JP2020172469A - Method for Producing Condensed Heterocyclic Compound - Google Patents

Method for Producing Condensed Heterocyclic Compound Download PDF

Info

Publication number
JP2020172469A
JP2020172469A JP2019075503A JP2019075503A JP2020172469A JP 2020172469 A JP2020172469 A JP 2020172469A JP 2019075503 A JP2019075503 A JP 2019075503A JP 2019075503 A JP2019075503 A JP 2019075503A JP 2020172469 A JP2020172469 A JP 2020172469A
Authority
JP
Japan
Prior art keywords
compound represented
general formula
reaction
formula
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019075503A
Other languages
Japanese (ja)
Inventor
夏目 文嗣
Fumitsugu Natsume
文嗣 夏目
登 阿部
Noboru Abe
登 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Nohyaku Co Ltd
Original Assignee
Nihon Nohyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Nohyaku Co Ltd filed Critical Nihon Nohyaku Co Ltd
Priority to JP2019075503A priority Critical patent/JP2020172469A/en
Publication of JP2020172469A publication Critical patent/JP2020172469A/en
Pending legal-status Critical Current

Links

Abstract

To provide a novel and industrially advantageous method for producing a condensed heterocyclic compound useful as an agrochemical.SOLUTION: A high-yield and inexpensive method for producing a compound represented by formula (1) comprises synthesis of a pyridine derivative having a cyclopropyl group at the 5-position, and a subsequent reaction. (In the formula, n and m are integers from 0 to 2.)SELECTED DRAWING: None

Description

本発明は、農薬として有用な縮合複素環化合物の製造方法に関する。 The present invention relates to a method for producing a condensed heterocyclic compound useful as a pesticide.

本発明の縮合複素環化合物は、殺虫剤、特に農園芸用殺虫剤及び動物用外部寄生虫防除薬として有用である。その製造方法として、特許文献1において遷移金属触媒反応を含む製造方法が報告されている。
しかし、上記製造方法は高価な試薬等を使用するため、工業的に有利な方法ではない。
The condensed heterocyclic compound of the present invention is useful as an insecticide, particularly an insecticide for agriculture and horticulture and an ectoparasite control agent for animals. As the production method, a production method including a transition metal catalytic reaction is reported in Patent Document 1.
However, since the above-mentioned production method uses expensive reagents and the like, it is not an industrially advantageous method.

国際公開2017/146226パンフレットInternational Publication 2017/146226 Pamphlet

本発明の課題は、農薬として有用な縮合複素環化合物の新規で工業的に有利な製造方法を提供することである。 An object of the present invention is to provide a novel and industrially advantageous production method of a condensed heterocyclic compound useful as a pesticide.

本発明者は前記課題を解決すべく鋭意研究を重ねた結果、5位にシクロプロピル基を有するピリジン誘導体の合成とそれに続く反応により、殺虫剤として有用な縮合複素環化合物の、高収率かつ安価な製造方法を見出し、本発明を完成させた。 As a result of diligent research to solve the above problems, the present inventor has achieved a high yield and a high yield of a condensed heterocyclic compound useful as an insecticide by synthesizing a pyridine derivative having a cyclopropyl group at the 5-position and subsequent reaction. We have found an inexpensive manufacturing method and completed the present invention.

即ち本発明は、
[1]一般式(5)
(式中、X及びYはそれぞれ独立に、ハロゲン原子を示し、nは、0〜2の整数を示す。)
で表される化合物をハロゲン化することにより生成する、
一般式(4)
(式中、X、Y及びnは前記と同じくし、Zは、ハロゲン原子を示す。)
で表される化合物を環化反応に付することにより生成する、
一般式(3)
(式中、Y及びnは、前記と同じ。)
で表される化合物を、遷移金属触媒存在下で一酸化炭素と反応させることにより、一般式(2)
(式中、nは、前記と同じ。)
で表される化合物を製造する工程を含むことを特徴とする、
一般式(1)
(式中、nは前記と同じくし、mは、0〜2の整数を示す。)
で表される化合物の製造方法、
[2]一般式(9)
(式中、Xは、ハロゲン原子を示す。)
で表される化合物と、一般式(8)
(式中、nは、0〜2の整数を示す。)
で表される化合物とを反応させることにより生成する、一般式(7)
(式中、X及びnは、前記と同じ。)
を、N,N‐ジメチルホルムアミド ジアルキルアセタールと反応させることにより生成する、一般式(6)
(式中、X及びnは、前記と同じ。)
を環化反応に付することにより、一般式(5)
(式中、X及びnは前記と同じくし、Yは、ハロゲン原子を示す。)
で表される化合物を製造する工程を含む、前記[1]に記載の製造方法、
[3]式(15)
で表される化合物と、オルトギ酸トリメチルを反応させることにより生成する、式(14)
で表される化合物を、酸性条件下反応させることにより生成する、式(13)
で表される化合物と、一般式(8)
(式中、nは、0〜2の整数を示す。)
で表される化合物とを反応させることにより生成する、一般式(12)
(式中、nは、前記と同じ。)
で表される化合物を、環化反応に付することにより、一般式(5)
(式中、nは前記と同じくし、X及びYはそれぞれ独立に、ハロゲン原子を示す。)
で表される化合物を製造する工程を含む、前記[1]に記載の製造方法、
[4]一般式(12)
(式中、nは、0〜2の整数を示す。)
で表される化合物を、環化反応に付することにより生成する、一般式(10)
(式中、nは、前記と同じくし、Yはハロゲン原子を示す。)
で表される化合物をハロゲン化することにより、一般式(5)
(式中、n及びYは前記と同じくし、Xは、ハロゲン原子を示す。)
で表される化合物を製造する工程を含む、前記[3]に記載の製造方法、
[5]一般式(12)
(式中、nは、0〜2の整数を示す。)
で表される化合物を、環化反応に付することにより生成する、一般式(11)
(式中、nは、前記と同じくし、Xはハロゲン原子を示す。)
で表される化合物を、ハロゲン化することにより、一般式(5)
(式中、n及びXは前記と同じくし、Yは、ハロゲン原子を示す。)
で表される化合物を製造する工程を含む、前記[3]に記載の製造方法、
に関する。
That is, the present invention
[1] General formula (5)
(In the equation, X and Y each independently represent a halogen atom, and n represents an integer of 0 to 2.)
It is produced by halogenating the compound represented by.
General formula (4)
(In the formula, X, Y and n are the same as above, and Z represents a halogen atom.)
It is produced by subjecting the compound represented by to the cyclization reaction.
General formula (3)
(In the formula, Y and n are the same as above.)
By reacting the compound represented by with carbon monoxide in the presence of a transition metal catalyst, the general formula (2)
(In the formula, n is the same as above.)
It is characterized by including a step of producing a compound represented by.
General formula (1)
(In the formula, n is the same as above, and m is an integer of 0 to 2.)
Method for producing the compound represented by
[2] General formula (9)
(In the formula, X represents a halogen atom.)
Compound represented by and general formula (8)
(In the formula, n represents an integer of 0 to 2.)
General formula (7) produced by reacting with a compound represented by
(In the formula, X and n are the same as above.)
Is produced by reacting with N, N-dimethylformamide dialkyl acetal, the general formula (6).
(In the formula, X and n are the same as above.)
By subjecting to the cyclization reaction, the general formula (5)
(In the formula, X and n are the same as above, and Y represents a halogen atom.)
The production method according to the above [1], which comprises a step of producing the compound represented by.
[3] Equation (15)
Formula (14), which is produced by reacting the compound represented by (1) with trimethyl orthoformate.
Formula (13), which is produced by reacting the compound represented by
Compound represented by and general formula (8)
(In the formula, n represents an integer of 0 to 2.)
The general formula (12) produced by reacting with a compound represented by
(In the formula, n is the same as above.)
By subjecting the compound represented by to the cyclization reaction, the general formula (5)
(In the formula, n is the same as above, and X and Y independently represent halogen atoms.)
The production method according to the above [1], which comprises a step of producing the compound represented by.
[4] General formula (12)
(In the formula, n represents an integer of 0 to 2.)
The compound represented by (10) is produced by subjecting it to a cyclization reaction.
(In the formula, n is the same as above, and Y is a halogen atom.)
By halogenating the compound represented by, the general formula (5)
(In the formula, n and Y are the same as above, and X represents a halogen atom.)
The production method according to the above [3], which comprises a step of producing the compound represented by.
[5] General formula (12)
(In the formula, n represents an integer of 0 to 2.)
The compound represented by (11) is produced by subjecting it to a cyclization reaction.
(In the formula, n is the same as above, and X is a halogen atom.)
By halogenating the compound represented by, the general formula (5)
(In the formula, n and X are the same as above, and Y represents a halogen atom.)
The production method according to the above [3], which comprises a step of producing the compound represented by.
Regarding.

本発明によれば、目的化合物を効率的且つ経済的有利に工業的規模で製造することができる。 According to the present invention, the target compound can be produced efficiently and economically advantageously on an industrial scale.

本明細書中に記載する各置換基を説明する。「ハロゲン原子」とは、塩素原子、臭素原子、ヨウ素原子又はフッ素原子を示す。 Each substituent described herein will be described. The "halogen atom" refers to a chlorine atom, a bromine atom, an iodine atom or a fluorine atom.

「N,N‐ジメチルホルムアミド ジアルキルアセタール」とは、例えば、N,N‐ジメチルホルムアミド ジメチルアセタール、N,N‐ジメチルホルムアミド ジエチルアセタール、N,N‐ジメチルホルムアミド ジノルマルプロピルアセタール、N,N‐ジメチルホルムアミド ジイソプロピルアセタール、N,N‐ジメチルホルムアミド ジノルマルブチルアセタール、N,N‐ジメチルホルムアミド ジイソブチルアセタール、N,N‐ジメチルホルムアミド ジセカンダリーブチルアセタール又はN,N‐ジメチルホルムアミド ジターシャリーブチルアセタール等の、N,N‐ジメチルホルムアミドアセタールを示す。 The "N, N-dimethylformamide dialkyl acetal" means, for example, N, N-dimethylformamide dimethylacetal, N, N-dimethylformamide diethylacetal, N, N-dimethylformamide dinormal propylacetal, N, N-dimethylformamide. N, N, such as diisopropyl acetal, N, N-dimethylform amide dinormal butyl acetal, N, N-dimethylform amide diisobutyl acetal, N, N-dimethylform amide disecondary butyl acetal or N, N-dimethylformamide ditershari butyl acetal. -Shows dimethylformamide acetal.

本発明の製造方法に含まれる一般式(1)乃至(5)、(6)乃至(8)、(10)乃至(14)で表される化合物は、その構造式中に1つ又は複数個の不斉中心を有する場合があり、2種以上の光学異性体及びジアステレオマーが存在する場合もあり、本発明の製造方法は各々の光学異性体及びそれらが任意の割合で含まれる混合物をも全て包含するものである。 The compounds represented by the general formulas (1) to (5), (6) to (8), (10) to (14) included in the production method of the present invention are one or more in the structural formula. In some cases, there may be two or more types of optical isomers and diastereomers, and the production method of the present invention comprises each optical isomer and a mixture containing them in an arbitrary ratio. Also includes all.

本発明に関与する反応は以下のように図示される。 The reactions involved in the present invention are illustrated as follows.

製造方法1
(式中、X、Y、m及びnは前記に同じ。)
Manufacturing method 1
(In the formula, X, Y, m and n are the same as described above.)

即ち、下記工程[a]乃至[h]の製造方法により、一般式(1)で表される化合物を製造することができる。
工程[a] 一般式(9)で表される化合物と、一般式(8)で表される化合物とから、一般式(7)で表される化合物を製造する工程。
工程[b] 一般式(7)で表される化合物から、一般式(6)で表される化合物を製造する工程。
工程[c] 一般式(6)で表される化合物から、一般式(5)で表される化合物を製造する工程。
工程[d] 一般式(5)で表される化合物から、一般式(4)で表される化合物を製造する工程。
工程[e] 一般式(4)で表される化合物から、一般式(3)で表される化合物を製造する工程。
工程[f]一般式(3)で表される化合物から、一般式(2)で表される化合物を製造する工程。
工程[g]一般式(2)で表される化合物から、一般式(16)で表される化合物を製造する工程。
工程[h]一般式(16)で表される化合物から、一般式(17)で表される化合物を製造する工程。
工程[i] 一般式(17)で表される化合物と、一般式(18)で表される化合物とから、一般式(19)で表される化合物を製造する工程。
工程[j] 一般式(19)で表される化合物から、一般式(1)で表される化合物を製造する工程
That is, the compound represented by the general formula (1) can be produced by the production methods of the following steps [a] to [h].
Step [a] A step of producing a compound represented by the general formula (7) from a compound represented by the general formula (9) and a compound represented by the general formula (8).
Step [b] A step of producing a compound represented by the general formula (6) from the compound represented by the general formula (7).
Step [c] A step of producing a compound represented by the general formula (5) from the compound represented by the general formula (6).
Step [d] A step of producing a compound represented by the general formula (4) from the compound represented by the general formula (5).
Step [e] A step of producing a compound represented by the general formula (3) from the compound represented by the general formula (4).
Step [f] A step of producing a compound represented by the general formula (2) from the compound represented by the general formula (3).
Step [g] A step of producing a compound represented by the general formula (16) from the compound represented by the general formula (2).
Step [h] A step of producing a compound represented by the general formula (17) from the compound represented by the general formula (16).
Step [i] A step of producing a compound represented by the general formula (19) from a compound represented by the general formula (17) and a compound represented by the general formula (18).
Step [j] A step of producing a compound represented by the general formula (1) from the compound represented by the general formula (19).

工程[a]
一般式(7)で表される化合物は、一般式(9)で表される化合物と、一般式(8)で表される化合物とを、塩基及び不活性溶媒存在下反応させることにより製造することができる。
Step [a]
The compound represented by the general formula (7) is produced by reacting the compound represented by the general formula (9) with the compound represented by the general formula (8) in the presence of a base and an inert solvent. be able to.

本反応で使用できる塩基としては、例えば、ピリジン、ピペリジン、ピコリン、ルチジン、4‐ジメチルアミノピリジン(DMAP)、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N,N‐ジシクロヘキシルメチルアミン、モルホリン、ピロリジン、ジエチルアミン等の有機塩基等が挙げられる。1種又は2種以上を使用してもよい。塩基の使用量としては、一般式(4)で表される化合物1モルに対して通常0.1倍モル〜10倍モルの範囲から適宜選択すればよい。 Examples of the bases that can be used in this reaction include pyridine, piperidine, picoline, lutidine, 4-dimethylaminopyridine (DMAP), triethylamine, tributylamine, diisopropylethylamine, N, N-dicyclohexylmethylamine, morpholine, pyrrolidine, diethylamine and the like. Organic bases and the like. One kind or two or more kinds may be used. The amount of the base used may be appropriately selected from the range of usually 0.1 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (4).

