounted so as to protrude from the opening side at a position separated from the lock ring, and this sealing material is bolted by a flange formed on the pipe on one side and a push ring mounted from the outside of the flange. It is attached via. With such a configuration, when a force in the bending direction is applied to the joint portion, the joint portion bends to exhibit seismic resistance.

一方、特許文献2の耐震補修弁が本件出願人により出願されている。この耐震補修弁では、ボデーの一次側に設けられた挿し口、挿し口の外周側に嵌められた押し輪、押し輪に固着された受け口部材、抜け止めリング、ゴム輪を有し、押し輪に設けられた装着溝に抜け止めリングが装着され、この抜け止めリングに設けられた突条部が、伸縮可撓スペースを設けた状態で挿し口の外周面に形成された外周溝に挿入されている。受け口部材の内周面と挿し口の外周面との間にはゴム輪が装着され、このゴム輪により水密性を確保しつつ、伸縮可撓性を発揮するようになっている。 On the other hand, the seismic repair valve of Patent Document 2 has been filed by the applicant. This seismic repair valve has an insertion port provided on the primary side of the body, a push ring fitted on the outer peripheral side of the insertion port, a socket member fixed to the push ring, a retaining ring, and a rubber ring. A retaining ring is mounted in the mounting groove provided in the above, and the ridge portion provided in the retaining ring is inserted into the outer peripheral groove formed on the outer peripheral surface of the insertion port with a telescopic flexible space provided. ing. A rubber ring is attached between the inner peripheral surface of the receiving port member and the outer peripheral surface of the insertion port, and the rubber ring ensures watertightness and expands and contracts flexibility.

ところで、消火栓を地下に設ける場合には、その設置深さを確保することも規格によって求められている。例えば、日本水道協会(JWWA)による規格(JWWA B 103)では、浅層埋設における消火栓のキャップ深さが150mm以上となるように規定されている。 By the way, when a fire hydrant is installed underground, it is also required by the standard to secure the installation depth. For example, the standard (JWWA B 103) by the Japan Water Works Association (JWWA) stipulates that the cap depth of the fire hydrant in shallow burial should be 150 mm or more.

特開2003−214573号公報Japanese Unexamined Patent Publication No. 2003-214573 特開2017−172799号公報JP-A-2017-172799

図9(a)の状態に補修弁1が敷設されている場合、地震発生時には、弁室3が設けられている地盤と水道管2とが相対変位し、この相対変位により、図9(b)に示すように初期の隙間Gが無くなって消火栓(或は空気弁)8が室壁3aに接触(衝突)する可能性がある。このとき、双方の変位が拘束されることになり、その後も地盤と水道管2の相対変位が続いたときには、消火栓8が室壁3aから反力Fを受けて傾倒し、この傾倒に伴う変形が限界変形量を超えた場合、消火栓8、補修弁1のフランジ部やT字管5の損傷につながる。 When the repair valve 1 is laid in the state of FIG. 9A, when an earthquake occurs, the ground where the valve chamber 3 is provided and the water pipe 2 are relatively displaced, and due to this relative displacement, FIG. 9B ), There is a possibility that the initial gap G disappears and the fire hydrant (or air valve) 8 comes into contact (collision) with the chamber wall 3a. At this time, the displacements of both are constrained, and when the relative displacement between the ground and the water pipe 2 continues after that, the fire hydrant 8 receives the reaction force F from the chamber wall 3a and tilts, and the deformation accompanying this tilting occurs. Exceeds the limit deformation amount, which leads to damage to the fire hydrant 8, the flange portion of the repair valve 1, and the T-shaped pipe 5.

これに対して、特許文献1の管の継手構造を用いて分岐部側と補修弁側とを接続し、これら分岐部と補修弁との間に可撓性を持たせることが考えられる。しかし、この管の継手構造は、可撓機能を構成する部分が管軸方向(接続方向)に長くなるため、補修弁から水道本管までの距離がそれまでよりも増加することになる。このことから、地下式の消火栓の所定の設置深さ(キャップ深さ150mm)を確保しつつこの継手構造を補修弁とT字管との間に設けようとする場合には、水道管の埋設深度(土被り)が大きくなるために敷設にかかるコストが増加する。既設の消火栓にこの継手構造を用いて耐震化を図ろうとする場合にも、所定のキャップ深さを確保するために、水道管をより深く埋設し直す必要が生じる。 On the other hand, it is conceivable to connect the branch portion side and the repair valve side by using the joint structure of the pipe of Patent Document 1 to provide flexibility between the branch portion and the repair valve. However, in the joint structure of this pipe, the portion constituting the flexible function becomes longer in the pipe axial direction (connection direction), so that the distance from the repair valve to the water main is longer than before. For this reason, when trying to install this joint structure between the repair valve and the T-shaped pipe while ensuring the predetermined installation depth (cap depth 150 mm) of the underground fire hydrant, the water pipe is buried. As the depth (overburden) increases, the cost of laying increases. Even when an attempt is made to make existing fire hydrants earthquake-resistant by using this joint structure, it is necessary to re-bury the water pipe deeper in order to secure a predetermined cap depth.

一方、特許文献2の耐震補修弁の場合には、特許文献1の管の継手構造に比較して接続方向への長さの増加を抑えつつ設置でき、消火栓のキャップ深さを確保した状態で、水道管の埋設深度を増やすことなく水道管に取付け可能になる。
地震発生時には、伸縮可撓スペース内で挿し口が伸縮可撓することにより、消火栓や補修弁のフランジ部やT字管の損傷を防ぐことができる。しかし、挿し口に外周溝が形成されていることから、この外周溝の部分では挿し口の肉厚が周囲よりも薄くなるために強度の向上が望まれている。
On the other hand, in the case of the seismic repair valve of Patent Document 2, it can be installed while suppressing the increase in length in the connection direction as compared with the joint structure of the pipe of Patent Document 1, and the cap depth of the fire hydrant is secured. , It becomes possible to attach to the water pipe without increasing the burial depth of the water pipe.
When an earthquake occurs, the insertion port can be expanded and contracted in the telescopic flexible space to prevent damage to the flange portion of the fire hydrant and the repair valve and the T-shaped pipe. However, since the outer peripheral groove is formed in the insertion port, the wall thickness of the insertion port is thinner than the surrounding portion in the portion of the outer peripheral groove, so that improvement in strength is desired.

本発明は、従来の課題を解決するために開発したものであり、その目的とするところは、接続方向への長さの増加を抑えつつ水道管との間に接続して消火栓や空気弁の所定の設置深さを確保した状態で流路を遮断でき、地震発生時には伸縮可撓性を発揮して消火栓や空気弁の損傷を防ぎ、しかも、伸縮可撓側の強度を向上して優れた耐震性を発揮する伸縮可撓継手構造と耐震補修弁を提供することにある。 The present invention has been developed to solve the conventional problems, and an object of the present invention is to connect a fire hydrant or an air valve to a water pipe while suppressing an increase in length in the connection direction. It can block the flow path while ensuring a predetermined installation depth, exhibits telescopic flexibility in the event of an earthquake, prevents damage to fire hydrants and air valves, and improves the strength of the telescopic flexible side. The purpose is to provide telescopic flexible joint structures and seismic repair valves that exhibit seismic resistance.

上記目的を達成するため、請求項1に係る発明は、配管機材に設けられた挿し口と、この挿し口の外周面に可撓スペースを介して遊嵌状態に嵌められた押輪と、この押輪が固着された受け口部材と、挿し口の外周面に一体に又は別体に形成された係止突条部と、押輪の内周に保持されたスペーサと、受け口部材の内周面と前記挿し口の外周面との間にシール性を保持するためのゴム輪とを備え、平常時には係止突条部がスペーサに係止状態で保持され、伸縮可撓時にはスペーサを潰した状態で可撓スペースを介して伸縮可撓する伸縮可撓継手構造である。 In order to achieve the above object, the invention according to claim 1 comprises an insertion port provided in the piping equipment, a push ring fitted in a loosely fitted state on the outer peripheral surface of the insertion port through a flexible space, and the push ring. The socket member to which the socket is fixed, the locking ridge portion formed integrally or separately on the outer peripheral surface of the insertion port, the spacer held on the inner circumference of the push ring, the inner peripheral surface of the socket member, and the insertion. It is equipped with a rubber ring to maintain the sealing property with the outer peripheral surface of the mouth, and the locking ridge is held in the spacer in the locked state in normal times, and it is flexible in the state where the spacer is crushed when it is stretchable and flexible. It is a telescopic flexible joint structure that expands and contracts through a space.

請求項2に係る発明は、補修弁用ボデーに設けられた挿し口と、この挿し口の外周面に可撓スペースを介して遊嵌状態に嵌められた押輪と、この押輪が固着された受け口部材と、挿し口の外周面に一体に又は別体に形成された係止突条部と、押輪の内周に保持されたスペーサと、受け口部材の内周面と挿し口の外周面との間にシール性を保持するためのゴム輪とを備え、平常時には係止突条部がスペーサに係止状態で保持され、伸縮可撓時にはスペーサを潰した状態で可撓スペースを介して伸縮可撓する耐震補修弁である。 The invention according to claim 2 is an insertion port provided in a body for a repair valve, a push ring fitted in a loosely fitted state on the outer peripheral surface of the insertion port via a flexible space, and a receiving port to which the push ring is fixed. A member, a locking ridge formed integrally or separately on the outer peripheral surface of the insertion port, a spacer held on the inner circumference of the push ring, and an inner peripheral surface of the receiving member and an outer peripheral surface of the insertion port. It is equipped with a rubber ring to maintain the sealing property between them, and the locking ridge is held in a locked state by the spacer in normal times, and when it is stretchable and flexible, it can be expanded and contracted through the flexible space with the spacer crushed. It is a flexible seismic repair valve.

請求項3に係る発明は、押輪及び/又は受け口部材で構成された装着溝に抜け止めリングが装着され、この抜け止めリングの内周に保持されたスペーサが挿し口に一体に又は別体に形成された係止突条部を係止状態に保持した伸縮可撓継手構造と耐震補修弁である。 In the invention according to claim 3, a retaining ring is mounted in a mounting groove composed of a push ring and / or a receiving member, and a spacer held on the inner circumference of the retaining ring is integrally or separately at the insertion port. It is a telescopic flexible joint structure and seismic repair valve that holds the formed locking ridges in a locked state.

請求項4に係る発明は、ボデーが伸縮可撓状態の際に、抜け止めリング或は押輪でゴム輪を押圧するようにした伸縮可撓継手構造と耐震補修弁である。 The invention according to claim 4 is a telescopic flexible joint structure and a seismic repair valve in which a rubber ring is pressed by a retaining ring or a push ring when the body is in a stretchable flexible state.

請求項5に係る発明は、抜け止めリング或は押輪と、ゴム輪との間にバックアップリングが介在されている伸縮可撓継手構造と耐震補修弁である。 The invention according to claim 5 is a telescopic flexible joint structure and a seismic repair valve in which a backup ring is interposed between a retaining ring or push ring and a rubber ring.

請求項1又は2に記載の発明によると、挿し口に係止突条部を形成し、平常時にはこの係止突条部を押輪の内周に保持されたスペーサに係止して保持し、伸縮可撓時に係止突条部がスペーサを潰した状態で伸縮可撓可能とした構成により、接続方向への長さの増加を抑えつつ使用できる。このため、例えば水道管と消火栓や空気弁との間に接続して使用でき、その場合、消火栓や空気弁の所定の設置深さを確保した状態で、水道管の埋設深度を増やすことなく流路を遮断可能となる。平常時には、係止突条部がスペーサに係止状態で保持されることで、挿し口側の傾倒や移動を防いで安定した直立状態を維持する。一方、地震発生時に消火栓や空気弁が弁室の室壁に接触したときには、係止突条部がスペーサを潰した状態で可撓スペースを介して伸縮可撓性を発揮する。これにより、可撓スペースにおいて挿し口側が塑性変形を伴うことなく伸縮可撓し、消火栓や空気弁のフランジ部や一次側に接続される部品の損傷を防ぎつつ、ゴム輪により水密性を保って漏れを防止する。このとき、挿し口の外周面に一体に又は別体に係止突条部を形成していることにより、伸縮可撓側である挿し口の局部的な薄肉化を防いで強度の向上を図ることで優れた耐震性を発揮し、挿し口に対する係止突条部の加工も容易になる。組立て時には、挿し口の外周面に遊嵌状態に押輪を嵌め込み、この押輪に予めスペーサを保持した状態で、受け口部材に対して固着できるため、組立て及び分解が容易になりメンテナンスや修理も簡単に実施可能となる。水道管と消火栓や空気弁との間以外の各種の配管に接続することもでき、この場合、既存又は新設に限らず配管の一部として簡単に接続でき、上記と同様に伸縮可撓性を発揮して耐震性を向上させることができる。 According to the invention of claim 1 or 2, a locking ridge is formed at the insertion port, and in normal times, the locking ridge is locked and held by a spacer held on the inner circumference of the push ring. It can be used while suppressing the increase in length in the connection direction due to the configuration in which the locking ridge can be expanded and contracted while the spacer is crushed during expansion and contraction. Therefore, for example, it can be used by connecting it between a water pipe and a fire hydrant or an air valve. In that case, the flow without increasing the burial depth of the water pipe while securing a predetermined installation depth of the fire hydrant or the air valve. The road can be blocked. In normal times, the locking ridge is held by the spacer in a locked state to prevent tilting and movement of the insertion port side and maintain a stable upright state. On the other hand, when a fire hydrant or an air valve comes into contact with the chamber wall of the valve chamber when an earthquake occurs, the locking ridge portion exhibits telescopic flexibility through the flexible space in a state where the spacer is crushed. As a result, the insertion port side expands and contracts flexibly in the flexible space without plastic deformation, preventing damage to the flange of the fire hydrant and air valve and parts connected to the primary side, while maintaining watertightness with the rubber ring. Prevent leaks. At this time, by forming a locking ridge portion integrally or separately on the outer peripheral surface of the insertion port, it is possible to prevent local thinning of the insertion port on the stretchable and flexible side and improve the strength. As a result, excellent seismic resistance is exhibited, and it becomes easy to process the locking ridge portion for the insertion port. At the time of assembly, the push ring is fitted loosely on the outer peripheral surface of the insertion port and can be fixed to the receiving port member while the spacer is held in advance on the push ring, so that assembly and disassembly are easy and maintenance and repair are easy. It will be feasible. It can also be connected to various pipes other than between the water pipe and the fire hydrant or air valve. In this case, it can be easily connected as a part of the pipe regardless of whether it is an existing pipe or a new pipe. It can be demonstrated to improve seismic resistance.

請求項3に係る発明によると、平常時の挿し口側の直立状態を維持し、挿し口側に強い力が加わったときにはこの挿し口の抜けを防ぎつつ伸縮可撓させることにより破損を防止できる。押輪及び/又は受け口部材で構成される装着溝に抜け止めリングを装着し、この抜け止めリングの内周にスペーサを保持していることで、これらスペーサや抜け止めリングを予め押輪に取付けでき、挿し口を押輪に容易に嵌め込んで組立てできる。 According to the invention of claim 3, the upright state of the insertion port side is maintained in normal times, and when a strong force is applied to the insertion port side, damage can be prevented by expanding and contracting the insertion port while preventing the insertion port from coming off. .. By mounting a retaining ring in the mounting groove composed of the push ring and / or the receiving member and holding the spacer on the inner circumference of the retaining ring, these spacers and the retaining ring can be attached to the push ring in advance. It can be assembled by easily fitting the insertion slot into the push ring.

請求項4に係る発明によると、ボデーの伸縮可撓状態の際に、抜け止めリング或は押輪でゴム輪を押圧することにより、ゴム輪押圧用の部品を別途必要とすることがないため全体のコンパクト性を維持でき、ゴム輪を所定領域内で弾性変形させて挿し口傾倒時の衝撃を吸収し、かつ受け口部材と挿し口との隙間のシール状態を維持して漏れを確実に防ぐ。 According to the invention of claim 4, when the body is in the stretchable and flexible state, the rubber ring is pressed by the retaining ring or the push ring, so that a separate part for pressing the rubber ring is not required. The compactness of the rubber ring can be maintained, the rubber ring is elastically deformed within a predetermined area to absorb the impact when the insertion port is tilted, and the gap between the receiving member and the insertion port is maintained in a sealed state to reliably prevent leakage.

請求項5に係る発明によると、抜け止めリング或は押輪と、ゴム輪との間に設けたバックアップリングによりゴム輪の変形部分のはみ出しや抜け出しを防止し、ゴム輪の過度な変形を防止できる。 According to the fifth aspect of the present invention, the retaining ring or push ring and the backup ring provided between the rubber ring can prevent the deformed portion of the rubber ring from sticking out or coming out, and prevent the rubber ring from being excessively deformed. ..