本反応で使用できる不活性溶媒としては、本反応を著しく阻害しないものであれば良く、例えば、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等の鎖状又は環状エーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素類、アセトニトリル等のニトリル類、酢酸エチル等のエステル類、N,N‐ジメチルホルムアミド、N,N‐ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチル‐2‐イミダゾリジノン等の極性溶媒、メタノール、エタノール、イソプロパノール等のアルコール類、酢酸、プロピオン酸等のカルボン酸類、水等を挙げることができ、これらの不活性溶媒は単独で又は2種以上混合して使用することもできる。その使用量としては、一般式(4)で表される化合物1モルに対して通常0.1〜100Lの範囲から適宜選択すればよい。 The inert solvent that can be used in this reaction may be any solvent that does not significantly inhibit this reaction. For example, chain or cyclic ethers such as diethyl ether, tetrahydrofuran (THF) and dioxane, benzene, toluene, xylene and the like. Aromatic hydrocarbons, halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene, nitriles such as acetonitrile, esters such as ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, Polar solvents such as 1,3-dimethyl-2-imidazolidinone, alcohols such as methanol, ethanol and isopropanol, carboxylic acids such as acetic acid and propionic acid, water and the like can be mentioned, and these inert solvents are used alone. Or a mixture of two or more types can be used. The amount to be used may be appropriately selected from the range of usually 0.1 to 100 L with respect to 1 mol of the compound represented by the general formula (4).

本反応は等モル反応であるので、各化合物を等モル使用すればよいが、いずれかの化合物を過剰に用いることもできる。反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。また単離せずに次の反応に用いることもできる。
工程[b]
一般式(6)で表される化合物は、一般式(7)で表される化合物と、N,N‐ジメチルホルムアミド ジメチルアセタールとを、不活性溶媒存在下又は無溶媒で反応させることにより製造することができる。また、添加剤としてカルボン酸無水物を添加してもよい。
Since this reaction is an equimolar reaction, each compound may be used in an equimolar amount, but any of the compounds may be used in excess. The reaction temperature may usually be in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but may be appropriately selected in the range of several minutes to 48 hours. Just do it. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary. It can also be used in the next reaction without isolation.
Step [b]
The compound represented by the general formula (6) is produced by reacting the compound represented by the general formula (7) with N, N-dimethylformamide dimethylacetal in the presence of an inert solvent or in the absence of a solvent. be able to. Moreover, you may add carboxylic acid anhydride as an additive.

本反応で使用できるカルボン酸無水物としては、例えば、無水酢酸、無水プロピオン酸、無水酪酸等が挙げられる。1種又は2種以上を使用してもよい。カルボン酸無水物の使用量としては、一般式(7)で表される化合物1モルに対して通常0.1倍モル〜10倍モルの範囲から適宜選択すればよい。 Examples of the carboxylic acid anhydride that can be used in this reaction include acetic anhydride, propionic anhydride, butyric anhydride and the like. One kind or two or more kinds may be used. The amount of the carboxylic acid anhydride used may be appropriately selected from the range of usually 0.1 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (7).

本反応で使用できる不活性溶媒としては、本反応を著しく阻害しないものであれば良く、例えば、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等の鎖状又は環状エーテル類、ペンタン、ヘキサン、シクロヘキサン等の鎖状又は環状飽和炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素類、アセトニトリル等のニトリル類、酢酸エチル等のエステル類、N,N‐ジメチルホルムアミド、N,N‐ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチル‐2‐イミダゾリジノン等の極性溶媒、メタノール、エタノール、イソプロパノール等のアルコール類等を挙げることができ、これらの不活性溶媒は単独で又は2種以上混合して使用することもできる。その使用量としては、一般式(7)で表される化合物1モルに対して通常0.1〜100Lの範囲から適宜選択すればよい。 The inert solvent that can be used in this reaction may be any solvent that does not significantly inhibit this reaction, and examples thereof include chain or cyclic ethers such as diethyl ether, tetrahydrofuran (THF) and dioxane, pentane, hexane and cyclohexane. Chained or cyclic saturated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride, halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene. Classes, nitriles such as acetonitrile, esters such as ethyl acetate, polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, methanol, Examples thereof include alcohols such as ethanol and isopropanol, and these inert solvents can be used alone or in combination of two or more. The amount to be used may be appropriately selected from the range of usually 0.1 to 100 L with respect to 1 mol of the compound represented by the general formula (7).

本反応は等モル反応であるので、各化合物を等モル使用すればよいが、いずれかの化合物を過剰に用いることもできる。反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。また単離せずに次の反応に用いることもできる。
工程[c]
一般式(5)で表される化合物は、一般式(6)で表される化合物を、ハロゲン化水素及び不活性溶媒存在下反応させることにより製造することができる。
Since this reaction is an equimolar reaction, each compound may be used in an equimolar amount, but any of the compounds may be used in excess. The reaction temperature may usually be in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but may be appropriately selected in the range of several minutes to 48 hours. Just do it. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary. It can also be used in the next reaction without isolation.
Step [c]
The compound represented by the general formula (5) can be produced by reacting the compound represented by the general formula (6) in the presence of hydrogen halide and an inert solvent.

本反応で使用できるハロゲン化水素としては、例えば、塩化水素、臭化水素、ヨウ化水素等が挙げられ、1種又は2種以上を使用してもよい。ハロゲン化水素の使用量としては、一般式(6)で表される化合物1モルに対して通常1.0倍モル〜10倍モルの範囲から適宜選択すればよい。 Examples of the hydrogen halide that can be used in this reaction include hydrogen chloride, hydrogen bromide, hydrogen iodide, and the like, and one or more of them may be used. The amount of hydrogen halide used may be appropriately selected from the range of usually 1.0 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (6).

本反応で使用できる不活性溶媒としては、本反応を著しく阻害しないものであれば良く、例えば、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等の鎖状又は環状エーテル類、ペンタン、ヘキサン、シクロヘキサン等の鎖状又は環状飽和炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素類、アセトニトリル等のニトリル類、酢酸エチル等のエステル類、N,N‐ジメチルホルムアミド、N,N‐ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチル‐2‐イミダゾリジノン等の極性溶媒、メタノール、エタノール、イソプロパノール等のアルコール類、ギ酸、酢酸等のカルボン酸類等を挙げることができ、これらの不活性溶媒は単独で又は2種以上混合して使用することもできる。その使用量としては、一般式(6)で表される化合物1モルに対して通常0.1〜100Lの範囲から適宜選択すればよい。 The inert solvent that can be used in this reaction may be any solvent that does not significantly inhibit this reaction, and examples thereof include chain or cyclic ethers such as diethyl ether, tetrahydrofuran (THF) and dioxane, pentane, hexane and cyclohexane. Chained or cyclic saturated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride, halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene. Classes, nitriles such as acetonitrile, esters such as ethyl acetate, polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone, methanol, Examples thereof include alcohols such as ethanol and isopropanol, and carboxylic acids such as formic acid and acetic acid, and these inert solvents can be used alone or in combination of two or more. The amount to be used may be appropriately selected from the range of usually 0.1 to 100 L with respect to 1 mol of the compound represented by the general formula (6).

本反応の反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。また単離せずに次の反応に用いることもできる。
工程[d]
一般式(4)で表される化合物は、一般式(5)で表される化合物を、ハロゲン化剤、ラジカル開始剤及び不活性溶媒存在下反応させることにより製造することができる。
The reaction temperature of this reaction is usually in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc. It may be selected as appropriate. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary. It can also be used in the next reaction without isolation.
Step [d]
The compound represented by the general formula (4) can be produced by reacting the compound represented by the general formula (5) in the presence of a halogenating agent, a radical initiator and an inert solvent.

本反応で使用できるハロゲン化剤としては、例えば、N‐クロロスクシンイミド、N‐ブロモスクシンイミド、N‐ヨードスクシンイミド等が挙げられれ、1種又は2種以上を使用してもよい。ハロゲン化剤の使用量としては、一般式(5)で表される化合物1モルに対して通常1.0倍モル〜10倍モルの範囲から適宜選択すればよい。 Examples of the halogenating agent that can be used in this reaction include N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide, and the like, and one or more of them may be used. The amount of the halogenating agent used may be appropriately selected from the range of usually 1.0 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (5).

本反応で使用できるラジカル開始剤としては、例えば、2,2’‐アゾビスイソブチロニトリル(AIBN)等のアゾ化合物、ジ‐ターシャリーブチルペルオキシド、過酸化ベンゾイル等の過酸化物、トリエチルボラン、ジエチルジンク等の有機金属化合物等を挙げることができる。ラジカル開始剤の使用量としては、一般式(5)で表される化合物1モルに対して通常0.01倍モル〜1.0倍モルの範囲から適宜選択すればよい。 Examples of the radical initiator that can be used in this reaction include azo compounds such as 2,2'-azobisisobutyronitrile (AIBN), peroxides such as di-terrific butylperoxide and benzoyl peroxide, and triethylborane. , An organic metal compound such as diethylzinc, and the like. The amount of the radical initiator used may be appropriately selected from the range of usually 0.01 times mol to 1.0 times mol with respect to 1 mol of the compound represented by the general formula (5).

本反応で使用できる不活性溶媒としては、本反応を著しく阻害しないものであれば良く、例えば、ペンタン、ヘキサン、シクロヘキサン等の鎖状又は環状飽和炭化水素類、ベンゼン等の芳香族炭化水素類、アセトニトリル等のニトリル類、酢酸エチル等のエステル類、N,N‐ジメチルホルムアミド、N,N‐ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチル‐2‐イミダゾリジノン等の極性溶媒、メタノール、エタノール、イソプロパノール等のアルコール類等を挙げることができ、これらの不活性溶媒は単独で又は2種以上混合して使用することもできる。その使用量としては、一般式(5)で表される化合物1モルに対して通常0.1〜100Lの範囲から適宜選択すればよい。 The inert solvent that can be used in this reaction may be any solvent that does not significantly inhibit this reaction. For example, chain or cyclic saturated hydrocarbons such as pentane, hexane and cyclohexane, aromatic hydrocarbons such as benzene, etc. Nitrives such as acetonitrile, esters such as ethyl acetate, polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, methanol, ethanol, Examples include alcohols such as isopropanol, and these inert solvents can be used alone or in combination of two or more. The amount to be used may be appropriately selected from the range of usually 0.1 to 100 L with respect to 1 mol of the compound represented by the general formula (5).

本反応の反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。また単離せずに次の反応に用いることもできる。 The reaction temperature of this reaction is usually in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but ranges from several minutes to 48 hours. It may be selected as appropriate. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary. It can also be used in the next reaction without isolation.

工程[e]
一般式(3)で表される化合物は、一般式(4)で表される化合物を、金属試薬、金属ハロゲン化物及び不活性溶媒存在下で反応させることにより製造することができる。
Step [e]
The compound represented by the general formula (3) can be produced by reacting the compound represented by the general formula (4) in the presence of a metal reagent, a metal halide and an inert solvent.

本反応で使用できる金属試薬としては、例えば、亜鉛‐銅合金、亜鉛粉末等を挙げることができ、その使用量としては、一般式(4)で表される化合物1モルに対して通常1.0倍モル〜10倍モルの範囲から適宜選択すれば良い。 Examples of the metal reagent that can be used in this reaction include zinc-copper alloy, zinc powder, and the like, and the amount used is usually 1. per 1 mol of the compound represented by the general formula (4). It may be appropriately selected from the range of 0 times molar to 10 times molar.

本反応で使用できる金属ハロゲン化物としては、例えば、塩化リチウム、臭化リチウム、ヨウ化リチウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、塩化セシウム、臭化セシウム、ヨウ化セシウム等をあげることができ、その使用量としては、一般式(4)で表される化合物1モルに対して通常1.0倍モル〜10倍モルの範囲から適宜選択すれば良い。 Metal halides that can be used in this reaction include, for example, lithium chloride, lithium bromide, lithium iodide, sodium chloride, sodium bromide, sodium iodide, potassium chloride, potassium bromide, potassium iodide, cesium chloride, and odor. Cesium bromide, cesium iodide, etc. can be mentioned, and the amount to be used is usually selected from the range of 1.0 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (4). Just do it.

本反応で使用できる不活性溶媒としては、本反応を著しく阻害しないものであれば良く、例えば、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等の鎖状又は環状エーテル類、ペンタン、ヘキサン、シクロヘキサン等の鎖状又は環状飽和炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、アセトニトリル等のニトリル類、酢酸エチル等のエステル類、N,N‐ジメチルホルムアミド、N,N‐ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチル‐2‐イミダゾリジノン等の極性溶媒、メタノール、エタノール、イソプロパノール等のアルコール類等を挙げることができ、これらの不活性溶媒は単独で又は2種以上混合して使用することもできる。その使用量としては、一般式(4)で表される化合物1モルに対して通常0.1〜100Lの範囲から適宜選択すればよい。 The inert solvent that can be used in this reaction may be any solvent that does not significantly inhibit this reaction, and examples thereof include chain or cyclic ethers such as diethyl ether, tetrahydrofuran (THF) and dioxane, pentane, hexane and cyclohexane. Chain or cyclic saturated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene, nitriles such as acetonitrile, esters such as ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl Polar solvents such as sulfoxide and 1,3-dimethyl-2-imidazolidinone, alcohols such as methanol, ethanol and isopropanol can be mentioned, and these inert solvents can be used alone or in combination of two or more. You can also do it. The amount to be used may be appropriately selected from the range of usually 0.1 to 100 L with respect to 1 mol of the compound represented by the general formula (4).

本反応の反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。また単離せずに次の反応に用いることもできる。
工程[f]
一般式(2)で表される化合物は、一般式(3)で表される化合物を、一酸化炭素、パラジウム触媒、配位子、塩基及びアルコール溶媒存在下で反応させることにより製造することができる。
The reaction temperature of this reaction is usually in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but ranges from several minutes to 48 hours. It may be selected as appropriate. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary. It can also be used in the next reaction without isolation.
Step [f]
The compound represented by the general formula (2) can be produced by reacting the compound represented by the general formula (3) in the presence of carbon monoxide, a palladium catalyst, a ligand, a base and an alcohol solvent. it can.