本発明の伸縮可撓継手構造を耐震補修弁に適用した第1実施形態を示す縦断面図である。It is a vertical cross-sectional view which shows the 1st Embodiment which applied the telescopic flexible joint structure of this invention to a seismic repair valve. 図1の要部拡大断面図である。(a)は平常時の状態を示す断面図である。(b)は伸縮可撓時の状態を示す断面図である。It is an enlarged sectional view of the main part of FIG. (A) is a cross-sectional view showing a state in normal times. (B) is a cross-sectional view showing a state at the time of expansion and contraction flexion. 図1の耐震補修弁に過大な抜け出し力が加わった状態を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing a state in which an excessive pull-out force is applied to the seismic repair valve of FIG. 耐震補修弁の第2実施形態を示す縦断面図である。(a)は平常時の状態を示す断面図である。(b)は伸縮可撓時の状態を示す断面図である。It is a vertical sectional view which shows the 2nd Embodiment of the seismic repair valve. (A) is a cross-sectional view showing a state in normal times. (B) is a cross-sectional view showing a state at the time of expansion and contraction flexion. 耐震補修弁の第3実施形態を示す縦断面図である。(a)は平常時の状態を示す断面図である。(b)は伸縮可撓時の状態を示す断面図である。It is a vertical sectional view which shows the 3rd Embodiment of the seismic repair valve. (A) is a cross-sectional view showing a state in normal times. (B) is a cross-sectional view showing a state at the time of expansion and contraction flexion. 耐震補修弁の第4実施形態を示す縦断面図である。(a)は平常時の状態を示す断面図である。(b)は伸縮可撓時の状態を示す断面図である。It is a vertical cross-sectional view which shows the 4th Embodiment of the seismic repair valve. (A) is a cross-sectional view showing a state in normal times. (B) is a cross-sectional view showing a state at the time of expansion and contraction flexion. 耐震補修弁の第5実施形態を示す縦断面図である。(a)は平常時の状態を示す断面図である。(b)は伸縮可撓時の状態を示す断面図である。It is a vertical sectional view which shows the 5th Embodiment of the seismic repair valve. (A) is a cross-sectional view showing a state in normal times. (B) is a cross-sectional view showing a state at the time of expansion and contraction flexion. 本発明の伸縮可撓継手構造を短管に適用した実施形態を示す縦断面図である。It is a vertical cross-sectional view which shows the embodiment which applied the telescopic flexible joint structure of this invention to a short pipe. 従来の補修弁の配管状態を示す説明図である。(a)は従来の地下式消火栓の平常時の状態を示す図である。(b)は地下式消火栓が弁室の室壁に衝突する状況を説明する図である。It is explanatory drawing which shows the piping state of the conventional repair valve. (A) is a figure which shows the normal state of the conventional underground fire hydrant. (B) is a figure explaining a situation where an underground fire hydrant collides with a chamber wall of a valve chamber.

以下に、本発明における伸縮可撓継手構造を実施形態に基づいて詳細に説明する。本発明の伸縮可撓継手構造は、種々の配管機材に適用可能であるが、本例では配管機材として耐震補修弁に適用した例を述べる。図1は、耐震補修弁の第1実施形態を示しており、図2は、図1の要部拡大断面図を示している。 Hereinafter, the telescopic flexible joint structure of the present invention will be described in detail based on the embodiment. The telescopic flexible joint structure of the present invention can be applied to various piping equipments, but in this example, an example of application to seismic repair valves as piping equipment will be described. FIG. 1 shows a first embodiment of a seismic repair valve, and FIG. 2 shows an enlarged cross-sectional view of a main part of FIG.

図1において、耐震補修弁(以下、弁本体10という)は、T字管11と消火栓(或は空気弁)12との間に設けられる。T字管11は、弁本体10の一次側に配置され、地中に埋設された図示しない水道管から垂直方向に分岐された分岐部14を有している。消火栓12は、弁本体10の二次側に配置され、この消火栓12に図示しない消火用ホースが接続可能に設けられる。弁本体10は、水道管(T字管11)と消火栓12との間の流路を開閉可能に設けられ、この弁本体10を閉止することで水道管側の水圧を遮断可能とし、消火栓12の点検や修理を実施可能になっている。 In FIG. 1, the seismic repair valve (hereinafter referred to as valve body 10) is provided between the T-shaped pipe 11 and the fire hydrant (or air valve) 12. The T-shaped pipe 11 is arranged on the primary side of the valve main body 10 and has a branch portion 14 vertically branched from a water pipe (not shown) buried in the ground. The fire hydrant 12 is arranged on the secondary side of the valve body 10, and a fire extinguishing hose (not shown) is connected to the fire hydrant 12. The valve body 10 is provided so that the flow path between the water pipe (T-shaped pipe 11) and the fire hydrant 12 can be opened and closed, and by closing the valve body 10, the water pressure on the water pipe side can be shut off, and the fire hydrant 12 It is possible to carry out inspections and repairs.

弁本体10は、ボールバルブ20と、押輪21と、受け口部材22とを備え、これらの間には、スペーサ30、ゴム輪31、抜け止めリング32、バックアップリング33が設けられている。 The valve body 10 includes a ball valve 20, a push ring 21, and a receiving member 22, and a spacer 30, a rubber ring 31, a retaining ring 32, and a backup ring 33 are provided between them.

ボールバルブ20は、補修弁用ボデー40を有し、このボデー40の一次側に挿し口41、二次側にはフランジ部42が形成され、このフランジ部42を介して弁本体10の二次側に消火栓12が接続される。 The ball valve 20 has a body 40 for a repair valve, an insertion port 41 is formed on the primary side of the body 40, and a flange portion 42 is formed on the secondary side, and the secondary side of the valve body 10 is formed via the flange portion 42. A fire hydrant 12 is connected to the side.

ボールバルブ20のボデー40内には、ボール43、ステム44、ボールシート45が装着される。ボール43は、ステム44によりボデー40内に回動自在に収納され、このステム44には操作用のハンドル46が固定される。ボール43の一、二次側にはボールシート45がそれぞれ配設され、ボデー40の二次側には弁座受け48が螺合により固着される。ボールバルブ20は、ハンドル46の操作により流路を開閉可能になっている。 A ball 43, a stem 44, and a ball seat 45 are mounted in the body 40 of the ball valve 20. The ball 43 is rotatably housed in the body 40 by the stem 44, and the handle 46 for operation is fixed to the stem 44. Ball sheets 45 are arranged on the primary and secondary sides of the ball 43, respectively, and a valve seat receiver 48 is fixed to the secondary side of the body 40 by screwing. The ball valve 20 can open and close the flow path by operating the handle 46.

ボデー40の挿し口41は、このボデー40の一次側に延設されるように形成され、この挿し口41の外周面の所定位置には、鍔状の係止突条部50が一体に形成されている。この挿し口41の外周面には、後述の可撓スペースSを介して押輪21が遊嵌状態に嵌められている。 The insertion port 41 of the body 40 is formed so as to extend to the primary side of the body 40, and a collar-shaped locking ridge portion 50 is integrally formed at a predetermined position on the outer peripheral surface of the insertion port 41. Has been done. A push ring 21 is loosely fitted to the outer peripheral surface of the insertion port 41 via a flexible space S described later.

押輪21は、金属材料により略環状に形成され、その内周には挿し口41の外周を遊嵌可能な挿通穴51が設けられる。押輪21の上部には、挿し口41よりも大径の段部52が形成され、この段部52と挿し口41との間に上記可撓スペースSが設けられる。ボデー40側に管軸方向と交差する方向の過大な力が加わったときには、可撓スペースSを介してボデー40が傾倒可能となる。押輪21の外周にはフランジ部53が形成され、このフランジ部53を介して後述の受け口部材22が接続される。 The push ring 21 is formed of a metal material in a substantially annular shape, and an insertion hole 51 capable of loosely fitting the outer periphery of the insertion port 41 is provided on the inner circumference thereof. A step portion 52 having a diameter larger than that of the insertion port 41 is formed on the upper portion of the push ring 21, and the flexible space S is provided between the step portion 52 and the insertion port 41. When an excessive force is applied to the body 40 side in a direction intersecting the pipe axis direction, the body 40 can be tilted through the flexible space S. A flange portion 53 is formed on the outer periphery of the push ring 21, and a receiving member 22 described later is connected via the flange portion 53.

押輪21の内周には環状の装着溝54が形成され、この装着溝54に抜け止めリング32が装着される。抜け止めリング32は、金属材料により装着溝54に収容可能な環状に形成され、この抜け止めリング32の上部内周には環状の上部突起部55、下部内周には環状の下部突起部56がそれぞれ形成され、この構成により、抜け止めリング32の内周側には凹状の可撓スペースTが設けられる。上部突起部55の内径は、係止突条部50の外径よりも小径に設けられ、この上部突起部55に係止突条部50が係止される。抜け止めリング32は、分割したリング状に形成され、この分割リングを装着溝54内で組み合わせることで装着される。 An annular mounting groove 54 is formed on the inner circumference of the push ring 21, and the retaining ring 32 is mounted in the mounting groove 54. The retaining ring 32 is formed of a metal material in an annular shape that can be accommodated in the mounting groove 54. The retaining ring 32 has an annular upper protrusion 55 on the upper inner circumference and an annular lower protrusion 56 on the lower inner circumference. Are formed, and according to this configuration, a concave flexible space T is provided on the inner peripheral side of the retaining ring 32. The inner diameter of the upper protrusion 55 is smaller than the outer diameter of the locking ridge 50, and the locking ridge 50 is locked to the upper protrusion 55. The retaining ring 32 is formed in a divided ring shape, and is mounted by combining the split rings in the mounting groove 54.

押輪21の内周には、抜け止めリング32を介してスペーサ30が保持される。スペーサ30は、金属材料或は樹脂材料により環状に形成され、その外径は抜け止めリング32の内周面に保持可能な大きさに設けられる。スペーサ30の内周中央部付近には、係止突条部50の外径よりも内径の小さい鍔部57が円周状或は断続的に形成される。スペーサ30は、少なくとも1ヶ所カットした円環状に形成され、抜け止めリング32の内周面で保持される。 A spacer 30 is held on the inner circumference of the push ring 21 via a retaining ring 32. The spacer 30 is formed in an annular shape from a metal material or a resin material, and its outer diameter is provided to a size that can be held on the inner peripheral surface of the retaining ring 32. In the vicinity of the central portion of the inner circumference of the spacer 30, a flange portion 57 having an inner diameter smaller than the outer diameter of the locking ridge portion 50 is formed in a circumferential shape or intermittently. The spacer 30 is formed in an annular shape cut at at least one place, and is held by the inner peripheral surface of the retaining ring 32.

受け口部材22は、金属材料により押輪21と略同径の環状に形成され、外周側に形成されたフランジ部58を介して押輪21がボルト59により固着される。受け口部材22の内周面には環状の収容溝60が形成され、この収容溝60に抜け止めリング32の下部側が収容可能に設けられる。収容溝60の下方には、この収容溝60よりも小径の環状溝部61が形成され、この環状溝部61内にゴム輪31が収納される。受け口部材22の環状溝部61よりも下方の底面内周側には、内径方向に突出する小径環状部62が形成される。受け口部材22の一次側にはT字管11の分岐部14が接続され、このとき、小径環状部62によってT字管11との間にガスケットの当たり面が確保される。 The receiving port member 22 is formed of a metal material in an annular shape having substantially the same diameter as the push ring 21, and the push ring 21 is fixed by a bolt 59 via a flange portion 58 formed on the outer peripheral side. An annular accommodating groove 60 is formed on the inner peripheral surface of the receiving port member 22, and the lower side of the retaining ring 32 is provided in the accommodating groove 60 so as to be accommodating. An annular groove portion 61 having a diameter smaller than that of the accommodating groove 60 is formed below the accommodating groove 60, and the rubber ring 31 is housed in the annular groove portion 61. A small-diameter annular portion 62 projecting in the inner diameter direction is formed on the inner peripheral side of the bottom surface below the annular groove portion 61 of the receiving port member 22. A branch portion 14 of the T-shaped pipe 11 is connected to the primary side of the receiving port member 22, and at this time, a contact surface of the gasket is secured between the small-diameter annular portion 62 and the T-shaped pipe 11.

ゴム輪31は、弾力性に富んだゴム材料によって環状に成形されて、受け口部材22の環状溝部61の内周面と挿し口41の外周面との間に装着され、このゴム輪31によりこれら受け口部材22の内周面と挿し口41の外周面との間のシール性が確保される。ゴム輪31は、十分なつぶし量を確保できる形状に形成され、挿し口41が受け口部材22に対して傾倒し、環状溝部61の容積が変化した場合にもこれらの間に密着シールした状態を維持して漏れを防ぐことが可能になっている。 The rubber ring 31 is formed in an annular shape by a rubber material having abundant elasticity, and is mounted between the inner peripheral surface of the annular groove portion 61 of the receiving member 22 and the outer peripheral surface of the insertion port 41, and these are mounted by the rubber ring 31. The sealing property between the inner peripheral surface of the receiving port member 22 and the outer peripheral surface of the insertion port 41 is ensured. The rubber ring 31 is formed in a shape that can secure a sufficient amount of crushing, and even when the insertion port 41 is tilted with respect to the receiving member 22 and the volume of the annular groove portion 61 changes, a state in which the rubber ring 31 is tightly sealed between them is maintained. It is possible to maintain and prevent leakage.

バックアップリング33は、金属材料又は樹脂材料により環状に形成され、抜け止めリング32とゴム輪31との間に介在された状態で装着される。この場合、バックアップリング33は、環状溝部61よりも大径の収容溝60に装着可能な外径に設けられ、その装着時には上方の抜け止めリング32により押圧される。このことから、ゴム輪31の抜け出し方向への変形を防ぎ、その変形部分が抜け止めリング32の分割部分に入ることを防止するようになっている。 The backup ring 33 is formed in an annular shape by a metal material or a resin material, and is mounted in a state of being interposed between the retaining ring 32 and the rubber ring 31. In this case, the backup ring 33 is provided with an outer diameter that can be mounted in the accommodating groove 60 having a diameter larger than that of the annular groove portion 61, and is pressed by the upper retaining ring 32 when the backup ring 33 is mounted. For this reason, the rubber ring 31 is prevented from being deformed in the pull-out direction, and the deformed portion is prevented from entering the divided portion of the retaining ring 32.

上記の弁本体10を一体化する場合には、ボデー40(ボールバルブ20)の挿し口41の外周面に押輪21を嵌めた状態にし、ボデー40の係止突条部50にスペーサ30を嵌め、その外側から抜け止めリング32を嵌め、押輪21の装着溝54に装着する。この場合、抜け止めリング32を分割して形成し、スペーサ30は少なくとも1ヶ所カットした円環状に形成しているので、これらを係止突条部50の外側より組み合わせた状態で装着溝54に装着して組み立てることが可能となる。 When the valve body 10 is integrated, the push ring 21 is fitted on the outer peripheral surface of the insertion port 41 of the body 40 (ball valve 20), and the spacer 30 is fitted on the locking ridge 50 of the body 40. , The retaining ring 32 is fitted from the outside thereof, and is mounted in the mounting groove 54 of the push ring 21. In this case, the retaining ring 32 is divided and formed, and the spacer 30 is formed in an annular shape cut at at least one place. Therefore, in a state where these are combined from the outside of the locking ridge portion 50, the mounting groove 54 is formed. It can be attached and assembled.

抜け止めリング32及びスペーサ30の装着後には、スペーサ30の上端を抜け止めリング32の上部突起部55で位置規制した状態で、このスペーサ30の鍔部57の下端に係止突条部50の上面が係止し、この係止突条部50の下部が抜け止めリング32の下部突起部56に係止した状態となる。このため、抜け止めリング32とスペーサ30とが装着溝54内に保持されて挿し口41からの抜け止めが図られている。 After the retaining ring 32 and the spacer 30 are attached, the upper end of the spacer 30 is restricted by the upper protrusion 55 of the retaining ring 32, and the locking ridge 50 is attached to the lower end of the flange 57 of the spacer 30. The upper surface is locked, and the lower portion of the locking ridge portion 50 is locked to the lower protrusion 56 of the retaining ring 32. Therefore, the retaining ring 32 and the spacer 30 are held in the mounting groove 54 to prevent the retaining ring 32 from coming off from the insertion port 41.

この状態で挿し口41の外周面にバックアップリング33、ゴム輪31をこの順序で嵌め込み、これらを抜け止めリング32の下部に配置した状態とする。 In this state, the backup ring 33 and the rubber ring 31 are fitted into the outer peripheral surface of the insertion port 41 in this order, and these are arranged below the retaining ring 32.

続いて、挿し口41の先端側を受け口部材22の内周側に挿入し、ボデー40の上部からプレスによってこれらを受け口部材22に押し込むことで、ゴム輪31を弾性変形させた状態で環状溝部61内に収納し、所定の圧力を加えた状態で押輪21を受け口部材22にボルト59で固着する。これにより、ボールバルブ20(ボデー40)の挿し口41側が可撓スペースSを介して押輪21、受け口部材22側に対して伸縮可撓する弁本体10が構成される。この場合、押輪21の装着溝54と受け口部材22の収容溝60との間に抜け止めリング32が位置決め保持されて、ずれが防がれた状態で装着される。 Subsequently, the tip side of the insertion port 41 is inserted into the inner peripheral side of the receiving port member 22, and these are pushed into the receiving port member 22 by a press from the upper part of the body 40, whereby the rubber ring 31 is elastically deformed and the annular groove portion is formed. It is housed in 61, and is fixed to the receiving ring 21 with a bolt 59 in a state where a predetermined pressure is applied. As a result, the valve body 10 in which the insertion port 41 side of the ball valve 20 (body 40) expands and contracts with respect to the push ring 21 and the receiving member 22 side via the flexible space S is configured. In this case, the retaining ring 32 is positioned and held between the mounting groove 54 of the push ring 21 and the accommodating groove 60 of the receiving port member 22, and is mounted in a state where the displacement is prevented.

組込み後において、平常時には、スペーサ30が係止突条部50を係止状態で保持することで、押輪21及び受け口部材22に対してボデー40の直立状態を維持する。このとき、スペーサ30は、抜け止めリング32の内周に保持された状態で係止突条部50に係止していることで、受け口部材22方向に脱落するおそれがない。また、抜け止めリング32を介して、押輪21でゴム輪31を押圧するようになっているので、漏水するおそれはない。 After assembly, in normal times, the spacer 30 holds the locking ridge portion 50 in the locked state, thereby maintaining the body 40 in the upright state with respect to the push ring 21 and the receiving member 22. At this time, since the spacer 30 is locked to the locking ridge portion 50 while being held on the inner circumference of the retaining ring 32, there is no possibility that the spacer 30 will fall off in the direction of the receiving port member 22. Further, since the rubber ring 31 is pressed by the push ring 21 via the retaining ring 32, there is no risk of water leakage.