本反応で使用できるパラジウム触媒としては、例えば、塩化パラジウム、臭化パラジウム、沃化パラジウム、酢酸パラジウム等のパラジウム塩、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロ[1,4‐ビス(ジフェニルホスフィノ)ブタン]パラジウム、ジクロロビスベンゾニトリルパラジウム、テトラキストリフェニルホスフィンパラジウム等のパラジウム錯体を挙げることができるが、これらに限定されるものではない。パラジウム触媒の使用量は一般式(3)で表される化合物1モルに対して、0.1倍モル〜0.00001倍モルの範囲から適宜選択すればよく、好ましくは0.01倍モル〜0.00005倍モルの範囲から適宜選択すれば良い。 Examples of the palladium catalyst that can be used in this reaction include palladium salts such as palladium chloride, palladium bromide, palladium iodide, and palladium acetate, dichlorobis (triphenylphosphine) palladium, and dichloro [1,4-bis (diphenylphosphino)). Butane] Palladium complexes such as palladium, dichlorobisbenzonitrile palladium, and tetrakistriphenylphosphinepalladium can be mentioned, but are not limited thereto. The amount of the palladium catalyst used may be appropriately selected from the range of 0.1 times mol to 0.00001 times mol, preferably 0.01 times mol to 1 mol of the compound represented by the general formula (3). It may be appropriately selected from the range of 0.00005 times by mole.

本反応で使用できる配位子としては、例えば、トリt‐ブチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、トリo‐トリルホスフィン等の単座配位子、1,2‐ビスジフェニルホスフィノエタン、1,3‐ビスジフェニルホスフィノプロパン、1,4‐ビスジフェニルホスフィノブタン、ビス[2‐(ジフェニルホスフィノ)フェニル]エーテル等の二座配位子等を挙げることができるが、これらに限定されるものではない。配位子の使用量は一般式(3)で表される化合物1モルに対して、0.3倍モル〜0.00001倍モルの範囲から適宜選択すればよく、好ましくは0.1〜0.0001倍モルの範囲から適宜選択すれば良い。 Examples of the ligand that can be used in this reaction include monodentate ligands such as trit-butylphosphine, tricyclohexylphosphine, triphenylphosphine, and trio-tolylphosphine, 1,2-bisdiphenylphosphinoetan, and 1, , 3-Bisdiphenylphosphinopropane, 1,4-bisdiphenylphosphinobtan, bidentate ligands such as bis [2- (diphenylphosphino) phenyl] ether, etc., but are limited to these. It's not something. The amount of the ligand used may be appropriately selected from the range of 0.3 times mol to 0.00001 times mol, preferably 0.1 to 0, with respect to 1 mol of the compound represented by the general formula (3). It may be appropriately selected from the range of .0001 times mol.

本反応で使用できる塩基としては、例えば、トリエチルアミン、トリブチルアミン等の有機塩基類、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等の無機塩基、酢酸ナトリウム、酢酸カリウム等のカルボン酸塩等を挙げることができるが、これらに限定されるものではない。塩基はカルボニル化反応中に生成するハロゲン化水素を中和するために必要であり、塩基の最小量は反応の化学量論比に対応させる必要があるが、塩基は大量に使用し、また溶媒として使用しても良い。 Examples of the bases that can be used in this reaction include organic bases such as triethylamine and tributylamine, inorganic bases such as sodium carbonate, sodium hydrogencarbonate and potassium carbonate, and carboxylates such as sodium acetate and potassium acetate. It can, but is not limited to these. Bases are needed to neutralize the hydrogen halides produced during the carbonylation reaction, and the minimum amount of bases needs to correspond to the stoichiometric ratio of the reaction, but large amounts of bases are used and the solvent. May be used as.

本反応で使用できるアルコール溶媒としては、例えばメタノール、エタノール、プロパノール、ブタノール、2‐プロパノール等を挙げることができ、これらのアルコール溶媒は単独で又は2種以上混合して使用することもできる。その使用量としては、一般式(3)で表される化合物1モルに対して通常0.1〜100Lの範囲から適宜選択すれば良い。 Examples of the alcohol solvent that can be used in this reaction include methanol, ethanol, propanol, butanol, 2-propanol, and the like, and these alcohol solvents can be used alone or in combination of two or more. The amount to be used may be appropriately selected from the range of usually 0.1 to 100 L with respect to 1 mol of the compound represented by the general formula (3).

本反応の反応温度は通常50〜250℃の範囲で行なえば良く、好ましくは100〜200℃の範囲が良い。反応時間は反応規模、反応温度により一定しないが、数分〜48時間の範囲から適宜選択すれば良い。一酸化炭素の圧は1〜10MPaの範囲であれば良いが、好ましくは1.5〜4.0MPaの範囲が良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。 The reaction temperature of this reaction is usually in the range of 50 to 250 ° C., preferably in the range of 100 to 200 ° C. The reaction time is not constant depending on the reaction scale and the reaction temperature, but may be appropriately selected from the range of several minutes to 48 hours. The pressure of carbon monoxide may be in the range of 1 to 10 MPa, but preferably in the range of 1.5 to 4.0 MPa. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.

工程[g]
一般式(16)で表される化合物は、一般式(2)で表される化合物を、有機化学で用いられる定法に従って、エステル基を加水分解することによって製造することができる。
Process [g]
The compound represented by the general formula (16) can be produced by hydrolyzing the ester group of the compound represented by the general formula (2) according to a conventional method used in organic chemistry.

工程[h]
一般式(17)で表される化合物は、一般式(16)で表される化合物を、有機化学で用いられる定法に従って、カルボキシル基をカルボン酸塩化物へと変換することにより製造することができる。
Step [h]
The compound represented by the general formula (17) can be produced by converting the compound represented by the general formula (16) into a carboxylated product according to a conventional method used in organic chemistry. ..

工程[i]
一般式(19)で表される化合物は、一般式(17)で表される化合物と、一般式(18)で表される化合物とを、有機化学ので用いられる定法に従って反応させることにより製造することができる。
Step [i]
The compound represented by the general formula (19) is produced by reacting the compound represented by the general formula (17) with the compound represented by the general formula (18) according to a conventional method used in organic chemistry. be able to.

工程[j]
一般式(1)で表される化合物は、一般式(19)で表される化合物を、酸及び不活性溶媒存在下で反応させることにより製造することができる。
Step [j]
The compound represented by the general formula (1) can be produced by reacting the compound represented by the general formula (19) in the presence of an acid and an inert solvent.

本反応で使用できる酸としては、例えば、塩酸、硝酸、硫酸、リン酸等の無機酸類、酢酸、プロピオン酸、酪酸、トリフルオロ酢酸等のカルボン酸類、メシル酸、トシル酸、トリフルオロメチルスルホン酸等のスルホン酸類等が挙げられ、1種又は2種以上を使用してもよい。酸の使用量としては、一般式(19)で表される化合物1モルに対して通常0.1倍モル〜10倍モルの範囲から適宜選択すればよい。 Acids that can be used in this reaction include, for example, inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, carboxylic acids such as acetic acid, propionic acid, butyric acid, and trifluoroacetic acid, mesylic acid, tosylic acid, and trifluoromethylsulfonic acid. Such as sulfonic acids and the like, and one kind or two or more kinds may be used. The amount of the acid used may be appropriately selected from the range of usually 0.1 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (19).

本反応で使用できる不活性溶媒としては、本反応を著しく阻害しないものであれば良く、例えば、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等の鎖状又は環状エーテル類、ペンタン、ヘキサン、シクロヘキサン等の鎖状又は環状飽和炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素類、アセトニトリル等のニトリル類、酢酸エチル等のエステル類、N,N‐ジメチルホルムアミド、N,N‐ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチル‐2‐イミダゾリジノン等の極性溶媒、メタノール、エタノール、イソプロパノール等のアルコール類等を挙げることができ、これらの不活性溶媒は単独で又は2種以上混合して使用することもできる。その使用量としては、一般式(19)で表される化合物1モルに対して通常0.1〜100Lの範囲から適宜選択すればよい。 The inert solvent that can be used in this reaction may be any solvent that does not significantly inhibit this reaction, and examples thereof include chain or cyclic ethers such as diethyl ether, tetrahydrofuran (THF) and dioxane, pentane, hexane and cyclohexane. Chained or cyclic saturated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride, halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene. Classes, nitriles such as acetonitrile, esters such as ethyl acetate, polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, methanol, Examples thereof include alcohols such as ethanol and isopropanol, and these inert solvents can be used alone or in combination of two or more. The amount to be used may be appropriately selected from the range of usually 0.1 to 100 L with respect to 1 mol of the compound represented by the general formula (19).

本反応の反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。 The reaction temperature of this reaction is usually in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but ranges from several minutes to 48 hours. It may be selected as appropriate. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.

製造方法2
(式中、X、Y、m及びnは前記に同じ。)
Manufacturing method 2
(In the formula, X, Y, m and n are the same as described above.)

即ち、下記工程[k]乃至[n]及び上記製造方法1の工程[d]乃至[j]と同様の製造方法により、一般式(1)で表される化合物を製造することができる。
工程[k] 一般式(15)で表される化合物から、一般式(14)で表される化合物を製造する工程。
工程[l] 一般式(14)で表される化合物から、一般式(13)で表される化合物を製造する工程。
工程[m] 一般式(13)で表される化合物と、一般式(8)で表される化合物から、一般式(12)で表される化合物を製造する工程。
工程[n] 一般式(12)で表される化合物から、一般式(5)で表される化合物を製造する工程。
That is, the compound represented by the general formula (1) can be produced by the same production methods as those of the following steps [k] to [n] and the above production method 1 steps [d] to [j].
Step [k] A step of producing a compound represented by the general formula (14) from the compound represented by the general formula (15).
Step [l] A step of producing a compound represented by the general formula (13) from the compound represented by the general formula (14).
Step [m] A step of producing a compound represented by the general formula (12) from a compound represented by the general formula (13) and a compound represented by the general formula (8).
Step [n] A step of producing a compound represented by the general formula (5) from the compound represented by the general formula (12).

工程[k]
式(14)で表される化合物は、式(15)で表される化合物と、オルトギ酸トリメチルを、塩化鉄(III)及び不活性溶媒存在下若しくは無溶媒で反応させることにより、製造することができる。
Step [k]
The compound represented by the formula (14) is produced by reacting the compound represented by the formula (15) with trimethyl orthoformate in the presence of iron (III) chloride and an inert solvent or in the absence of a solvent. Can be done.

本反応で使用できるの塩化鉄(III)使用量としては、一般式(15)で表される化合物1モルに対して通常0.01倍モル〜1.0倍モルの範囲から適宜選択すればよい。 The amount of iron (III) chloride that can be used in this reaction is usually selected from the range of 0.01-fold to 1.0-fold with respect to 1 mol of the compound represented by the general formula (15). Good.

本反応で使用できる不活性溶媒としては、本反応を著しく阻害しないものであれば良く、例えば、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等の鎖状又は環状エーテル類、ペンタン、ヘキサン、シクロヘキサン等の鎖状又は環状飽和炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素類、アセトニトリル等のニトリル類、酢酸エチル等のエステル類、N,N‐ジメチルホルムアミド、N,N‐ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチル‐2‐イミダゾリジノン等の極性溶媒、メタノール、エタノール、イソプロパノール等のアルコール類等を挙げることができ、これらの不活性溶媒は単独で又は2種以上混合して使用することもできる。その使用量としては、一般式(19)で表される化合物1モルに対して通常0.1〜100Lの範囲から適宜選択すればよい。 The inert solvent that can be used in this reaction may be any solvent that does not significantly inhibit this reaction, and examples thereof include chain or cyclic ethers such as diethyl ether, tetrahydrofuran (THF) and dioxane, pentane, hexane and cyclohexane. Chained or cyclic saturated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride, halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene. Classes, nitriles such as acetonitrile, esters such as ethyl acetate, polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, methanol, Examples thereof include alcohols such as ethanol and isopropanol, and these inert solvents can be used alone or in combination of two or more. The amount to be used may be appropriately selected from the range of usually 0.1 to 100 L with respect to 1 mol of the compound represented by the general formula (19).

本反応は等モル反応であるので、各化合物を等モル使用すればよいが、いずれかの化合物を過剰に用いることもできる。反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。また単離せずに次の反応に用いることもできる。 Since this reaction is an equimolar reaction, each compound may be used in an equimolar amount, but any of the compounds may be used in excess. The reaction temperature may usually be in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but may be appropriately selected in the range of several minutes to 48 hours. Just do it. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary. It can also be used in the next reaction without isolation.

工程[l]
式(13)で表される化合物は、式(14)で表される化合物を、酸及び不活性溶媒存在下反応させることにより、製造することができる。
Step [l]
The compound represented by the formula (13) can be produced by reacting the compound represented by the formula (14) in the presence of an acid and an inert solvent.

本反応で使用できる酸としては、例えば、塩酸、硫酸、硝酸、リン酸等の無機酸類、酢酸、プロピオン酸、トリフルオロメチル酢酸等のカルボン酸類、メチルスルホン酸、パラトルエンスルホン酸、トリフルオロメチルスルホン酸等のスルホン酸類等が挙げられ、1種又は2種以上を使用してもよい。酸の使用量としては、一般式(14)で表される化合物1モルに対して通常1.0倍モル〜10倍モルの範囲から適宜選択すればよい。 Acids that can be used in this reaction include, for example, inorganic acids such as hydrochloric acid, sulfuric acid, nitrate and phosphoric acid, carboxylic acids such as acetic acid, propionic acid and trifluoromethylacetic acid, methylsulfonic acid, paratoluenesulfonic acid and trifluoromethyl. Examples thereof include sulfonic acids such as sulfonic acids, and one or more of them may be used. The amount of the acid used may be appropriately selected from the range of usually 1.0 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (14).