一方、地震等による伸縮可撓時には、スペーサ30が係止突条部50によって潰された状態で、可撓スペースSを介して弁本体10が伸縮可撓するようになっている。
ボデー40の伸縮可撓状態の際にも、抜け止めリング32を介して押輪21でゴム輪31を押圧するようになっているので、漏水するおそれはない。
On the other hand, when the spacer 30 is stretchable and flexible due to an earthquake or the like, the valve body 10 is stretchable and flexible through the flexible space S in a state where the spacer 30 is crushed by the locking ridge portion 50.
Even when the body 40 is in the stretchable and flexible state, the rubber ring 31 is pressed by the push ring 21 via the retaining ring 32, so that there is no risk of water leakage.

なお、上記実施形態においては、装着溝54及び収容溝60を押輪21及び受け口部材22の双方の内周に形成しているが、この装着溝或は収容溝を、前記の押輪21或は受け口部材22の何れか一方の内周に形成し、この装着溝又は収容溝に抜け止めリング32を装着した構造としてもよい。 In the above embodiment, the mounting groove 54 and the accommodating groove 60 are formed on the inner circumferences of both the push ring 21 and the receiving port member 22, and the mounting groove or the accommodating groove is formed on the inner circumference of both the push ring 21 and the receiving port member 22. A structure may be formed in which the member 22 is formed on the inner circumference of either one, and the retaining ring 32 is mounted in the mounting groove or the accommodating groove.

また、抜け止めリング32とゴム輪31との間にバックアップリング33を介在しているが、このバックアップリング33を押輪21とゴム輪31との間に介在する構造としてもよい。 Further, although the backup ring 33 is interposed between the retaining ring 32 and the rubber ring 31, the backup ring 33 may be interposed between the push ring 21 and the rubber ring 31.

挿し口41の外周面に係止突条部50が一体に形成されているが、この係止突条部50は挿し口41と別体に設けられていてもよい。この場合、図1、図2の破線に示すように、係止突条部50を断面略L字状で径方向に分割したリング状に形成し、これを挿し口41の外周面に形成した凹状の取付け溝に組み合わせることで取付けできる。 Although the locking ridge portion 50 is integrally formed on the outer peripheral surface of the insertion port 41, the locking ridge portion 50 may be provided separately from the insertion port 41. In this case, as shown by the broken lines in FIGS. 1 and 2, the locking ridge portion 50 is formed in a ring shape having a substantially L-shaped cross section and divided in the radial direction, and is formed on the outer peripheral surface of the insertion port 41. It can be mounted by combining it with a concave mounting groove.

前述した抜け止めリング32、スペーサ30、及び上記別体の係止突条部を分割して設ける場合には、これらの分割数を任意に設定できる。 When the retaining ring 32, the spacer 30, and the separately locking ridge portion described above are separately provided, the number of divisions thereof can be arbitrarily set.

スペーサ30は、係止突条部50が係止されて挿し口41を抜け止めでき、この挿し口41に過大な抜け出し力が加わったときに係止突条部50で潰されてこの係止突条部50への係止状態を解除できるものであれば、その形状にこだわることなく各種の断面形状に形成することができる。 The spacer 30 is locked by the locking ridge 50 to prevent the insertion port 41 from coming off, and is crushed by the locking ridge 50 when an excessive pull-out force is applied to the insertion opening 41 to lock the spacer 30. As long as the state of being locked to the ridge portion 50 can be released, it can be formed into various cross-sectional shapes without being particular about the shape.

図示しないが、ボデー40と押輪21との間には、環状ゴム製カバーを装着するようにしてもよい。この場合、カバーがボデーの傾倒等の動作に追随して変形することで、ボデー40と押輪21との隙間からの土砂の浸入を防止できる。 Although not shown, an annular rubber cover may be attached between the body 40 and the push ring 21. In this case, by deforming the cover in accordance with an operation such as tilting of the body, it is possible to prevent the intrusion of earth and sand from the gap between the body 40 and the push ring 21.

次いで、上記実施形態における耐震補修弁の平常時及び伸縮可撓時におけるそれぞれの動作並びに作用を詳しく説明する。
平常時においては、図2(a)において、挿し口41が直立状態となるようにボデー40が配置され、このとき、挿し口41に一体に形成された係止突条部50の上面がスペーサ30の鍔部57底面に当接し、係止突条部50の底面が抜け止めリング32の下部突起部56の上面に当接した状態で、係止突条部50がスペーサ30に係止する。このとき、抜け止めリング32は、バックアップリング33を介してゴム輪31を押圧した状態となる。このようにして、係止突条部50の上部側、下部側がその外周方向に沿ってそれぞれスペーサ30、ゴム輪31により水平状態に保持されることで、挿し口41(ボデー40)の直立状態が安定して維持される。
Next, the operation and operation of the seismic repair valve in the above-described embodiment during normal times and expansion / contraction flexibility will be described in detail.
In normal times, in FIG. 2A, the body 40 is arranged so that the insertion port 41 is in an upright state, and at this time, the upper surface of the locking ridge portion 50 integrally formed with the insertion port 41 is a spacer. The locking ridge 50 locks to the spacer 30 in a state where the bottom surface of the locking ridge 50 is in contact with the bottom surface of the flange portion 57 of 30 and the bottom surface of the locking ridge 50 is in contact with the upper surface of the lower protrusion 56 of the retaining ring 32. .. At this time, the retaining ring 32 is in a state of pressing the rubber ring 31 via the backup ring 33. In this way, the upper side and the lower side of the locking ridge portion 50 are held horizontally by the spacer 30 and the rubber ring 31 along the outer peripheral direction thereof, so that the insertion port 41 (body 40) is in an upright state. Is maintained stable.

このため、消火栓12の保守点検時などにおいて、ボール43を閉止位置に回動して水道管側からボール43に水圧が加わった場合にも、環状の係止突条部50が環状のスペーサ30に均圧状態で当接することでボデー40の傾倒を防ぎ、これらの係止状態が維持されることで押輪21からのボデー40の抜け出しも防止される。 Therefore, even when the ball 43 is rotated to the closed position and water pressure is applied to the ball 43 from the water pipe side during maintenance and inspection of the fire hydrant 12, the annular locking ridge portion 50 is an annular spacer 30. The body 40 is prevented from tilting by contacting the body 40 in a pressure equalizing state, and the body 40 is also prevented from coming off from the push wheel 21 by maintaining these locked states.

一方、地震等の発生により地盤と水道管に相対変位が発生し、図8(b)に示すような状態で水道管が左方向に移動して弁本体10に接続された消火栓12が弁室の室壁に衝突した場合には、この消火栓12に左側から過大な力が加わり、図2(b)において、弁本体10にはボデーを右側に傾倒しようとする力が働く。 On the other hand, a relative displacement occurs between the ground and the water pipe due to the occurrence of an earthquake or the like, and the water pipe moves to the left in the state shown in FIG. 8B, and the fire hydrant 12 connected to the valve body 10 is in the valve chamber. In the event of a collision with the chamber wall of the fire hydrant 12, an excessive force is applied to the fire hydrant 12 from the left side, and in FIG. 2B, a force is applied to the valve body 10 to tilt the body to the right side.

このとき、傾倒側(図における右側)では、係止突条部50がスペーサ30を介して抜け止めリング32の内周側を押圧することで圧縮力が作用する。その際、剛性材料である抜け止めリング32及び押輪21により係止突条部50の水平方向の移動が妨げられ、スペーサ30が係止突条部50を係止した状態を維持する。 At this time, on the tilting side (right side in the drawing), the locking ridge portion 50 presses the inner peripheral side of the retaining ring 32 via the spacer 30, and a compressive force acts. At that time, the retaining ring 32 and the push ring 21, which are rigid materials, prevent the locking ridge 50 from moving in the horizontal direction, and the spacer 30 maintains the locking ridge 50 locked.

このように、傾倒側の係止突条部50が位置規制された状態で、この係止突条部50よりも上方に位置する消火栓12に左側から力が加わると、傾倒側の係止突条部50が抜け止めリング32の下部突起部56側に押圧される。これにより、傾倒側の係止突条部50が支点となってボデー40には右回転しようとする過大な力が加わる。このため、衝突して力が加わる側(図における左側)の係止突条部50は、スペーサ30の鍔部57を潰しながら可撓スペースT内を上方に移動し、抜け止めリング32の上部突起部55に当接したときにそれ以上の移動が規制される。このようにして、弁本体10は、挿し口41の抜け止めが図られた状態で、可撓スペースTを介して伸縮可撓するようになっている。この場合、ボデー40が直立方向から4°程度の傾きで可撓できるようになっている。 In this way, when the position of the locking ridge 50 on the tilting side is restricted and a force is applied to the fire hydrant 12 located above the locking ridge 50 from the left side, the locking ridge on the tilting side is locked. The strip 50 is pressed toward the lower protrusion 56 side of the retaining ring 32. As a result, an excessive force that tries to rotate clockwise is applied to the body 40 with the locking ridge portion 50 on the tilting side as a fulcrum. Therefore, the locking ridge portion 50 on the side where the force is applied by collision (left side in the figure) moves upward in the flexible space T while crushing the flange portion 57 of the spacer 30, and is the upper part of the retaining ring 32. Further movement is restricted when it comes into contact with the protrusion 55. In this way, the valve body 10 expands and contracts and flexes through the flexible space T in a state where the insertion port 41 is prevented from coming off. In this case, the body 40 can be flexed at an inclination of about 4 ° from the upright direction.