本反応で使用できる不活性溶媒としては、本反応を著しく阻害しないものであれば良く、例えば、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等の鎖状又は環状エーテル類、ペンタン、ヘキサン、シクロヘキサン等の鎖状又は環状飽和炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素類、アセトニトリル等のニトリル類、酢酸エチル等のエステル類、N,N‐ジメチルホルムアミド、N,N‐ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチル‐2‐イミダゾリジノン等の極性溶媒、メタノール、エタノール、イソプロパノール等のアルコール類、水等を挙げることができ、これらの不活性溶媒は単独で又は2種以上混合して使用することもできる。その使用量としては、一般式(14)で表される化合物1モルに対して通常0.1〜100Lの範囲から適宜選択すればよい。 The inert solvent that can be used in this reaction may be any solvent that does not significantly inhibit this reaction, and examples thereof include chain or cyclic ethers such as diethyl ether, tetrahydrofuran (THF) and dioxane, pentane, hexane and cyclohexane. Chained or cyclic saturated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride, halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene. Classes, nitriles such as acetonitrile, esters such as ethyl acetate, polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, methanol, Examples include alcohols such as ethanol and isopropanol, water, and the like, and these inert solvents can be used alone or in combination of two or more. The amount to be used may be appropriately selected from the range of usually 0.1 to 100 L with respect to 1 mol of the compound represented by the general formula (14).

本反応の反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。 The reaction temperature of this reaction is usually in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but ranges from several minutes to 48 hours. It may be selected as appropriate. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.

工程[m]
一般式(12)で表される化合物は、式(13)で表される化合物と、一般式(8)で表される化合物とを、塩基性触媒及び不活性溶媒存在下反応させることにより、製造することができる。
Process [m]
The compound represented by the general formula (12) is prepared by reacting the compound represented by the formula (13) with the compound represented by the general formula (8) in the presence of a basic catalyst and an inert solvent. Can be manufactured.

本反応で使用できる塩基性触媒としては、例えば、ピリジン、ピリミジン、2,6‐ルチジン、4‐ジメチルアミノピリジン、ピペリジン、ピロリジン、モルホリン、ジエチルアミン、アンモニア、酢酸アンモニウム等をあげられ、1種又は2種以上を使用してもよい。塩基性触媒の使用量としては、一般式(13)で表される化合物1モルに対して通常0.1倍モル〜10倍モルの範囲から適宜選択すればよい。
等が挙げられ、1種又は2種以上を使用してもよい。塩基性触媒の使用量としては、一般式(13)で表される化合物1モルに対して通常0.01倍モル〜1.0倍モルの範囲から適宜選択すればよい。
Examples of the basic catalyst that can be used in this reaction include pyridine, pyrimidine, 2,6-lutidine, 4-dimethylaminopyridine, piperidine, pyrrolidine, morpholine, diethylamine, ammonia, ammonium acetate and the like. More than a seed may be used. The amount of the basic catalyst used may be appropriately selected from the range of usually 0.1 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (13).
Etc., and one kind or two or more kinds may be used. The amount of the basic catalyst to be used may be appropriately selected from the range of usually 0.01 times mol to 1.0 times mol with respect to 1 mol of the compound represented by the general formula (13).

本反応で使用できる不活性溶媒としては、本反応を著しく阻害しないものであれば良く、例えば、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等の鎖状又は環状エーテル類、ペンタン、ヘキサン、シクロヘキサン等の鎖状又は環状飽和炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素類、アセトニトリル等のニトリル類、酢酸エチル等のエステル類、酢酸、プロピオン酸等のカルボン酸類、N,N‐ジメチルホルムアミド、N,N‐ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチル‐2‐イミダゾリジノン等の極性溶媒、メタノール、エタノール、イソプロパノール等のアルコール類等を挙げることができ、これらの不活性溶媒は単独で又は2種以上混合して使用することもできる。その使用量としては、一般式(13)で表される化合物1モルに対して通常0.1〜100Lの範囲から適宜選択すればよい。 The inert solvent that can be used in this reaction may be any solvent that does not significantly inhibit this reaction, and examples thereof include chain or cyclic ethers such as diethyl ether, tetrahydrofuran (THF) and dioxane, pentane, hexane and cyclohexane. Chain or cyclic saturated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride, halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene. Classes, nitriles such as acetonitrile, esters such as ethyl acetate, carboxylic acids such as acetic acid and propionic acid, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazole. Polar solvents such as lydinone, alcohols such as methanol, ethanol and isopropanol can be mentioned, and these inert solvents can be used alone or in combination of two or more. The amount to be used may be appropriately selected from the range of usually 0.1 to 100 L with respect to 1 mol of the compound represented by the general formula (13).

本反応は等モル反応であるので、各化合物を等モル使用すればよいが、いずれかの化合物を過剰に用いることもできる。反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。また単離せずに次の反応に用いることもできる。 Since this reaction is an equimolar reaction, each compound may be used in an equimolar amount, but any of the compounds may be used in excess. The reaction temperature may usually be in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but may be appropriately selected in the range of several minutes to 48 hours. Just do it. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary. It can also be used in the next reaction without isolation.

式工程[n]
一般式(5)で表される化合物は、一般(12)で表される化合物を、酸存在下反応させることにより、製造することができる。
Formula process [n]
The compound represented by the general formula (5) can be produced by reacting the compound represented by the general formula (12) in the presence of an acid.

本反応で使用できる酸としては、例えば、塩化水素酢酸溶液、臭化水素酢酸溶液、ヨウ化水素酢酸溶液等が挙げられ、1種又は2種以上を使用してもよい。酸の使用量としては、一般式(12)で表される化合物1モルに対して通常1.0倍モル〜10倍モルの範囲から適宜選択すればよい。 Examples of the acid that can be used in this reaction include a hydrogen chloride acetic acid solution, a hydrogen bromide acetic acid solution, a hydrogen iodide acetic acid solution, and the like, and one kind or two or more kinds may be used. The amount of the acid used may be appropriately selected from the range of usually 1.0 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (12).

本反応の反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。 The reaction temperature of this reaction is usually in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but ranges from several minutes to 48 hours. It may be selected as appropriate. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.

製造方法3
(式中、X、Y、m及びnは前記に同じ。)
Manufacturing method 3
(In the formula, X, Y, m and n are the same as described above.)

即ち、下記工程[o]及び[p]並びに上記製造方法1の工程[d]乃至[j]と同様の製造方法により、一般式(1)で表される化合物を製造することができる。
工程[o]
一般式(10)で表される化合物は、一般式(12)で表される化合物を、酸存在下反応させることにより、製造することができる。
That is, the compound represented by the general formula (1) can be produced by the following production methods [o] and [p] and the same production methods as those of the above production method 1 steps [d] to [j].
Step [o]
The compound represented by the general formula (10) can be produced by reacting the compound represented by the general formula (12) in the presence of an acid.

本反応で使用できる酸としては、例えば、塩酸、臭化水素酸、ヨウ化水素酸等が挙げられ、1種又は2種以上を使用してもよい。酸の使用量としては、一般式(12)で表される化合物1モルに対して通常1.0倍モル〜10倍モルの範囲から適宜選択すればよい。 Examples of the acid that can be used in this reaction include hydrochloric acid, hydrobromic acid, hydroiodic acid and the like, and one or more of them may be used. The amount of the acid used may be appropriately selected from the range of usually 1.0 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (12).

本反応の反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。 The reaction temperature of this reaction is usually in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but ranges from several minutes to 48 hours. It may be selected as appropriate. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.

工程[p]
一般式(5)で表される化合物は、一般式(10)で表される化合物と、ハロゲン化剤とを、不活性溶媒存在下若しくは無溶媒で反応させることにより、製造することができる。
Step [p]
The compound represented by the general formula (5) can be produced by reacting the compound represented by the general formula (10) with a halogenating agent in the presence of an inert solvent or in the absence of a solvent.

本反応で使用できるハロゲン化剤としては、例えば、オキシ塩化リン、塩化スルフリル、塩化チオニル、三塩化リン、五塩化リン、塩化オキサリル、三臭化リン、五臭化リン、臭化水素、ヨウ化水素等が挙げられ、それらの使用量としては、一般式(10)で表される化合物1モルに対して通常0.5倍モル〜10倍モルの範囲から適宜選択すればよい。 Examples of the halogenating agent that can be used in this reaction include phosphorus oxychloride, sulfryl chloride, thionyl chloride, phosphorus trichloride, phosphorus pentachloride, oxalyl chloride, phosphorus tribromide, phosphorus pentabromide, hydrogen bromide, and iodide. Examples thereof include hydrogen, and the amount thereof to be used may be appropriately selected from the range of usually 0.5 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (10).

本反応の反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。 The reaction temperature of this reaction is usually in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but ranges from several minutes to 48 hours. It may be selected as appropriate. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.

製造方法4
(式中、X、Y、m及びnは前記に同じ。)
Manufacturing method 4
(In the formula, X, Y, m and n are the same as described above.)

即ち、下記工程[q]及び[r]並びに上記製造方法1の工程[d]乃至[j]と同様の製造方法により、一般式(1)で表される化合物を製造することができる。
工程[q]
一般式(11)で表される化合物は、一般式(12)で表される化合物を、酸存在下反応させることにより、製造することができる。
That is, the compound represented by the general formula (1) can be produced by the following production methods [q] and [r] and the same production methods as those of the above production method 1 steps [d] to [j].
Step [q]
The compound represented by the general formula (11) can be produced by reacting the compound represented by the general formula (12) in the presence of an acid.

本反応で使用できる酸としては、例えば、塩酸、臭化水素酸、ヨウ化水素酸等が挙げられ、1種又は2種以上を使用してもよい。酸の使用量としては、一般式(12)で表される化合物1モルに対して通常1.0倍モル〜10倍モルの範囲から適宜選択すればよい。 Examples of the acid that can be used in this reaction include hydrochloric acid, hydrobromic acid, hydroiodic acid and the like, and one or more of them may be used. The amount of the acid used may be appropriately selected from the range of usually 1.0 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (12).

本反応の反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。 The reaction temperature of this reaction is usually in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but ranges from several minutes to 48 hours. It may be selected as appropriate. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.

工程[r]
一般式(5)で表される化合物は、一般式(11)で表される化合物と、ハロゲン化剤とを、不活性溶媒存在下若しくは無溶媒で反応させることにより、製造することができる。
Step [r]
The compound represented by the general formula (5) can be produced by reacting the compound represented by the general formula (11) with a halogenating agent in the presence of an inert solvent or in the absence of a solvent.

本反応で使用できるハロゲン化剤としては、例えば、オキシ塩化リン、塩化スルフリル、塩化チオニル、三塩化リン、五塩化リン、塩化オキサリル、三臭化リン、五臭化リン、臭化水素、ヨウ化水素等が挙げられ、それらの使用量としては、一般式(10)で表される化合物1モルに対して通常0.5倍モル〜10倍モルの範囲から適宜選択すればよい。 Examples of the halogenating agent that can be used in this reaction include phosphorus oxychloride, sulfryl chloride, thionyl chloride, phosphorus trichloride, phosphorus pentachloride, oxalyl chloride, phosphorus tribromide, phosphorus pentabromide, hydrogen bromide, and iodide. Examples thereof include hydrogen, and the amount thereof to be used may be appropriately selected from the range of usually 0.5 times mol to 10 times mol with respect to 1 mol of the compound represented by the general formula (10).

本反応の反応温度は通常約0℃から不活性溶媒の還流温度の範囲で行えば良く、反応時間は反応規模、反応温度等により変化し、一定ではないが、数分〜48時間の範囲で適宜選択すれば良い。反応終了後、目的物を含む反応系から目的物を常法により単離すれば良く、必要に応じて再結晶、カラムクロマトグラフィー等で精製することにより目的物を製造することができる。 The reaction temperature of this reaction is usually in the range of about 0 ° C. to the reflux temperature of the inert solvent, and the reaction time varies depending on the reaction scale, reaction temperature, etc., and is not constant, but ranges from several minutes to 48 hours. It may be selected as appropriate. After completion of the reaction, the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.

以下に本発明の代表的な実施例を例示するが、本発明はこれらに限定されるものではない。 Representative examples of the present invention will be illustrated below, but the present invention is not limited thereto.

実施例1.
7‐クロロ‐2‐(エチルスルホニル)ヘプタ‐2‐エンニトリルの製造
5‐クロロペンタナール1.21g(0.01mol)および2‐(エチルスルホニル)アセトニトリル1.33g(0.01mol)を酢酸4mLに溶かし、内温50℃に加熱した。撹拌下、ピペリジン0.17g(2mmol)の酢酸1mL溶液を少しずつ滴下し、その後、1時間50℃に加熱した。放冷後、反応混合物に水を加え、トルエンで抽出、有機層を水、次いで飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル‐ヘキサン 1:2)により精製し、表題の化合物 1.92g(81%) を粘性油状物として得た。
物性値
H‐NMR(δ,CDCl)1.40(3H,t),
1.74‐1.91(4H,m),2.65(2H,dt),
3.23(2H,q),3.58(2H,t),7.55(1H,t)
Example 1.
Production of 7-Chloro-2- (ethylsulfonyl) hepta-2-enenitrile
1.21 g (0.01 mol) of 5-chloropentanal and 1.33 g (0.01 mol) of 2- (ethylsulfonyl) acetonitrile were dissolved in 4 mL of acetic acid and heated to an internal temperature of 50 ° C. Under stirring, a solution of 0.17 g (2 mmol) of piperidine in 1 mL of acetic acid was added dropwise little by little, and then heated to 50 ° C. for 1 hour. After allowing to cool, water was added to the reaction mixture, extracted with toluene, the organic layer was washed with water and then saturated brine, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate-hexane 1: 2) to give 1.92 g (81%) of the title compound as a viscous oil.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 1.40 (3H, t),
1.74-1.91 (4H, m), 2.65 (2H, dt),
3.23 (2H, q), 3.58 (2H, t), 7.55 (1H, t)

実施例2.
4‐(3‐クロロプロピル)‐5‐(ジメチルアミノ)‐2‐(エチルスルホニル)ペンタ‐2,4‐ジエンニトリルの製造
7‐クロロ‐2‐(エチルスルホニル)ヘプタ‐2‐エンニトリル0.59g(2.5mmol)をトルエン5mLに溶かし、無水酢酸0.61g(6mmol)を加え、内温80℃に加熱した。撹拌下、N,N‐ジメチルホルムアミド ジメチルアセタール0.36g(3mmol)を少しずつ滴下し、その後、15分間80℃に加熱した。放冷後、反応混合物に水を加え、酢酸エチルで抽出、有機層を水、次いで飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル‐ヘキサン 4:1)により精製し、表題の化合物 0.60g(83%) を得た。
物性値
融点 110.5‐111.5℃
H‐NMR(δ,CDCl)1.33(3H,t),
1.97‐2.07(2H,m),2.79‐2.88(2H,m),
3.17(2H,q),3.26(6H,s),3.71(2H,t),
6.85(1H,s),7.27(1H,s)
Example 2.
Production of 4- (3-chloropropyl) -5- (dimethylamino) -2- (ethylsulfonyl) penta-2,4-dienenitrile
0.59 g (2.5 mmol) of 7-chloro-2- (ethylsulfonyl) hepta-2-enenitrile was dissolved in 5 mL of toluene, 0.61 g (6 mmol) of acetic anhydride was added, and the mixture was heated to an internal temperature of 80 ° C. Under stirring, 0.36 g (3 mmol) of N, N-dimethylformamide dimethylacetal was added dropwise, and then heated to 80 ° C. for 15 minutes. After allowing to cool, water was added to the reaction mixture, the mixture was extracted with ethyl acetate, the organic layer was washed with water and then saturated brine, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate-hexane 4: 1) to give 0.60 g (83%) of the title compound.
Physical property value Melting point 110.5-11.5 ° C
1 1 H-NMR (δ, CDCl 3 ) 1.33 (3H, t),
1.97-2.07 (2H, m), 2.79-2.88 (2H, m),
3.17 (2H, q), 3.26 (6H, s), 3.71 (2H, t),
6.85 (1H, s), 7.27 (1H, s)

実施例3.
2‐クロロ‐5‐(3‐クロロプロピル)‐3‐(エチルスルホニル)ピリジンの製造
塩化水素の酢酸エチル溶液(4mol/L) 80mL中に、撹拌下、4‐(3‐クロロプロピル)‐5‐(ジメチルアミノ)‐2‐(エチルスルホニル)ペンタ‐2,4‐ジエンニトリル 23.3g(0.08mol)を少しずつ加え、その後、混合物を4時間40℃に加熱した。放冷後、反応混合物に水80mLおよび酢酸エチル80mLを加えて撹拌した後、分液した。有機層を水、飽和重曹水、次いで飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル‐ヘキサン 1:2)により精製し、表題の化合物 22.1g(98%) を得た。
物性値
融点 60‐61℃
H‐NMR(δ,CDCl)1.31(3H,t),
2.10‐2.17(2H,m),2.90‐2.94(2H,m),
3.50(2H,q),3.56(2H,t),8.28(1H,d), 8.49(1H,d)
Example 3.
Preparation of 2-chloro-5- (3-chloropropyl) -3- (ethylsulfonyl) pyridine
4- (3-Chloropropyl) -5- (dimethylamino) -2- (ethylsulfonyl) penta-2,4-dienenitrile in 80 mL of an ethyl acetate solution of hydrogen chloride (4 mol / L) with stirring. 3 g (0.08 mol) was added in small portions, after which the mixture was heated to 40 ° C. for 4 hours. After allowing to cool, 80 mL of water and 80 mL of ethyl acetate were added to the reaction mixture, and the mixture was stirred and then separated. The organic layer was washed with water, saturated aqueous sodium hydrogen carbonate and then saturated brine, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate-hexane 1: 2) to obtain 22.1 g (98%) of the title compound.
Physical property melting point 60-61 ° C
1 1 H-NMR (δ, CDCl 3 ) 1.31 (3H, t),
2.10-2.17 (2H, m), 2.90-2.94 (2H, m),
3.50 (2H, q), 3.56 (2H, t), 8.28 (1H, d), 8.49 (1H, d)

実施例4.
2‐ブロモ‐5‐(3‐クロロプロピル)‐3‐(エチルスルホニル)ピリジンの製造
4‐(3‐クロロプロピル)‐5‐(ジメチルアミノ)‐2‐(エチルスルホニル)ペンタ‐2,4‐ジエンニトリル 5.82g(0.02mol)およびクロロベンゼン20mLの混合物を冷水で冷却した。撹拌下、臭化水素の酢酸溶液(5.1mol/L) 16mLを少しずつ滴下し、その後、室温で3時間撹拌した。反応混合物に水およびクロロベンゼンを加えて撹拌した後、分液した。有機層を水、飽和重曹水、次いで水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル‐ヘキサン 1:2)により精製し、表題の化合物 6.42g(98%) を得た。
物性値
融点 52‐53℃
H‐NMR(δ,CDCl)1.31(3H,t),
2.10‐2.17(2H,m),2.88‐2.92(2H,m),
3.52‐3.58(4H,m),8.27(1H,d),
8.45(1H,d)
Example 4.
Production of 2-bromo-5- (3-chloropropyl) -3- (ethylsulfonyl) pyridine
A mixture of 5.82 g (0.02 mol) of 4- (3-chloropropyl) -5- (dimethylamino) -2- (ethylsulfonyl) penta-2,4-dienenitrile and 20 mL of chlorobenzene was cooled with cold water. Under stirring, 16 mL of an acetic acid solution of hydrogen bromide (5.1 mol / L) was added dropwise little by little, and then the mixture was stirred at room temperature for 3 hours. Water and chlorobenzene were added to the reaction mixture, and the mixture was stirred and then separated. The organic layer was washed with water, saturated aqueous sodium hydrogen carbonate, then water and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate-hexane 1: 2) to give the title compound (6.42 g (98%)).
Physical property melting point 52-53 ° C
1 1 H-NMR (δ, CDCl 3 ) 1.31 (3H, t),
2.10-2.17 (2H, m), 2.88-2.92 (2H, m),
3.52-3.58 (4H, m), 8.27 (1H, d),
8.45 (1H, d)

実施例5.
5‐(1‐ブロモ‐3‐クロロプロピル)‐2‐クロロ‐3‐(エチルスルホニル)ピリジンの製造
2‐クロロ‐5‐(3‐クロロプロピル)‐3‐(エチルスルホニル)ピリジン0.30g(1.1mmol)、N‐ブロモスクシンイミド0.21g(1.2mmol)、2,2’‐アゾビス(イソブチロニトリル)18mg(0.11mmol)及びフルオロベンゼン2mLを加え、加熱還流下2時間攪拌した。室温まで冷却後、反応液を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題の化合物0.36g(94%)を得た。
物性値
H‐NMR(δ,CDCl)8.66(1H,d),8.47(1H,d),5.28(1H,dd),3.83‐3.77(1H,m),
3.68‐3.63(1H,m),3.52(2H,q),
2.76‐2.67(1H,m),2.49‐2.40(1H,m),
1.34(3H,t)
Example 5.
Production of 5- (1-Bromo-3-chloropropyl) -2-chloro-3- (ethylsulfonyl) pyridine
2-Chloro-5- (3-chloropropyl) -3- (ethylsulfonyl) pyridine 0.30 g (1.1 mmol), N-bromosuccinimide 0.21 g (1.2 mmol), 2,2'-azobis (iso) 18 mg (0.11 mmol) of butyronitrile) and 2 mL of fluorobenzene were added, and the mixture was stirred under heating under reflux for 2 hours. After cooling to room temperature, the reaction solution was washed successively with saturated aqueous sodium hydrogen carbonate solution and saturated brine. The organic layer was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 0.36 g (94%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.66 (1H, d), 8.47 (1H, d), 5.28 (1H, dd), 3.83-3.77 (1H, m),
3.68-3.63 (1H, m), 3.52 (2H, q),
2.76-2.67 (1H, m), 2.49-2.40 (1H, m),
1.34 (3H, t)

実施例6.
2‐ブロモ‐5‐(1‐ブロモ‐3‐クロロプロピル)‐3‐(エチルスルホニル)ピリジンの製造
2‐ブロモ‐5‐(3‐クロロプロピル)‐3‐(エチルスルホニル)ピリジン6.54g(20mmol)、N‐ブロモスクシンイミド4.27g(24mmol)及びフルオロベンゼン40mLを加え、70℃に加熱攪拌した。ここに2,2’‐アゾビス(イソブチロニトリル)0.32g(2.0mmol)を加え、次いで加熱還流下1時間攪拌した。室温まで冷却後、反応液を水洗、有機層を無水硫酸ナトリウムで乾燥した。溶液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題の化合物7.16g(88%)を得た。
物性値
H‐NMR(δ,CDCl) 8.62(1H,d),
8.46(1H,d),5.27(1H,dd),
3.83‐3.77(1H,m),3.68‐3.63(1H,m),
3.57(2H,q),2.75‐2.67(1H,m),
2.49‐2.42(1H,m),1.34(3H,t)
Example 6.
Preparation of 2-bromo-5- (1-bromo-3-chloropropyl) -3- (ethylsulfonyl) pyridine
6.54 g (20 mmol) of 2-bromo-5- (3-chloropropyl) -3- (ethylsulfonyl) pyridine, 4.27 g (24 mmol) of N-bromosuccinimide and 40 mL of fluorobenzene were added, and the mixture was heated and stirred at 70 ° C. .. To this, 0.32 g (2.0 mmol) of 2,2'-azobis (isobutyronitrile) was added, and then the mixture was stirred under heating under reflux for 1 hour. After cooling to room temperature, the reaction solution was washed with water, and the organic layer was dried over anhydrous sodium sulfate. The solution was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 7.16 g (88%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.62 (1H, d),
8.46 (1H, d), 5.27 (1H, dd),
3.83-3.77 (1H, m), 3.68-3.63 (1H, m),
3.57 (2H, q), 2.75-2.67 (1H, m),
2.49-2.42 (1H, m), 1.34 (3H, t)

実施例7.
2‐ブロモ‐5‐(1,3‐ジブロモプロピル)‐3‐(エチルスルホニル)ピリジンの製造
2‐ブロモ‐5‐(3‐ブロモプロピル)‐3‐(エチルスルホニル)ピリジン0.56g(1.5mmol)、N‐ブロモスクシンイミド0.32g(1.8mmol)、2,2‘‐アゾビス(イソブチロニトリル)27mg(0.16mmol)及びフルオロベンゼン3mLを加え、加熱還流下1時間攪拌した。室温まで冷却後、反応液を水洗、有機層を無水硫酸ナトリウムで乾燥した。溶液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題の化合物0.64g(94%)を得た。
H‐NMR(δ,CDCl) 8.63(1H,d),
8.46(1H,d),5.25(1H,dd),
3.66‐3.60(1H,m),3.57(2H,q),
3.51‐3.46(1H,m),2.83‐2.75(1H,m),
2.56‐2.47(1H,m),1.34(3H,t)
Example 7.
Production of 2-bromo-5- (1,3-dibromopropyl) -3- (ethylsulfonyl) pyridine
2-Bromo-5- (3-bromopropyl) -3- (ethylsulfonyl) pyridine 0.56 g (1.5 mmol), N-bromosuccinimide 0.32 g (1.8 mmol), 2,2'-azobis (iso) 27 mg (0.16 mmol) of butyronitrile) and 3 mL of fluorobenzene were added, and the mixture was stirred under heating under reflux for 1 hour. After cooling to room temperature, the reaction solution was washed with water, and the organic layer was dried over anhydrous sodium sulfate. The solution was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 0.64 g (94%) of the title compound.
1 1 H-NMR (δ, CDCl 3 ) 8.63 (1H, d),
8.46 (1H, d), 5.25 (1H, dd),
3.66-3.60 (1H, m), 3.57 (2H, q),
3.51-3.46 (1H, m), 2.83-2.75 (1H, m),
2.56-2.47 (1H, m), 1.34 (3H, t)

実施例8.
2‐クロロ‐5‐シクロプロピル‐3‐(エチルスルホニル)ピリジンの製造
5‐(1‐ブロモ‐3‐クロロプロピル)‐2‐クロロ‐3‐(エチルスルホニル)ピリジン3.60g(10mmol)に塩化リチウム1.27g(30 mmol)、亜鉛粉末1.32g(20mmol)及び1‐メチル‐2‐ピロリドン5mLを加え、60℃で3時間攪拌した。反応混合物に水を加え、生成物を酢酸エチルにより抽出、抽出液を飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題の化合物2.11g(86%)を得た。
物性値
H‐NMR(δ,CDCl) 8.40(1H,d),
8.01(1H,d),3.49(2H,q),
2.02‐1.96(1H,m),1.30(3H,t),
1.19‐1.14(2H,m),0.84‐0.80(2H,m)
Example 8.
Production of 2-Chloro-5-Cyclopropyl-3- (Ethylsulfonyl) Pyridine
1.27 g (30 mmol) of lithium chloride, 1.32 g (20 mmol) of zinc powder and 3.60 g (10 mmol) of 5- (1-bromo-3-chloropropyl) -2-chloro-3- (ethylsulfonyl) pyridine. 5 mL of 1-methyl-2-pyrrolidone was added, and the mixture was stirred at 60 ° C. for 3 hours. Water was added to the reaction mixture, the product was extracted with ethyl acetate, and the extract was washed with saturated brine. The organic layer was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 2.11 g (86%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.40 (1H, d),
8.01 (1H, d), 3.49 (2H, q),
2.02-1.96 (1H, m), 1.30 (3H, t),
1.19-1.14 (2H, m), 0.84-0.80 (2H, m)

実施例9.
2‐ブロモ‐5‐シクロプロピル‐3‐(エチルスルホニル)ピリジンの製造
2‐ブロモ‐5‐(1‐ブロモ‐3‐クロロプロピル)‐3‐(エチルスルホニル)ピリジン 0.41 g(1 mmol)に臭化リチウム 0.086 g(1 mmol)、亜鉛‐銅合金 0.15 g(2.1 mmol)及び1‐メチル‐2‐ピロリドン 0.5 mLを加え、40 ℃で8時間攪拌した。反応混合物に水を加え、生成物を酢酸エチルにより抽出、抽出液を飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題の化合物0.20g(68%)を得た。
物性値
H‐NMR(δ,CDCl) 8.36(1H,d),8.00(1H,d),3.53(2H,q),2.01‐1.94(1H,m),1.30(3H,t),1.20‐1.15(2H,m),
0.85‐0.80(2H,m)
Example 9.
Production of 2-bromo-5-cyclopropyl-3- (ethylsulfonyl) pyridine
2-Bromo-5- (1-bromo-3-chloropropyl) -3- (ethylsulfonyl) pyridine 0.41 g (1 mmol), lithium bromide 0.086 g (1 mmol), zinc-copper alloy 0 .15 g (2.1 mmol) and 0.5 mL of 1-methyl-2-pyrrolidone were added and stirred at 40 ° C. for 8 hours. Water was added to the reaction mixture, the product was extracted with ethyl acetate, and the extract was washed with saturated brine. The organic layer was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 0.20 g (68%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.36 (1H, d), 8.00 (1H, d), 3.53 (2H, q), 2.01-1.94 (1H, m), 1.30 (3H, t), 1.20-1.15 (2H, m),
0.85-0.80 (2H, m)