上記のように、ボデー40の伸縮可撓時に、力が加わる側では係止突条部50が上部突起部55に当接して抜け止め防止状態になることで、挿し口41側が押輪21に干渉することがなくボデー40の破損等を防いでいる。このボデー40の傾倒時には、つぶし量を十分に確保したゴム輪31を環状溝部61に装着していることで、傾倒側及び力が加わる側の何れにおいても、ゴム輪31の弾性変形により挿し口41の外周面と受け口部材22の内周面との間のシール性を維持して、確実に水漏れを防止する。 As described above, when the body 40 is expanded and contracted and flexed, the locking ridge 50 abuts on the upper protrusion 55 on the side where the force is applied to prevent the body 40 from coming off, so that the insertion port 41 side interferes with the push ring 21. It prevents the body 40 from being damaged without doing anything. When the body 40 is tilted, the rubber ring 31 that secures a sufficient amount of crushing is attached to the annular groove portion 61, so that the insertion port is formed by the elastic deformation of the rubber ring 31 on both the tilting side and the side to which the force is applied. The sealing property between the outer peripheral surface of 41 and the inner peripheral surface of the receiving member 22 is maintained, and water leakage is surely prevented.

他方、図3において、弁本体10に垂直方向に抜けようとする過大な抜け出し力が作用したときには、ボデー40に上昇しようとする力が働く。このため、係止突条部50には全周に渡って抜け出し方向の力が加わり、この係止突条部50が鍔部57を潰しながらボデー40が押輪21及び受け口部材22に対して垂直方向に移動することとなる。この場合、係止突条部50が抜け止めリング32の上部突起部55に当接することで、それ以上のボデー40の上昇が規制される。このようにして、ボデー40の抜け止めを図りつつ可撓スペースTを介してボデー40が上昇移動することで、破損等を防ぐようになっている。 On the other hand, in FIG. 3, when an excessive pull-out force that tries to pull out in the vertical direction acts on the valve body 10, a force that tries to rise on the body 40 acts. Therefore, a force in the exit direction is applied to the locking ridge portion 50 over the entire circumference, and the body 40 is perpendicular to the push ring 21 and the receiving member 22 while the locking ridge portion 50 crushes the collar portion 57. It will move in the direction. In this case, the locking ridge portion 50 comes into contact with the upper protrusion 55 of the retaining ring 32, so that the body 40 is further restricted from rising. In this way, the body 40 moves upward through the flexible space T while preventing the body 40 from coming off, thereby preventing damage or the like.

本発明の伸縮可撓継手構造を用いた弁本体10は、上述したように、挿し口41と、押輪21と、受け口部材22と、係止突条部50と、スペーサ30と、ゴム輪31とを備え、平常時にはスペーサ30が係止突条部50を係止状態に保持し、伸縮可撓時には係止突条部50がスペーサ30を潰した状態で可撓スペースTを介して伸縮可撓することにより、優れた耐震性を発揮する。 As described above, the valve body 10 using the telescopic flexible joint structure of the present invention includes an insertion port 41, a push ring 21, a receiving port member 22, a locking ridge portion 50, a spacer 30, and a rubber ring 31. The spacer 30 holds the locking ridge 50 in the locked state in normal times, and the locking ridge 50 can be expanded and contracted via the flexible space T in a state where the locking ridge 50 is crushed during expansion and contraction. By flexing, it exhibits excellent earthquake resistance.

この場合、係止突条部50を挿し口41の外周面に一体に又は別体に形成しているため、挿し口41の薄肉化を防いで強度を向上させることができ、地震発生時にも挿し口41の変形や破損等を防ぎつつ、ゴム輪31とのシール性を維持してボデー40側を伸縮可撓させて耐震性が向上する。 In this case, since the locking ridge portion 50 is formed integrally or separately on the outer peripheral surface of the insertion port 41, it is possible to prevent the insertion port 41 from becoming thin and improve its strength, even when an earthquake occurs. While preventing deformation and breakage of the insertion port 41, the sealability with the rubber ring 31 is maintained and the body 40 side is expanded and contracted to improve earthquake resistance.

押輪21の装着溝54と受け口部材22の収容溝60との間に抜け止めリング32を装着し、この抜け止めリング32の内周に保持したスペーサ30が係止突条部50を係止状態に保持して耐震性を発揮する構造としているため、抜け止めリング32を押輪21と受け口部材22の内部に収容して、抜け止めリング32装着による弁本体10の高さ寸法の増加を防いでいる。これによって、弁本体10を介して消火栓12(空気弁)を水道管に接続する際に、管軸方向(接続方向)の長さの延長を防ぐことができ、水道管の埋設深度を増加させることなく、消火栓12のキャップ深さを確保した状態で配管可能になる。
そのため、ボデー40の二次側に消火栓12(又は空気弁)を浅層埋設した状態で配管したときにも耐震性を維持できる。
A retaining ring 32 is mounted between the mounting groove 54 of the push ring 21 and the accommodating groove 60 of the receiving member 22, and the spacer 30 held on the inner circumference of the retaining ring 32 locks the locking ridge portion 50. The retaining ring 32 is housed inside the push ring 21 and the receiving member 22 to prevent the height dimension of the valve body 10 from increasing due to the mounting of the retaining ring 32. There is. As a result, when the fire hydrant 12 (air valve) is connected to the water pipe via the valve body 10, it is possible to prevent the length in the pipe axis direction (connection direction) from being extended, and the burial depth of the water pipe is increased. It is possible to pipe the fire hydrant 12 with the cap depth secured.
Therefore, seismic resistance can be maintained even when the fire hydrant 12 (or air valve) is installed in a shallow layer on the secondary side of the body 40.

弁本体10が伸縮可撓しても、抜け止めリング32を介して押輪21でゴム輪31を押圧するようにしているので、ゴム輪31押圧用の別の部品を必要とすることなく、押輪21と受け口部材22とをボルト59により締め付けることで抜け止めリング32によりゴム輪31を強固に押さえつけてシール性を確保できる。ボルト59の締め付け時には、押輪21と受け口部材22との対向面同士の当接により締付け力が規制されるため、抜け止めリング32がゴム輪31を過剰に圧縮することもない。 Even if the valve body 10 expands and contracts and flexes, the rubber ring 31 is pressed by the push ring 21 via the retaining ring 32, so that the push ring does not require a separate part for pressing the rubber ring 31. By tightening the 21 and the receiving member 22 with the bolt 59, the rubber ring 31 can be firmly pressed by the retaining ring 32 to ensure the sealing property. When the bolt 59 is tightened, the tightening force is regulated by the contact between the facing surfaces of the push ring 21 and the receiving member 22, so that the retaining ring 32 does not excessively compress the rubber ring 31.

図4(a)、図4(b)においては、本発明の耐震補修弁の第2実施形態を示している。なお、この実施形態以降において、それ以前の実施形態と同一部分は同一符号によって表し、その説明を省略する。
この実施形態における弁本体70では、抜け止めリング71の上部内周に環状の上部突起部72が形成された状態で、抜け止めリング71が押輪21と受け口部材22との間に装着される。バックアップリング73は、図2の場合よりも肉厚に形成され、このバックアップリング73が、抜け止めリング71及び係止突条部50とゴム輪31との間に介在されている。
4 (a) and 4 (b) show the second embodiment of the seismic repair valve of the present invention. In the following embodiments, the same parts as those of the previous embodiments are represented by the same reference numerals, and the description thereof will be omitted.
In the valve body 70 of this embodiment, the retaining ring 71 is mounted between the push ring 21 and the receiving member 22 in a state where the annular upper protrusion 72 is formed on the upper inner circumference of the retaining ring 71. The backup ring 73 is formed to be thicker than in the case of FIG. 2, and the backup ring 73 is interposed between the retaining ring 71 and the locking ridge portion 50 and the rubber ring 31.

この場合にも、前述した第1実施形態と同様に、ボデー40が伸縮可撓しても、抜け止めリング71を介して押輪21でゴム輪31を押圧する。係止突条部50の下部は、バックアップリング73に当接していることから、このバックアップリング73とスペーサ30の鍔部57との間に係止状態で保持される。ボデー40の傾倒時には、その傾倒側の係止突条部50がバックアップリング73に当接した状態で支点の機能を発揮するようになっている。 Also in this case, as in the first embodiment described above, even if the body 40 expands and contracts and flexes, the rubber ring 31 is pressed by the push ring 21 via the retaining ring 71. Since the lower portion of the locking ridge portion 50 is in contact with the backup ring 73, it is held in a locked state between the backup ring 73 and the flange portion 57 of the spacer 30. When the body 40 is tilted, the locking ridge portion 50 on the tilted side is in contact with the backup ring 73 to exert the function of a fulcrum.