実施例10.
2‐ブロモ‐5‐シクロプロピル‐3‐(エチルスルホニル)ピリジンの製造
2‐ブロモ‐5‐(1,3‐ジブロモプロピル)‐3‐(エチルスルホニル)ピリジン0.45g(1mmol)に亜鉛‐銅合金0.15g(2mmol)及び1‐メチル‐2‐ピロリドン0.5mLを加え、25 ℃で2時間攪拌した。反応混合物に水を加え、生成物を酢酸エチルにより抽出、抽出液を飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題の化合物0.26g(90%)を得た。
物性値
H‐NMR(δ,CDCl) 8.36(1H,d),
8.00(1H,d),3.53(2H,q),
2.01‐1.94(1H,m),1.30(3H,t),
1.20‐1.15(2H,m),0.85‐0.80(2H,m)
Example 10.
Production of 2-bromo-5-cyclopropyl-3- (ethylsulfonyl) pyridine
2-Bromo-5- (1,3-dibromopropyl) -3- (ethylsulfonyl) pyridine 0.45 g (1 mmol), zinc-copper alloy 0.15 g (2 mmol) and 1-methyl-2-pyrrolidone 0.5 mL Was added, and the mixture was stirred at 25 ° C. for 2 hours. Water was added to the reaction mixture, the product was extracted with ethyl acetate, and the extract was washed with saturated brine. The organic layer was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 0.26 g (90%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.36 (1H, d),
8.00 (1H, d), 3.53 (2H, q),
2.01-1.94 (1H, m), 1.30 (3H, t),
1.20-1.15 (2H, m), 0.85-0.80 (2H, m)

実施例11.
5‐シクロプロピル‐3‐(エチルスルホニル)ピコリン酸メチルの製造
ステンレス製オートクレーブに2‐クロロ‐5‐シクロプロピル‐3‐(エチルスルホニル)ピリジン1.22g(5mmol)、酢酸ナトリウム0.50g(6.1mmol)、ビス[2‐(ジフェニルホスフィノ)フェニル]エーテル 27mg(0.05mmol)、酢酸パラジウム5mg(0.02mmol)、およびメタノール10mLを加え封じ、系内を一酸化炭素で置換した。次いで一酸化炭素を3MPaまで圧入し、100℃まで加熱、同温度で4時間攪拌した。室温まで冷却、常圧に戻した後、反応混合物に飽和炭酸水素ナトリウム水溶液を加え、生成物を酢酸エチルにより抽出した。抽出液を飽和食塩水で洗浄、有機層を無水硫酸ナトリウムで乾燥した。溶液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題化合物1.27g(95%)を得た。
物性値
H‐NMR(δ,CDCl) 8.61(1H,d),
7.92(1H,d),4.02(3H,s),3.57(2H,q),
2.08‐2.02(1H,m),1.34(3H,t),
1.24‐1.19(2H,m),0.90‐0.86(2H,m)
Example 11.
Production of Methyl 5-Cyclopropyl-3- (Ethylsulfonyl) Picolinate
1.22 g (5 mmol) of 2-chloro-5-cyclopropyl-3- (ethylsulfonyl) pyridine, 0.50 g (6.1 mmol) of sodium acetate, bis [2- (diphenylphosphino) phenyl] ether in a stainless steel autoclave. 27 mg (0.05 mmol), 5 mg (0.02 mmol) of palladium acetate, and 10 mL of methanol were added and sealed, and the inside of the system was replaced with carbon monoxide. Next, carbon monoxide was press-fitted to 3 MPa, heated to 100 ° C., and stirred at the same temperature for 4 hours. After cooling to room temperature and returning to normal pressure, saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the product was extracted with ethyl acetate. The extract was washed with saturated brine and the organic layer was dried over anhydrous sodium sulfate. The solution was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 1.27 g (95%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.61 (1H, d),
7.92 (1H, d), 4.02 (3H, s), 3.57 (2H, q),
2.08-2.02 (1H, m), 1.34 (3H, t),
1.24-1.19 (2H, m), 0.90-0.86 (2H, m)

実施例12.
5‐シクロプロピル‐3‐(エチルスルホニル)ピコリン酸メチルの製造
ステンレス製オートクレーブに2‐ブロモ‐5‐シクロプロピル‐3‐(エチルスルホニル)ピリジン0.29g(1mmol)、酢酸ナトリウム0.99g(1.2mmol)、ビス[2‐(ジフェニルホスフィノ)フェニル]エーテル 11mg(0.02mmol)、酢酸パラジウム2mg(0.01mmol)、およびメタノール2mLを加え封じ、系内を一酸化炭素で置換した。次いで一酸化炭素を3MPaまで圧入し、80℃まで加熱、同温度で4時間攪拌した。室温まで冷却、常圧に戻した後、反応混合物に飽和炭酸水素ナトリウム水溶液を加え、生成物を酢酸エチルにより抽出した。抽出液を飽和食塩水で洗浄、有機層を無水硫酸ナトリウムで乾燥した。溶液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題化合物0.26 g(97%)を得た。
物性値
H‐NMR(δ,CDCl) 8.60(1H,d),
7.92(1H,d),4.02(3H,s),3.56(2H,q),
2.08‐2.01(1H,m),1.34(3H,t),
1.24‐1.19(2H,m),0.90‐0.86(2H,m)
Example 12.
Production of Methyl 5-Cyclopropyl-3- (Ethylsulfonyl) Picolinate
2-Bromo-5-cyclopropyl-3- (ethylsulfonyl) pyridine 0.29 g (1 mmol), sodium acetate 0.99 g (1.2 mmol), bis [2- (diphenylphosphino) phenyl] ether in a stainless steel autoclave 11 mg (0.02 mmol), 2 mg (0.01 mmol) of palladium acetate, and 2 mL of methanol were added and sealed, and the inside of the system was replaced with carbon monoxide. Next, carbon monoxide was press-fitted to 3 MPa, heated to 80 ° C., and stirred at the same temperature for 4 hours. After cooling to room temperature and returning to normal pressure, saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the product was extracted with ethyl acetate. The extract was washed with saturated brine and the organic layer was dried over anhydrous sodium sulfate. The solution was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 0.26 g (97%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.60 (1H, d),
7.92 (1H, d), 4.02 (3H, s), 3.56 (2H, q),
2.08-2.01 (1H, m), 1.34 (3H, t),
1.24-1.19 (2H, m), 0.90-0.86 (2H, m)

実施例13.
3‐(ジメトキシメチル)‐2‐メトキシテトラヒドロ‐2H‐ピランの製造
オルトギ酸トリメチル38.2g(0.36mol)に塩化鉄(III) 0.12gを加え、40℃に加熱した。撹拌下、3,4‐ジヒドロ‐2H‐ピラン25.2g(0.3mol)を少しずつ滴下し、その後、1時間40℃に加熱した。反応混合物を減圧下に蒸留し(73‐77℃/2‐3mmHgの留分を分取)、表題の化合物44.2g(77%) を得た。
Example 13.
Production of 3- (dimethoxymethyl) -2-methoxytetrahydro-2H-pyran
To 38.2 g (0.36 mol) of trimethyl orthoformate, 0.12 g of iron (III) chloride was added, and the mixture was heated to 40 ° C. Under stirring, 25.2 g (0.3 mol) of 3,4-dihydro-2H-pyran was added dropwise, and then heated to 40 ° C. for 1 hour. The reaction mixture was distilled under reduced pressure (fractions of 73-77 ° C./2-3 mmHg were fractionated) to give 44.2 g (77%) of the title compound.

実施例14.
3,4‐ジヒドロ‐2H‐ピラン‐5‐カルボアルデヒドの製造
1N塩酸120mL中に3‐(ジメトキシメチル)‐2‐メトキシテトラヒドロ‐2H‐ピラン22.8g(0.12mol)を加え、室温で3時間撹拌した。反応混合物に少しずつ炭酸水素ナトリウムを加えて中和し、次いで塩化ナトリウムを飽和するまで加えた。酢酸エチルで5回抽出、有機層を合せて飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去し、表題の化合物 12.5g(93%)を得た。
物性値
H‐NMR(δ,CDCl) 1.86‐1.93(2H,m),
2.26(2H,t),4.19(2H,t),7.31(1H,s), 9.23(1H,s)
Example 14.
Production of 3,4-dihydro-2H-pyran-5-carbaldehyde
22.8 g (0.12 mol) of 3- (dimethoxymethyl) -2-methoxytetrahydro-2H-pyran was added to 120 mL of 1N hydrochloric acid, and the mixture was stirred at room temperature for 3 hours. Sodium hydrogen carbonate was added little by little to the reaction mixture to neutralize it, and then sodium chloride was added until saturated. The mixture was extracted 5 times with ethyl acetate, the organic layers were combined, washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 12.5 g (93%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 1.86-1.93 (2H, m),
2.26 (2H, t), 4.19 (2H, t), 7.31 (1H, s), 9.23 (1H, s)

実施例15.
3‐(3,4‐ジヒドロ‐2H‐ピラン‐5‐イル)‐2‐(エチルスルホニル)アクリロニトリルの製造
3,4‐ジヒドロ‐2H‐ピラン‐5‐カルボアルデヒド1.12g(0.01mol)および2‐(エチルスルホニル)アセトニトリル1.33g(0.01mol)を酢酸2mLに溶かし、酢酸アンモニウム0.15g(2mmol)を加え、撹拌下、6時間100℃に加熱した。放冷後、反応混合物に水を加え、酢酸エチルで抽出、有機層を水、飽和重曹水、次いで飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル‐ヘキサン 1:2)により精製し、表題の化合物1.50g(66%) を得た。
物性値
融点 106.5‐108.5℃
H‐NMR(δ,CDCl)1.38(3H,t),
1.99‐2.05(2H,m),2.69(2H,t),
3.22(2H,q),4.24(2H,t),7.29(1H,s),
7.45(1H,s)
Example 15.
Production of 3- (3,4-dihydro-2H-pyran-5-yl) -2- (ethylsulfonyl) acrylonitrile
1.12 g (0.01 mol) of 3,4-dihydro-2H-pyran-5-carbaldehyde and 1.33 g (0.01 mol) of 2- (ethylsulfonyl) acetonitrile were dissolved in 2 mL of acetic acid, and 0.15 g of ammonium acetate (0.15 g). 2 mmol) was added, and the mixture was heated to 100 ° C. for 6 hours with stirring. After allowing to cool, water was added to the reaction mixture, extracted with ethyl acetate, the organic layer was washed with water, saturated aqueous sodium hydrogen carbonate, and then saturated brine, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate-hexane 1: 2) to give 1.50 g (66%) of the title compound.
Physical property Melting point 106.5-108.5 ° C
1 1 H-NMR (δ, CDCl 3 ) 1.38 (3H, t),
1.99-2.05 (2H, m), 2.69 (2H, t),
3.22 (2H, q), 4.24 (2H, t), 7.29 (1H, s),
7.45 (1H, s)

実施例16.
2‐ブロモ‐5‐(3‐ブロモプロピル)‐3‐(エチルスルホニル)ピリジンの製造
臭化水素の酢酸溶液(5.1mol/L)6mL中に3‐(3,4‐ジヒドロ‐2H‐ピラン‐5‐イル)‐2‐(エチルスルホニル)アクリロニトリル0.68g(3mmol)を加え、室温で5日間撹拌した。反応混合物に水を加え、酢酸エチルで抽出、有機層を水、飽和重曹水、次いで飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル‐ヘキサン 1:2)により精製し、表題の化合物0.36g(32%)を得た。
物性値
融点 62‐63℃
H‐NMR(δ,CDCl) 1.31(3H,t),
2.17‐2.25(2H,m),2.88‐2.92(2H,m),
3.41(2H,t),3.55(2H,q),8.27(1H,d),
8.46(1H,d)
Example 16.
Production of 2-Bromo-5- (3-Bromopropyl) -3- (Ethylsulfonyl) Pyridine
Add 0.68 g (3 mmol) of 3- (3,4-dihydro-2H-pyran-5-yl) -2- (ethylsulfonyl) acrylonitrile to 6 mL of an acetic acid solution of hydrogen bromide (5.1 mol / L). The mixture was stirred at room temperature for 5 days. Water was added to the reaction mixture, the mixture was extracted with ethyl acetate, the organic layer was washed with water, saturated aqueous sodium hydrogen carbonate and then saturated brine, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate-hexane 1: 2) to give 0.36 g (32%) of the title compound.
Physical property melting point 62-63 ° C
1 1 H-NMR (δ, CDCl 3 ) 1.31 (3H, t),
2.17-2.25 (2H, m), 2.88-2.92 (2H, m),
3.41 (2H, t), 3.55 (2H, q), 8.27 (1H, d),
8.46 (1H, d)

実施例17.
5-(3-ブロモプロピル)-3-(エチルスルホニル)ピリジン-2-オールの製造
47%臭化水素酸 1.03g(6mmol)に3-(3,4-ジヒドロ−2H−ピラン-5-イル)-2-(エチルスルホニル)アクリロニトリル0.45g(2mmol)を加え、バス温100℃で4時間攪拌した。室温まで冷却後、反応混合物にエタノールを加え減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題の化合物0.62g(100%)を得た。
物性値
H‐NMR(δ,CDCl) 13.07(1H,s),
8.21(1H,d),7.67(1H,d),3.52(2H,q),
3.41(2H,t),2.69(2H,t),
2.16−2.09(2H,m),1.31(3H,t)
Example 17.
Production of 5- (3-Bromopropyl) -3- (Ethylsulfonyl) Pyridine-2-ol
To 1.03 g (6 mmol) of 47% hydrobromide, 0.45 g (2 mmol) of 3- (3,4-dihydro-2H-pyran-5-yl) -2- (ethylsulfonyl) acrylonitrile was added, and the bath temperature was 100. The mixture was stirred at ° C. for 4 hours. After cooling to room temperature, ethanol was added to the reaction mixture and concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 0.62 g (100%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 13.07 (1H, s),
8.21 (1H, d), 7.67 (1H, d), 3.52 (2H, q),
3.41 (2H, t), 2.69 (2H, t),
2.16-2.09 (2H, m), 1.31 (3H, t)