上記のように、抜け止めリング71の内周に保持されたスペーサ30が、挿し口41に一体又は別体に形成した係止突条部50を係止状態に保持し、これによって平常時の弁本体70の直立状態を維持し、或は伸縮可撓時にスペーサ30を潰して弁本体70を伸縮可撓するものであれば、各種断面形状の抜け止めリングを使用できる。 As described above, the spacer 30 held on the inner circumference of the retaining ring 71 holds the locking ridge portion 50 integrally or separately formed with the insertion port 41 in the locked state, whereby in normal times. A retaining ring having various cross-sectional shapes can be used as long as the valve body 70 is maintained in an upright state, or the spacer 30 is crushed when the valve body 70 is stretchable and flexible to expand and contract the valve body 70.

図5(a)、図5(b)においては、本発明の耐震補修弁の第3実施形態を示している。
この実施形態の弁本体80においては、第1、第2実施形態に比較して押輪81の装着溝82の深さが浅く形成され、この装着溝82に薄肉状の抜け止めリング83が、その底面内径側がバックアップリング73の上面に当接した状態で装着される。そして、ボデー40が伸縮可撓状態の際にも、押輪81でバックアップリング73を介してゴム輪31を押圧する構造となっている。
5 (a) and 5 (b) show a third embodiment of the seismic repair valve of the present invention.
In the valve body 80 of this embodiment, the depth of the mounting groove 82 of the push ring 81 is formed to be shallower than that of the first and second embodiments, and a thin-walled retaining ring 83 is provided in the mounting groove 82. It is mounted with the inner diameter side of the bottom surface in contact with the upper surface of the backup ring 73. The structure is such that the push ring 81 presses the rubber ring 31 via the backup ring 73 even when the body 40 is in a stretchable and flexible state.

そのため、この実施形態では、装着溝82の深さに合わせた厚さの抜け止めリング83を形成可能となり、この場合においても上記第2実施形態と同様の機能を発揮できる。 Therefore, in this embodiment, it is possible to form a retaining ring 83 having a thickness corresponding to the depth of the mounting groove 82, and even in this case, the same function as that of the second embodiment can be exhibited.

図6(a)、図6(b)においては、本発明の耐震補修弁の第4実施形態を示している。
この実施形態の弁本体90においては、ボデー91の挿し口41の外周の所定位置に取付け溝92が形成され、この取付け溝92に別体の係止突条部93が装着されて一体化される。別体の係止突条部93は、取付け溝92に装着可能な分割リング状又は少なくとも1ヶ所カットした円環状に形成される。
6 (a) and 6 (b) show the fourth embodiment of the seismic repair valve of the present invention.
In the valve body 90 of this embodiment, a mounting groove 92 is formed at a predetermined position on the outer periphery of the insertion port 41 of the body 91, and a separate locking ridge portion 93 is mounted on the mounting groove 92 and integrated. To. The separate locking ridge 93 is formed in a split ring shape that can be mounted in the mounting groove 92 or in an annular shape with at least one cut.

押輪81の下部内周には深さの浅い装着溝95が形成され、この装着溝95にスペーサ30が直接保持される。別体の係止突条部93は、スペーサ30により係止状態に保持されている。このように、押輪81内周に設けられたスペーサ30が係止突条部93を係止状態に保持し、これによって平常時には弁本体90の直立状態を維持し、かつ伸縮可撓時にはスペーサ30を潰して伸縮可撓する。 A shallow mounting groove 95 is formed on the inner circumference of the lower portion of the push ring 81, and the spacer 30 is directly held in the mounting groove 95. The separate locking ridge 93 is held in the locked state by the spacer 30. In this way, the spacer 30 provided on the inner circumference of the push ring 81 holds the locking ridge portion 93 in the locked state, whereby the valve body 90 is maintained in the upright state in normal times, and the spacer 30 is stretched and flexed. Is crushed and stretchable and flexible.

この場合、ボデー91が伸縮可撓状態の際にも、押輪81でバックアップリング73を介してゴム輪31を押圧する構造となっている。係止突条部93の下部はバックアップリング73に当接し、係止突条部93がバックアップリング73とスペーサ30の鍔部57との間に係止状態で保持され、ボデー91の傾倒時に、その傾倒側の係止突条部93が支点の機能を発揮する。 In this case, even when the body 91 is in a stretchable and flexible state, the push ring 81 presses the rubber ring 31 via the backup ring 73. The lower part of the locking ridge portion 93 abuts on the backup ring 73, and the locking ridge portion 93 is held in a locked state between the backup ring 73 and the flange portion 57 of the spacer 30, and when the body 91 is tilted, The locking ridge 93 on the tilting side exerts the function of a fulcrum.

図7(a)、図7(b)においては、本発明の耐震補修弁の第5実施形態を示している。
この実施形態の弁本体100では、図6と同様にボデー91の挿し口41の外周に取付け溝92が形成され、この取付け溝92に別体の係止突条部93が装着されている。
一方、押輪101の下部内周には装着溝102が形成され、この装着溝102にスペーサ30が保持される。この場合、図6に比較して押輪101がゴム輪31上面側に対して内径側に突出するように構成され、これによってゴム輪31上面への押輪101底面の押圧面積が増加している。そのため、より安定してゴム輪31を押圧できる。
7 (a) and 7 (b) show a fifth embodiment of the seismic repair valve of the present invention.
In the valve body 100 of this embodiment, a mounting groove 92 is formed on the outer periphery of the insertion port 41 of the body 91 as in FIG. 6, and a separate locking ridge portion 93 is mounted on the mounting groove 92.
On the other hand, a mounting groove 102 is formed on the lower inner circumference of the push ring 101, and the spacer 30 is held in the mounting groove 102. In this case, the push ring 101 is configured to project toward the inner diameter side with respect to the upper surface side of the rubber ring 31 as compared with FIG. 6, thereby increasing the pressing area of the bottom surface of the push ring 101 against the upper surface of the rubber ring 31. Therefore, the rubber ring 31 can be pressed more stably.

第2、第3、第4、第5実施形態においても、係止突条部50、93を挿し口41の外周面に一体に又は別体に形成しているため、挿し口41の薄肉化を防いで強度を向上させることができ、地震発生時にも挿し口41の変形や破損等を防ぎつつ、ゴム輪31とのシール性を維持してボデー40、91側を伸縮可撓させて耐震性が向上する。 Also in the second, third, fourth, and fifth embodiments, since the locking ridges 50 and 93 are formed integrally or separately on the outer peripheral surface of the insertion port 41, the thickness of the insertion port 41 is reduced. It is possible to improve the strength by preventing the above, and while preventing the insertion port 41 from being deformed or damaged even in the event of an earthquake, the sealability with the rubber ring 31 is maintained and the bodies 40 and 91 are stretchable and flexible to withstand earthquakes. Improves sex.

図8は、本発明の伸縮可撓継手構造の配管例であり、伸縮可撓継手構造を短管130からなる配管機材に適用した形態を示している。
地中には図示しない水道管が水平方向に埋設され、この水道管は、T字管11の分岐部14により垂直方向に分岐されている。分岐部14には短管130が伸縮可撓継手構造を介して接続され、この短管の二次側に消火栓12(又は空気弁)が接続される。
FIG. 8 shows an example of piping of the telescopic flexible joint structure of the present invention, and shows a form in which the telescopic flexible joint structure is applied to piping equipment composed of a short pipe 130.
A water pipe (not shown) is buried in the ground in the horizontal direction, and the water pipe is vertically branched by a branch portion 14 of the T-shaped pipe 11. A short pipe 130 is connected to the branch portion 14 via a telescopic flexible joint structure, and a fire hydrant 12 (or an air valve) is connected to the secondary side of the short pipe.

この場合にも、前述した耐震補修弁の場合と同様に、平常時には、短管130に形成された挿し口131の外周に設けられた係止突条部132がスペーサ30に係止状態で保持され、伸縮可撓時には、スペーサ30を潰した状態で可撓スペースSを介して、短管130側が押輪21や受け口部材22に対して伸縮可撓することができる。
さらに、本発明の伸縮可撓継手構造は、上記の短管とは異なる形状や長さの短管や、短管以外の管材など、各種態様の配管機材に適用可能であり、何れの場合であっても上述した実施形態と同様に伸縮可撓性を発揮させることが可能である。しかも、縦向きの配管に加えて、横向きの配管にも適用することができる。
Also in this case, as in the case of the seismic repair valve described above, in normal times, the locking ridge portion 132 provided on the outer periphery of the insertion port 131 formed in the short pipe 130 is held in the spacer 30 in a locked state. When the spacer 30 is crushed, the short pipe 130 side can be expanded and contracted with respect to the push ring 21 and the receiving member 22 through the flexible space S.
Further, the telescopic flexible joint structure of the present invention can be applied to various types of piping equipment such as short pipes having a shape and length different from the above short pipes and pipe materials other than short pipes, and in any case. Even if there is, it is possible to exert stretch flexibility as in the above-described embodiment. Moreover, it can be applied to horizontal piping in addition to vertical piping.

以上、本発明の実施の形態について詳述したが、本発明は、前記実施の形態記載に限定されるものではなく、本発明の特許請求の範囲に記載されている発明の精神を逸脱しない範囲で、種々の変更ができるものである。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the description of the embodiments, and is within the scope of the invention described in the claims of the present invention. Therefore, various changes can be made.

10 弁本体(配管機材)
21 押輪
22 受け口部材
30 スペーサ
31 ゴム輪
32 抜け止めリング
33 バックアップリング
40 ボデー
41 挿し口
50 係止突条部
54 装着溝
130 短管(配管機材)
S 可撓スペース
10 Valve body (plumbing equipment)
21 Push ring 22 Receptacle member 30 Spacer 31 Rubber ring 32 Retaining ring 33 Backup ring 40 Body 41 Insertion port 50 Locking ridge 54 Mounting groove 130 Short pipe (plumbing equipment)
S Flexible space

Claims (5)

配管機材に設けられた挿し口と、この挿し口の外周面に可撓スペースを介して遊嵌状態に嵌められた押輪と、この押輪が固着された受け口部材と、前記挿し口の外周面に一体に又は別体に形成された係止突条部と、前記押輪の内周に保持されたスペーサと、前記受け口部材の内周面と前記挿し口の外周面との間にシール性を保持するためのゴム輪とを備え、平常時には前記係止突条部が前記スペーサに係止状態で保持され、伸縮可撓時には前記スペーサを潰した状態で前記可撓スペースを介して伸縮可撓することを特徴とする伸縮可撓継手構造。 An insertion port provided in the piping equipment, a push ring fitted loosely on the outer peripheral surface of the insertion port through a flexible space, a receiving member to which the push ring is fixed, and an outer peripheral surface of the insertion port. A sealing property is maintained between the locking ridges formed integrally or separately, the spacer held on the inner circumference of the push ring, and the inner peripheral surface of the receiving member and the outer peripheral surface of the insertion port. The locking ridge portion is held in a locked state by the spacer in normal times, and when the spacer is stretchable and flexible, the spacer is crushed and stretchable and flexible through the flexible space. The telescopic flexible joint structure is characterized by this. 補修弁用ボデーに設けられた挿し口と、この挿し口の外周面に可撓スペースを介して遊嵌状態に嵌められた押輪と、この押輪が固着された受け口部材と、前記挿し口の外周面に一体に又は別体に形成された係止突条部と、前記押輪の内周に保持されたスペーサと、前記受け口部材の内周面と前記挿し口の外周面との間にシール性を保持するためのゴム輪とを備え、平常時には前記係止突条部が前記スペーサに係止状態で保持され、伸縮可撓時には前記スペーサを潰した状態で前記可撓スペースを介して伸縮可撓することを特徴とする耐震補修弁。 An insertion port provided in the body for a repair valve, a push ring fitted loosely on the outer peripheral surface of the insertion port via a flexible space, a receiving member to which the push ring is fixed, and an outer circumference of the insertion port. Sealing property between the locking ridges formed integrally or separately on the surface, the spacer held on the inner circumference of the push ring, and the inner peripheral surface of the receiving member and the outer peripheral surface of the insertion port. It is provided with a rubber ring for holding the spacer, and the locking ridge portion is held in a locked state by the spacer in normal times, and when the spacer is stretchable and flexible, the spacer can be expanded and contracted through the flexible space. Seismic repair valve characterized by flexing. 前記押輪及び/又は受け口部材で構成された装着溝に抜け止めリングが装着され、この抜け止めリングの内周に保持された前記スペーサが前記挿し口に一体に又は別体に形成された前記係止突条部を係止状態に保持した請求項1又は2に記載の伸縮可撓継手構造と耐震補修弁。 A retaining ring is mounted in a mounting groove composed of the push ring and / or a receiving member, and the spacer held on the inner circumference of the retaining ring is formed integrally or separately at the insertion port. The telescopic flexible joint structure and seismic repair valve according to claim 1 or 2, wherein the stoppage portion is held in a locked state. 前記ボデーが伸縮可撓状態の際に、前記抜け止めリング或は前記押輪で前記ゴム輪を押圧するようにした請求項1乃至3に記載の伸縮可撓継手構造と耐震補修弁。 The telescopic flexible joint structure and seismic repair valve according to claim 1 to 3, wherein the rubber ring is pressed by the retaining ring or the push ring when the body is in the telescopic flexible state. 前記抜け止めリング或は前記押輪と、前記ゴム輪との間にバックアップリングが介在されている請求項4に記載の伸縮可撓継手構造と耐震補修弁。 The telescopic flexible joint structure and seismic repair valve according to claim 4, wherein a backup ring is interposed between the retaining ring or the push ring and the rubber ring.
JP2019074761A 2019-04-10 2019-04-10 Seismic repair valve Active JP7324034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019074761A JP7324034B2 (en) 2019-04-10 2019-04-10 Seismic repair valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019074761A JP7324034B2 (en) 2019-04-10 2019-04-10 Seismic repair valve

Publications (2)

Publication Number Publication Date
JP2020172969A true JP2020172969A (en) 2020-10-22
JP7324034B2 JP7324034B2 (en) 2023-08-09

Family

ID=72831199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019074761A Active JP7324034B2 (en) 2019-04-10 2019-04-10 Seismic repair valve

Country Status (1)

Country Link
JP (1) JP7324034B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510531A (en) * 1994-03-15 1997-10-21 エアロクイップ コーポレイション Flexible connector
JP2007506925A (en) * 2003-09-25 2007-03-22 ユナイテッド ステーツ パイプ アンド ファンドリー カンパニー,エルエルシー Compression ring that can be twisted in the center for pipe joints
US20160341344A1 (en) * 2015-05-20 2016-11-24 Mcwane, Inc. High deflection unrestrained pipe joint
JP2017172799A (en) * 2016-03-16 2017-09-28 株式会社清水合金製作所 Telescopic flexible joint structure and earthquake repair valve
JP2017180472A (en) * 2016-03-28 2017-10-05 株式会社クボタ Pipe joint and method for connecting pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510531A (en) * 1994-03-15 1997-10-21 エアロクイップ コーポレイション Flexible connector
JP2007506925A (en) * 2003-09-25 2007-03-22 ユナイテッド ステーツ パイプ アンド ファンドリー カンパニー,エルエルシー Compression ring that can be twisted in the center for pipe joints
US20160341344A1 (en) * 2015-05-20 2016-11-24 Mcwane, Inc. High deflection unrestrained pipe joint
JP2017172799A (en) * 2016-03-16 2017-09-28 株式会社清水合金製作所 Telescopic flexible joint structure and earthquake repair valve
JP2017180472A (en) * 2016-03-28 2017-10-05 株式会社クボタ Pipe joint and method for connecting pipe

Also Published As

Publication number Publication date
JP7324034B2 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
JP7112545B2 (en) Flexible joint structure and seismic repair valve
US6883550B2 (en) Flexible pipe joint
JP2017172799A5 (en)
KR101839393B1 (en) Fire Fighting Equipment For Protecting Against Disasters
JP2011099515A (en) Joint structure of valve with pipe, and valve
JP2020172969A (en) Expansion/contraction flexible joint structure and aseismatic repair valve
JP5199164B2 (en) Connection structure between manhole and rehabilitation pipe and its connection method
JP7327994B2 (en) Flexible joint structure and seismic repair valve
KR102177099B1 (en) Pipe Connecting Device for Earthquake-Proof using Elastic space ring
JP6963947B2 (en) Telescopic flexible joint structure and seismic repair valve
JP4593409B2 (en) Expandable flexible joint structure
JP4283258B2 (en) Leakage prevention device
JP3402171B2 (en) Captive fittings
KR102272416B1 (en) Pipe connector and Pipe having the same
JP7311259B2 (en) Tilt correction structure of seismic repair valve
KR200398767Y1 (en) Sectional manhole for waterworks
KR101859665B1 (en) Fire fighting equipment for easy suppressing fire
KR200316296Y1 (en) Outlet Structure of Snap Tap with Saddle for Water Works
JPH09178043A (en) Pipe line expansion/contraction structure and expansion/ contraction flexible structure
KR20060108325A (en) Pressure damping device using bellows for transfer of liquid
JP4067065B2 (en) Riser pipe for fluid piping
JP6340733B2 (en) Anti-seismic joint
JPH026129Y2 (en)
JP4293900B2 (en) Concrete protection method for movable pipe joints and pipes
JP2000193147A (en) Riser pipe for fluid piping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230728

R150 Certificate of patent or registration of utility model

Ref document number: 7324034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150