実施例18.
5-(3-クロロプロピル)-3-(エチルスルホニル)ピリジン-2-オールの製造
ガラス製耐圧管に35%塩酸0.63g(6mmol)及び3−(3,4−ジヒドロ−2H−ピラン−5−イル)−2−(エチルスルホニル)アクリロニトリル0.45g(2mmol)を加え封じ、バス温100℃で12時間、更に120℃で3時間攪拌した。室温まで冷却後、反応混合物にエタノールを加え減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題の化合物0.46g(88%)を得た。
物性値
H‐NMR(δ,CDCl) 13.08(1H,s),
8.21(1H,d),7.66(1H,s)
,3.57−3.49(4H,m),2.69(2H,t),
2.08−2.01(2H,m),1.31(3H,t)
Example 18.
Production of 5- (3-chloropropyl) -3- (ethylsulfonyl) pyridine-2-ol
0.63 g (6 mmol) of 35% hydrochloric acid and 0.45 g (2 mmol) of 3- (3,4-dihydro-2H-pyran-5-yl) -2- (ethylsulfonyl) acrylonitrile were added to a glass pressure-resistant tube and sealed. The mixture was stirred at a bath temperature of 100 ° C. for 12 hours and further at 120 ° C. for 3 hours. After cooling to room temperature, ethanol was added to the reaction mixture and concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 0.46 g (88%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 13.08 (1H, s),
8.21 (1H, d), 7.66 (1H, s)
, 3.57-3.49 (4H, m), 2.69 (2H, t),
2.08-2.01 (2H, m), 1.31 (3H, t)

実施例19.
3-(エチルスルホニル)-5-(3-ヒドロキシプロピル)ピリジン-2-オールの製造
22%塩酸1.02g(6mmol)に3-(3,4-ジヒドロ−2H−ピラン-5-イル)-2-(エチルスルホニル)アクリロニトリル0.46g(2mmol)を加え、加熱還流下1時間攪拌した。室温まで冷却後、反応混合物にエタノールを加え減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題の化合物0.42g(85%)を得た。
物性値
H‐NMR(δ,CDCl) 12.90(1H,s),
8.21(1H,s),7.67(1H,s),3.67(2H,t),
3.52(2H,q),2.62(2H,t),
1.86−1.80(2H,m),1.30(3H,t)
Example 19.
Production of 3- (Ethylsulfonyl) -5- (3-Hydroxypropyl) Pyridine-2-ol
To 1.02 g (6 mmol) of 22% hydrochloric acid, 0.46 g (2 mmol) of 3- (3,4-dihydro-2H-pyran-5-yl) -2- (ethylsulfonyl) acrylonitrile was added, and the mixture was stirred under heating under reflux for 1 hour. did. After cooling to room temperature, ethanol was added to the reaction mixture and concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 0.42 g (85%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 12.90 (1H, s),
8.21 (1H, s), 7.67 (1H, s), 3.67 (2H, t),
3.52 (2H, q), 2.62 (2H, t),
1.86-1.80 (2H, m), 1.30 (3H, t)

実施例20.
2-クロロ-5-(3-クロロプロピル)-3-(エチルスルホニル)ピリジンの製造
3-(エチルスルホニル)-5-(3-ヒドロキシプロピル)ピリジン-2-オール0.20g(0.83mmol)にオキシ塩化りん0.67g(4.4mmol)を加え、バス温100℃で9時間攪拌した。室温まで冷却後、反応混合物を20%水酸化ナトリウム水溶液と氷の混合物に注ぎ、生成物を酢酸エチルにより抽出した。抽出液を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーより精製し、表題の化合物0.046g(20%)を得た。
物性値
H‐NMR(δ,CDCl) 8.49(1H,d),
8.28(1H,d),3.57(2H,t),3.51(2H,q),
2.92(2H,t),2.17−2.10(2H,m)
,1.31(3H,t)
Example 20.
Production of 2-chloro-5- (3-chloropropyl) -3- (ethylsulfonyl) pyridine
To 0.20 g (0.83 mmol) of 3- (ethylsulfonyl) -5- (3-hydroxypropyl) pyridine-2-ol, 0.67 g (4.4 mmol) of phosphorus oxychloride was added, and the bath temperature was 100 ° C. for 9 hours. Stirred. After cooling to room temperature, the reaction mixture was poured into a mixture of 20% aqueous sodium hydroxide solution and ice, and the product was extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to give 0.046 g (20%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.49 (1H, d),
8.28 (1H, d), 3.57 (2H, t), 3.51 (2H, q),
2.92 (2H, t), 2.17-2.10 (2H, m)
, 1.31 (3H, t)

実施例21.
2‐ブロモ‐5‐(3‐ブロモプロピル)‐3‐(エチルスルホニル)ピリジンの製造
ガラス製耐圧管に臭化水素30%酢酸溶液6.80g(25mmol)及び 3-(3,4-ジヒドロ−2H−ピラン-5-イル)-2-(エチルスルホニル)アクリロニトリル1.13g(5mmol)を加え封じ、バス温80℃、6時間撹拌した。室温まで冷却後、反応混合物を20%水酸化ナトリウム水溶液20.9gと氷15gの混合物に注ぎ、生成物を酢酸エチルにより抽出した。抽出液を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題の化合物1.59g(86%)を得た。
物性値
H‐NMR(δ,CDCl) 8.46(1H,d),
8.27(1H,d),3.55(2H,q),3.42(2H,t),
2.90(2H,t),2.24−2.17(2H,m),
1.31(3H,t)
Example 21.
Production of 2-Bromo-5- (3-Bromopropyl) -3- (Ethylsulfonyl) Pyridine
6.80 g (25 mmol) of a 30% hydrogen bromide acetic acid solution and 1.13 g (5 mmol) of 3- (3,4-dihydro-2H-pyran-5-yl) -2- (ethylsulfonyl) acrylonitrile in a glass pressure-resistant tube. Was sealed, and the mixture was stirred at a bath temperature of 80 ° C. for 6 hours. After cooling to room temperature, the reaction mixture was poured into a mixture of 20.9 g of 20% aqueous sodium hydroxide solution and 15 g of ice, and the product was extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to give 1.59 g (86%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.46 (1H, d),
8.27 (1H, d), 3.55 (2H, q), 3.42 (2H, t),
2.90 (2H, t), 2.24-2.17 (2H, m),
1.31 (3H, t)

参考例1.
3‐エチルスルホニル‐5‐シクロプロピル‐2‐ピリジンカルボン酸の製造方法
3‐エチルスルホニル‐5‐シクロプロピル‐2‐ピリジンカルボン酸メチルエステル539mg、85%水酸化カリウム198mg、メタノール1ml、水1mlの混合物を40℃で10分間撹拌した。25℃まで冷却した後、1N塩酸4mlと飽和食塩水4mlを加え、酢酸エチルで抽出した。抽出液を濃縮して、表題の化合物498mgを得た。
物性値
H‐NMR(δ,CDCl)8.58(s,1H),8.21(d,1H),
3.82(q,2H),2.11(m,1H),1.33(t,3H),
1.27(m,2H),0.97(m,2H).
Reference example 1.
Method for Producing 3-Ethylsulfonyl-5-Cyclopropyl-2-pyridinecarboxylic Acid
A mixture of 539 mg of 3-ethylsulfonyl-5-cyclopropyl-2-pyridinecarboxylic acid methyl ester, 198 mg of 85% potassium hydroxide, 1 ml of methanol and 1 ml of water was stirred at 40 ° C. for 10 minutes. After cooling to 25 ° C., 4 ml of 1N hydrochloric acid and 4 ml of saturated brine were added, and the mixture was extracted with ethyl acetate. The extract was concentrated to give 498 mg of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.58 (s, 1H), 8.21 (d, 1H),
3.82 (q, 2H), 2.11 (m, 1H), 1.33 (t, 3H),
1.27 (m, 2H), 0.97 (m, 2H).

参考例2.
3‐エチルスルホニル‐5‐シクロプロピル‐N‐[2‐ヒドロキシ‐5‐(トリフルオロメチルスルフィニル)フェニル]ピコリンアミドの製造方法
3‐エチルスルホニル‐5‐シクロプロピル‐2‐ピリジンカルボン酸255mg、DMF7m)、クロロホルム4mlの混合物に氷冷下、塩化オキサリル254mgを加えた。20℃で30分撹拌後、減圧下濃縮した。残渣にTHF2mlを加え、これを2‐アミノ‐4‐(トリフルオロメチルスルフィニル)フェノール225mg、ピリジン237mg、THF2mlの混合物に氷冷下滴下した。20℃で3時間撹拌後、氷水を加えて酢酸エチルで抽出した。有機層を1N塩酸と飽和食塩水で洗浄した後、減圧下濃縮して、表題の化合物450mgを得た。
物性値
H‐NMR(δ,CDCl)9.94(br,1H),
8.55(d,1H),8.17(d,1H),8.08(d,1H),
7.45(dd,1H),7.14(d,1H),3.93(q,2H),
2.10(m,1H),1.39(t,3H),1.30(m,2H),
0.96(m,2H).
Reference example 2.
Method for Producing 3-Ethylsulfonyl-5-Cyclopropyl-N- [2-Hydroxy-5- (Trifluoromethylsulfinyl) Phenyl] Picoline Amide
To a mixture of 3-ethylsulfonyl-5-cyclopropyl-2-pyridinecarboxylic acid (255 mg, DMF7 m) and chloroform (4 ml) was added 254 mg of oxalyl chloride under ice-cooling. After stirring at 20 ° C. for 30 minutes, the mixture was concentrated under reduced pressure. 2 ml of THF was added to the residue, and this was added dropwise to a mixture of 225 mg of 2-amino-4- (trifluoromethylsulfinyl) phenol, 237 mg of pyridine and 2 ml of THF under ice-cooling. After stirring at 20 ° C. for 3 hours, ice water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with 1N hydrochloric acid and saturated brine, and concentrated under reduced pressure to give 450 mg of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 9.94 (br, 1H),
8.55 (d, 1H), 8.17 (d, 1H), 8.08 (d, 1H),
7.45 (dd, 1H), 7.14 (d, 1H), 3.93 (q, 2H),
2.10 (m, 1H), 1.39 (t, 3H), 1.30 (m, 2H),
0.96 (m, 2H).

参考例3.
5-シクロプロピル-3-(エチルスルホニル)‐N‐(2-ヒドロキシ-5-((トリフルオロメチル)スルホニル)フェニル)ピコリンアミドの製造方法
ステンレス製オートクレーブに2-クロロ-5-シクロプロピル-3-(エチルスルホニル)ピリジン73.8mg(0.30mmol)、2-アミノ-4-((トリフルオロメチル)スルホニル)フェノール71.6mg(0.30mmol)、酢酸ナトリウム31.6mg(0.39mmol)、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル16.3mg(0.03mmol)、酢酸パラジウム3.2mg(0.01mmol)、およびトルエン 0.6mLを加え封じ、系内を一酸化炭素で置換した。次いで一酸化炭素を3MPaまで圧入し、100℃まで加熱、同温度で4時間攪拌した。室温まで冷却、常圧に戻した後、反応混合物に飽和炭酸水素ナトリウム水溶液を加え、生成物を酢酸エチルにより抽出した。抽出液を飽和食塩水で洗浄、有機層を無水硫酸ナトリウムで乾燥した。溶液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題の化合物106.6mg(75%)を得た。
物性値
H‐NMR(δ,CDCl) 9.89(1H,s),
9.59(1H,br),8.56(1H,d),
8.18−8.17(2H,m),7.70(1H,dd),
7.15(1H,d),3.92(2H,q),
2.15−2.08(1H,m),1.38(3H,t),
1.32−1.29(2H,m),0.99−0.95(2H,m)
Reference example 3.
Method for Producing 5-Cyclopropyl-3- (Ethylsulfonyl) -N- (2-Hydroxy-5-((Trifluoromethyl) Sulfonyl) Phenyl) Picoline Amide
2-Chloro-5-cyclopropyl-3- (ethylsulfonyl) pyridine 73.8 mg (0.30 mmol), 2-amino-4-((trifluoromethyl) sulfonyl) phenol 71.6 mg (0.) in a stainless steel autoclave. 30 mmol), sodium acetate 31.6 mg (0.39 mmol), bis [2- (diphenylphosphino) phenyl] ether 16.3 mg (0.03 mmol), palladium acetate 3.2 mg (0.01 mmol), and toluene 0. 6 mL was added and sealed, and the inside of the system was replaced with carbon monoxide. Next, carbon monoxide was press-fitted to 3 MPa, heated to 100 ° C., and stirred at the same temperature for 4 hours. After cooling to room temperature and returning to normal pressure, saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the product was extracted with ethyl acetate. The extract was washed with saturated brine and the organic layer was dried over anhydrous sodium sulfate. The solution was concentrated under reduced pressure and the resulting residue was purified by silica gel column chromatography to give 106.6 mg (75%) of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 9.89 (1H, s),
9.59 (1H, br), 8.56 (1H, d),
8.18-8.17 (2H, m), 7.70 (1H, dd),
7.15 (1H, d), 3.92 (2H, q),
2.15-2.08 (1H, m), 1.38 (3H, t),
1.32-1.29 (2H, m), 0.99-0.95 (2H, m)

参考例4.
2‐(3‐エチルスルホニル‐5‐シクロプロピルピリジン‐2‐イル)‐5‐(トリフルオロメチルスルフィニル)ベンズオキサゾールの製造方法
3‐エチルスルホニル‐5‐シクロプロピル‐N‐[2‐ヒドロキシ‐5‐(トリフルオロメチルスルフィニル)フェニル]ピコリンアミド340mg、パラトルエンスルホン酸1水和物168mg、キシレン3mlの混合物を還流下、ディーンスターク装置で脱水しながら6時間撹拌した。20℃まで冷却後、酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄した。有機層を減圧下濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィーで精製して、表題の化合物260mgを得た。
物性値
H‐NMR(δ,CDCl)8.77(d,1H),8.33(s,1H),8.13(d,1H),7.91(dd,1H),7.86(dd,1H),4.01(q,2H),2.14(m,1H),1.43(t,3H),
1.31(m,2H),0.98(m,2H).
Reference example 4.
Method for Producing 2- (3-Ethylsulfonyl-5-Cyclopropylpyridine-2-yl) -5- (Trifluoromethylsulfinyl) benzoxazole
Dean under reflux with a mixture of 3-ethylsulfonyl-5-cyclopropyl-N- [2-hydroxy-5- (trifluoromethylsulfinyl) phenyl] picolinamide 340 mg, p-toluenesulfonic acid monohydrate 168 mg, and xylene 3 ml. The mixture was stirred for 6 hours while dehydrating with a Stark apparatus. After cooling to 20 ° C., ethyl acetate was added, and the mixture was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine. The organic layer was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 260 mg of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.77 (d, 1H), 8.33 (s, 1H), 8.13 (d, 1H), 7.91 (dd, 1H), 7.86 ( dd, 1H), 4.01 (q, 2H), 2.14 (m, 1H), 1.43 (t, 3H),
1.31 (m, 2H), 0.98 (m, 2H).

参考例5.
3−エチルスルホニル−5−シクロプロピル−2−ピリジンカルボン酸ナトリウムの製造方法
3−エチルスルホニル−5−シクロプロピル−2−ピリジンカルボン酸メチルエステル1.28g、水酸化ナトリウム0.19g、メタノール1.5ml、水1.5mlの混合物を30℃〜40℃で1時間撹拌した。25℃まで冷却した後、濃縮した。残渣にトルエン50mlを加え、減圧下濃縮した。残渣にトルエン(50ml)を加え、減圧下濃縮した。残渣にトルエン(50ml)を加え、減圧下濃縮して、表題の化合物1.30gを得た。
物性値
H‐NMR(δ,CDCl)8.24(br,1H),
7.64(br,1H),3.69(br,2H),1.81(br,1H),1.02(br,5H),0.67(br,2H).
Reference example 5.
Method for producing sodium 3-ethylsulfonyl-5-cyclopropyl-2-pyridinecarboxylate
A mixture of 1.28 g of 3-ethylsulfonyl-5-cyclopropyl-2-pyridinecarboxylic acid methyl ester, 0.19 g of sodium hydroxide, 1.5 ml of methanol and 1.5 ml of water was stirred at 30 ° C. to 40 ° C. for 1 hour. .. After cooling to 25 ° C., it was concentrated. Toluene (50 ml) was added to the residue, and the mixture was concentrated under reduced pressure. Toluene (50 ml) was added to the residue, and the mixture was concentrated under reduced pressure. Toluene (50 ml) was added to the residue and concentrated under reduced pressure to give 1.30 g of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 8.24 (br, 1H),
7.64 (br, 1H), 3.69 (br, 2H), 1.81 (br, 1H), 1.02 (br, 5H), 0.67 (br, 2H).

参考例6.
3−エチルスルホニル−5−シクロプロピル−N−[2−ヒドロキシ−5−(トリフルオロメチルスルフィニル)フェニル]ピコリンアミドの製造方法
3−エチルスルホニル−5−シクロプロピル−2−ピリジンカルボン酸ナトリウム1.30g、DMF17mg、トルエン20ml、塩化チオニル0.85gの混合物を60℃〜70℃で2時間撹拌した。25℃まで冷却した後、不溶物を減圧濾過で除き、濾物をトルエンで洗浄した。濾液を濃縮して得られた残渣にトルエン5mlとクロロホルム5mlを加え、これを2−アミノ−4−(トリフルオロメチルスルフィニル)フェノール1.02g、THF10mlの混合物に氷冷下滴下した。20℃で16時間撹拌した後、反応混合物に炭酸水素ナトリウム水溶液と飽和食塩水を加え、酢酸エチルで抽出した。有機層を減圧下濃縮して、表題の化合物2.23gを得た。
物性値
H‐NMR(δ,CDCl)9.93(br,1H),
8.55(d,1H),8.17(d,1H),8.05(d,1H),
7.46(dd,1H),7.15(d,1H),3.93(q,2H),
2.10(m,1H),1.39(t,3H),1.28(m,2H),
0.96(m,2H).
Reference example 6.
Method for producing 3-ethylsulfonyl-5-cyclopropyl-N- [2-hydroxy-5- (trifluoromethylsulfinyl) phenyl] picoline amide
A mixture of 1.30 g of sodium 3-ethylsulfonyl-5-cyclopropyl-2-pyridinecarboxylate, 17 mg of DMF, 20 ml of toluene and 0.85 g of thionyl chloride was stirred at 60 ° C. to 70 ° C. for 2 hours. After cooling to 25 ° C., the insoluble material was removed by vacuum filtration, and the filter material was washed with toluene. 5 ml of toluene and 5 ml of chloroform were added to the residue obtained by concentrating the filtrate, and this was added dropwise to a mixture of 1.02 g of 2-amino-4- (trifluoromethylsulfinyl) phenol and 10 ml of THF under ice-cooling. After stirring at 20 ° C. for 16 hours, an aqueous sodium hydrogen carbonate solution and a saturated brine were added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was concentrated under reduced pressure to give 2.23 g of the title compound.
Physical property value
1 1 H-NMR (δ, CDCl 3 ) 9.93 (br, 1H),
8.55 (d, 1H), 8.17 (d, 1H), 8.05 (d, 1H),
7.46 (dd, 1H), 7.15 (d, 1H), 3.93 (q, 2H),
2.10 (m, 1H), 1.39 (t, 3H), 1.28 (m, 2H),
0.96 (m, 2H).

Claims (5)

一般式(5)
(式中、X及びYはそれぞれ独立に、ハロゲン原子を示し、nは、0〜2の整数を示す。)
で表される化合物をハロゲン化することにより生成する、
一般式(4)
(式中、X、Y及びnは前記と同じくし、Zは、ハロゲン原子を示す。)
で表される化合物を環化反応に付することにより生成する、
一般式(3)
(式中、Y及びnは、前記と同じ。)
で表される化合物を、遷移金属触媒存在下で一酸化炭素と反応させることにより、一般式(2)
(式中、nは、前記と同じ。)
で表される化合物を製造する工程を含むことを特徴とする、
一般式(1)
(式中、nは前記と同じくし、mは、0〜2の整数を示す。)
で表される化合物の製造方法。
General formula (5)
(In the equation, X and Y each independently represent a halogen atom, and n represents an integer of 0 to 2.)
It is produced by halogenating the compound represented by.
General formula (4)
(In the formula, X, Y and n are the same as above, and Z represents a halogen atom.)
It is produced by subjecting the compound represented by to the cyclization reaction.
General formula (3)
(In the formula, Y and n are the same as above.)
By reacting the compound represented by with carbon monoxide in the presence of a transition metal catalyst, the general formula (2)
(In the formula, n is the same as above.)
It is characterized by including a step of producing a compound represented by.
General formula (1)
(In the formula, n is the same as above, and m is an integer of 0 to 2.)
A method for producing a compound represented by.
一般式(9)
(式中、Xは、ハロゲン原子を示す。)
で表される化合物と、一般式(8)
(式中、nは、0〜2の整数を示す。)
で表される化合物とを反応させることにより生成する、一般式(7)
(式中、X及びnは、前記と同じ。)
を、N,N‐ジメチルホルムアミド ジアルキルアセタールと反応させることにより生成する、一般式(6)
(式中、X及びnは、前記と同じ。)
を環化反応に付することにより、一般式(5)
(式中、X及びnは前記と同じくし、Yは、ハロゲン原子を示す。)
で表される化合物を製造する工程を含む、請求項1に記載の製造方法。
General formula (9)
(In the formula, X represents a halogen atom.)
Compound represented by and general formula (8)
(In the formula, n represents an integer of 0 to 2.)
General formula (7) produced by reacting with a compound represented by
(In the formula, X and n are the same as above.)
Is produced by reacting with N, N-dimethylformamide dialkyl acetal, the general formula (6).
(In the formula, X and n are the same as above.)
By subjecting to the cyclization reaction, the general formula (5)
(In the formula, X and n are the same as above, and Y represents a halogen atom.)
The production method according to claim 1, which comprises the step of producing the compound represented by.
式(15)
で表される化合物と、オルトギ酸トリメチルを反応させることにより生成する、式(14)
で表される化合物を、酸性条件下反応させることにより生成する、式(13)
で表される化合物と、一般式(8)
(式中、nは、0〜2の整数を示す。)
で表される化合物とを反応させることにより生成する、一般式(12)
(式中、nは、前記と同じ。)
で表される化合物を、環化反応に付することにより、一般式(5)
(式中、nは前記と同じくし、X及びYはそれぞれ独立に、ハロゲン原子を示す。)
で表される化合物を製造する工程を含む、請求項1に記載の製造方法。
Equation (15)
Formula (14), which is produced by reacting the compound represented by (1) with trimethyl orthoformate.
Formula (13), which is produced by reacting the compound represented by
Compound represented by and general formula (8)
(In the formula, n represents an integer of 0 to 2.)
The general formula (12) produced by reacting with a compound represented by
(In the formula, n is the same as above.)
By subjecting the compound represented by to the cyclization reaction, the general formula (5)
(In the formula, n is the same as above, and X and Y independently represent halogen atoms.)
The production method according to claim 1, which comprises the step of producing the compound represented by.
一般式(12)
(式中、nは、0〜2の整数を示す。)
で表される化合物を、環化反応に付することにより生成する、一般式(10)
(式中、nは、前記と同じくし、Yはハロゲン原子を示す。)
で表される化合物をハロゲン化することにより、一般式(5)
(式中、n及びYは前記と同じくし、Xは、ハロゲン原子を示す。)
で表される化合物を製造する工程を含む、請求項3に記載の製造方法。
General formula (12)
(In the formula, n represents an integer of 0 to 2.)
The compound represented by (10) is produced by subjecting it to a cyclization reaction.
(In the formula, n is the same as above, and Y is a halogen atom.)
By halogenating the compound represented by, the general formula (5)
(In the formula, n and Y are the same as above, and X represents a halogen atom.)
The production method according to claim 3, further comprising a step of producing the compound represented by.
一般式(12)
(式中、nは、0〜2の整数を示す。)
で表される化合物を、環化反応に付することにより生成する、一般式(11)
(式中、nは、前記と同じくし、Xはハロゲン原子を示す。)
で表される化合物を、ハロゲン化することにより、一般式(5)
(式中、n及びXは前記と同じくし、Yは、ハロゲン原子を示す。)
で表される化合物を製造する工程を含む、請求項3に記載の製造方法。
General formula (12)
(In the formula, n represents an integer of 0 to 2.)
The compound represented by (11) is produced by subjecting it to a cyclization reaction.
(In the formula, n is the same as above, and X is a halogen atom.)
By halogenating the compound represented by, the general formula (5)
(In the formula, n and X are the same as above, and Y represents a halogen atom.)
The production method according to claim 3, further comprising a step of producing the compound represented by.
JP2019075503A 2019-04-11 2019-04-11 Method for Producing Condensed Heterocyclic Compound Pending JP2020172469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019075503A JP2020172469A (en) 2019-04-11 2019-04-11 Method for Producing Condensed Heterocyclic Compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019075503A JP2020172469A (en) 2019-04-11 2019-04-11 Method for Producing Condensed Heterocyclic Compound

Publications (1)

Publication Number Publication Date
JP2020172469A true JP2020172469A (en) 2020-10-22

Family

ID=72829976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019075503A Pending JP2020172469A (en) 2019-04-11 2019-04-11 Method for Producing Condensed Heterocyclic Compound

Country Status (1)

Country Link
JP (1) JP2020172469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085224A1 (en) * 2022-10-20 2024-04-25 住友化学株式会社 Crystal of 2-(5-cyclopropyl-3-(ethylsulfonyl)pyridin-2-yl)-5-((trifluoromethyl)sulfonyl)benzo[d]oxazole
WO2024085225A1 (en) * 2022-10-20 2024-04-25 住友化学株式会社 Crystal of 2-(5-cyclopropyl-3-(ethylsulfonyl)pyridin-2-yl)-5-((trifluoromethyl)sulfinyl)benzo[d]oxazole

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085224A1 (en) * 2022-10-20 2024-04-25 住友化学株式会社 Crystal of 2-(5-cyclopropyl-3-(ethylsulfonyl)pyridin-2-yl)-5-((trifluoromethyl)sulfonyl)benzo[d]oxazole
WO2024085225A1 (en) * 2022-10-20 2024-04-25 住友化学株式会社 Crystal of 2-(5-cyclopropyl-3-(ethylsulfonyl)pyridin-2-yl)-5-((trifluoromethyl)sulfinyl)benzo[d]oxazole

Similar Documents

Publication Publication Date Title
KR101116686B1 (en) Method for producing 2-dihaloacyl-3-amino-acrylic acid esters and 3-dihalomethylpyrazole-4-carboxylic acid esters
EP3204373B1 (en) Stereoselective process to obtain (z)-5-cyclyloxy-2-[(e)-methoxyimino]-3-methyl-pent-3-enic acid methyl amides using e,z-isomer mixture of and intermediates thereof
JP5993860B2 (en) Method for producing 4,4-difluoro-3,4-dihydroisoquinoline derivative
JP6771475B2 (en) Method for producing 3-chloro-2-vinylphenyl sulfonates
JP2012508729A (en) Process for producing substituted 3-pyridylmethylammonium bromides
JP2020172469A (en) Method for Producing Condensed Heterocyclic Compound
JP5077969B2 (en) Process for the preparation of 2-substituted 5- (1-alkylthio) alkylpyridines
JP6944519B2 (en) Method for Producing Cyclopropyl Substituted Acetophenones
WO2010122794A1 (en) Process for production of pyrazinecarboxylic acid derivative, and intermediate for the production
JP4066630B2 (en) Preparation of 2-substituted thiopyrimidine-4-carboxylic acid esters
JP4251508B2 (en) Method for producing acid chloride compound
CN107406394B (en) Process for the preparation of substituted phenylisoxazoline derivatives
JP2018087142A (en) Method for producing 3-haloalkyl pyrazole derivative
JP4561635B2 (en) Process for producing 4-alkoxycarbonyltetrahydropyran or tetrahydropyranyl-4-carboxylic acid
JP5406581B2 (en) Method for producing anthranilamido compound
JP5631741B2 (en) Process for producing pyrazine derivatives and intermediates thereof
BR112020019277A2 (en) PROCESS FOR THE PRODUCTION OF 2,6-DIALKYLPHENYL ACETIC ACIDS
JP4828740B2 (en) Process for producing 1,2,5-thiadiazoylmethanone derivative and dioxime derivative
JP5064125B2 (en) Method for synthesizing pyrazoles
JP2013035854A (en) Method for producing tetrahydropyran compound
WO2010122793A1 (en) Process for production of pyrazine derivative, and intermediate for the production
JPH02117630A (en) Production of halogenated ethylbenzene
JP2006137711A (en) Method for producing pyridine derivative
JPWO2002076962A1 (en) Method for producing 3-oxo-2- (2-thiazolyl) propanenitrile and intermediate